SKDT 145

SEMIPONTTM 5

Bridge Rectifier

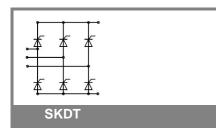
SKDT 145

Target Data

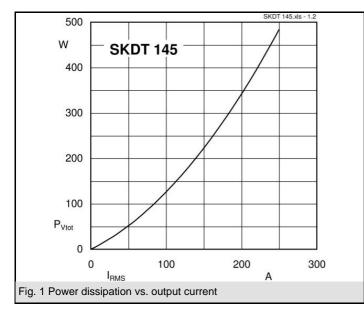
Features

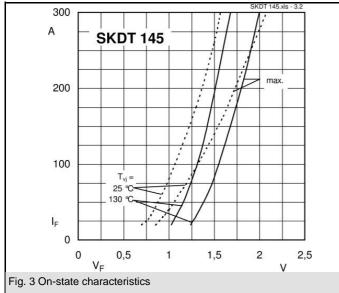
- Compact design
- Two screws mounting
- Heat transfer and isolation through direct copper board (low R_{th})
- Low resistance in steady-state and high reliability
- High surge currents
- Glass passivated thyristor chips
- Up to 1600 V reverse voltage
- UL -recognized, file no. E 63 532

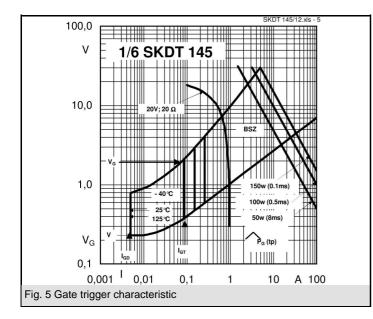
Typical Applications

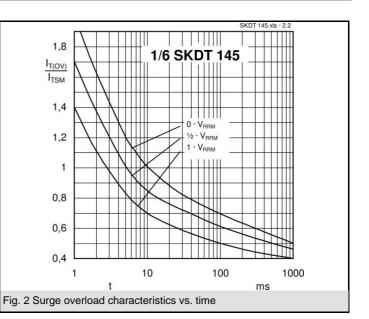

- DC and AC drives
- Controlled field rectifier for DC motors
- Controlled battery charger

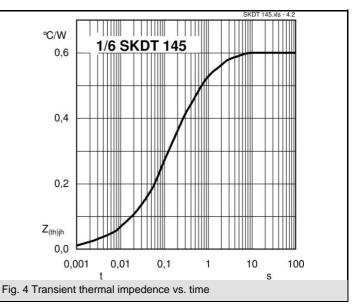
V		V	(T _s = 80 °C)		
1300		1200	SKDT 145/12		
1700		1600	SKDT 145/16		
Cumhal	Cor			Values	l luite
Symbol				Values	Units
I _D	T _s = 80 °C			140	A
I _{TSM}	$T_{vj} = 25 \text{ °C}; 10 \text{ ms}$			1350	A
.21	T _{vj} = 125 °C; 1 i ² t T _{vi} = 25 °C; 8.3			1250	A
	vj			9000	A²s
·	,	125 °C; 8,3 10 ms		7800	A²s
V _T	$T_{vj} = 25 \degree C; I_T = 150A$			max. 1,6	V
V _{T(TO)}	$T_{\rm vj} = 125 ^{\circ}{\rm C};$			max. 0,9	V
r _T	$T_{vj} = 125 ^{\circ}C$			max. 5	mΩ
I _{DD} ; I _{RD}		125 °C; V _{DD} = V _{DRM} ;		max. 20	mA
t _{gd}	.1	°C; $I_G = A$; $di_G/dt = A/$	JS		μs
t _{gr}	V _D =	· V _{DRM}			μs
(dv/dt) _{cr}		125 °C		max. 500	V/µs
(di/dt) _{cr}		125 °C; f = 5060 Hz		max. 50	A/µs
t _q		125 °C; typ.		150	μs
I _Н		25 °C; typ. / max.		- / 250	mA
ΙL	T _{vj} =	25 °C; R _G = 33 Ω		- / 600	mA
V _{GT}		25 °C; d.c.		min. 3	V
I _{GT}		25 °C; d.c.		min. 150	mA
V_{GD}	T _{vj} = 125 °C; d.c.			max. 0,25	V
I _{GD}	T _{vj} =	125 °C; d.c.		max. 6	mA
					K/W
					K/W
R _{th(j-s)}	per ti	nyristor		0,6	K/W
T _{vi}				- 40 + 125	°C
T _{stg}				- 40 + 125	°C
T _{solder}	terminals			260	°C
V _{isol}	a. c.	50 Hz; r.m.s.; 1 s / 1 r	nin.	3600 (3000)	V
M _s	M_s to heatsink			2,5	Nm
Mt					Nm
m	n approx.			75	g
Case	Case			G 58	

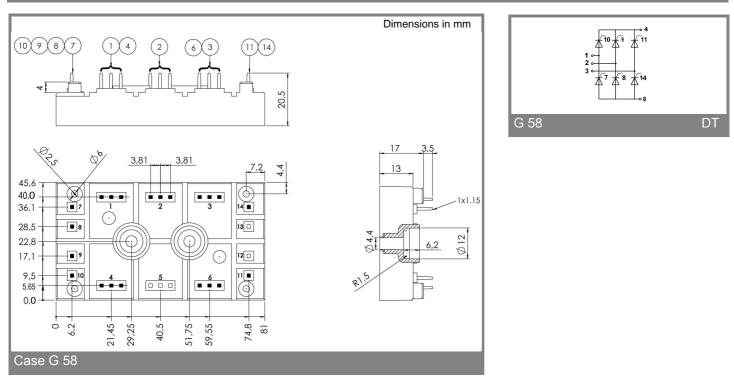

 $I_D = 140 \text{ A}$ (full conduction)


 V_{RRM}, V_{DRM}


V_{RSM}




SKDT 145



SKDT 145

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.