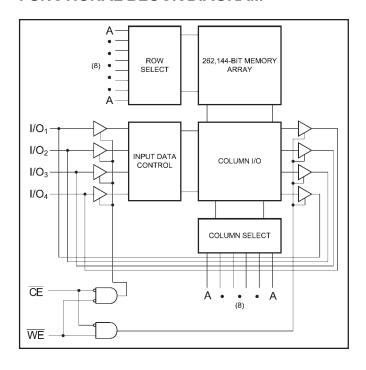
P4C1258 ULTRA HIGH SPEED 64K x 4 STATIC CMOS RAM

FEATURES

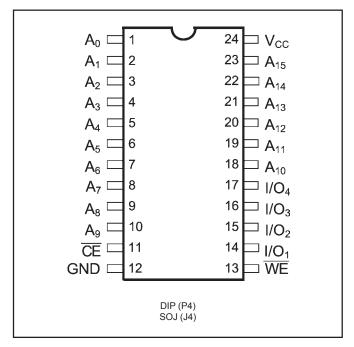
- Full CMOS, 6T Cell
- High Speed (Equal Access and Cycle Times) -15/20/25/35 ns (Commercial/Industrial)
- Low Power
- Single 5V±10% Power Supply
- Data Retention with 2.0V Supply

- **■** Three-State Outputs
- **TTL/CMOS Compatible Outputs**
- Fully TTL Compatible Inputs
- Standard Pinout (JEDEC Approved)
 - 24-Pin 300 mil DIP, SOJ

DESCRIPTION


The P4C1258 is a 262,144-bit ultra high speed static RAM organized as $64K \times 4$. The CMOS memory requires no clock or refreshing and has equal access and cycle times. Inputs and outputs are fully TTL-compatible. The RAM operates from a single $5V\pm10\%$ tolerance power supply. With battery backup, data integrity is maintained for supply voltages down to 2.0V. Current drain is typically $10~\mu\text{A}$ from a 2.0V supply.

Access times as fast as 15 nanoseconds are available, permitting greatly enhanced system speeds. CMOS is utilized to reduce power consumption.


The P4C1258 is available in a 24-pin 300 mil DIP or SOJ packages providing excellent board level densities.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

MAXIMUM RATINGS(1)

Symbol	Parameter	Value	Unit
V _{cc}	Power Supply Pin with Respect to GND	–0.5 to +7	V
V _{TERM}	Terminal Voltage with Respect to GND (up to 7.0V)	-0.5 to V _{cc} +0.5	V
T _A	Operating Temperature	-55 to +125	°C

Symbol	Parameter	Value	Unit
T _{BIAS}	Temperature Under Bias	-55 to +125	°C
T _{STG}	Storage Temperature	-65 to +150	°C
P _T	Power Dissipation	1.0	W
I _{OUT}	DC Output Current	50	mA

RECOMMENDED OPERATING TEMPERATURE AND SUPPLY VOLTAGE

Grade(2)	Ambient Temperature	GND	V _{cc}
Industrial	–40°C to +85°C	0V	5.0V ± 10%
Commercial	0°C to +70°C	0V	5.0V ± 10%

CAPACITANCES(4)

 $V_{CC} = 5.0V, T_A = 25^{\circ}C, f = 1.0MHz$

Symbol	Parameter	Conditions	Тур.	Unit	
C _{IN}	Input Capacitance	V _{IN} = 0V	5	pF	
C _{OUT}	Output Capacitance	V _{OUT} = 0V	7	pF	

DC ELECTRICAL CHARACTERISTICS

Over recommended operating temperature and supply voltage(2)

