Energy Management Modular Smart Power Quality Analyzer Type WM3-96

- Display refresh time: 100 msec @ $\mathbf{5 0 ~ H z}$
- Harmonic distorsion analysis (FFT) up to 50th harmonic with both graph and numerical indication (of current and voltage)
- Harmonics source detection
- Optional RS232 + real time clock function with data logging of alarm and MIN/MAX events, monthly energy metering recording

Product Description

32-bit $\mu \mathrm{P}$-based smart power quality analizer with a built-in configuration key-pad. The housing is for panel mounting and ensures a degree of protection (front) of IP 65. The instrument is par-

- Class 0.5 (current/voltage)
- 32-bit μ P-based modular smart power quality analyzer
- Graph display (128×64 dots)
- Front size: 96x96 mm
- Measurements of single phase and system variables: W, Wdmd, var, VA, VAdmd, PF, PFavg, V, A, An dmd (for all of them max. and min. values). Energies: kWh and kvarh on 4 quadrants.
- Neutral current measurement
- TRMS measurement of distorted waves (voltage/current)
- Current and voltage inputs with autoranging capability
- 4x4-dgt instantaneous variable read-out
- 4x9-dgt total energies read-out
- 4x6-dgt partial energies read-out
- 48 independent energy meters to be used as single, dual, multi-time energy management
- Degree of protection (front): IP 65
- Up to 4 optional alarm setpoints
- Up to 4 optional pulse outputs
- Up to 4 optional analogue outputs
- Optional serial RS 422/485 output
- Universal power supply: 18 to 60VAC/DC - 90 to 260 VAC/DC
- MODBUS RTU, J BUS, (N2 METASYS protocols on request)

Ordering Key
WM3-96AV53H XX XX XX XX X

Type Selection

Range code		Slot A (signal retransmission)		Slot B (signal retransmission)		Slot C (alarm or pulse out)				
AV5:	240/415 VAC	XX:	None	XX:	None	XX:	None			
	1/5 AAC	A1:	Single analogue output,	B1:	Dual analogue output,	R1:	Single relay output, (AC1-8AAC 250VAC			
	(max. 300 V (L-N)/	A2:	20 mADC (standard)		20mADC (standard		(AC1-8AAC, 250 VAC$)$			
	520 V (L-L)-6A)		$\pm 5 \mathrm{mADC}$ I ${ }^{\text {I }}$	B2:	Dual analogue output,	R2:	Dual relay output, (AC1-8AAC, 250VAC)			
AV7:	400/690VAC	A3:	Single analogue output,	B3:	Dual analogue output,	01:	Single open collector			
	1/5 AAC									
	(max. $480 \mathrm{~V}(\mathrm{~L}-\mathrm{N}) /$	A4:	Single analogue output, $\pm 20 \mathrm{mADC}$	B4:	Dual analogue output,	02:	Dual open collector output (30V/ 100 mADC$)^{1)}$			
	$830 \mathrm{~V}(\mathrm{~L}-\mathrm{L}) / 6 \mathrm{~A}^{1)}$	B1:	Dual analogue output,	W1:	Dual analogue output	D1:	3 digital inputs ${ }^{1 /}$			
	System			20 mADC (standard)		10VDC (standard)				
			B2:	Dual analogue output, $\pm 5 \mathrm{mADC}{ }^{1 /}$	W2:	Dual analogue output, ± 1 VDC	Slot D (alarm or pulse out)			
	One phase, threephase system (3 or 4 wires, balanced load) Three phase system (3 or 4 wires, unbalanced load)	B3:	W3:							
		B4:		Dual analogue output, $\pm 10 \mathrm{mADC} \text { 1) }$	Dual analogue output, $\pm 5 \mathrm{VDC}$ 1)	XX: None				
		B4:	D +20 mADC 1) ${ }^{\text {a }}$		Dual analogue output	R2:	Dual relay outpu			
		V1:	Single analogue output,	S1:	Serial por		(AC1-8AAC, 250VAC) ${ }^{1)}$			
			10VDC (standard)		RS485 multidrop	02:	Dual open collector out-			
		V2:	Single analogue output,		bidirectional ${ }^{1)}$		ut ($30 \mathrm{~V} / 100 \mathrm{mADC}$) ${ }^{1}$			
			$\pm 1 \mathrm{VDC}$			04:	4 open collector out-			
		V3:	Single analogue output,	Note:			puts (30V/100mADC) ${ }^{1}$			
Power supply		V4:	Single analogue output, $\pm 10 \mathrm{VDC}{ }^{1)}$	$S \operatorname{lot} A+S \operatorname{lot} B$ Max 4 analogue outputs		Options				
	18 to 60VAC/DC ${ }^{1)}$	W1:	Dual analogue output, 10VDC (standard)	Slot C + Slot D max 4 digital outputs						
	90 to 260VAC/DC	W2:	Dual analogue output,			S:				
			$\pm 1 \mathrm{VDC}{ }^{1)}$			N:	With N2 Metasys protocol			
		W3:	Dual analogue output,							
${ }^{1)}$ On request		W4:	Dual analogue output, $\pm 10 \mathrm{VDC}{ }^{1}$							
Specifications are subject to change without notice WM3-96DS260606							1			

