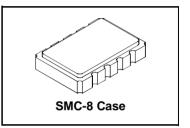
Preliminary


- **Quartz SAW Frequency Stability**
- Fundamental Fixed Frequency
- Very Low Jitter and Power Consumption
- Rugged, Miniature, Surface-Mount Case
- Low-Voltage Power Supply (3.3 VDC)

This digital clock is designed for use in high-speed communications timing systems. Fundamental-mode oscillation is made possible by surface-acoustic-wave (SAW) technology. The design results in low jitter, compact size, and low power consumption. Differential outputs provide a sine wave that is capable of driving 50 Ω loads.

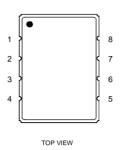
Rating	Value	Units
Power Supply Voltage (V _{CC} at Terminal 1)	0 to +4.0	VDC
Input Voltage (ENABLE at Terminal 8)	0 to +4.0	VDC
Case Temperature (Powered or Storage)	-40 to +85	°C

SC3044B

251.00 MHz **Differential** Sine-Wave Clock

Electrical Characteristics

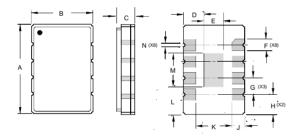
(Characteristic	Sym	Notes	Minimum	Typical	Maximum	Units
Output Frequency	Absolute Frequency	f _O	1, 2	250.910		251.090	MHz
	Tolerance from 286.0 MHz	Δf_{O}	1, 2			±300	ppm
Q and Q Output	Voltage into 50Ω (VSWR ≤ 1.2)	Vo	4.2	0.60		1.1	W
	Operating Load VSWR		1, 3			2:1	V _{P-P}
	Symmetry		3, 4, 5	49		51	%
	Harmonic Spurious		0.4.0			-30	dBc
	Nonharmonic Spurious		3, 4, 6			-60	dBc
Q and Q Period Jitter	No Noise on V _{CC}		3, 4, 6, 7		15	30	ps _{P-P}
	200 mV $_{\text{P-P}}$ from 1 MHz to $\frac{1}{2}\text{f}_{\text{O}}$ on		3, 4, 7, 8			35	ps _{P-P}
Output (Disabled)	Amplitude into 50 Ω		3, 9			75	mV _{P-P}
Output DC Resistance (bet	tween Q & Q)		3	50			ΚΩ
ENABLE (Terminal 14)	Input HIGH Voltage	V _{IH}		V _{CC} -0.1	V _{CC}	V _{CC} +0.1	V
	Input LOW Voltage	V _{IL}		0.0		0.20	V
	Input HIGH Current	I _{IH}	3, 9		3	5	mA
	Input LOW Current	I _{IL}				-1	mA
	Propagation Delay	t _{PD}	1			1	ms
DC Power Supply	Operating Voltage	V _{CC}	1, 3	+3.13	+3.30	+3.47	VDC
	Operating Current	I _{CC}			20	40	mA
Operating Ambient Temperature		T _A	1, 3	0		+70	°C
Lid Symbolization (YY = Ye	ear, WW = Week)		RFM SC3044B 251.00 MHz YYWW				



CAUTION: Electrostatic Sensitive Device. Observe precautions for handling. NOTES

- Unless otherwise noted, all specifications include any combination of load VSWR, VCC, and TA. In addition, Q and \overline{Q} are terminated into 50 Ω loads to ground. (See: Typical Test Circuit.)
- One or more of the following United States patents apply: 4,616,197; 4,670,681; 4 760 352
- The design, manufacturing process, and specifications of this device are subject to change without notice
- Only under the nominal conditions of 50 Ω load impedance with VSWR \leq 1.2 and nominal power supply voltage.
- Symmetry is defined as the pulse width (in percent of total period) measured at the 50% points of Q or \overline{Q} . (See: Timing Definitions.)
- Jitter and other spurious outputs induced by externally generated electrical noise on $V_{\mbox{\footnotesize{CC}}}$ or mechanical vibration are not included. Dedicated external voltage
- regulation and careful PCB layout are recommended for optimum performance. Applies to period jitter of Q and \overline{Q} . Measurements are made with the Tektronix CSA803 signal analyzer with at least 1000 samples.
- Period jitter measured with a 200 mV_{P-P} sine wave swept from 1 MHz to one-half of f_O at the V_{CC} power supply terminal.
 - The outputs are enabled when Terminal 8 is at logic HIGH. Propagation delay is defined as the time from the 50% point on the rising edge of ENABLE to the 90% point on the rising edge of the output amplitude or as the fall time from the 50% point to the 10% point. (SEE: Timing Definitions.)

Electrical Connections


Terminal Number	Connection	
1	V _{CC}	
2	Ground	
3	NC or Ground	
4	Q Output	
5	Q Output	
6	Ground	
7	Sibulia	
8	ENABLE	
LID	Ground	

Case Design

All pads consist of 30 microinches (min) electroless gold on 50 micro-inches (min) electroless nickel over base metal. The metallic center pad was designed for mechanical support. Grounding of this pad is optional.

Lid symbolization, including terminal 1 locator dot, are in contrasting ink. Symbolization varies by model number. For purposes of illustration, only terminal 1 dot is shown.

Dimensions	Millimeters		Inc	es
	Min	Max	Min	Max
Α	13.46	13.97	0.530	0.550
В	9.14	9.66	0.360	0.380
С	2.05 Nominal		0.081 Nominal	
D	3.56 Nominal		0.141 Nominal	
E	2.24 Nominal		0.088 Nominal	
F	1.27 Nominal		0.050 N	lominal
G	2.54 Nominal		0.100 N	lominal
Н	3.05 Nominal		0.120 Nominal	
J	1.93 Nominal		0.076 N	lominal
K	5.54 Nominal		0.218 N	lominal

4.32 Nominal

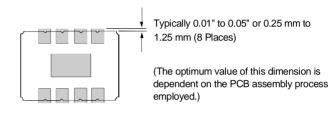
4.83 Nominal

0.50 Nominal

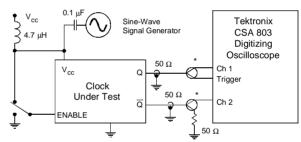
L

М

Ν

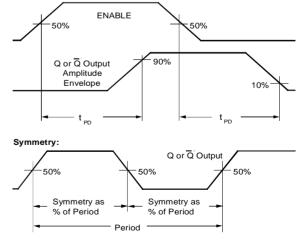

Footprint

Actual size footprint:



Typical Printed Circuit Board Land Pattern

A typical land pattern for a circuit board is shown below. Grounding of the metallic center pad is optional.


Typical Test Circuit

*Power Splitter, Mini-Circuits ZFSC2-4

Timing Definitions

Propagation Delay:

RF Monolithics, Inc. Phone: (972) 233-2903 Fax: (972) 387-9148 RFM Europe Phone: $44\ 1963\ 251383$ Fax: $44\ 1963\ 251510$ ©1999 by RF Monolithics, Inc. The stylized RFM logo are registered trademarks of RF Monolithics, Inc.

0.170 Nominal

0.190 Nominal

0.020 Nominal

E-mail: info@rfm.com http://www.rfm.com SC3044B-020900