EM7A8620

Voice over IP

Product Specification

DOC. VERSION 1.0

ELAN MICROELECTRONICS CORP. January 2006

Trademark Acknowledgments: IBM is a registered trademark and PS/2 is a trademark of IBM. Windows is a trademark of Microsoft Corporation.

ELAN and ELAN logo kit are trademarks of ELAN Microelectronics Corporation.

Copyright © 2005 by ELAN Microelectronics Corporation All Rights Reserved Printed in Taiwan

The contents of in this specification are subject to change without notice. ELAN Microelectronics assumes no responsibility concerning the accuracy, adequacy, or completeness of this specification. ELAN Microelectronics makes no commitment to update, or to keep current the information and material contained in this specification. Such information and material may change to conform to each confirmed order.

In no event shall ELAN Microelectronics be made responsible to any claims attributed to errors, omissions, or other inaccuracies in the information or material contained in this specification. ELAN Microelectronics shall not be liable for direct, indirect, special incidental, or consequential damages arising out of the use of such information or material.

The software (if any) described in this specification is furnished under a license or nondisclosure agreement, and may be used or copied only in accordance with the terms of such agreement.

ELAN Microelectronics products are not intended for use in life support appliances, devices, or systems. Use of ELAN Microelectronics product in such applications is not supported and is prohibited. NO PART OF THIS SPECIFICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS WITHOUT THE EXPRESS WRITTEN PERMISSION OF ELAN MICROELECTRONICS.

ELAN MICROELECTRONICS CORPORATION

Headquarters:

No. 12, Innovation Road 1 Science-based Industrial Park Hsinchu, Taiwan, 30077 Tel: +886 3 563-9977 Fax: +886 3 563-9966 http://www.emc.com.tw

Europe: Elan Microelectronics Corp. (Europe)

Siewerdtstrasse 105 8050 Zurich, SWITZERLAND Tel:+41 43 299-4060 Fax:+41 43 299-4079 http://www.elan-europe.com

Hong Kong: Elan (HK) Microelectronics Corporation, Ltd.

Rm. 1005B, 10/F Empire Centre 68 Mody Road, Tsimshatsui Kowloon , HONG KONG Tel: +852 2723-3376 Fax: +852 2723-7780 elanhk@emc.com.hk

Shenzhen:

Elan Microelectronics Shenzhen, Ltd.

SSMEC Bldg., 3F, Gaoxin S. Ave. Shenzhen Hi-Tech Industrial Park Shenzhen, Guandong, CHINA Tel: +86 755 2601-0565 Fax: +86 755 2601-0500

USA:

Elan Information Technology Group

1821 Saratoga Ave., Suite 250 Saratoga, CA 95070 USA Tel: +1 408 366-8223 Fax: +1 408 366-8220

Shanghai:

Elan Microelectronics Shanghai Corporation, Ltd.

23/Bldg. #115 Lane 572, Bibo Road Zhangjiang Hi-Tech Park Shanghai, CHINA Tel: +86 021 5080-3866 Fax: +86 021 5080-4600

1. IN	TRODUCTION	1
1.1 1.2 1.3 1.4 1.5	Feature APPLICATION Signal Descriptions System Block Diagram Pin Assignment	1 2 3 6 7
2. FU	NCTION DESCRIPTIONS	8
$\begin{array}{c} 2.1 \\ 2.2 \\ 2.3 \\ 2.4 \\ 2.5 \\ 2.6 \\ 2.7 \\ 2.8 \\ 2.9 \\ 2.10 \\ 2.11 \\ 2.12 \\ 2.13 \\ 2.14 \\ 2.15 \\ 2.16 \\ 2.17 \end{array}$	CPU SDRAM CONTROLLER STATIC MEMORY CONTROLLER 10/100 ETHERNET DIRECT MEMORY ACCESS I ² C UART I2S/SPI CONTROLLER PCM CONTROLLER LCD DOT MATRIX CONTROLLER TIMER WATCH DOG TIMER (WDT) INTERRUPT CONTROLLER GENERAL PURPOSE INPUT / OUTPUT REAL TIME CLOCK POWER MANAGEMENT AUDIO CODEC	8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 10 10 10 10 11 11 11 11 12 12
3. DC	CHARACTERISTICS	13
3.1 3.2 3.3 3.4 3.5	ABSOLUTE MAXIMUM RATINGS RECOMMENDED OPERATING CONDITIONS I/O PAD CAPACITANCE DC CHARACTERISTICS FOR 3.3V OPERATION DC CHARACTERISTICS FOR 1.8V OPERATION	13 13 13 13 14