CARLO GAVAZZI

Input Specifications

Number of inputs
Current
Voltage
Digital
Accuracy (display, RS232 RS485)

Accuracy (display, RS232, RS485)
Current ($\mathrm{A}_{L 1}, \mathrm{~A}_{L 2}, \mathrm{~A}_{L 3}$)
Current (A_{n})

Voltage

Frequency
Active power
(@ $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, R.H. $\leq 60 \%$)

Reactive power
(@ $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, R.H. $\leq 60 \%$)

Apparent power
(@ $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, R.H. $\leq 60 \%$)

Energies
(@ $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, R.H. $\leq 60 \%$)

Harmonic distorsion
(@ $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, R.H. $\leq 60 \%$)

Magnetic field	$\leq 0.5 \%$ RDG, @ $400 \mathrm{~A} / \mathrm{m}$
Temperature drift	$\leq 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Sampling rate	6400 samples/s @ 50Hz
Display	Graph LCD, 128x64pixel, back-lighted. Selectable read-out for the instantaneous variables: 4×4-dgt or $4 \times 3^{1} / 2$-dgt Total Energies: $4 \times 9-d g t ;$ Partial: 4×6-dgt
Max. and min. indication	$\begin{aligned} & \text { Max. } 9999 \text { (999,999,999), } \\ & \text { Min. -9999 (-999,999,999) } \end{aligned}$
Measurements	Current, voltage, power, energy, harmonic distortion (see "Display pages" table). TRMS measurement of a distorted wave (voltage/current). Coupling type: Direct Crest factor: ≤ 3 (max. 15Ap/500Vp (V L-N) or 15Ap/800Vp (V L-N)
Ranges (impedances)	
AV5	```58/100 V (>500 k\Omega) - 1 AAC (}\leq0.3\textrm{VA} 58/100 V (>500 k\Omega) - 5 \mathrm { AAC } (\leq 0 . 3 ~ V A) 240/415 V (>500 k\Omega) - 1 AAC (}\leq0.3\textrm{VA} 240/415 V (>500 k\Omega) - 5 AAC (}\leq0.3\textrm{VA}```
AV7	$\begin{aligned} & 100 / 170 \mathrm{~V}((>500 \mathrm{k} \Omega) \\ & 1 \mathrm{AAC}(\leq 0.3 \mathrm{VA}) \\ & 100 / 170 \mathrm{~V}(>500 \mathrm{k} \Omega)- \\ & 5 \mathrm{AAC}(\leq 0.3 \mathrm{VA}) \\ & 400 / 690 \mathrm{~V}(>500 \mathrm{k} \Omega)- \\ & 1 \mathrm{AAC}(\leq 0.3 \mathrm{VA}) \\ & 400 / 690 \mathrm{~V}(>500 \mathrm{k} \Omega)- \\ & 5 \mathrm{AAC}(\leq 0.3 \mathrm{VA}) \end{aligned}$
Frequency range	40 to 440 Hz
Over-load protection	
Continuous: voltage/current	$\begin{aligned} & \text { AV5: } 300 \mathrm{~V}_{\mathrm{LN} / 5} / 520 \mathrm{~V}_{\mathrm{LL}} / 6 \mathrm{~A} \\ & \text { AV7: } 480 \mathrm{~V}_{\mathrm{LN} /} / 830 \mathrm{~V}_{\mathrm{LL}} / 6 \mathrm{~A} \end{aligned}$
For 1 s	
AV5	$600 \mathrm{~V}_{\text {LN }} / 1040 \mathrm{~V}_{\text {LI }} / 120 \mathrm{~A}$
	960 VLN/1660 VLI/120A
Keypad	4 keys: " S " for enter programming phase and password confirmation, "UP" and "DOWN" for value programming/function selection, page scrolling " F " for special functions

