TOSHIBA

TOSHIBA Original CMOS 16-Bit Microcontroller

TLCS-900/L1 Series

TMP91CW12A

Preface

Thank you very much for making use of Toshiba microcomputer LSIs. Before use this LSI, refer the section, "Points of Note and Restrictions". Especially, take care below cautions.

CAUTION How to release the HALT mode

Usually, interrupts can release all halts status. However, the interrupts $=(\overline{\mathrm{NMI}}$, INT0 to 4, INTRTC) which can release the HALT mode may not be able to do so if they are input during the period CPU is shifting to the HALT mode (for about 5 clocks of $\mathrm{f}_{\mathrm{FPH}}$) with IDLE1 or STOP mode (IDLE2 is not applicable to this case). (In this case, an interrupt request is kept on hold internally.)

If another interrupt is generated after it has shifted to HALT mode completely, halt status can be released without difficultly. The priority of this interrupt is compare with that of the interrupt kept on hold internally, and the interrupt with higher priority is handled first followed by the other interrupt.

CMOS 16-Bit Microcontrollers
 TMP91CW12AF

1. Outline and Features

TMP91CW12AF is a high-speed 16-bit microcontroller designed for the control of various mid- to large-scale equipment.

TMP91CW12AF comes in a 100-pin flat package.
Listed below are the features.
(1) High-speed 16-bit CPU (900/L1 CPU)

- Instruction mnemonics are upward-compatible with TLCS-90/900
- 16 Mbytes of linear address space
- General-purpose registers and register banks
- 16-bit multiplication and division instructions; bit transfer and arithmetic instructions
- Micro DMA: 4 channels ($1.0 \mu \mathrm{~s} / 2$ bytes at 16 MHz)
(2) Minimum instruction execution time: 148 ns (at 27 MHz)
(3) Built-in RAM: 4 Kbytes

Built-in ROM: 128 Kbytes
(4) External memory expansion

- Expandable up to 16 Mbytes (shared program/data area)
- Can simultaneously support 8-/16-bit width external data bus
\cdots Dynamic data bus sizing
(5) 8 -bit timers: 8 channels
(6) 16-bit timer/event counter: 2 channels
(7) General-purpose serial interface: 2 channels
- UART/Synchronous mode: 2 channels
- $\quad \operatorname{IrDA}$ ver 1.0 (115.2 kbps) supported: 1 channel

030519EBP1

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunctionor failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.
- For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance/Handling Precautions.

Purchase of TOSHIBA I ${ }^{2} \mathrm{C}$ components conveys a license under the Philips $\mathrm{I}^{2} \mathrm{C}$ Patent Rights to use these components in an $\mathrm{I}^{2} \mathrm{C}$ system, provided that the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ Standard Specification as defined bv Philins.
(8) Serial bus interface: 1 channel

- $I^{2} \mathrm{C}$ bus mode/clock synchronous select mode
(9) $10-$ bit AD converter (sample-hold circuit is built in): 8 channels
(10) Watchdog timer
(11) Timer for real-time clock (RTC)
(12) Chip Select/Wait controller: 4 channels
(13) Interrupts: 45 interrupts
- 9 CPU interrupts: Software interrupt instruction and illegal instruction
- 26 internal interrupts: 7 -level priority can be set.
- 10 external interrupts: 7 -level priority can be set.
(14) Input/output ports: 81 pins
(15) Standby function

Three Halt modes: Idle2 (programmable), Idle1, Stop
(16) Triple-clock controller

- Clock Doubler (DFM)
- Clock Gear (fc to fc/16)
- Slow mode ($\mathrm{fs}=32.768 \mathrm{kHz}$)
(17) Operating voltage
- $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $3.6 \mathrm{~V}(\mathrm{fc} \max =27 \mathrm{MHz})$
- $\mathrm{VCC}=1.8 \mathrm{~V}$ to $3.6 \mathrm{~V}(\mathrm{fc} \max =10 \mathrm{MHz})$
(18) Package
- 100-pin QFP: P-LQFP100-1414-0.50F

(): Initial function after reset
Figure 1.1 TMP91CW12AF Block Diagram

2. Pin Assignment and Pin Functions

The assignment of input/output pins for the TMP91CW12AF, their names and functions are as follows:

2.1 Pin Assignment Diagram

Figure 2.1.1 shows the pin assignment of the TMP91CW12AF.

Figure 2.1.1 Pin assignment diagram (100-pin LQFP)

2.2 Pin Names and Functions

The names of the input/output pins and their functions are described below.
Table 2.2.1 Pin names and functions.
Table 2.2.1 Pin Names and Functions (1/3)

