

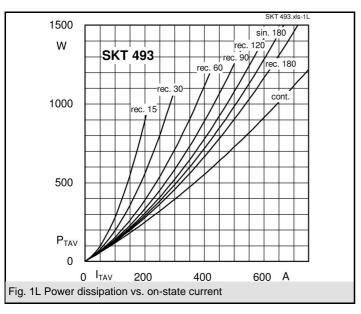
Capsule Thyristor

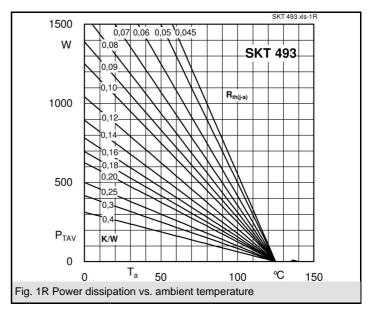
Line Thyristor

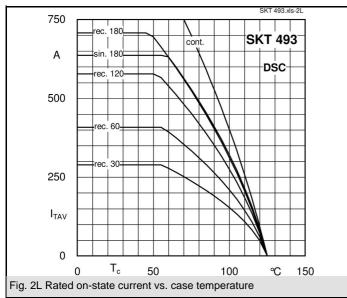
SKT493

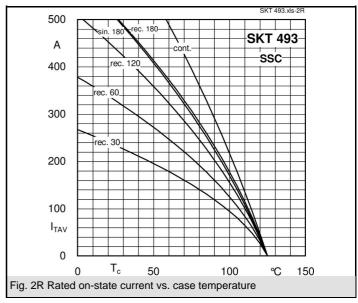
Features

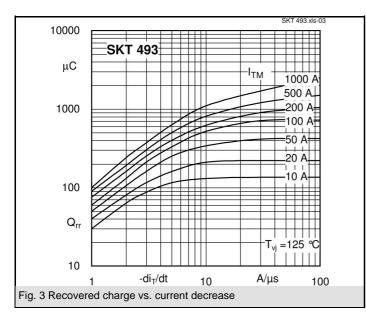
- Hermetic metal case with epoxy insulator
- Capsule package for double sided cooling
- Shallow design with single sided cooling
- Off-state and reverse voltages up to 1800 V
- Amplifying gate

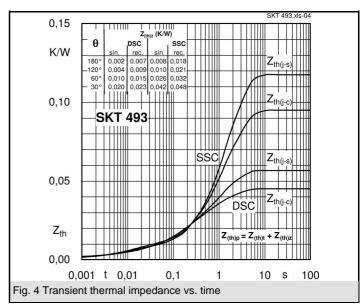

Typical Applications

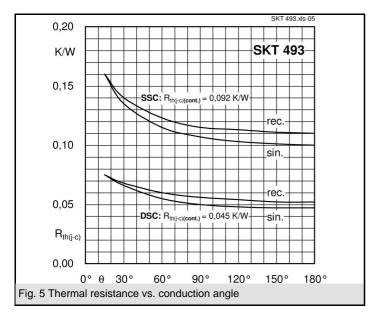

- DC motor control (e. g. for machine tools)
- Controlled rectifiers
 (e. g. for battery charging)
- AC controllers
 - (e. g. for temperature control)
- Soft Starters for AC motors

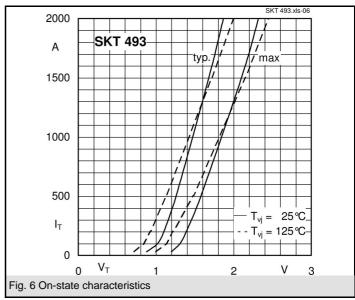

V_{RSM}	V _{RRM} , V _{DRM}	I _{TRMS} = 1000 A (maximum value for continuous operation)		
V	V	I _{TAV} = 490 A (sin. 180; DSC; T _c = 80 °C)		
500	400	SKT 493/04E		
900	800	SKT 493/08E		
1300	1200	SKT 493/12E		
1500	1400	SKT 493/14E		
1700	1600	SKT 493/16E		
1900	1800	SKT 493/18E		