Output Specifications

Analogue outputs (on request)

Number of outputs	Up to 4 (on request)
Accuracy	$\pm 0.2 \% \mathrm{FS}$
Range	$\left(@ 25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right.$, R.H. $\leq 60 \%$)
	0 to 20 mADC,
	0 to $\pm 20 \mathrm{mADC}$

Output Specifications (cont.)

Scaling factor	Programmable within the whole range of retransmission; it allows the retransmission management of all values from: 0 to 20 mADC ,	Connections Data format Baud-rate Protocol Other data	3 wires, max. distance 15 m , 1-start bit, 8-data bit, no parity, 1-stop bit 9600 bauds MODBUS (${ }^{\text {BUS }}$) as for RS $422 / 485$
	0 to $\pm 20 \mathrm{mADC}$ 0 to $\pm 10 \mathrm{mADC}$, 0 to $\pm 5 \mathrm{mADC}$ 0 to 10 VDC, 0 to ± 10 VDC 0 to ± 5 VDC 0 to ± 1 VDC	Digital outputs (on request)	Up to 4 outputs (combination of alarms and pulse outputs) The working of the outputs: pulse or alarm or both of them is fully programmable and is independent from the
Variables to be retransmitted Response time	All (see table"List of the variables that can be connected to:"...) ≤ 200 ms typical		chosen output module. Outputs remotely controlled by the serial communication port
	(filter excluded, FFT excluded $31 / 2$ dgt indication)	Pulse outputs (on request)	
Ripple	$\leq 1 \%$ according to IEC 60688-1 and EN 60688-1	Number of outputs Type	Up to 4, independent From 1 to 1000 programmable
Temperature drift	$200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$		pulses for K-M-G Wh, K-M-G varh, open collector (NPN transistor)
Load: 20 mA output +20 mA output	$\leq 600 \Omega$ $\leq 550 \Omega$		open collector (NPN transistor)
$\pm 10 \mathrm{~mA}$ output	< 1100Ω		Voff 30 VDC max.
$\pm 5 \mathrm{~mA}$ output	$\leq 2200 \Omega$		Outputs connectable to total and partial energy meters
10 V output	$\geq 10 \mathrm{k} \Omega$	Pulse duration	220 ms (ON), $\geq 220 \mathrm{~ms}$ (OFF)
$\pm 10 \mathrm{~V}$ output	$\geq 10 \mathrm{k} \Omega$		According to DIN43864
$\pm 5 \mathrm{~V}$ output $\pm 1 \mathrm{~V}$ output	$\geq 10 \mathrm{k} \Omega$ $\geq 10 \mathrm{k} \Omega$	Insulation	By means of optocouplers, $4000 \mathrm{~V}_{\mathrm{ms}}$ output to
Insulation	By means of optocouplers, $4000 \mathrm{~V}_{\text {RMs }}$ output to measuring input $4000 \mathrm{~V}_{\text {RMS }}$ output to supply input	Note	measuring input, $4000 \mathrm{~V}_{\text {ms }}$ output to supply input. The outputs can be either open collector type or relay
RS422/RS485 output (on request)	Multidrop bidirectional (static and		type (for this latter one see the characteristics mentioned in the ALARMS).
Connections	dynamic variables) 4 wires, max. distance 1200 m , termination directly on the module	Alarms outputs (on request) Number of setpoints Alarm type	Up to 4, independent Up alarm, down alarm, up alarm with latch, down alarm
Addresses	1 to 255, selectable by key-pad		with latch, phase assymetry,
Protocol Data (bidirectional)	MODBUS RTU /J BUS, (N2 METASYS on request)	Variables to be controlled	phase loss, neutral loss All (see table"List of the variables that can be connected to:"...)
Dynamic (reading only)	All display variables (see also the table, "List of the variables	Setpoint adjustment	0 to 100\% of the electrical scale
	that can be connected to"...)	Hysteresis On-time delay	0 to 100\% of the electrical scale 0 to 255 s
Static (writing only)	All configuration parameters, reset of energy, activation of	Relay status	Selectable, Normally deenergized, normally energized
	digital output Stored energy (EEPROM) max. 999.999.999 kWh/kvarh	Output type	Relay, SPDT AC 1-8A, 250VAC DC 12-5A, 24VDC
Data format	1-start bit, 8-data bit, no parity/even parity,		AC 15-2.5A, 250VAC DC 13-2.5A, 24VDC
Baud-rate	odd parity, 1 stop bit 1200, 2400, 4800 and 9600 selectable bauds	Min. response time	$\leq 150 \mathrm{~ms}$, filter excluded, FFT excluded, setpoint on-time delay " "Os"
Insulation	By means of optocouplers, $4000 \mathrm{~V}_{\text {RMS }}$ output to measuring inputs $4000 \mathrm{~V}_{\text {RMS }}$ output to supply input	Insulation Note	$4000 \mathrm{~V}_{\text {RMs }}$ output to measuring input, $4000 \mathrm{~V}_{\text {RMS }}$ output to supply input The outputs can be either relay type or open collector
RS232 output (on request)	Bidirectional (static and dynamic variables)		type (for this latter one, see the characteristics mentioned in the PULSE OUTPUTS).