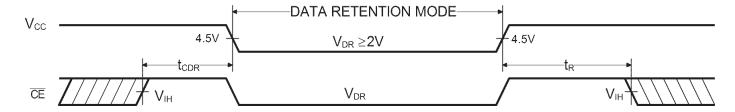
Symbol	Parameter Test Conditions		P40	Unit	
Syllibol	Farameter	rest conditions	Min	Max	Ullit
V _{IH}	Input High Voltage		2.2	V _{cc} +0.5	V
V _{IL}	Input Low Voltage		-0.5 ⁽³⁾	0.8	V
V _{HC}	CMOS Input High Voltage		V _{cc} -0.2	V _{cc} +0.5	V
V _{LC}	CMOS Input Low Voltage		-0.5 ⁽³⁾	0.2	V
V _{CD}	Input Clamp Diode Voltage	V _{CC} = Min., I _{IN} = 18 mA		-1.2	V
V _{OL}	Output Low Voltage (TTL Load)	I _{OL} = +8 mA, V _{CC} = Min.		0.4	V
V _{OH}	Output High Voltage (TTL Load)	$I_{OH} = -4 \text{ mA}, V_{CC} = \text{Min}.$	2.4		V
l _ω	Input Leakage Current	$V_{CC} = Max.$ $V_{IN} = GND \text{ to } V_{CC}$	– 5	+5	μA
I _{LO}	Output Leakage Current	$V_{CC} = Max., \overline{CE} = V_{IH}$ $V_{OUT} = GND \text{ to } V_{CC}$	– 5	+5	μA
I _{SB}	Standby Power Supply Current (TTL Input Levels)	CE ≥ V _{IH} V _{CC} = Max ., f = Max., Outputs Open		35	mA
I _{SB1}	Standby Power Supply Current (CMOS Input Levels)	$\overline{CE} \ge V_{HC}$ $V_{CC} = Max., f = 0, Outputs Open$ $V_{IN} \le V_{LC} \text{ or } V_{IN} \ge V_{HC}$		10	mA

Notes:

- Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to MAXIMUM rating conditions for extended periods may affect reliability.
- Extended temperature operation guaranteed with 400 linear feet per minute of air flow.
- 3. Transient inputs with $V_{\rm L}$ and $I_{\rm L}$ not more negative than $-3.0{\rm V}$ and $-100{\rm mA}$, respectively, are permissible for pulse widths up to 20 ns.
- 4. This parameter is sampled and not 100% tested.

POWER DISSIPATION CHARACTERISTICS VS. SPEED

Symbol	Parameter	Temperature Range	-15	-20	-25	-35	Unit
	Division in One station is Original att	Commercial	160	125	115	110	mA
l cc	Dynamic Operating Current*	Industrial	170	135	120	115	mA


^{*} V_{CC} = 5.5V. Tested with outputs open. f = Max. Switching inputs are 0V and 3V. \overline{CE} = V_{IL}

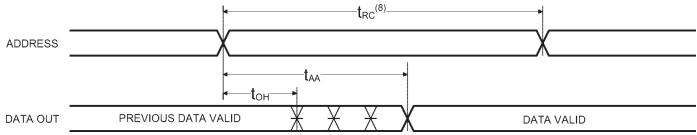
DATA RETENTION CHARACTERISTICS

Symbol	Parameter	Test Conditions	Min	Тур V _{сс} 2.0V		Ma V _{cc} 2.0V		Unit
V_{DR}	V _{cc} for Data Retention		2.0					V
I _{CCDR}	Data Retention Current	0		10	15	1500	2000	μA
t _{CDR}	Chip Deselect to Data Retention Time	$\overline{CE} \ge V_{CC} - 0.2V,$ $V_{IN} \ge V_{CC} - 0.2V \text{ or }$ $V_{IN} \le 0.2V$	0					ns
t _R †	Operation Recovery Time	IN -	t _{RC} §					ns

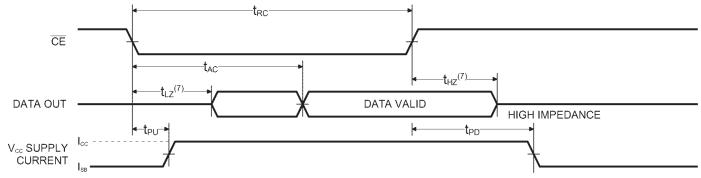
 $T_{A} = +125^{\circ}C$

DATA RETENTION WAVEFORM

 $^{{}^{\}S}t_{RC}$ = Read Cycle Time


[†] This parameter is guaranteed but not tested.