Pin Name	Number of Pins	I/O	Functions
P00 to P07 AD0 to AD7	8	$\begin{array}{r} \text { I/O } \\ \text { Tri-state } \end{array}$	Port 0: I/O port that allows I/O to be selected at the bit level Address and data (lower): Bits 0 to 7 of address and data bus
P10 to P17 AD8 to AD15 A8 to A15	8	I / O Tri-state Output	Port 1: I/O port that allows I/O to be selected at the bit level Address and data (upper): Bits 8 to 15 for address and data bus Address: Bits 8 to 15 of address bus
P20 to P27 A0 to A7 A16 to A23	8	I/O Output Output	Port 2: I/O port that allows I/O to be selected at the bit level Address: Bits 0 to 7 of address bus Address: Bits 16 to 23 of address bus
$\begin{aligned} & \mathrm{P} 30 \\ & \overline{\mathrm{RD}} \end{aligned}$	1	Output Output	Port 30: Output port Read: Strobe signal for reading external memory
$\begin{gathered} \mathrm{P} 31 \\ \mathrm{WR} \\ \hline \end{gathered}$	1	Output Output	Port 31: Output port Write: Strobe signal for writing data to pins AD0 to AD7
$\begin{aligned} & \mathrm{P} 32 \\ & \hline \mathrm{HWR} \end{aligned}$	1	I/O Output	Port 32: I/O port (with pull-up resistor) High Write: Strobe signal for writing data to pins AD8 to AD15
$\begin{aligned} & \text { P33 } \\ & \frac{\text { WAIT }}{} \end{aligned}$	1	$\begin{array}{r} \text { I/O } \\ \text { Input } \end{array}$	Port 33: I/O port (with pull-up resistor) Wait: Pin used to request CPU bus wait
P34 $\overline{B U S R Q}$	1	$\begin{gathered} \text { I/O } \\ \text { Input } \end{gathered}$	Port 34: I/O port (with pull-up resistor) Bus Request: Signal used to request Bus Release
P35 BUSAK	1	I/O Output	Port 35: I/O port (with pull-up resistor) Bus Acknowledge: Signal used to acknowledge Bus Release
$\begin{aligned} & \mathrm{P} 36 \\ & \mathrm{R} / \overline{\mathrm{W}} \end{aligned}$	1	I/O Output	Port 36: I/O port (with pull-up resistor) Read/Write: 1 represents Read or Dummy cycle; 0 represents Write cycle.
P37	1	I/O	Port 37: I/O port (with pull-up resistor)
$\frac{\mathrm{P} 40}{\mathrm{CSO}}$	1	I/O Output	Port 40: I/O port (with pull-up resistor) Chip Select 0 : Outputs 0 when address is within specified address area
$\frac{\mathrm{P} 41}{\mathrm{CS1}}$	1	$\begin{gathered} \text { I/O } \\ \text { Output } \end{gathered}$	Port 41: I/O port (with pull-up resistor) Chip Select 1: Outputs 0 if address is within specified address area
$\frac{\mathrm{P} 42}{\mathrm{CS} 2}$	1		Port 42: I/O port (with pull-up resistor) Chip Select 2: Outputs 0 if address is within specified address area
$\frac{\mathrm{P} 43}{\mathrm{CS3}}$	1	I/O Output	Port 43: I/O port (with pull-up resistor) Chip Select 3: Outputs 0 if address is within specified address area
P50 to P57 AN0 to AN7 $\overline{\text { ADTRG }}$	8	Input Input Input	Port 5: Pin used to input port Analog input: Pin used to input to AD converter AD Trigger: Signal used to request start of AD converter
$\begin{aligned} & \text { P60 } \\ & \text { SCK } \end{aligned}$	1	$\begin{aligned} & \mathrm{I} / \mathrm{O} \\ & \mathrm{I} / \mathrm{O} \end{aligned}$	Port 60: I/O port Serial bus interface clock in SIO Mode
$\begin{aligned} & \text { P61 } \\ & \text { SO } \\ & \text { SDA } \end{aligned}$	1	$\begin{array}{r} \mathrm{I} / \mathrm{O} \\ \text { Output } \\ \mathrm{I} / \mathrm{O} \\ \hline \end{array}$	Port 61: I/O port Serial bus interface output data in SIO Mode Serial bus interface data in $I^{2} \mathrm{C}$ bus Mode
$\begin{aligned} & \text { P62 } \\ & \text { SI } \\ & \text { SCL } \\ & \hline \end{aligned}$	1	$\begin{array}{r} \text { I/O } \\ \text { Input } \\ \text { I/O } \end{array}$	Port 62: I/O port Serial bus interface input data in SIO Mode Serial bus interface clock in $I^{2} \mathrm{C}$ bus Mode
$\begin{aligned} & \text { P63 } \\ & \text { INT0 } \end{aligned}$	1	$\begin{gathered} \text { I/O } \\ \text { Input } \end{gathered}$	Port 63: I/O port Interrupt Request Pin 0: Interrupt request pin with programmable level / rising edge / falling edge
$\begin{aligned} & \text { P64 } \\ & \text { SCOUT } \end{aligned}$	1	$\begin{gathered} \text { I/O } \\ \text { Output } \end{gathered}$	Port 64: I/O port System Clock Output: Outputs ffPH or fs clock.

Table 2.2.1 Pin Names and Functions (2/3)

Pin Name	Number of Pins	1/O	Functions
P65	1	I/O	Port 65: 1/O port
P66	1	$1 / \mathrm{O}$	Port 66: 1/O port
$\begin{aligned} & \text { P70 } \\ & \text { TAOIN } \\ & \hline \end{aligned}$	1	$\begin{gathered} \hline 1 / 0 \\ \text { Input } \\ \hline \end{gathered}$	Port 70: I/O port Timer A0 Input
P71 TA1OUT	1		Port 71: I/O port Timer A1 Output
P72 TA3OUT	1	$\begin{array}{r} \text { I/O } \\ \text { Output } \end{array}$	Port 72: I/O port Timer A3 Output
$\begin{aligned} & \text { P73 } \\ & \text { TA4IN } \\ & \hline \end{aligned}$	1	$\begin{array}{r} 1 / 0 \\ \text { Input } \\ \hline \end{array}$	Port 73: I/O port Timer A4 Input
$\begin{aligned} & \hline \text { P74 } \\ & \text { TA5OUT } \\ & \hline \end{aligned}$	1	$\begin{array}{r} 1 / 0 \\ \text { Output } \\ \hline \end{array}$	Port 74: I/O port Timer A5 Output
P75 TA7OUT	1	$\begin{array}{r} \text { I/O } \\ \text { Output } \\ \hline \end{array}$	Port 75: I/O port Timer A7 Output
P80 TBOINO INT5	1	I/O Input Input	Port 80: I/O port Timer B0 Input 0 Interrupt Request Pin 5: Interrupt request pin with programmable rising edge / falling edge.
P81 TBOIN1 INT6	1	$\begin{gathered} 1 / 0 \\ \text { Input } \\ \text { Input } \\ \hline \end{gathered}$	Port 81: I/O port Timer B0 Input 1 Interrupt Request Pin 6: Interrupt request on rising edge
P82 TB0OUT0	1	$\begin{array}{r} \text { I/O } \\ \text { Output } \\ \hline \end{array}$	Port 82: I/O port Timer B0 Output 0
$\begin{aligned} & \hline \text { P83 } \\ & \text { TB0OUT1 } \\ & \hline \end{aligned}$	1	$\begin{array}{r} 1 / 0 \\ \text { Output } \\ \hline \end{array}$	Port 83: I/O port Timer B0 Output 1
P84 TB1IN0 INT7	1	$\begin{gathered} \hline 1 / \mathrm{O} \\ \text { Input } \\ \text { Input } \end{gathered}$	Port 84: I/O port Timer B1 Input 0 Interrupt Request Pin 7: Interrupt request pin with programmable rising edge / falling edge.
P85 TB1IN1 INT8	1	$\begin{gathered} \hline 1 / 0 \\ \text { Input } \\ \text { Input } \\ \hline \end{gathered}$	Port 85: I/O port Timer B1 Input 1 Interrupt Request Pin 8: Interrupt request on rising edge
P86 TB1OUT0	1	$\begin{array}{r} \text { I/O } \\ \text { Output } \end{array}$	Port 86: I/O port Timer B1 Output 0
P87 TB1OUT1	1	$\begin{array}{r} \text { I/O } \\ \text { Output } \\ \hline \end{array}$	Port 87: I/O port Timer B1 Output 1
$\begin{aligned} & \text { P90 } \\ & \text { TXD0 } \\ & \hline \end{aligned}$	1	$\begin{array}{r} 1 / \mathrm{O} \\ \text { Output } \end{array}$	Port 90: I/O port Serial Send Data 0 (Programmable open-drain)
$\begin{aligned} & \text { P91 } \\ & \text { RXD0 } \\ & \hline \end{aligned}$	1	$\begin{gathered} \text { I/O } \\ \text { Input } \\ \hline \end{gathered}$	Port 91: I/O port Serial Receive Data 0
P92 SCLKO CTSO	1	$\begin{array}{r} 1 / 0 \\ \text { I/O } \\ \text { Input } \\ \hline \end{array}$	Port 92: I/O port Serial Clock I/O 0 Serial Data Send Enable 0 (Clear to Send)
$\begin{aligned} & \hline \text { P93 } \\ & \text { TXD1 } \\ & \hline \end{aligned}$	1	$\begin{array}{r} 1 / \mathrm{O} \\ \text { Output } \end{array}$	Port 93: I/O port Serial Send Data 1 (Programmable open-drain)
P94 RXD1	1	$\begin{array}{r} \text { I/O } \\ \text { Input } \\ \hline \end{array}$	Port 94: I/O port (with pull-up resistor) Serial Receive Data 1
P95 SCLK1 CTS1	1	$\begin{gathered} 1 / \mathrm{O} \\ \text { I/O } \\ \text { Input } \\ \hline \end{gathered}$	Port 95: I/O port (with pull-up resistor) Serial Clock I/O 1 Serial Data Send Enable 1 (Clear to Send)
$\begin{array}{\|l} \hline \mathrm{P} 96 \\ \mathrm{XT} 1 \\ \hline \end{array}$	1	$\begin{array}{r} 1 / 0 \\ \text { Input } \\ \hline \end{array}$	Port 96: I/O port (Open-drain output) Low-frequency oscillator connection pin