CARLO GAVAZZI

Software Functions

Password 1st level	Numeric code of max. 3 digits; 2 protection levels of the programming data Password "0", no protection	Filter action	Display, alarm, analogue and serial outputs (fundamental variables: $\mathrm{V}, \mathrm{A}, \mathrm{W}$ and their derived ones
1st level 2nd level	Password from 1 to 499, all data are protected	Event logging	Only with RS232 + RTC module. The alarms max/min values will be stored with time (hh:mm:ss) and date (dd:mm:yy) references Max. capacity: 480 events
Transformer ratio	For CT up to 30000 A , For VT up to 600 kV		
Scaling factor Operating mode	Electrical scale: compression/ expansion of the input scale to be connected to up to 4 analogue outputs. Programmable within the whole measuring range		
		Page Variables	Max. 4/page, one freely prog. page +26 variable pages + according to the kind of period selection: up to 12 energy meter pages.
Filter Filter operating range	0 to 99.9% of the input electrical scale	Display language	English, Italian, French, German, Spanish
Filtering coefficient	1 to 255		

Supply Specifications

AC/DC voltage

Power consumption
$\leq 30 \mathrm{VA} / 12 \mathrm{~W}$ (90to 260V) $\leq 20 \mathrm{VA} / 12 \mathrm{~W}$ (18 to 60V)

General Specifications

\(\left.$$
\begin{array}{l|l}\hline \text { Operating temperature } & \begin{array}{l}0 \text { to }+50^{\circ} \mathrm{C}\left(32 \text { to } 122^{\circ} \mathrm{F}\right) \\
\text { (R.H. }<90 \% \text { non-condensing) }\end{array} \\
\hline \text { Storage temperature } & \begin{array}{l}-10 \text { to }+60^{\circ} \mathrm{C}\left(14 \text { to } 140^{\circ} \mathrm{F}\right) \\
\text { (R.H. }<90 \% \text { non-condensing) }\end{array}
$$

\hline Insulation reference voltage \& 300 \mathrm{~V}_{RMS} to ground (AV5 input)\end{array}\right\}\)| $4000 \mathrm{~V}_{\text {RM }}$ between all inputs/ |
| :--- |
| outputs to ground |$|$| Insulation |
| :--- |
| Dielectric strength |
| Noise rejection
 CMRR |
| EMC
 Other standards
 Safety requirements:
 Product requirements: |
| $100 \mathrm{~dB}, 48$ to 62 Hz |

Product requirements	Energy measurements: EN61036, EN61268.
Pulse output:	DIN43864

Function Description

Input and output scaling capability

Working of the analogue outputs (y) versus input variables (x)

Figure A
The sign of measured quantity and output quantity remains the same. The output quantity is proportional to the measured quantity.

