WCMA1016U4X

Features

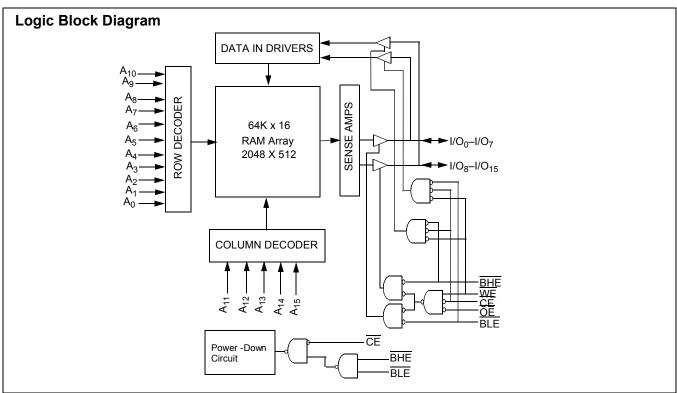
- High Speed
 55ns and 70ns availability
- Low voltage range

-2.7V-3.6V

- Ultra-low active power
- · Low standby power
- Easy memory expansion with $\overline{\text{CE}}$ and $\overline{\text{OE}}$ features
- Automatic power-down when deselected
- CMOS for optimum speed/power

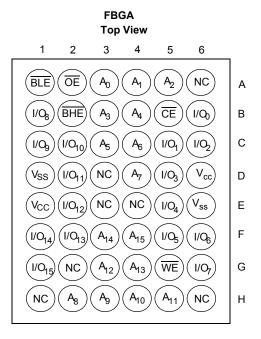
Functional Description

The WCMA1016U4X is a high-performance CMOS static RAM organized as 64K words by 16 bits. This device features advanced circuit design to provide ultra-low active current. This device s ideal for portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption by 99% when addresses are not toggling. The <u>device</u> can also be <u>put</u> into standby mode when deselected (CE HIGH or both BLE


64K x 16 Static RAM

and $\overline{\text{BHE}}$ are HIGH). The input/output pins (I/O₀ through I/O₁₅) are placed in a high-impedance state when: deselected (CE HIGH), outputs are disabled (OE HIGH), both Byte High Enable and Byte Low Enable are disabled (BHE, BLE HIGH), or during a write operation (CE LOW, and WE LOW).

<u>Writing</u> to the device is <u>accomplished</u> by taking Chip Enable (\overline{CE}) and Write Enable (WE) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O₀ through I/O₇), is written into the location specified <u>on the</u> address pins (A₀ through A₁₅). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A₀ through A₁₅).


Reading from the device is accomplished by taking Chip Enable (\overline{CE}) and Output Enable (\overline{OE}) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins will appear on I/O₀ to I/O₇. If Byte High Enable (BHE) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. See the Truth Table at the back of this data sheet for a complete description of read and write modes.

The WCMA1016U4X is available in a 48-ball FBGA package.

Pin Configuration^[1]

Maximum Ratings

(Above which the useful life may be impaired. For user guide-lines, not tested.)
Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied55°C to +125°C
Supply Voltage to Ground Potential0.5V to +4.6V

DC Voltage Applied to Outputs

in High Z State ^[2]	. –0.5V to V _{CC} + 0.5V
DC Input Voltage ^[2]	. –0.5V to V _{CC} + 0.5V
Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage (per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	>200 mA

Operating Range

Device	Range	Ambient Temperature	V _{CC}
WCMA1016U4X	Industrial	–40°C to +85°C	2.7V to 3.6V

Product Portfolio

		V _{CC} Range			Power Dissipation (Industrial)			
Product	00 0		Speed		Shood		Operating, I _{CC} (f=f _{max})	Standby (I _{SB2})
	V _{CC(min.)}	V_{CC(typ.)} ^[3]	V _{CC(max.)}		Max.	Max.		
WCMA1016U4X	2.7V	3.0V	3.6V	70 ns	15 mA	15 µA		
	2.7 V	5.00	5.00	55 ns	20 mA	iσμΑ		

Notes:

NC pins are not connected to the die.
 V_{IL}(min) = -2.0V for pulse durations less than 20 ns.
 Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25°C.

