

TS9010 Series

150mA CMOS LDO with Enable

SOT-25

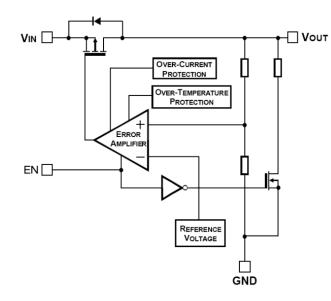
Pin Definition:

- 1. Ground
- 2. Input
- 3. Enable
- 4. N/C
- 5. Output

General Description

The TS9010 series is combine high accuracy with very low power consumption, providing high output current even when the application requires very low dropout voltage. The Chip Enable (CE) includes a CMOS or TTL compatible input allows the output to be turned off to prolong battery life. The TS9010 series is included a precision voltage reference, error correction circuit, a current limited output driver and over temperature shutdown.

This series are offered in 5-pin SOT-25 package.


Features

- Dropout voltage typically 0.4V @Io=150mA (Vo=5V)
- Output current up to 150mA (Vout=3V)
- Low power consumption
- Output voltage ±2%
- Internal current limit
- Thermal shutdown protection

Applications

- **Palmtops**
- Video recorders
- Battery powered equipment
- PC peripherals
- High-efficiency linear power supplies
- Digital signal camera

Block Diagram

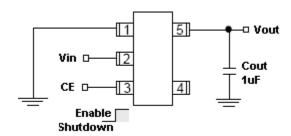
Ordering Information

Part No.	Package	Packing		
TS9010 <u>x</u> CX5 RF	SOT-25	3Kpcs / 7" Reel		

Note: Where x denotes voltage option, available are

A= 1.5V

D= 1.8V,


K= 2.5V,

S= 3.3V,

5= 5.0V.

Contact factory for additional voltage options.

Typical Application Circuit

CE (pin 3) may be connected directly to Vin (pin 2)

TS9010 Series 150mA CMOS LDO with Enable

Absolute Maximum Rating (Note 1)

Parameter	Symbol	Limit	Unit	
Input Supply Voltage	Vin	+12	V	
Enable Input Voltage	Vce	0 ~ Vin+0.3	V	
Output Current	lo	200	mA	
Power Dissipation (Note 3)	P _D	380	mW	
Thermal Resistance	Ѳја	220	°C/W	
Operating Junction Temperature Range	Tj	-40 ~ +125	°C	
Storage Temperature Range	T _{STG}	-65 ~ +150	°C	
Lead Soldering Temperature (260°C)		5	S	

Recommend Operating Rating (Note 2)

Input Supply Voltage	Vin	+10	V
Enable Input Voltage	Vce	Gnd-0.3 ~ Vin+0.3	V

Electrical Characteristics (Ta = 25°C, Cout=2.2uF, Vce2V, unless otherwise noted.)

Parameter	Conditions		Min	Тур	Max	Unit
Output Voltage	Vin=Vo + 1V, lo= 40mA		0.98 Vo		1.02 Vo	V
Output Voltage Temperature Coefficient (Note 4)				100		ppm/°C
Line Regulation	Vo+1V ≤ Vin ≤ Vo+2V, Io=1mA			0.2	0.3	%/V
Load Regulation (Note 5)	Vin=Vo+1V, 1mA≤I _L ≤150mA	Vo ≥ 2.5V		30	80	
	Vin=Vo+1V, 1mA≤I _L ≤80mA	Vo< 2.5V		40	90	mV
Dropout Voltage (Note 6)	Io=80mA			200	400	mV
	Io=150mA			400	700	
Quiescent Current	Vin≤0.4V (shutdown)			0.01	1	uA
Ground Pin Current (Note 7)	Vin=Ven=Vo+1V				19	uA
	Vin=Vo+1V, Ven=Gnd				0.1	
Output Current Limit	Vout=0V			300		mA
Power Supply Rejection Ratio	At f=100Hz, lo=0.1mA,			45		dB
Thermal Regulation (Note 8)				0.05		%/W

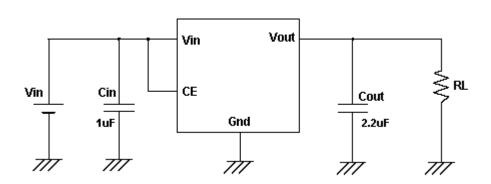
TS9010 Series 150mA CMOS LDO with Enable

Electrical Characteristics (continued)

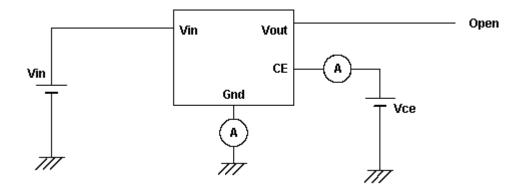
Parameter	Conditions	Min	Тур	Max	Unit	
Enable Input						
Enable Input Logic-Low Voltage	Regulation shutdown			0.25	V	
Enable Input Logic-High Voltage	Regulation enable	1.5			V	
Enable Input Current	Vce=Vin			1		
	Vce=Gnd	0.2	0.05	0	- uA	

Notes:

- a. Exceeding the absolute maximum rating may damage the device.
- b. The device is not guaranteed to function outside its operating rating.
- c. The maximum allowable power dissipation at any Ta is Pd(max) = [Tj(max) Ta] * Oja. Exceeding the maximum allow able power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown.
- d. Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.
- e. Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load range from 1mA to 150mA(Vout>2.5V) and 1mA to 80mA(Vout<2.5V). Changes in output voltage due to heating effects are covered by the thermal regulation specification.</p>
- f. Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at 1V differential.
- g. Ground pin current is the regulator quiescent current plus pass transistor base current. The total current drawn from the supply is the sum of the load current plus the ground pin current.
- h. Thermal regulation is defined as the change in output voltage at a time "t" after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a 150mA load pulse at Vin=12V for t=10mS.


TS9010 Series

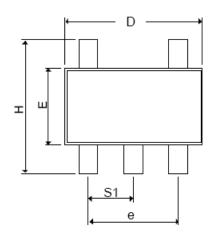
150mA CMOS LDO with Enable

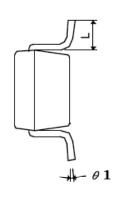


Application Examples

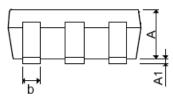
Standard Circuit

Typical Application Circuit 2




TS9010 Series

150mA CMOS LDO with Enable


SOT-25 Mechanical Drawing

SOT-25 DIMENSION						
DIM	MILLIMETERS		INCHES			
DIIVI	MIN	MAX	MIN	MAX.		
A+A1	0.09	1.25	0.0354	0.0492		
В	0.30	0.50	0.0118	0.0197		
С	0.09	0.25	0.0035	0.0098		
D	2.70	3.10	0.1063	0.1220		
Е	1.40	1.80	0.0551	0.0709		
Е	1.90	1.90 BSC		1.90 BSC 0.0748 BSC		B BSC
Н	2.40	3.00	0.09449	0.1181		
L	0.35 BSC		0.0138	B BSC		
θ1	0°	10°	0°	10°		
S1	0.95 BSC		0.0374 BSC			

TS9010 Series 150mA CMOS LDO with Enable

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.