Figure D
The sign of measured quantity and output quantity remains the same. With the measured quantity being zero, the output quantity already has the value $\mathrm{Y} 1=0.2 \mathrm{Y} 2$.
Live zero output.

Figure E

The sign of the measured quantity changes but that of the output quantity remains the same. The output quantity steadily increases from value X 1 to value X 2 of the measured quantity.

Figure B

The sign of measured quantity and output quantity changes simultaneously. The output quantity is proportional to the measured quantity.

Figure C

The sign of measured quantity and output quantity remains the same. On the range X0...X1, the output quantity is zero. The range $\mathrm{X} 1 \ldots . . \mathrm{X} 2$ is delineated on the entire output range $\mathrm{Y} 0=$ Y1...Y2 and thus presented in strongly expanded form.

Figure F

The sign of the measured quantity remains the same, that of the output quantity changes as the measured quantity leaves range X0...X1 and passes to range X1...X2 and vice versa.

Mode of Operation

Waveform of the signals that can be measured

Figure G
Sine wave, undistorted
Fundamental content 100\%
Harmonic content
$\mathrm{A}_{\mathrm{rms}}=$

Figure H
Sine wave, indented
Fundamental content
Harmonic content
10...100\%
0...90\%

Frequency spectrum 3rd to 50th harmonic

Figure I
Sine wave, distorted
Fundamental content 70...90\%
Harmonic content
10...30\%

Frequency spectrum 3rd to 50th harmonic

CARLO GAVAZZI

Harmonic distortion analysis

Analysis principle	FFT		wires the angle cannot be measured.
Harmonic measurement			
Current Voltage	Up to 50th harmonic Up to 50th harmonic	Harmonic details	For every THD page it is possible to see the harmonic
Type of harmonics	THD (VL1)		order.
	THD odd NL1) THD even (VLI) and also for the other phases: L2, L3. THD (IL1) THD odd (LL1) THD even (IL1) and also for the other phases: L2, L3.	Display pages	The harmonics content is displayed as a graph showing the whole harmonic spectrum. The information is given also as numerical information: THD in \% / RMS value THD odd in \% / RMS value THD even in \% / RMS value single harmonic in \% / RMS value
Harmonic phase angle	The instrument measures the		
	angle between the single harmonic of " V " and the single harmonic of "I" of the same order. According to the value of the electrical angle, it is possible to know if the distortion is absorbed or generated. Note: if the system has 3	Others	The harmonic distortion can be measured in 2-wire, 3 -wire or 4 -wire systems. Tw: 0.02

Energy time period management

Display pages

Variables that can be displayed in case of a three-phase system, 4-wire connection.

No	1st variable	2nd variable	3rd variable	4th variable	Note
	Selectable	Selectable	Selectable	Selectable	
1	V L1	V L2	VL3	V L-N sys	Sys $=\boldsymbol{\Sigma}$
2	V L1-2	V L2-3	V L3-1	V L-L sys	Sys $=\Sigma$
3	A L1	A L2	A L3	A n	
4	W L1	W L2	W L3	W sys	Sys = Σ
5	var L1	var L2	var L3	var sys	Sys = $\boldsymbol{\Sigma}$
6	VA L1	VA L2	VA L3	VA sys	Sys $=\Sigma$
7	PF L1	PF L2	PF L3	PF sys	
8	V L1	A L1	PF L1	W L1	
9	V L2	A L2	PF L2	W L2	
10	V L3	A L3	PF L3	W L3	
11	V L-L sys	PF sys	var sys	W sys	Sys $\boldsymbol{=} \boldsymbol{\Sigma}$
12	A n	PF sys	Hz	W sys	Sys $=\boldsymbol{\Sigma}$
13	A n dmd	VA dmd	PF avg	W dmd	dmd=demand, avg=average
14	(MAX1)	(MAX2)	(MAX3)	(MAX4)	The MAX value can be one of the
15	(MAX5)	(MAX6)	(MAX7)	(MAX8)	above mentioned (No. 1 to No. 13)
16	(MAX9)	(MAX10)	(MAX11)	(MAX12)	
17	(MIN1)	(MIN2)	(MIN3)	(MIN4)	The MIN value can be one of the
18	(MIN5)	(MIN6)	(MIN7)	(MIN8)	above mentioned (No. 1 to No.13)
19	Histogram FFT V1 (THD, TADo, THDe, Single harmonic)				Only if analysis V1-A1 is activated
20	Histogram FFT A1 (THD, TADo, THDe, Single harmonic)				Only if analysis V1-A1 is activated
21	Histogram FFT V2 (THD, TADo, THDe, Single harmonic)				Only if analysis V2-A2 is activated
22	Histogram FFT A2 (THD, TADo, THDe, Single harmonic)				Only if analysis V2-A2 is activated
23	Histogram FFT V3 (THD, TADo, THDe, S ingle harmonic)				Only if analysis V3-A3 is activated
24	Histogram FFT A3 (THD, TADo, THDe, Single harmonic)				Only if analysis V3-A3 is activated
25	KWh + TOT	KWh - TOT	Kvar+ TOT	Kvar- TOT	
26	KWh+	KWh-	Kvar+	Kvar-	Partial energy meters