AC CHARACTERISTICS—READ CYCLE

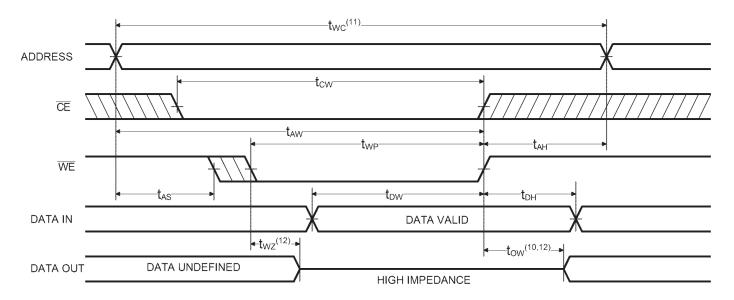

 $(V_{CC} = 5V \pm 10\%, All Temperature Ranges)^{(2)}$

Sym.	Parameter	-1	5	-2	20	-2	25	-3	35	Unit
oy		Min	Max	Min	Max	Min	Max	Min	Max	
t _{RC}	Read Cycle Time	15		20		25		35		ns
t _{AA}	Address Access Time		15		20		25		35	ns
t _{AC}	Chip Enable Access Time		15		20		25		35	ns
t _{oh}	Output Hold from Address Change	2		2		2		2		ns
t _{LZ}	Chip Enable to Output in Low Z	2		3		3		3		ns
t _{HZ}	Chip Disable to Output in High Z		8		9		10		11	ns
t _{PU}	Chip Enable to Power Up Time	0		0		0		0		ns
t _{PD}	Chip Disable to Power Down Time		15		20		25		35	ns

TIMING WAVEFORM OF READ CYCLE NO. 1(5)

TIMING WAVEFORM OF READ CYCLE NO. 2⁽⁶⁾

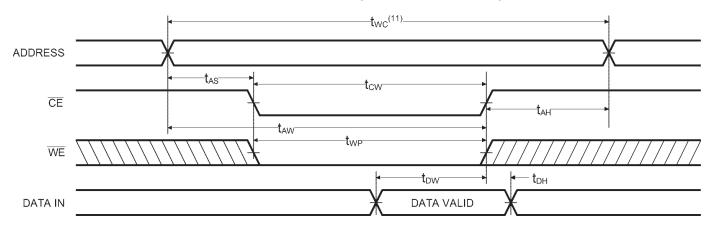
Notes


- 5. $\overline{\text{CE}}$ is LOW and $\overline{\text{WE}}$ is HIGH for READ cycle.
- 6. \overline{WE} is HIGH, and address must be valid prior to or coincident with \overline{CE} transition LOW.
- Transition is measured ±200mV from steady state voltage prior to change with specified loading in Figure 1. This parameter is sampled and not 100% tested.
- 8. Read Cycle Time is measured from the last valid address to the first transitioning address.

AC CHARACTERISTICS - WRITE CYCLE

 $(V_{CC} = 5V \pm 10\%, All Temperature Ranges)^{(2)}$

Cum	Doromotor		15	-2	20	-2	25	-3	35	Unit
Sym.	Parameter		Max	Min	Max	Min	Max	Min	Max	Unit
t _{wc}	Write Cycle Time	13		20		25		35		ns
t _{cw}	Chip Enable Time to End of Write	12		15		18		25		ns
t _{AW}	Address Valid to End of Write	12		15		18		25		ns
t _{AS}	Address Set-up Time	0		0		0		0		ns
t _{wp}	Write Pulse Width	12		15		18		25		ns
t _{AH}	Address Hold Time from End of Write	0		0		0		0		ns
t _{DW}	Data Valid to End of Write	7		8		10		15		ns
t _{DH}	Data Hold Time	0		0		0		0		ns
t _{wz}	Write Enable to Output in High Z		6		8		10		15	ns
t _{DW}	Output Active from End of Write	2		2		2		3		ns


TIMING WAVEFORM OF WRITE CYCLE NO. 1 (WE CONTROLLED) (9)

Notes

- 9. $\overline{\text{CE}}$ and $\overline{\text{WE}}$ must be LOW for WRITE cycle.
- 10. If $\overline{\text{CE}}$ goes HIGH simultaneously with $\overline{\text{WE}}$ HIGH, the output remains in a high impedance state.
- 11. Write Cycle Time is measured from the last valid address to the first transition address.
- Transition is measured ±200mV from steady state voltage prior to change with specified loading in Figure 1. This parameter is sampled and not 100% tested.