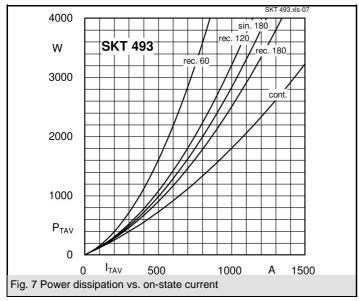

Symbol	Conditions	Values	Units
I _{TAV}	sin. 180; T _c = 100 (85) °C;	321 (452)	Α
I _D	2 x P8/180; T _a = 45 °C; B2 / B6	320 / 450	Α
	2 x P8/180 F; T _a = 35 °C; B2 / B6	760 /1000	Α
I _{RMS}	2 x P8/180; T _a = 45 °C; W1C	350	Α
I _{TSM}	T _{vi} = 25 °C; 10 ms	8000	Α
	T _{vj} = 125 °C; 10 ms	7000	Α
i²t	T _{vj} = 25 °C; 8,3 10 ms	320000	A²s
	T _{vj} = 125 °C; 8,3 10 ms	245000	A²s
V_T	T _{vi} = 25 °C; I _T = 1500 A	max. 2,1	V
$V_{T(TO)}$	T _{vi} = 125 °C	max. 1,1	V
r _T `	$T_{vj} = 125 ^{\circ}\text{C}$	max. 0,7	$m\Omega$
I _{DD} ; I _{RD}	T_{vj} = 125 °C; V_{RD} = V_{RRM} , V_{DD} = V_{DRM}	max. 50	mA
t _{gd}	$T_{vj} = 25 \text{ °C; } I_G = 1 \text{ A; } di_G/dt = 1 \text{ A/}\mu\text{s}$	1	μs
t _{gr}	$V_{\rm D} = 0.67 * V_{\rm DRM}$	1	μs
(di/dt) _{cr}	T _{vi} = 125 °C	max. 125	A/µs
(dv/dt) _{cr}	T _{vj} = 125 °C	max. 1000	V/µs
t _q	$T_{vj} = 125 ^{\circ}\text{C}$,	50 150	μs
I _H	T_{vj} = 25 °C; typ. / max.	150 / 500	mA
I_{L}	T_{vj} = 25 °C; R_G = 33 Ω ; typ. / max.	500 / 2000	mA
V _{GT}	T _{vj} = 25 °C; d.c.	min. 3	V
I _{GT}	$T_{vj} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 250	mA
V_{GD}	$T_{vj} = 125 ^{\circ}\text{C}; \text{d.c.}$	max. 0,25	V
I_{GD}	T_{vj} = 125 °C; d.c.	max. 10	mA
R _{th(j-c)}	cont.; DSC	0,045	K/W
R _{th(j-c)}	sin. 180; DSC / SSC	0,047 / 0,1	K/W
R _{th(j-c)}	rec. 120; DSC / SSC	0,054 / 0,113	K/W
$R_{th(c-s)}$	DSC / SSC	0,012 / 0,024	K/W
T_{vj}		- 40 + 125	°C
T_{stg}		- 40 + 130	°C
V _{isol}		-	V~
F	mounting force	5,2 8	kN
а			m/s²
m	approx.	85	g
Case		B 11a	

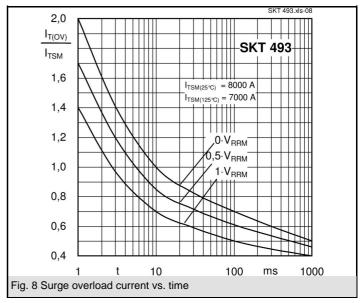


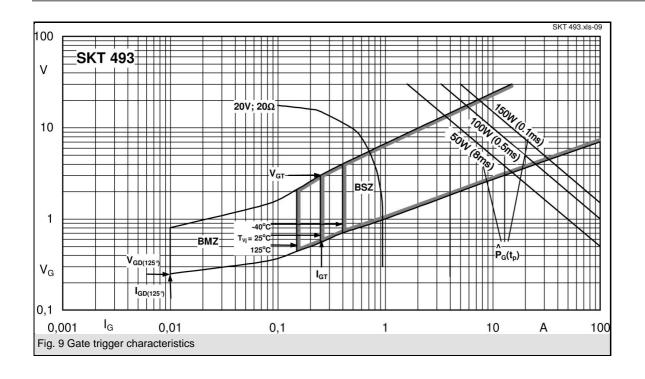


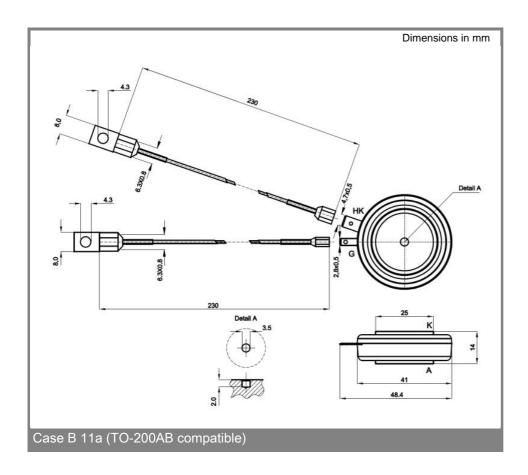









SKT 493



This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.