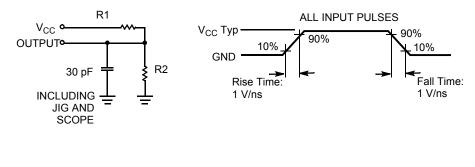
Electrical Characteristics Over the Operating Range

				WC	/A1016U4X	-70/55	
Param- eter	Description	Test	Conditions	Min.	Typ . ^[3]	Max.	Unit
V _{OH}	Output HIGH Voltage	I _{OH} = -0.1 mA	V _{CC} = 2.7V	2.2			V
V _{OL}	Output LOW Voltage	I _{OL} = 2.1 mA	V _{CC} = 2.7V			0.4	V
V _{IH}	Input HIGH Voltage		·	2.0		V _{CC} + 0.3V	V
V _{IL}	Input LOW Voltage			-0.3		0.4	V
I _{IX}	Input Leakage Current	$GND \leq V_I \leq V_{CC}$	$GND \leq V_{I} \leq V_{CC}$			+1	μA
I _{OZ}	Output Leakage Cur- rent	$GND \leq V_O \leq V_{CC}$	$GND \leq V_O \leq V_{CC}$, Output Disabled			+1	μA
I _{CC}	V _{CC} Operating Supply Current	$f = f_{MAX} = 1/t_{RC}$	V _{CC} = 3.6V70nsI _{OUT} = 0 mA55nsCMOS levels55ns	_		15 20	mA
I _{SB1}	Automatic CE Power-Down Current— TTL Inputs	$\begin{array}{l} \text{Max. } V_{\text{CC}}, \overline{\text{CE}} \geq V \\ V_{\text{IN}} \geq V_{\text{IH}} \text{ or } V_{\text{IN}} \leq \end{array}$			2	μA	
I _{SB2}	Automatic CE Power-Down Cur- rent— CMOS Inputs	Max. V_{CC} , $\overline{CE} \ge V_{IN} \ge V_{CC}$ –0.3V c	$V_{\rm CC} = 0.3 V$ or $V_{\rm IN} \le 0.3 V$, f = 0		0.5	15	

Capacitance^[4]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	T _A = 25°C, f = 1 MHz,	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ)}$	8	pF

Thermal Resistance

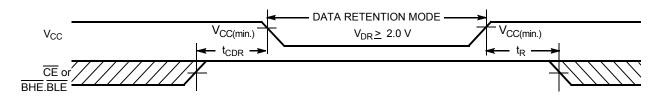

Description	Test Conditions	Symbol	BGA	Units
Thermal Resistance (Junction to Ambient) ^[4]	Still Air, soldered on a 4.25 x 1.125 inch, 4-layer printed circuit board	Θ_{JA}	55	°C/W
Thermal Resistance (Junction to Case) ^[4]		Θ^{JC}	16	°C/W

Note:

4. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT RTH


OUTPUT --**o** V

Parameters	3.3V	UNIT
R1	1213	Ohms
R2	1378	Ohms
R _{TH}	645	Ohms
V _{TH}	1.75	Volts

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions	Min.	Typ. ^[3]	Max.	Unit
V _{DR}	V_{CC} for Data Retention		2.0		3.6	V
I _{CCDR}	Data Retention Current	$\begin{array}{l} \frac{V_{CC}}{CE} = 2.0V\\ \overline{CE} \geq V_{CC} - 0.3V,\\ V_{IN} \geq V_{CC} - 0.3V \text{ or } V_{IN} \leq 0.3V \end{array}$		0.5	15	μA
t _{CDR} ^[4]	Chip Deselect to Data Retention Time		0			ns
t _R ^[5]	Operation Recovery Time		t _{RC}			ns

Data Retention Waveform^[6]

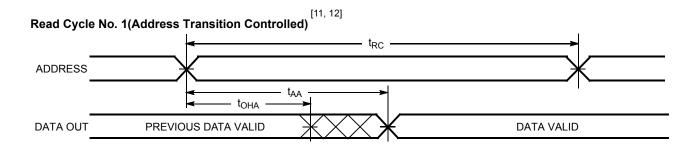
Notes:

- <u>Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min}) ≥ 100 μs or stable at V_{CC(min}) ≥ 100 μs.
 BHE.BLE is the AND of both BHE and BLE. Chip can be deselected by either disabling the chip enable signals or by disabling both BHE and BLE.
 </u>