Used Calculation Formulas

Formulas being used for single-phase measurements

Instantaneous effective voltage
$V_{1 N}=\sqrt{\frac{1}{n} \cdot \sum_{1}^{n}\left(V_{1 N}\right)_{1}^{2}}$
Instantaneous active power
$W_{1}=\frac{1}{n} \cdot \sum_{1}^{n}\left(V_{i N}\right) \cdot\left(A_{1}\right)_{1}$
Instantaneous power factor
$\cos \phi_{1}=\frac{W_{1}}{V A_{1}}$
Instantaneous effective current
$A_{1}=\sqrt{\frac{1}{n} \cdot \sum_{1}^{n}\left(A_{1}\right)_{1}^{2}}$
Instantaneous apparent power
$\mathrm{VA}_{1}=\mathrm{V}_{\mathbf{N}} \cdot \mathrm{A}_{1}$
Instantaneous reactive power
$V A r_{1}=\sqrt{\left(V A_{1}\right)^{2}-\left(W_{1}\right)^{2}}$

Formulas being used for 3-phase measurements
Equivalent three-phase voltage
$V_{2}=\frac{V_{12}+V_{23}+V_{31}}{3}$
Three-phase reactive power
$V A r_{2}=\left(V A r_{1}+V A r_{2}+V A r_{3}\right)$
Neutral current
$\mathrm{An}=\overline{\mathbf{A}}_{\mathrm{L} 1}+\overline{\mathbf{A}}_{\mathrm{L} 2}+\overline{\mathrm{A}}_{\mathrm{L} 3}$
Three-phase active power
$W_{\Sigma}=W_{1}+W_{2}+W_{3}$
Three-phase apparent power
$V A_{\Sigma}=\sqrt{W_{\Sigma}{ }^{2}+V A r_{\Sigma}{ }^{2}}$
Equivalent three-phase power factor
$\cos \phi_{\Sigma}=\frac{W_{\Sigma}}{V A_{\Sigma}}$
(TPF)
Total harmonic distortion

Harmonic values:
THDi-THD of parameter T at phase

Tn,i - value of parameter T at the n'th harmonic of phase i

Energy metering

$k W h_{i}=\int_{i_{1}}^{t_{2}} \mathrm{P}_{i}(t) d t \cong \Delta t \sum_{\mathrm{n}_{1}}^{\mathrm{m}_{1}} \mathrm{P}_{\mathrm{n} i}$

$\mathrm{kWh}_{\mathrm{i}}=$ total consumed active energy at phase i
$\mathrm{kVArh}_{\mathrm{i}}=$ total consumed reactive energy at phase i
$P_{f}(t)=$ total RMS active power at phase iof time t
$\mathrm{Q}_{\mathrm{i}}(\mathrm{t})=$ total RMS reactive power at phase i of time t
$\mathrm{t}_{1} \mathrm{t}_{2}=$ starting and ending time points of consumption recording
$P_{\text {n,i }}=$ total RMS active power at phase i of discrete time n
$\mathrm{Q}_{\mathrm{n}, \mathrm{i}}=$ total RMS reactive power at phase i of discrete time n
$\Delta t=$ time interval between two successive power consumptions
n1, n2 = starting and ending discrete time points of consumption recording

List of the variables that can be connected to:

- max/min variable detection;
- analogue outputs;
- alarm outputs.