Table 2.2.1 Pin Names and Functions (3/3)

Pin Name	Number of Pins	I/O	Functions
$\begin{aligned} & \mathrm{P} 97 \\ & \text { XT2 } \\ & \hline \end{aligned}$	1	I / O Output	Port 97: I/O port (Open-drain output) Low-frequency oscillator connection pin
PA0 to PA3 INT1 to INT4	4	$\begin{gathered} \text { I/O } \\ \text { Input } \end{gathered}$	Ports A0 to A3: I/O ports Interrupt Request Pins 1 to 4: Interrupt request pins with programmable rising edge / falling edge.
PA4 to PA7	4	I/O	Ports A4 to A7: I/O ports
ALE	1	Output	Address Latch Enable Can be disabled to reduce noise.
$\overline{\mathrm{NMI}}$	1	Input	Non-Maskable Interrupt Request Pin: Interrupt request pin with programmable falling edge or both edge.
AM0 to 1	2	Input	Address Mode: The Vcc pin should be connected.
EMU0/EMU1	1	Output	Test Pins: Open pins
RESET	1	Input	Reset: initializes TMP91CW12A. (With pull-up resistor)
VREFH	1	Input	Pin for reference voltage input to AD converter (H)
VREFL	1	Input	Pin for reference voltage input to AD converter (L)
AVCC	1	I/O	High-frequency oscillator connection pins
AVSS	1		Power supply pin for AD converter
X1/X2	2		GND pin for AD converter (0 V)
DVCC	3		Power supply pins (All VCC pins should be connected with the power supply pin.)
DVSS	3		GND pins (0 V) (All VSS pins should be connected with the power supply pin.)

Note: An external DMA controller cannot access the device's built-in memory or built-in I/O devices using the $\overline{B U S R Q}$ and $\overline{B U S A K}$ signal.

3. Operation

This section describes the basic components, functions and operation of the TMP91CW12AF.

3.1 CPU

The TMP91CW12AF incorporates a high-performance 16-bit CPU (the 900/L1 CPU). For a description of this CPU's operation, please refer to the section of this data book which describes the TLCS-900/L1 CPU.

The following sub-sections describe functions peculiar to the CPU used in the TMP91CW12AF; these functions are not covered in the section devoted to the TLCS-900/L1 CPU.

3.1.1 Reset

When resetting the TMP91CW12AF microcontroller, ensure that the power supply voltage is within the operating voltage range, and that the internal high-frequency oscillator has stabilized. Then hold the $\overline{\text { RESET }}$ input Low for at least 10 system clocks (ten states: $80 \mu \mathrm{~s}$ at 4 MHz).

When the Reset has been accepted, the CPU performs the following:

- Sets the Program Counter (PC) as follows in accordance with the Reset Vector stored at address FFFF00H to FFFF02H:
$\mathrm{PC}<0$ to $7>\leftarrow$ Data in location FFFF00H
$\mathrm{PC}<8$ to $15>\leftarrow$ Data in location FFFF01H
$\mathrm{PC}<16$ to $23>\leftarrow$ Data in location FFFF02H
- Sets the Stack Pointer (XSP) to 100 H .
- Sets bits <IFF0 to IFF2> of the Status Register (SR) to 111 (thereby setting the Interrupt Level Mask Register to level 7).
- Sets the $<$ MAX $>$ bit of the Status Register to 1 (MAX Mode).
- Clears bits <RFP0 to RFP2> of the Status Register to 000 (thereby selecting Register Bank 0).
When the Reset is cleared, the CPU starts executing instructions according to the Program Counter settings. CPU internal registers not mentioned above do not change when the Reset is cleared.

When the Reset is accepted, the CPU sets internal I/O, ports and other pins as follows.

- Initializes the internal I/O registers.
- Sets the port pins, including the pins that also act as internal I/O, to General-Purpose Input or Output Port Mode.
- Sets the ALE pin to High-Z.

Note 1: Except PC,SR and XSP register of CPU and data of internal RAM are not change by reset operation.

3.2 Memory Map

Figure 3.2.1 is a memory map of the TMP91CW12AF.