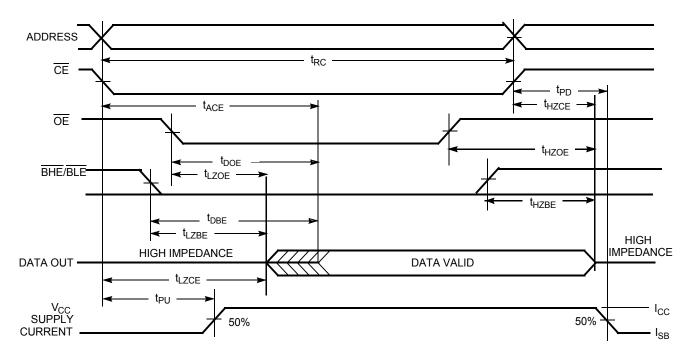
Switching Characteristics Over the Operating Range^[7]

		WCMA10)16U4X-55	WCMA10	16U4X-70	
Parameter	Description	Min.	Max.	Min.	Max.	Unit
READ CYCLE	•		1			
t _{RC}	Read Cycle Time	55		70		ns
t _{AA}	Address to Data Valid		55		70	ns
t _{OHA}	Data Hold from Address Change	10		10		ns
t _{ACE}	CE LOW to Data Valid		55		70	ns
t _{DOE}	OE LOW to Data Valid		25		35	ns
t _{LZOE}	OE LOW to Low Z ^[8]	5		5		ns
t _{HZOE}	OE HIGH to High Z ^[8, 9]		20		25	ns
t _{LZCE}	CE LOW to Low Z ^[8]	10		10		ns
t _{HZCE}	CE HIGH to High Z ^[8, 9]		20		25	ns
t _{PU}	CE LOW to Power-Up	0		0		ns
t _{PD}	CE HIGH to Power-Down		55		70	ns
t _{DBE}	BLE / BHE LOW to Data Valid		55		70	ns
t _{LZBE}	BLE / BHE LOW to Low Z ^[8]	5		5		ns
t _{HZBE}	BLE / BHE HIGH to High Z ^[8, 9]		20		25	ns
WRITE CYCLE	10]		•		•	
t _{WC}	Write Cycle Time	55		70		ns
t _{SCE}	CE LOW to Write End	45		60		ns
t _{AW}	Address Set-Up to Write End	45		60		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	40		50		ns
t _{BW}	BLE / BHE LOW to Write End	45		60		ns
t _{SD}	Data Set-Up to Write End	25		30		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{HZWE}	WE LOW to High Z ^[8, 9]		25		25	ns
t _{LZWE}	WE HIGH to Low Z ^[8]	5		5		ns

Note:


7.

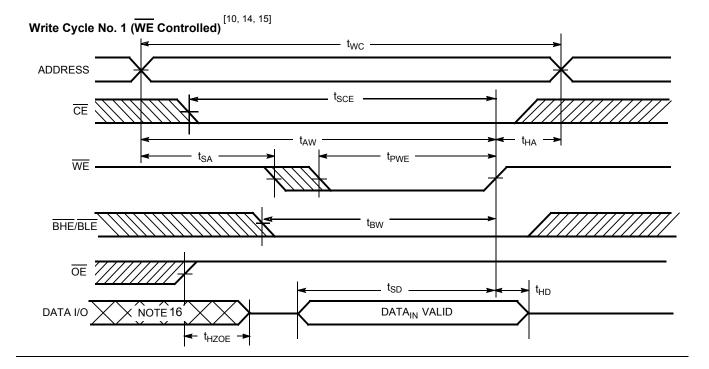
Test conditions assume signal transition time of 5 ns or less, timing reference levels of $V_{CC(typ)}/2$, input pulse levels of 0 to $V_{CC(typ)}$, and output loading of the specified I_{0L}/I_{0H} and 30 pF load capacitance. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZBE} is less than t_{LZOE} , t_{HZDE} is less than t_{LZOE} , and t_{HZWE} is less than t_{LZOE} , and t_{HZWE} is less than t_{LZOE} . 8.

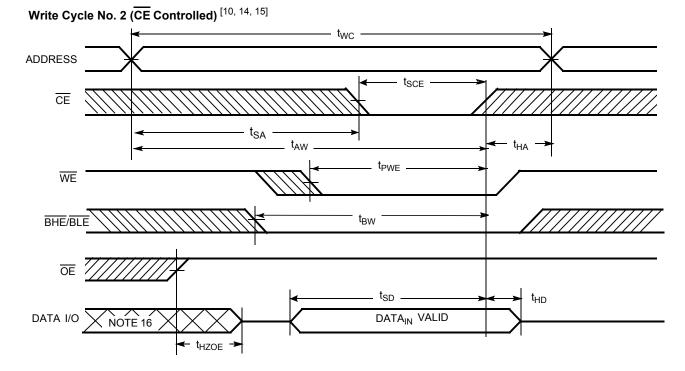

t_{HZOE}, t_{HZCE}, t_{HZEE} and t_{HZWE} transitions are measured when the outputs <u>enter</u> a high impedence state.
 The internal write time of the memory is defined by the overlap of WE, CE = V_{IL}, BHE and/or BLE =V_{IL}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the write.