No	Variable	1-phase	$\begin{aligned} & \text { 3-ph. + N } \\ & \text { Bal. Sys. } \end{aligned}$	$\begin{aligned} & 3-\mathrm{ph} .+\mathrm{N} \\ & \text { Unbal. Sys. } \end{aligned}$	Bal.ph. Sys.	$\begin{aligned} & \text { 3-ph. } \\ & \text { Unbal. Sys. } \end{aligned}$	Note
1	V L1	0	x	X	0	0	
2	V L2	0	X	X	0	0	
3	V L3	0	X	X	0	0	
4	V L-N sys	0	X	X	0	0	Sys $=\Sigma$
5	V L1-2	X	X	X	X	X	
6	V L2-3	0	x	X	X	x	
7	V L3-1	0	x	x	x	X	
8	V L-L sys	0	x	X	x	X	Sys $=\boldsymbol{\Sigma}$
9	A L1	X	X	X	X	X	
10	A L2	0	X	X	X	X	
11	A L3	0	x	x	X	x	
12	A n	0	X	X	0	0	Neutral current
13	W L1	x	X	X	0	0	
14	W L2	0	X	X	0	0	
15	W L3	0	X	x	0	0	
16	W sys	0	X	x	X	x	Sys $=\Sigma$
17	var L1	x	X	X	0	0	
18	var L2	0	X	X	0	0	
19	var L3	0	X	x	0	0	
20	var sys	0	X	x	X	X	Sys $=\boldsymbol{\Sigma}$
21	VA L1	X	X	X	0	0	
22	VA L2	0	X	X	0	0	
23	VA L3	0	X	X	0	0	
24	VA sys	0	X	X	X	X	Sys $=\boldsymbol{\Sigma}$
25	PF L1	x	X	X	0	0	
26	PF L2	0	X	X	0	0	
27	PF L3	0	X	x	0	0	
28	PF sys	0	X	X	X	X	Sys $=\boldsymbol{\Sigma}$
29	Hz	X	X	X	X	X	
30	THD V1	X	X	X	X	X	if FFT V1-A1 is activated
31	THDo V1	x	X	X	X	X	if FFT V1-A1 is activated
32	THDe V1	x	x	x	x	x	if FFT V1-A1 is activated
33	THD V2	0	X	X	X	X	if FFT V2-A2 is activated
34	THDo V2	0	x	x	X	X	if FFT V2-A2 is activated
35	THDe V2	0	X	X	X	x	if FFT V2-A2 is activated
36	THD V3	0	X	X	X	X	if FFT V3-A3 is activated
37	THDo V3	0	X	X	X	X	if FFT V3-A3 is activated
38	THDe V3	0	X	X	X	X	if FFT V3-A3 is activated
39	THD A1	X	X	X	X	X	if FFT V1-A1 is activated
40	THDo A1	x	X	X	X	X	if FFT V1-A1 is activated
41	THDe A1	x	X	X	X	X	if FFT V1-A1 is activated
42	THD A2	0	X	X	X	X	if FFT V2-A2 is activated
43	THDo A2	0	x	X	X	X	if FFT V2-A2 is activated
44	THDe A2	0	x	X	X	X	if FFT V2-A2 is activated
45	THD A3	0	X	X	X	X	if FFT V3-A3 is activated
46	THDo A3	0	X	X	X	X	if FFT V3-A3 is activated
47	THDe A3	0	X	X	X	X	if FFT V3-A3 is activated
48	A n dmd	x	x	x	x	x	Integration time programmable from 1 to 30 minutes
49	VA dmd	X	X	X	X	X	Integration time prog. from 1 to 30 min .
50	PF avg	x	X	X	x	X	Integration time prog. from 1 to 30 min .
51	W dmd	X	X	x	X	X	Integration time prog. from 1 to 30 min .
52	ASY	0	X	X	X	X	Integration time prog. from 1 to 30 min .

Note: (x) stands for an "available" variable, (o) stands for a "not-available" variable.