Figure 3.2.1 Memory Map

3.3 Differences Between TMP91CW12AF and TMP91CW12F

(1) Outline

TMP91CW12AF is a high-speed and low-voltage products of TMP91CW12F.
The specification of function is added following item to TMP91CW12F.
The major difference points of A, C and D, C characteristics are operation voltage (CW12F: $5 \mathrm{~V} / 3 \mathrm{~V}$, CW12AF: $3 \mathrm{~V} / 2 \mathrm{~V}$) and Fmax (CW12F: 16 MHz , CW12AF: 27 MHz) at 3 V .
For the details, please refer to 4.Electrical Characteristics.
(2) Differences of Function

3.3.1 CS/WAIT controller

Wait operation setting is added in order to high-speed of operation frequency on TMP91CW12AF. It is explained at Table 3.3.1.

Figure 3.3.1 shows SFR setting.

Table 3.3.1 Wait operation settings

$<B x W 2$ to BxW0>	No. of Waits	Wait Operation
000	2 waits	Inserts a wait of two states, irrespective of the $\overline{\text { WAIT pin state. }}$
001	1 wait	Inserts a wait of one state, irrespective of the $\overline{\text { WAIT pin state. }}$
010	1 wait +N	Inserts one wait state, then continuously samples the state of the $\overline{\text { WAIT }}$ pin. While the $\overline{\text { WAIT }}$ pin remains Low, the wait continues; the the bus cycle is prolonged until the pin goes High.
011	0 waits	Ends the bus cycle without a wait, regardless of the $\overline{\text { WAIT pin state. }}$
100	Reserved	Don't setting
101	3 waits	Inserts a wait of three states, irrespective of the $\overline{\text { WAIT }}$ pin state.
110	4 waits	Inserts a wait of four states, irrespective of the $\overline{\text { WAIT pin state. }}$
111	8 waits	Inserts a wait of eight states, irrespective of the $\overline{\text { WAIT pin state. }}$

Figure 3.3.1 Chip Select/Wait Control Registers

3.3.2 IrDA function

The SIRCR<RXSEL> register is added. This register can be the selection the logic of recieving data from external IrDA module.
Figure 3.3.3 shows SFR setting.

Figure 3.3.2 Demodulation of Received data

$\begin{gathered} \text { SIRCR } \\ (0207 \mathrm{H}) \end{gathered}$	S^{-}	7	6	5	4	3	2	1	0
	Bit symbol	PLSEL	RXSEL	TXEN	RXEN	SIRWD3	SIRWD2	SIRWD1	SIRWD0
	Read/Write	R/W							
	After reset	0	0	0	0	0	0	0	0
	Function	Select transmit pulse width 0: 3/16 1: $1 / 16$	Received Data 0: H pulse 1: L	Transmit 0 : disable 1: enable	Receive 0: disable 1: enable	Select receive pulse width Set effective pulse width for equal or more than $2 \mathrm{x} \times \mathrm{x}$ (value +1) Values in the range 1 to 14 can be set			
						Select receive pulse width Formula: Effective pulse width $\geq 2 x \times x$ (value +1) $x=1 / f_{F P H}$			
						0000	Cannot be set		
						0001	Equal or more than $4 x+100 \mathrm{~ns}$		
						to			
						1110	Equal or more than $30 x+100 \mathrm{~ns}$		
						1111	Can not be set		
						\rightarrow Receive operation			
						0	Disabled		
						1	Enabled		
						Transmit operation			
						0	Disabled		
						1	Enabled		
						\rightarrow Select transmit pulse width			
						0	3/16		
						1	1/16		

Note: When the baud rate is slow and the IrDA1.0specified pulse width (minimum: $1.6 \mu \mathrm{~s}$) can be secured, setting this bit to 1 enables infrared light-up time to be decreased reducing power consumption.

Figure 3.3.3 IrDA Control Register

3.3.3 Clock Doubler (DFM) function

Input frequency range to DFM (frequency of high-frequency oscillator) is different from TMP91CW12.

Therefore, the DFMCR1 register is added to select frequency-range. (DFMCR1 register don't exist in TMP91CW12)

Write the following data according to the operating condition before starting lock-up.

Figure 3.3.4 DFM Control Register 1

3.3.4 Others

(1) Limitation of selecting drivability of High-frequency oscillator

The case of $\mathrm{VCC}=2.0 \mathrm{~V} \pm 10 \%$, it is impossible to use selecting function of drivability of High-frequency oscillator.

Do not write 0 to EMCCR0<DRVOSCH>.

4. Electrical Characteristics

4.1 Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Power Supply Voltage	Vcc	-0.5 to 4.0	V
Input Voltage	VIN	-0.5 to $\mathrm{Vcc}+0.5$	V
Output Current	IOL	2	mA
Output Current	IOH	-2	mA
Output Current (total)	LIOL	80	mA
Output Current (total)	ᄃIOH	-80	mA
Power Dissipation (Ta $\left.=85^{\circ} \mathrm{C}\right)$	PD	600	mW
Soldering Temperature $(10 \mathrm{~s})$	TSOLDER	260	${ }^{\circ} \mathrm{C}$
Storage Temperature	TSTG	-65 to 150	${ }^{\circ} \mathrm{C}$
Operating Temperature	TOPR	-40 to 85	${ }^{\circ} \mathrm{C}$

Note: The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded.

4.2 DC Characteristics (1/2)

Note1: Typical values are for when $\mathrm{Ta}=25^{\circ} \mathrm{C}$ and $\mathrm{Vcc}=3.0 \mathrm{~V}$ unless otherwise noted.