TIMING WAVEFORM OF WRITE CYCLE NO. 2 (CE CONTROLLED)(9)

DATA OUT HIGH IMPEDANCE

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise and Fall Times	3ns
Input Timing Reference Level	1.5V
Output Timing Reference Level	1.5V
Output Load	See Figures 1 and 2

TRUTH TABLE

Mode	Œ	WE	Output	Power
Standby	Н	X	High Z	Standby
Read	L	Н	D _{out}	Active
Write	L	L	D _{IN}	Active

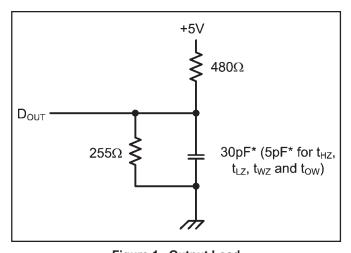
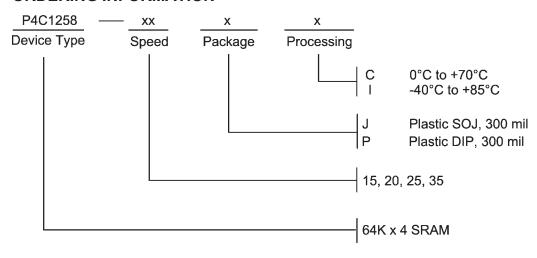


Figure 1. Output Load

Figure 2. Thevenin Equivalent

Note:

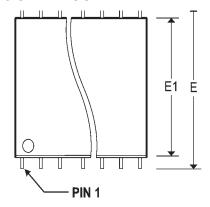

Because of the ultra-high speed of the P4C1258, care must be taken when testing this device; an inadequate setup can cause a normal functioning part to be rejected as faulty. Long high-inductance leads that cause supply bounce must be avoided by bringing the $\rm V_{cc}$ and ground planes directly up to the contactor fingers. A 0.01 $\rm \mu F$ high

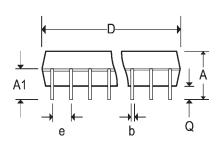
frequency capacitor is also required between V $_{\rm CC}$ and ground. To avoid signal reflections, proper termination must be used; for example, a 50Ω test environment should be terminated into a 50Ω load with 1.73V (Thevenin Voltage) at the comparator input, and a 116Ω resistor must be used in series with $D_{\rm OUT}$ to match 166Ω (Thevenin Resistance).

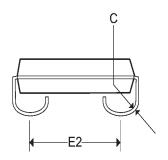
 $R_{TH} = 166.5\Omega$ $V_{TH} = 1.73 \text{ V}$ $V_{TH} = 1.73 \text{ V}$

^{*} including scope and test fixture.

ORDERING INFORMATION


SELECTION GUIDE


The P4C1258 is available in the following temperature, speed and package options.


Temperature	Dooksas	Speed								
Range	Package	15	20	25	35					
Commercial	Plastic DIP	-15PC	-20PC	-25PC	-35PC					
	Plastic SOJ	-15JC	-20JC	-25JC	-35JC					
Industrial	Plastic DIP	-15PI	-20PI	-25PI	-35PI					
	Plastic SOJ	-15JI	-20JI	-25JI	-35JI					

Pkg#	J4	
# Pins	24 (300 mil)	
Symbol	Min	Max
Α	0.128	0.148
A1	0.082	-
b	0.016	0.020
С	0.007	0.010
D	0.620	0.630
е	0.050 BSC	
Е	0.335 BSC	
E1	0.292	0.300
E2	0.267 BSC	
Q	0.025	-

SOJ SMALL OUTLINE IC PACKAGE

Pkg#	P4	
# Pins	24 (300 Mil)	
Symbol	Min	Max
Α	-	0.210
A1	0.015	-
b	0.014	0.022
b2	0.045	0.070
С	0.008	0.014
D	1.230	1.280
E1	0.240	0.280
E	0.300	0.325
е	0.100 BSC	
eB	-	0.430
L	0.115	0.150
α	0°	15°

REVISIONS

DOCUMENT NUMBER: SRAM123 DOCUMENT TITLE: P4C1258 ULTRA HIGH SPEED 64K x 4 STATIC CMOS RAM			
REV.	ISSUE DATE	ORIG. OF CHANGE	DESCRIPTION OF CHANGE
OR	Oct-05	JDB	New Data Sheet