The available modules

Type	$\begin{gathered} \text { N. of } \\ \text { channels } \end{gathered}$	Ordering code
WM 3-96 base		AD 1016H
WM 3-96 N2 METASYS base		AD 1016HN2
AV5.3 measuring inputs		AQ 1018
AV7.3 measuring inputs		AQ 1019
18-60VAC/DC power supply		AP 1021
90-260VAC/DC power supply		AP 1020
20 mADC analogue output	1	A01050
10VDC analogue output	1	A01051
$\pm 5 \mathrm{mADC}$ analogue output	1	A01052
$\pm 10 \mathrm{mADC}$ analogue output	1	A01053
$\pm 20 \mathrm{mADC}$ analogue output	1	A01054
\pm VDC analogue output	1	A01055
\pm VVDC analogue output	1	A01056
$\pm 10 \mathrm{VDC}$ analogue output	1	A01057
20 mADC analogue output	2	AO1026
10VDC analogue output	2	A01027
$\pm 5 \mathrm{mADC}$ analogue output	2	AO1028
$\pm 10 \mathrm{mADC}$ analogue output	2	A01029
$\pm 20 \mathrm{mADC}$ analogue output	2	A01030
$\pm 1 \mathrm{VDC}$ analogue output	2	A01031
\pm VVDC analogue output	2	A01032
$\pm 10 \mathrm{VDC}$ analogue output	2	A01033
RS485 output	1	AR1034
Relay output	1	A01058
Relay output	2	A01035
Open collector output	1	AO1059
Open collector output	2	A01036
Open collector output	4	A01037
Digital inputs	3	AQ1038
$\underline{\text { RS232 output + RTC (1) }}$	1	AR1039

The possible module combinations

Basic unit	Slot A	Slot B	Slot C	Slot D
Single analogue output	\bullet			
Dual analogue output	-	-		
RS485 input/output		-		
Single relay output (*)			\bullet	
Single open collector out *)			\bullet	
Dual relay output (*)			-	\bullet
Dual open coll. out (*)			-	\bullet
4 open coll. output (*)				\bullet
3 digital inputs			\bullet	
Basic unit	Slot E			
RS232 input/output + RTC	-			

(*) alarm or pulse

N2-Open Metasys protocol full compatibility (available on request).
(1) The RS232 communication port works as alternative of the RS485 module.

Wiring Diagrams

Single phase input connections

Wiring Diagrams (cont.)

Three-phase wire input connections - Balanced loads

Direct connection (3-wire system)

Three-phase, 3-wire ARON input connections - Unbalanced loads

Three-phase, 3-wire input connections - Unbalanced loads

CARLO GAVAZZI

Wiring Diagrams (cont.)

Three-phase three-wire input connections Unbalanced load

Three-phase four-wire input connections - Unbalanced load

Wiring diagrams (optional modules)

4 open collector outputs: The load resistance (Rc) must be designed so that the closed contact current is lower than 100 mA ; the VDC voltage must be lower than or equal to 30 V .
VDC: power supply voltage output. Vo+: positive output contact (open collector transistor). GND: ground output contact (open collector transistor).

Wiring diagrams (optional modules, cont)

RS422/485 4-wires connection: additional devices provided with RS422/485 (that is RS 1, 2, 3...N) are connected in parallel.

The termination of the serial output is carried out only on the last instrument of the network, by means of a jumper between ($R x+$) and (T).

RS422/485 2-wires connection: additional devices provided with RS422/485 (that is RS 1, 2, 3...N) are connected in parallel.

The termination of the serial output is carried out only on the last instrument of the network, by means of a jumper between ($R x+$) and (T).

Front Panel Description

1. Key-pad

Set-up and programming procedures are easily controlled
by the 4 pushbuttons.

- "S" for enter programming phase and password confirmation,
- for value programming/function selection, page scrolling - "F" for special functions

2. Display

Istantaneous measurements:

- 4-digit (maximum read-out 9999)

Energies:

- 9-digit (maximum read-out 999999999).

Alphanumeric indication by means of LCD display for:

- Displaying the configuration parameters
- All the measured variables.

Dimensions

CARLO GAVAZZI

Terminal boards

Single analogue output modules

Dual analogue outputs

Digital output modules

Other input/output modules

AQ1038
3 Digital inputs

AR 1034
RS485 port

Power supply modules

AP1021
18-60VAC/DC power supply

AP1020
90-260 VAC/DC power supply