4.2 DC Characteristics (2/2)

Parameter	Symbol	Condition	Min	Typ. (Note1)	Max	Unit
Input Leakage Current	ILI	$0.0 \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{Vcc}$		0.02	± 5	$\mu \mathrm{A}$
Output Leakage Current	ILO	$0.2 \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{Vcc}-0.2$		0.05	± 10	
Power Down Voltage (at STOP, RAM back-up)	VSTOP	V IL2 $=0.2 \mathrm{Vcc}$, $\mathrm{VIH} 2=0.8 \mathrm{Vcc}$	1.8		3.6	V
$\overline{\text { RESET Pull-up Resistor }}$	RRST	$\mathrm{Vcc}=3 \mathrm{~V} \pm 10 \%$	100		400	$\mathrm{K} \Omega$
		$\mathrm{Vcc}=2 \mathrm{~V} \pm 10 \%$	200		1000	
Pin Capacitance	ClO	$\mathrm{fc}=1 \mathrm{MHz}$			10	PF
Schmitt Width RESET, $\overline{\text { NMI }, ~ I N T O ~}$	VTH	$\mathrm{Vcc} \geq 2.7 \mathrm{~V}$	0.4	1.0		V
		$\mathrm{Vcc}<2.7 \mathrm{~V}$	0.3	0.8		
Programmable Pull-up Resistor	RKH	$\mathrm{Vcc}=3 \mathrm{~V} \pm 10 \%$	100		400	$\mathrm{K} \Omega$
		$\mathrm{Vcc}=2 \mathrm{~V} \pm 10 \%$	200		1000	
Normal (Note 2)	Icc	$\begin{aligned} & \mathrm{Vcc}=3 \mathrm{~V} \pm 10 \% \\ & \mathrm{fc}=27 \mathrm{MHz} \end{aligned}$		7.0	10.0	mA
Idle2				2.5	3.5	
Idle1				1.0	1.8	
Normal (Note 2)		$\begin{aligned} & \mathrm{Vcc}=2 \mathrm{~V} \pm 10 \% \\ & \mathrm{fc}=10 \mathrm{MHz} \\ & (\text { Typ.: } \mathrm{Vcc}=2.0 \mathrm{~V} \text {) } \end{aligned}$		1.7	2.5	mA
Idle2				0.6	0.9	
Idle1				0.25	0.4	
Slow (Note 2)		$\begin{aligned} & \mathrm{Vcc}=3 \mathrm{~V} \pm 10 \% \\ & \mathrm{fs}=32.768 \mathrm{kHz} \end{aligned}$		11.6	30	$\mu \mathrm{A}$
Idle2				5.2	19	
Idle1		$\mathrm{Ta} \leq 70^{\circ} \mathrm{C}$		3.0	8	
		$\mathrm{Ta} \leq 85^{\circ} \mathrm{C}$			15	
Slow (Note 2)		$\begin{aligned} & \mathrm{Vcc}=2 \mathrm{~V} \pm 10 \% \\ & \mathrm{fs}=32.768 \mathrm{kHz} \\ & (\text { Typ.: } \mathrm{Vcc}=2.0 \mathrm{~V} \text {) } \end{aligned}$		7.7	20	$\mu \mathrm{A}$
Idle2				3.5	13	
Idle1				2.0	10	
Stop		$\mathrm{Vcc}=1.8$ to 3.3 V		0.1	10	$\mu \mathrm{A}$

Note 1: Typical values are for when $\mathrm{Ta}=25^{\circ} \mathrm{C}$ and $\mathrm{Vcc}=3.0 \mathrm{~V}$ unless otherwise noted.
Note 2: Icc measurement conditions (Normal, Slow):
All functions are operating; output pins are open and input pins are fixed.

4.3 AC Characteristics

(1) $\mathrm{Vcc}=3.0 \mathrm{~V} \pm 10 \%$

No.	Symbol	Parameter	Variable		$\mathrm{f}_{\mathrm{FPH}}=27 \mathrm{MHz}$		Unit
			Min	Max	Min	Max	
1	$\mathrm{t}_{\text {FPH }}$	$\mathrm{f}_{\mathrm{FPH}}$ Period (=x)	37.0	31250	37.0		ns
2	t_{AL}	A0 to A15 Vaild \rightarrow ALE Fall	$0.5 x-6$		12		ns
3	t LA	ALE Fall \rightarrow A0 to A15 Hold	$0.5 x-16$		2		ns
4	tLL	ALE High Width	$x-20$		17		ns
5	tLC	ALE Fall $\rightarrow \overline{\mathrm{RD}} / \overline{\mathrm{WR}}$ Fall	$0.5 x-14$		4		ns
6	$\mathrm{t}_{\text {CLR }}$	$\overline{\mathrm{RD}}$ Rise \rightarrow ALE Rise	$0.5 x-10$		8		ns
7	$\mathrm{t}_{\text {CLW }}$	$\overline{\text { WR }}$ Rise \rightarrow ALE Rise	$x-10$		27		ns
8	$\mathrm{t}_{\mathrm{ACL}}$	A0 to A15 Valid $\rightarrow \overline{\mathrm{RD}} / \overline{\mathrm{WR}}$ Fall	$x-23$		14		ns
9	$\mathrm{t}_{\mathrm{ACH}}$	A0 to A23 Valid $\rightarrow \overline{\mathrm{RD}} / \overline{\mathrm{WR}}$ Fall	$1.5 x-26$		29		ns
10	tCAR	$\overline{\mathrm{RD}}$ Rise $\rightarrow \mathrm{A} 0$ to A23 Hold	$0.5 x-13$		5		ns
11	tcaw	$\overline{\text { WR Rise } \rightarrow \text { A0 to A23 Hold }}$	$x-13$		24		ns
12	$\mathrm{t}_{\text {ADL }}$	A0 to A15 Valid \rightarrow D0 to D15 Input		$3.0 x-38$		73	ns
13	$\mathrm{t}_{\text {ADH }}$	A0 to A23 Valid \rightarrow D0 to D15 Input		$3.5 x-41$		88	ns
14	$t_{\text {RD }}$	$\overline{\mathrm{RD}}$ Fall \rightarrow D0 to D15 Input		$2.0 x-30$		44	ns
15	t_{RR}	$\overline{\mathrm{RD}}$ Low Width	$2.0 x-15$		59		ns
16	t_{HR}	$\overline{\mathrm{RD}}$ Rise \rightarrow D0 to A15 Hold	0		0		ns
17	$t_{\text {RAE }}$	$\overline{\mathrm{RD}}$ Rise $\rightarrow \mathrm{A} 0$ to A15 Output	$x-15$		22		ns
18	tww	$\overline{\text { WR Low Width }}$	$1.5 x-15$		40		ns
19	t DW	D0 to D15 Valid \rightarrow WR Rise	$1.5 x-35$		20		ns
20	twD	$\overline{\text { WR }}$ Rise \rightarrow D0 to D15 Hold	$x-25$		12		ns
21	$\mathrm{t}_{\text {AWH }}$	A0 to A23 Valid \rightarrow WAIT Input $\left[\begin{array}{c}1 \text { WAIT } \\ +n \text { Mode }\end{array}\right]$		$3.5 x-60$		69	ns
22	$\mathrm{t}_{\text {AWL }}$	A0 to A15 Valid \rightarrow WAIT Input $\left[\begin{array}{c}1 \text { WAIT } \\ +n \text { Mode }\end{array}\right]$		$3.0 x-50$		61	ns
23	t_{CW}	$\overline{\mathrm{RD}} / \overline{\mathrm{WR}}$ Fall \rightarrow WAIT Hold $\quad\left[\begin{array}{c}1 \text { WAIT } \\ +\mathrm{n} \text { Mode }\end{array}\right]$	$2.0 x+0$		74		ns
24	$\mathrm{t}_{\text {APH }}$	A0 to A23 Valid \rightarrow Port Input		$3.5 x-89$		40	ns
25	$\mathrm{t}_{\text {APH2 }}$	A0 to A23 Valid \rightarrow Port Hold	3.5 x		129		ns
26	t_{AP}	A0 to A23 Valid \rightarrow Port Valid		$3.5 x+80$		209	ns

