ZXTN25100DFH
 100V, SOT23, NPN medium power transistor

Summary

$\mathrm{BV}_{\text {CEX }}>180 \mathrm{~V}$
$B V_{\text {CEO }}>100 \mathrm{~V}$
$\mathrm{BV}_{\mathrm{ECO}}>6 \mathrm{~V}$
$\mathrm{I}_{\mathrm{C} \text { (cont) }}=2.5 \mathrm{~A}$
$\mathrm{V}_{\text {CE(sat) }}<95 \mathrm{mV}$ @ 1A
$R_{\text {CE(sat) }}=86 \mathrm{~m} \Omega$
$\mathrm{P}_{\mathrm{D}}=1.25 \mathrm{~W}$
Complementary part number ZXTP25100DFH

Description

Advanced process capability and package design have been used to maximise the power handling and performance of this small outline transistor. The compact size and ratings of this device make it ideally suited to applications where space is at a premium.

Features

- High power dissipation SOT23 package

- High gain
- Low saturation voltage
- 180 V forward blocking voltage
- 6 V reverse blocking voltage

Application

- Motor control
- DC fans
- DC-DC converters
- Lamp, relay, and solenoid driving

ZXTN25100DFH

Absolute maximum ratings

Parameter	Symbol	Limit	Unit
Collector-base voltage	$\mathrm{V}_{\mathrm{CBO}}$	180	V
Collector-emitter voltage (forward blocking)	$\mathrm{V}_{\mathrm{CEX}}$	180	V
Collector-emitter voltage	$\mathrm{V}_{\mathrm{CEO}}$	100	V
Emitter-collector voltage (reverse blocking)	$\mathrm{V}_{\mathrm{ECO}}$	6	V
Emitter-base voltage	$\mathrm{V}_{\mathrm{EBO}}$	7	V
Continuous collector current ${ }^{(\mathrm{c})}$	I_{C}	2.5	A
Base current	I_{B}	0.5	A
Peak pulse current	I_{CM}	3	A
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}^{\text {(a) }}$	P_{D}	0.73	W
Linear derating factor		5.84	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}^{\text {(b) }}$	P_{D}	1.05	W
Linear derating factor		8.4	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}^{\text {(c) }}$	P_{D}	1.25	W
Linear derating factor		9.6	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}^{\text {(d) }}$	P_{D}	1.81	W
Linear derating factor		14.5	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating and storage temperature range	$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\mathrm{stg}}$	-55 to 150	${ }^{\circ} \mathrm{C}$

Thermal resistance

Parameter	Symbol	Limit	Unit
Junction to ambient ${ }^{(\mathrm{a})}$	$\mathrm{R}_{\text {ӨJA }}$	171	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to ambient $^{(\mathrm{b})}$	$\mathrm{R}_{\text {ӨJA }}$	119	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to ambient ${ }^{(\mathrm{c})}$	$\mathrm{R}_{\text {ӨJA }}$	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to ambient ${ }^{(\mathrm{d})}$	$\mathrm{R}_{\text {ӨJA }}$	69	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTES:

(a) For a device surface mounted on $15 \mathrm{~mm} \times 15 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ FR4 PCB with high coverage of single sided $10 z$ copper, in still air conditions.
(b) Mounted on $25 \mathrm{~mm} \times 25 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ FR4 PCB with a high coverage of single sided 2 oz copper in still air conditions.
(c) Mounted on $50 \mathrm{~mm} \times 50 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ FR4 PCB with a high coverage of single sided 2 oz copper in still air conditions.
(d) As (c) above measured at $\mathrm{t}<5 \mathrm{secs}$.