Contents

Specification Revision History				
Version	Revision Description	Date		
1.0	Preliminary version	2006/03/08		

1. Introduction

The EM7A8620 is a high integrated and high-performance ASIC. It integrated with the high performance 32-bit RISC CPU, 16-bit high quality audio Codec and two 802.3 Ethernet PHYs. The ASIC also built in a number of on-chip communications peripherals, like I2S/ I2C/PCM Bus/SPI/UART...etc. This is ideal chip to be integrated into Voice over IP or Adapter phone solution.

1.1 Feature

-32-bit RISC Embedded processor

- 32-bit RISC with 16KB I-Cache/16KB D-Cache
- Memory Management Unit

-System Bus

- AMBA-AHB bus
- AMBA-APB bus
- -Components on AHB bus
 - SDRAM Controller
 - Static Memory Controller
 - Two 10/100 Ethernet MAC controllers and PHYs
 - Direct Memory Access Controller
 - Unified memory bus interface

-Components on APB bus

- \circ I²C Controller
- 16550-compatible UART
- Three I²S/SPI Controller
- Embedded audio CODEC
- PCM Controller
- Two 6-ch Internal Timer
- Watch Dog Timer
- 64-ch Interrupt Controller
- LCD (dot matrix) controller interface
- 32-bit General Purpose I/O (GPIO)

-Power & Clock Management

- Embedded PLL for programmable clocks
- Frequency: As high as 196 MHz for CPU at commercial conditions

-Operation Voltage

Elan

- $\circ \quad 1.8V \text{ for Core}$
- 3.3V for Input/Output

-Package Type:

• 208-QFP

1.3 Signal Descriptions

Table 1	Signal	Descriptions	for the	VolP	ASIC Process	or
---------	--------	--------------	---------	------	--------------	----

Pin name	Dir	Description		
		SDRAM/SRAM Address/Data Bus		
MEMADDR[25] / LCD_E	0	SRAM address bit-25 / LCD controller, register select		
MEMADDR[24] / LCD_RS	0	LCD controller, read/write start		
MEMADDR[23] / LCD_RWn	0	SRAM address bit-24 / LCD controller, read/write command		
MEMADDR[22:15] / LCD_DB[7:0]	Ю	SRAM address bit-23 to bit-16 / LCD controller, data bus bit-7 to bit-0		
MEMADDR[14:0]	0	SDRAM/SRAM Memory address bus.		
MEMDATA[31:0]	Ю	SDRAM/SRAM Memory data bus.		
SDRAM_CKE	0	SDRAM clock enable.		
SDRAM_RASn	0	SDRAM row address strobe. Active LOW.		
SDRAM_CASn	0	SDRAM column address strobe. Active LOW.		
SDRAM_CSn	0	SDRAM chip select. Active LOW.		
EBI_WEn	0	SDRAM/SRAM write enable. Active LOW.		
EBI_BEn[3:0]	0	SDRAM DQM for data bytes 3 through 0.		
SDCLK	0	SDRAM clocks.		
SMC_CS0n	0	SRAM chip select		
SMC_OEn	0	SRAM output enable		
ICE				
ICK / GPIO[29]	ΙΟ	ICE clock input / GPIO bit-29		
IMS / GPIO[28]	ΙΟ	ICE mode select / GPIO bit-28		