AC Measuring Conditions

- Output Level: High $=0.7 \times \mathrm{Vcc}$, Low $=0.3 \times \mathrm{Vcc}, \mathrm{CL}=50 \mathrm{pF}$
- Input Level: High $=0.9 \times$ Vcc, Low $=0.1 \times$ Vcc

Note: x used in an expression shows a frequency for the clock $\mathrm{f}_{\mathrm{FPH}}$ selected by SYSCR1<SYSCK>.
The value of x changes according to whether a clock gear or a low-speed oscillator is selected.
An example value is calculated for fc , with gear $=1 / \mathrm{fc}$ (SYSCR1<SYSCK, GEAR2 to $0>=$ 0000).
(2) $\mathrm{Vcc}=2.0 \mathrm{~V} \pm 10 \%$

No.	Symbol	Parameter	Variable		$\mathrm{f}_{\mathrm{FPH}}=10 \mathrm{MHz}$		Unit
			Min	Max	Min	Max	
1	$\mathrm{t}_{\text {FPH }}$	$\mathrm{f}_{\mathrm{FPH}}$ Period ($=\mathrm{x}$)	100	31250	100		ns
2	t_{AL}	A0 to A15 \rightarrow ALE Fall	$0.5 x-28$		22		ns
3	t ${ }_{\text {LA }}$	ALE Fall \rightarrow A0 to A15 Hold	$0.5 x-35$		15		ns
4	tLL	ALE High Width	$x-40$		60		ns
5	tLC	ALE Fall $\rightarrow \overline{\mathrm{RD}} / \overline{\mathrm{WR}}$ Fall	$0.5 x-28$		22		ns
6	$\mathrm{t}_{\text {CLR }}$	$\overline{\mathrm{RD}}$ Rise \rightarrow ALE Rise	0.5x-20		30		ns
7	$\mathrm{t}_{\text {ACW }}$	$\overline{\text { WR }}$ Rise \rightarrow ALE Rise	$x-20$		80		ns
8	$\mathrm{t}_{\text {ACL }}$	A0 to A15 Valid $\rightarrow \overline{\mathrm{RD}} / \overline{\mathrm{WR}}$ Fall	$x-75$		25		ns
9	$\mathrm{T}_{\mathrm{ACH}}$	A0 to A23 Valid $\rightarrow \overline{\mathrm{RD}} / \overline{\mathrm{WR}}$ Fall	$1.5 x-70$		80		ns
10	$\mathrm{t}_{\text {CAR }}$	$\overline{\mathrm{RD}}$ Rise \rightarrow A0 to A23 Hold	$0.5 x-30$		20		ns
11	TCAW	$\overline{\text { WR Rise } \rightarrow \text { A0 to A23 Hold }}$	$x-30$		70		ns
12	$\mathrm{t}_{\text {ADL }}$	A0 to A15 Valid \rightarrow D0 to D15 Input		$3.0 x-76$		224	ns
13	$\mathrm{t}_{\text {ADH }}$	A0 to A23 Valid \rightarrow D0 to D15 Input		$3.5 x-82$		268	ns
14	T_{RD}	$\overline{\mathrm{RD}}$ Fall \rightarrow D0 to D15 Input		$2.0 x-60$		140	ns
15	t_{RR}	$\overline{\mathrm{RD}}$ Low Width	$2.0 x-30$		170		ns
16	t_{HR}	$\overline{\text { RD }}$ Rise \rightarrow D0 to D15 Hold	0		0		ns
17	trAE	$\overline{\mathrm{RD}}$ Rise $\rightarrow \mathrm{A} 0$ to A15 Output	$x-30$		70		ns
18	tww	$\overline{\text { WR Low Width }}$	$1.5 x-30$		120		ns
19	tDW	D0 to D15 Valid \rightarrow WR Rise	$1.5 x-70$		80		ns
20	tWD	$\overline{\text { WR Rise } \rightarrow \text { D0 to D15 Hold }}$	$x-50$		50		ns
21	$\mathrm{t}_{\text {AWH }}$	A0 to A23 Valid \rightarrow WAIT Input $\left[\begin{array}{c}1 \text { WAIT } \\ +n \text { mode }\end{array}\right]$		$3.5 x-120$		230	ns
22	$\mathrm{t}_{\text {AWL }}$	A0 to A15 Valid \rightarrow WAIT Input $\left[\begin{array}{c}1 \text { WAIT } \\ +\mathrm{n} \text { mode }\end{array}\right]$		$3.0 x-100$		200	ns
23	tcw	$\overline{\mathrm{RD}} / \overline{\text { WR }}$ Fall $\rightarrow \overline{\text { WAIT }}$ Hold $\quad\left[\begin{array}{c}\text { 1WAIT } \\ +n \text { mode }\end{array}\right]$	$2.0 x+0$		200		ns
24	$\mathrm{t}_{\text {APH }}$	A0 to A23 Valid \rightarrow Port Input		$3.5 x-170$		180	ns
25	$\mathrm{t}_{\text {APH2 }}$	A0 to A23 Valid \rightarrow Port Hold	$3.5 x$		350		ns
26	t_{AP}	A0 to A23 Valid \rightarrow Port Valid		$3.5 x+170$		520	ns

AC Measuring Conditions

- Output Level: High $=0.7 \times$ Vcc, Low $=0.3 \times$ Vcc, CL $=50 \mathrm{pF}$
- Input Level: High $=0.9 \times$ Vcc, Low $=0.1 \times$ Vcc

