SIKYWORIKS

PRELIMINARY DATA SHEET

SKY13252-321: PHEMT GaAs IC Diversity Switch DC-6 GHz

Applications

- WLAN 802.11a, b, g diversity

Features

- Operating frequency DC-6 GHz
- Positive low voltage control ($0 / 3 \mathrm{~V}$ operation)
- Low insertion loss
- High linearity
- Miniature QFN-12 plastic package
- PHEMT process

Description

The SKY13252-321 is a broadband transfer switch designed to combine T/R and antenna diversity switching functions on a single IC. The device is designed to have a low insertion loss and maintain high linearity at low control voltages. This low cost switch is ideal for Wireless LAN applications and is capable of covering both the 2.4 GHz and 5 GHz bands.

QFN-12

Electrical Specifications at $\mathbf{2 5}^{\mathbf{\circ}} \mathbf{C}(\mathbf{0}, \mathbf{+ 3} \mathbf{~ V})$

Parameter	Condition	Frequency	Min.	Typ.	Max.	Unit
Insertion loss	Ant1, Ant2 to $\mathrm{T}_{\mathrm{X}}, \mathrm{R}_{\mathrm{X}}$	$2.400-2.500 \mathrm{GHz}$		0.75	0.90	dB
		$\begin{aligned} & \hline 5.150-5.350 \mathrm{GHz} \\ & 5.725-5.825 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 1.10 \\ & 1.20 \end{aligned}$	$\begin{aligned} & 1.30 \\ & 1.35 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Isolation	Ant1, Ant2 to $\mathrm{T}_{\mathrm{X}}, \mathrm{R}_{\mathrm{X}}$	$\begin{aligned} & \hline 2.400-2.500 \mathrm{GHz} \\ & 5.150-5.350 \mathrm{GHz} \\ & 5.725-5.825 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & \hline 27.0 \\ & 23.0 \\ & 21.0 \end{aligned}$	$\begin{aligned} & 33.0 \\ & 30.0 \\ & 24.0 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
	Ant1 to Ant2, T_{X} to R_{X}	$\begin{aligned} & 2.400-2.500 \mathrm{GHz} \\ & 5.150-5.350 \mathrm{GHz} \\ & 5.725-5.825 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & \hline 20.0 \\ & 17.0 \\ & 17.0 \end{aligned}$	$\begin{aligned} & \hline 25.0 \\ & 20.0 \\ & 20.0 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
Return loss	Ant1, Ant2 to $\mathrm{T}_{\mathrm{X}}, \mathrm{R}_{\mathrm{X}}$	$\begin{aligned} & 2.400-2.500 \mathrm{GHz} \\ & 5.150-5.350 \mathrm{GHz} \\ & 5.725-5.825 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & \hline 17.0 \\ & 13.0 \\ & 13.0 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$

Operating Characteristics at $\mathbf{2 5}^{\circ} \mathrm{C}(\mathbf{0}, \mathbf{+ 3} \mathbf{V})$

Parameter	Condition	Frequency	Min.	Typ.	Max.	Unit
$\mathrm{P}_{1 \mathrm{~dB}}$	@ 0, +3 V	2-6 GHz		27		dBm
IP3	5 dBm per tone, 5 MHz spacing, @ $0,+3 \mathrm{~V}$	2-6 GHz		45		dBm
Control voltage	$\mathrm{V}_{\text {LOW }}=0-0.25 \mathrm{~V} @ 10 \mu \mathrm{~A}$ max. $\mathrm{V}_{\text {HIGH }}=3-5.00 \mathrm{~V} @ 15 \mu \mathrm{~A}$ max.					

Typical Performance Data

Insertion Loss vs. Frequency

Isolation vs. Frequency

Truth Table

Insertion loss path	$\mathbf{V}_{\mathbf{1}}$	$\mathbf{V}_{\mathbf{2}}$	State
Ant1-T T_{x} Ant2- B_{X}	0	1	1
Ant1-R R_{X} Ant2- T_{X}	1	0	2

Isolation Between A1 and A2

Pin Out (Top View)

DC blocking capacitors $\left(\mathrm{C}_{\mathrm{BL}}\right)=47 \mathrm{pF}$.