Switching Waveforms

Read Cycle No. 2 (OE Controlled) [12, 13]

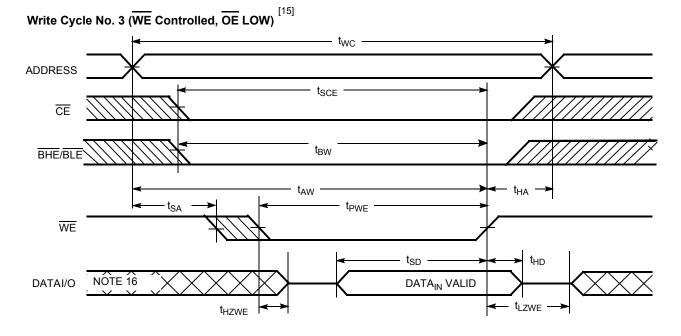
Notes:

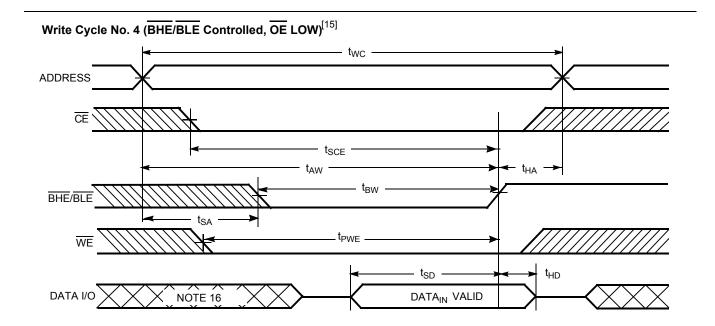

 11. Device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$, \overline{BHE} and/or $\overline{BLE} = V_{IL}$.


 12. WE is HIGH for read cycle.

 13. Address valid prior to or coincident with \overline{CE} , \overline{BHE} , \overline{BLE} , transition LOW.

Switching Waveforms




Note:

- 14. Data I/O is high impedance if OE = V_{IH}.
 15. If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.
 16. During this period, the I/Os are in output state and input signals should not be applied.

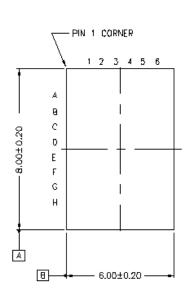
Switching Waveforms

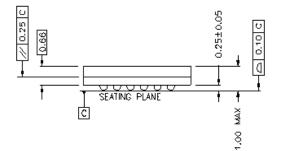
Truth Table

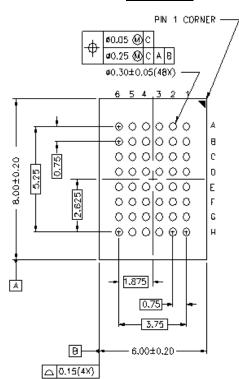
CE	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
Х	Х	Х	Н	Н	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Н	L	L	L	Data Out (I/O _O -I/O ₁₅)	Read	Active (I _{CC})
L	н	L	Н	L	Data Out (I/O _O –I/O ₇); I/O ₈ –I/O ₁₅ in High Z	Read	Active (I _{CC})
L	н	L	L	Н	Data Out (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Read	Active (I _{CC})
L	Н	Н	L	L	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	Н	L	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	L	Н	High Z	Output Disabled	Active (I _{CC})
L	L	Х	L	L	Data In (I/O _O –I/O ₁₅)	Write	Active (I _{CC})
L	L	Х	Н	L	Data In (I/O _O –I/O ₇); I/O ₈ –I/O ₁₅ in High Z	Write	Active (I _{CC})
L	L	Х	L	Н	Data In (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Write	Active (I _{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	WCMA1016U4X-FF70	FB48A	48-Ball Fine Pitch BGA	Industrial
55	WCMA1016U4X-FF55	I D40A		industrial




Package Diagrams


48-Ball (6.0 mm x 8.0 mm x 1.0 mm) Fine Pitch BGA, FB48A

Top View

Document Title: WCMA1016U4X, 64K x 16 Static RAM					
REV.	Spec #	ECN #	Issue Date	Orig. of Change	Description of Change
**	38-14024	115247	1/17/02	MGN	New Data Sheet