Note: x used in an expression shows a frequency for the clock $\mathrm{f}_{\mathrm{FPH}}$ selected by SYSCR1<SYSCK>.
The value of x changes according to whether a clock gear or a low-speed oscillator is selected.
An example value is calculated for fc , with gear $=1 / \mathrm{fc}$ (SYSCR1<SYSCK, GEAR2 to $0>=$ 0000).
(3) Read Cycle

(4) Write Cycle

4.4 AD Conversion Characteristics

$\mathrm{AVcc}=\mathrm{Vcc}, \mathrm{AVss}=\mathrm{Vss}$

Parameter	Symbol	Condition	Min	Typ.	Max	Unit
Analog Reference Voltage (+)	VREFH	$\mathrm{V}_{\text {cc }}=3 \mathrm{~V} \pm 10 \%$	$\mathrm{V}_{\mathrm{Cc}}-0.2 \mathrm{~V}$	Vcc	Vcc	V
		$\mathrm{V}_{\text {CC }}=2 \mathrm{~V} \pm 10 \%$	V_{CC}	Vcc	Vcc	
Analog Reference Voltage (-)	VREFL	$\mathrm{V}_{\text {CC }}=3 \mathrm{~V} \pm 10 \%$	$V_{S S}$	Vss	$\mathrm{Vss}+0.2 \mathrm{~V}$	
		$\mathrm{V}_{\text {CC }}=2 \mathrm{~V} \pm 10 \%$	$V_{S S}$	Vss	Vss	
Analog Input Voltage Range	VAIN		$V_{\text {REFL }}$		$\mathrm{V}_{\text {REFH }}$	
Analog Current for Analog Reference Voltage <VREFON> = 1	IREF (VREFL = OV)	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V} \pm 10 \%$		0.94	1.20	mA
		$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V} \pm 10 \%$		0.65	0.90	
<VREFON> = 0		$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$ to 3.3 V		0.02	5.0	$\mu \mathrm{A}$
Error (not including quantizing errors)	-	$\mathrm{V}_{\text {CC }}=3 \mathrm{~V} \pm 10 \%$		± 1.0	± 4.0	LSB
		$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V} \pm 10 \%$		± 1.0	± 4.0	

Note 1: 1 LSB $=($ VREFH - VREFL $) / 1024$ [V]
Note 2: The operation above is guaranteed for $\mathrm{f}_{\mathrm{FPH}} \geq 4 \mathrm{MHz}$.
Note 3: The value for I_{CC} includes the current which flows through the AVCC pin.

4.5 Serial Channel Timing (I/O Interface Mode)

(1) SCLK Input Mode

Parameter		Symbol	Variable		10 MHz		27 MHz		Unit	
		Min	Max	Min	Max	Min	Max			
SCLK Period			tscy	16X		1.6		0.59		$\mu \mathrm{S}$
Output Data $\rightarrow \text { SCLK }$ Rising/Falling Edge*	$\begin{gathered} \mathrm{Vcc}=3 \mathrm{~V} \pm \\ 10 \% \end{gathered}$	toss	$\mathrm{tscy}^{\prime} / 2-4 \mathrm{X}-110$		290		38		ns	
	$\begin{gathered} \mathrm{Vcc}=2 \mathrm{~V} \pm \\ 10 \% \\ \hline \end{gathered}$		tscy $/ 2-4 \mathrm{X}-180$		220		-		ns	
SCLK Rising/Falling Edge* \rightarrow Output Data Hold		tohs	$\mathrm{tscy}^{\prime} / 2+2 \mathrm{X}+0$		1000		370		ns	
SCLK Rising/Falling Edge* \rightarrow Input Data Hold		$\mathrm{t}_{\mathrm{HSR}}$	$3 \mathrm{X}+10$		310		121		ns	
SCLK Rising/Falling Edge* \rightarrow Valid Data Input		tsRD		$\mathrm{tSCY}^{\text {- }} 0$		1600		592	ns	
Valid Data Input \rightarrow SCLK Rising/Falling Edge*		$t_{\text {RDS }}$	0		0		0		ns	

(2) SCLK Output Mode

Parameter	Symbol	Variable		10 MHz		27 MHz		Unit
		Min	Max	Min	Max	Min	Max	
SCLK Period	tscy	16X	8192X	1.6	819	0.59	303	$\mu \mathrm{s}$
Output Data \rightarrow SCLK Rising /Falling Edge*	toss	tscy/2-40		760		256		ns
SCLK Rising/Falling Edge* \rightarrow Output Data Hold	tohs	tscy/2-40		760		256		ns
SCLK Rising/Falling Edge* \rightarrow Input Data Hold	thSR	0		0		0		ns
SCLK Rising/Falling Edge* \rightarrow Valid Data Input	tsRD		tscy - 1X-180		1320		375	ns
Valid Data Input \rightarrow SCLK Rising/Falling Edge*	$t_{\text {RDS }}$	$1 \mathrm{X}+180$		280		217		ns

Note: SCLK Rinsing/Falling Edge: The rising edge is used in SCLK Rising Mode.
The falling edge is used in SCLK Falling Mode.
27 MHz and 10 MHz values are calculated from $\mathrm{tsCY}_{\mathrm{SC}}=16 \mathrm{X}$ case.

4.6 Event Counter (TAOIN, TA4IN, TB0IN0, TB0IN1, TB1IN0, TB1IN1)

Parameter	Symbol	Variable		10 MHz		27 MHz		Unit
		Min	Max	Min	Max	Min	Max	
Clock Perild	tvCK	$8 \mathrm{X}+100$		900		396		ns
Clock Low Level Width	tvckl	$4 \mathrm{X}+40$		440		188		ns
Clock High Level Width	tVCKH	$4 \mathrm{X}+40$		440		188		ns

4.7 Interrupt and Capture

(1) $\overline{\mathrm{NMI}}$, INT0 to INT4 Interrupts

Symbol	Parameter	Variable		10 MHz		27 MHz		Unit
		Min	Max	Min	Max	Min	Max	
$\mathrm{t}_{\text {INTAL }}$	$\overline{\text { NMI }, ~ I N T 0 ~ t o ~ I N T 4 ~ L o w ~ l e v e l ~ w i d t h ~}$	$4 \mathrm{X}+40$		440		188		ns
$\mathrm{t}_{\text {INTAH }}$	$\overline{\mathrm{NMI}, ~ I N T 0 ~ t o ~ I N T 4 ~ H i g h ~ l e v e l ~ w i d t h ~}$	$4 \mathrm{X}+40$		440		188		ns

(2) INT5 to INT8 Interrupts, Capture

The INT5 to INT8 input width depends on the system clock and prescaler clock settings.

