SKD 115

SEMIPONT[©] 5

Bridge Rectifiers

SKD 115

Target Data

Features

- · Compact design
- SKiiP technology: thermal pressure contact, no base plate and no hard mould
- Two screws mounting
- Heat transfer and isolation through direct copper board (low R th)
- Low resistance in steady-state and high reliability
- High surge currents
- Up to 1800 V
- UL recognized, file no. E 63 532

Typical Applications

- Three phase rectifiers for power supplies
- Input rectifiers for variable frequency drives
- Rectifiers for DC motor field supplies
- · Battery charger rectifiers

V _{RSM}	V_{RRM}, V_{DRM}	I _D = 110 A (full conduction)
V	V	(T _s = 85 °C)
1200	1200	SKD 115/12
1600	1600	SKD 115/16
1800	1800	SKD 115/18

Symbol	Conditions	Values	Units
I_D	T _s = 85 °C	110	Α
I _{FSM}	T _{vi} = 25 °C; 10 ms	1200	Α
	T _{vi} = 125 °C; 10 ms	1150	Α
i²t	T _{vj} = 25 °C; 8,3 10 ms	7200	A²s
	T _{vj} = 125 °C; 8,3 10 ms	6600	A²s
V _F	T _{vi} = 125 °C; I _F = 75 A	max. 1,25	V
V _(TO)	T _{vi} = 125 °C	max. 0,8	V
r _T	T _{vi} = 125 °C	max. 7	mΩ
I_{RD}	$T_{vj} = 25 \text{ °C}; V_{DD} = V_{DRM}; V_{RD} = V_{RRM}$		mA
			mA
R _{thjh}	per diode	1	K/W
			K/W
T _{solder}	Terminals, max 10s	260	°C
T _{vj}		- 40 + 150	°C
T _{stg}		- 40 + 125	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3600 (3000)	V
M _s	to heatsink; SI units	2,5	Nm
Mt			Nm
m	approx.	75	g
Case		G 57	

SKD 115

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.