
SK 9 GD 063

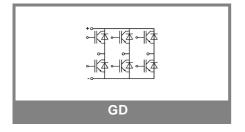
SEMITOP® 2

IGBT Module

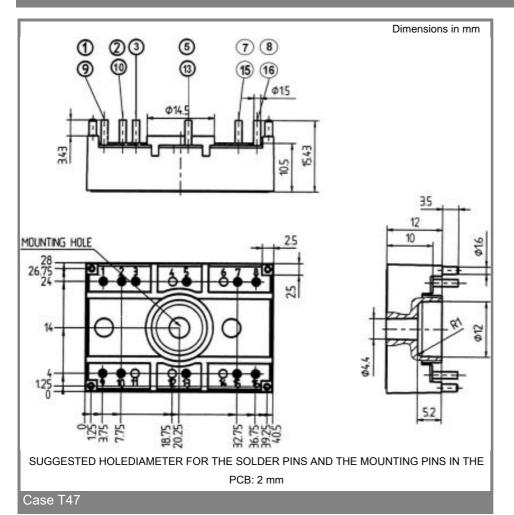
SK 9 GD 063

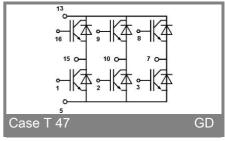
Target Data

Features


- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N channel, homogeneous Silicon structure (NPT-Non punchtrough IGBT)
- · High short circuit capability
- Low tail current with low temperature dependence

Typical Applications


- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS


Absolute Maximum Ratings		T _s = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units				
IGBT		<u> </u>					
V_{CES}		600	V				
V_{GES}		± 20	V				
I _C	T _s = 25 (80) °C;	11 (8)	Α				
I _{CM}	$t_p < 1 \text{ ms}; T_s = 25 (80) ^{\circ}C;$	22 (16)	Α				
T_j		- 40 + 150	°C				
Inverse / Freewheeling CAL diode							
I _F	T _s = 25 (80) °C;	22 (15)	Α				
$I_{FM} = -I_{CM}$	$t_p < 1 \text{ ms; } T_s = 25 (80) ^{\circ}\text{C;}$	44 (30)	Α				
T_j		- 40 + 150	°C				
T _{stg}		- 40 + 125	°C				
T _{sol}	Terminals, 10 s	260	°C				
V _{isol}	AC 50 Hz, r.m.s. 1 min. / 1 s	2500 / 3000	V				

Characteristics		T _s = 25 °C	$T_s = 25$ °C, unless otherwise specified				
Symbol	Conditions	min.	typ.	max.	Units		
IGBT	Conditions		ιyρ.	maxi	Omis		
	II − 5 Λ T − 25 (125) °C	ı	1,9 (2,1)	2,5	ΙV		
V _{CE(sat)}	$I_C = 5 \text{ A}, T_j = 25 (125) ^{\circ}\text{C}$ $V_{CE} = V_{GE}; I_C = 0,0002 \text{ A}$	4,5	5.5	2,5 6,5	V		
V _{GE(th)} C _{ies}	$V_{CE} = V_{GE}, I_C = 0,0002 \text{ A}$ $V_{CE} = 25 \text{ V}; V_{GE} = 0 \text{ V}; 1 \text{ MHz}$	7,5	3,3	0,0	nF		
R _{th(j-s)}	per IGBT			3	K/W		
· ·th(j-s)	per module			· ·	K/W		
	under following conditions:						
t _{d(on)}	V _{CC} = 300 V , V _{GE} = ± 15 V		60		ns		
t _r	I _C = 5 A, T _i = 125 °C		45		ns		
t _{d(off)}	$R_{Gon} = R_{Goff} = 200 \Omega$		230		ns		
t_f			20		ns		
$E_{on} + E_{off}$	Inductive load		0,43		mJ		
Inverse / Freewheeling CAL diode							
$V_F = V_{EC}$	I _F = 10 A; T _i = 25 (125) °C		1,45 (1,4)	1,7 (1,7)	V		
V _(TO)	T _i = (125) °C		(0,85)	(0,9)	V		
r _T	T _j = (125) °C		(55)	(80)	mΩ		
$R_{th(j-s)}$				2,3	K/W		
	under following conditions:						
I _{RRM}	$I_F = 10 \text{ A}; V_R = -300 \text{ V}$		6,5		Α		
Q_{rr}	$dI_F/dt = -200 A/\mu s$		1		μC		
E_{off}	$V_{GE} = 0 \text{ V}; T_j = 125 \text{ °C}$		0,1		mJ		
Mechanic	Mechanical data						
M1	mounting torque			2	Nm		
w			21		g		
Case	SEMITOP® 2		T 47				

SK 9 GD 063

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.