System Clock Selected <SYSCK>	Prescaler Clock Selected <PRCK1, PRCK0>	$\mathrm{t}_{\text {INTBL }}$(INT5 to INT8 Low level Width)		$\mathrm{t}_{\text {INTBH }}$(INT5 to INT8 High Level Width)		Unit
		Variable	$\mathrm{f}_{\text {FPH }}=27 \mathrm{MHz}$	Variable	$\mathrm{f}_{\mathrm{FPH}}=27 \mathrm{MHz}$	
		Min	Min	Min	Min	
(fc)	00 (ffPH)	$8 \mathrm{X}+100$	396	$8 \mathrm{X}+100$	396	ns
	10 (fc/16)	$128 \mathrm{Xc}+0.1$	4.8	$128 \mathrm{Xc}+0.1$	4.8	
1 (fs)	00 (fFPH)	$8 \mathrm{X}+0.1$	244.3	$8 \mathrm{X}+0.1$	244.3	μ

Note: Xc = Period of Clock fc

4.8 SCOUT Pin AC Characteristics

Parameter	Symbol	Variable		10 MHz		27 MHz		Condition	Unit
		Min	Max	Min	Max	Min	Max		
Low level Width	${ }_{\text {tSCH }}$	0.5T-13		37		5		$\mathrm{Vcc} \geq 2.7 \mathrm{~V}$	ns
		0.5T-25		25		-		$\mathrm{Vcc}<2.7 \mathrm{~V}$	
High level Width	${ }_{\text {tSCL }}$	0.5T-13		37		5		$\mathrm{Vcc} \geq 2.7 \mathrm{~V}$	ns
		0.5T-25		25		-		$\mathrm{Vcc}<2.7 \mathrm{~V}$	

Note: T = Period of SCOUT

Measrement Condition

- Output Level: High 0.7 Vcc/Low 0.3 Vcc, CL = 10pF

4.9 Bus Request/Bus Acknowledge

Paramter	Symbol	Variable		$\mathrm{f}_{\mathrm{FPH}}=10 \mathrm{MHz}$		$\mathrm{f}_{\mathrm{FPH}}=27 \mathrm{MHz}$		Condition	Unit
		Min	Max	Min	Max	Min	Max		
Output Buffer Off to BUSAK Low	$\mathrm{t}_{\mathrm{ABA}}$	0	80	0	80	0	80	$\mathrm{Vcc} \geq 2.7 \mathrm{~V}$	ns
		0	300	0	300	0	300	$\mathrm{Vcc}<2.7 \mathrm{~V}$	
BUSAK High to Output Buffer On	$t_{\text {BAA }}$	0	80	0	80	0	80	$\mathrm{Vcc} \geq 2.7 \mathrm{~V}$	ns
		0	300	0	300	0	300	$\mathrm{Vcc}<2.7 \mathrm{~V}$	

Note 1: Even if the $\overline{B U S R Q}$ Signal goes Low, the bus will not be released while the WAIT signal is Low. The bus will only be released when BUSRQ goes Low while $\overline{\text { WAIT }}$ is High.

Note 2: This line shows only that the output buffer is in the Off state.
It does not indicate that the signal level is fixed.
Just after the bus is released, the signal level set before the bus was released is maintained dynamically by the external capacitance. Therefore, to fix the signal level using an external resister during bus release, careful design is necessary, since fixing of the level is delayed.
The internal programmable pull-up/pull-down resistor is switched between the Active and Non-Active states by the internal signal.

4.10 Recommended Oscillation Circuit

The TMP91CW12AF has been evaluated by the following resonator manufacturer. The evaluation results are shown below for your information.

Note: The load capacitance of the oscillation terminal is the sum of the load capacitances of C1 and C 2 to be connected and the stray capacitance on the board. Even if the ratings of C1 and C2 are used, the load capacitance varies with each board and the oscillator may malfunction. Therefore, when designing a board, make the pattern around the oscillation circuit shortest. It is recommended that final evaluation of the resonator be performed on the board.
(1) Examples of resonator connection

Figure 4.10.1 High-frequency Oscillator Connection

Figure 4.10.2 Low-frequency Oscillator Connection
(2) Recommended ceramic resonators for the TMP91CW12AF: Murata Manufacturing Co., Ltd.

Item	Oscillation frequency [MHz]	Recommended resonator	Recommended rating			VCC[V]	Remarks
			C1[pF]	C2[pF]	$\operatorname{Rd}[\mathrm{k} \Omega]$		
High-frequ ency oscillator	2.0	CSA2.00MG042	100	100	0	1.8 to 2.2	-
		CST2.00MG042	(100)	(100)			
	2.5	CSA2.50MG042	100	100			
		CST2.50MGW042	(100)	(100)			
	4.0	CSA4.00MG040	100	100		2.7 to 3.3	
		CST4.00MGW040	(100)	(100)			
		CSTS0400MG06	(47)	(47)			
		CSA4.00MGU040	100	100			
		CST4.00MGWU040	(100)	(100)		1.8 to 2.2	
		CSA6.75MTZ040	100	100			
		CST6.75MTW040	(100)	(100)		2.7 to 3.3	
	6.75	CSTS0675MG06	(47)	(47)			
		CSA6.75MTZ093	30	30		1.8 to 2.2	
		CST6.75MTW093	(30)	(30)			
		CSA10.0MTZ	30	30		2.7 to 3.3	
	10.0	CST10.0MTW	(30)	(30)			
		CSA10.0MTZ093	30	30		1.8 to 2.2	
		CST10.0MTW093	(30)	(30)		1.8 to 2.2	
	12.5	CSA12.5MTZ	30	30		2.7 to 3.3	
		CST12.5MTW	(30)	(30)			
	20.0	CSA20.00MXZ040	7	7			
	27.0	CSA27.00MXZ040	(5)	(5)			

- The values enclosed in brackets in the C1 and C2 columns apply to the condenser built-in type.
- The product numbers and specifications of the resonators by Murata Manufacturing Co., Ltd. are subject to change. For up-to-date information, please refer to the following URL;
http://www.murata.co.jp/search/index.html