ZXTN25100DFH

Characteristics

Transient Thermal Impedance

ZXTN25100DFH

Electrical characteristics (at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise stated)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions
Collector-base breakdown voltage	BV CBO	180	220		V	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$
Collector-emitter breakdown voltage (forward blocking)	$B V_{\text {CEX }}$	180	220		V	$\begin{aligned} & \mathrm{I} C=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{BE}} \leq 1 \mathrm{k} \Omega \text { or } \\ & -1 \mathrm{~V}<\mathrm{V}_{\mathrm{BE}}<0.25 \mathrm{~V} \end{aligned}$
Collector-emitter breakdown voltage (base open)	$\mathrm{BV}_{\text {CEO }}$	100	130		V	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}{ }^{(*)}$
Emitter-base breakdown voltage	$\mathrm{BV}_{\mathrm{EBO}}$	7	8.3		V	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}$
Emitter-collector breakdown voltage (reverse blocking)	$\mathrm{BV}_{\mathrm{ECX}}$	6	8.2		V	$\begin{aligned} & \mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{BC}} \leq 1 \mathrm{k} \Omega \text { or } \\ & 0.25 \mathrm{~V}>\mathrm{V}_{\mathrm{BC}}>-0.25 \mathrm{~V} \end{aligned}$
Emitter-collector breakdown voltage (base open)	$\mathrm{BV}_{\mathrm{ECO}}$	6	8.7		V	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}$,
Collector-base cut-off current	$\mathrm{I}_{\text {CBO }}$		<1	$\begin{aligned} & 50 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CB}}=144 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CB}}=144 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=100^{\circ} \mathrm{C} \end{aligned}$
Collector-emitter cut-off current	$\mathrm{I}_{\text {CEX }}$		-	100	nA	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=144 \mathrm{~V} ; \mathrm{R}_{\mathrm{BE}} \leq 1 \mathrm{k} \Omega \text { or } \\ & -1 \mathrm{~V}<\mathrm{V}_{\mathrm{BE}}<0.25 \mathrm{~V} \end{aligned}$
Emitter-base cut-off current	$\mathrm{I}_{\text {EBO }}$		<1	50	nA	$\mathrm{V}_{\mathrm{EB}}=5.6 \mathrm{~V}$
Collector-emitter saturation voltage	$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$		$\begin{gathered} 120 \\ 80 \\ 215 \end{gathered}$	$\begin{gathered} 170 \\ 95 \\ 330 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$	$\begin{aligned} & I_{C}=0.5 A, I_{B}=10 \mathrm{~mA}^{(*)} \\ & I_{C}=1 A, I_{B}=100 m A^{(*)} \\ & I_{C}=2.5 A, I_{B}=250 m A^{(*)} \end{aligned}$
Base-emitter saturation voltage	$\mathrm{V}_{\mathrm{BE} \text { (sat) }}$		910	1000	mV	$\mathrm{I}_{\mathrm{C}}=2.5 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=250 \mathrm{~mA}^{(*)}$
Base-emitter turn-on voltage	$\mathrm{V}_{\mathrm{BE} \text { (on) }}$		860	950	mV	$\mathrm{I}_{\mathrm{C}}=2.5 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V}^{(*)}$
Static forward current transfer ratio	$\mathrm{h}_{\text {FE }}$	$\begin{gathered} 300 \\ 120 \\ 40 \end{gathered}$	$\begin{gathered} 450 \\ 170 \\ 60 \\ 20 \end{gathered}$	900		$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V}^{(*)} \\ & \mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V}^{(*)} \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V}^{(*)} \\ & \mathrm{I}_{\mathrm{C}}=2.5 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V}^{(*)} \end{aligned}$
Transition frequency	f_{T}		175		MHz	$\begin{aligned} & I_{C}=100 \mathrm{~mA}, V_{C E}=10 \mathrm{~V} \\ & \mathrm{f}=100 \mathrm{MHz} \end{aligned}$
Output capacitance	$\mathrm{C}_{\text {OBO }}$		8.7	15	pF	$\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}^{(*)}$
Delay time	t_{d}		16.4		ns	$\mathrm{V}_{C C}=10 \mathrm{~V}$.
Rise time	t_{r}		115		ns	$\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA},$
Storage time	t_{s}		763		ns	
Fall time	t_{f}		158		ns	

NOTES:

${ }^{*}$) Measured under pulsed conditions. Pulse width $\leq 300 \mu s$; duty cycle $\leq 2 \%$.

ZXTN25100DFH

Typical characteristics

ZXTN25100DFH

Package outline - SOT23

Dim.	Millimeters		Inches		Dim.	Millimeters		Inches	
	Min.	Max.	Min.	Max.		Min.	Max.	Max.	Max.
A	2.67	3.05	0.105	0.120	H	0.33	0.51	0.013	0.020
B	1.20	1.40	0.047	0.055	K	0.01	0.10	0.0004	0.004
C	-	1.10	-	0.043	L	2.10	2.50	0.083	0.0985
D	0.37	0.53	0.015	0.021	M	0.45	0.64	0.018	0.025
F	0.085	0.15	0.0034	0.0059	N	0.95 NOM		0.0375 NOM	
G	1.90 NOM		0.075 NOM		-			-	-

Note: Controlling dimensions are in millimeters. Approximate dimensions are provided in inches

Europe	Americas	Asia Pacific	Corporate Headquarters
Zetex GmbH	Zetex Inc	Zetex (Asia Ltd)	Zetex Semiconductors plc
Streitfeldstraße 19	700 Veterans Memorial Highway	3701-04 Metroplaza Tower 1	Zetex Technology Park, Chadderton
D-81673 München	Hauppauge, NY 11788	Hing Fong Road, Kwai Fong	Oldham, OL9 9LL
Germany	USA	Hong Kong	United Kingdom
Telefon: (49) 894549490	Telephone: (1) 6313602222	Telephone: (852) 26100611	Telephone: (44) 1616224444
Fax: (49) 8945494949 europe.sales@zetex.com	Fax: (1) 6313608222 usa.sales@zetex.com	Fax: (852) 24250494 asia.sales@zetex.com	Fax: (44) 1616224446 hq@zetex.com

For international sales offices visit www.zetex.com/offices
Zetex products are distributed worldwide. For details, see www.zetex.com/salesnetwork
This publication is issued to provide outline information only which (unless agreed by the company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contact or be regarded as a representation relating to the products or services concerned. The company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