Product Specification (V1.0) 3.8.2006

EM7A8620

Voice Over IP

1					
ID / GPIO [27]	ΙΟ	ICE data / GPIO bit-27			
EXTGOICE / GPIO[26]	ΙΟ	ICE enable / GPIO bit-26			
		GPIO			
GPIO[25:0]	ΙΟ	General purpose I/O			
		РСМ			
PCM_TXD	0	PCM transmit data			
PCM_RXD	Ι	PCM receive data			
PCM_FSYN	ΙΟ	PCM frame sync.			
PCM_BCLK	ΙΟ	PCM bit clock			
SPI/I ² S					
SSP[1:3]_SCLK	ΙΟ	SPI bit clock			
SSP[1:3]_FS	ΙΟ	SPI frame sync			
SSP[1:3]_RXD	Ι	SPI RX			
SSP[1:3]_TXD	0	SPI TX			
SSP_CLKOUT	0	I ² S main clock			
		I ² C			
SCL	ΙΟ	I ² C clock.			
SDA IO I ² C data.					
		UART			
SIN / GPIO[31]	Ι	Full function UART receive.			
SOUT / GPIO[30]	0	Full function UART transmit.			
		Global Reset			
RSTn	Ι	Hardware reset.			
		Oscillator Pad			
OSCHIN	Ι	12 MHz crystal input.			
OSCHIO	IO <	12 MHz crystal output.			
		Ethernet PHY 1			
PHY1_RXIP	Ю	Differential signal pair RX			
PHY1_RXIN	IO	Differential signal pair RX			
PHY1_TXOP	IO	Differential signal pair TX			
PHY1_TXON	ΙΟ	Differential signal pair TX			
PHY1_XTLP	Ţ	Crystal input			
PHY1_XTLN	I	Crystal input			
PHY1_VCCA0	I	VCCA set 0			
PHY1_GNDA0	Ι	GNDA set 0			
PHY1_VCCD2	Ι	VCCD set 2			
PHY1_GNDD2	0	GNDD set 2			
PHY1_VCCA3	ΙΟ	VCCA set 3			
PHY1_GNDA3	Ι	GNDA set 3			
PHY1_RSET_BG	0	12.3 KΩ to GND			
PHY1_LINKLED	0	LED signal indicates the link status			
PHY1_SPDLED	0	LED signal indicates the 10/100 speed			

Product Specification (V1.0) 3.8.2006

		Ethernet PHY 2			
PHY2_RXIP	ΙΟ	Differential signal pair RX			
PHY2_RXIN	ΙΟ	Differential signal pair RX			
PHY2_TXOP	ΙΟ	Differential signal pair TX			
PHY2_TXON	ΙΟ	Differential signal pair TX			
PHY2_XTLP	Ι	Crystal input			
PHY2_XTLN	Ι	Crystal input			
PHY2_VCCA0	Ι	VCCA set 0			
PHY2_GNDA0	Ι	GNDA set 0			
PHY2_VCCD2	Ι	VCCD set 2			
PHY2_GNDD2	0	GNDD set 2			
PHY2_VCCA3	ΙΟ	VCCA set 3			
PHY2_GNDA3	Ι	GNDA set 3			
PHY2_RSET_BG	0	12.3 KΩ to GND			
PHY2_LINKLED	0	LED signal indicates the link status			
PHY2_SPDLED	0	LED signal indicates the 10/100 speed			
Audio CODEC					
CODEC_GNDA_HP	Ι	Headphone amplifier analog ground pad			
CODEC_RHPOUT	0	Analog head phone, right channel			
CODEC_LHPOUT	0	Analog head phone, left channel			
CODEC_VCCA_HP	I	Headphone amplifier analog power pad, 3.3V			
CODEC_MICIN	Ι	Analog microphone input			
CODEC_LLINEIN	Ι	Analog line input, left channel			
CODEC_RLINEIN	Ι	Analog line input, right channel			
CODEC_VCCA		Analog power pad, 3.3V			
CODEC_VCM	0	Analog common-mode voltage			
CODEC_GNDA		Analog ground pad			
CODEC_ROUT	0	Analog line out, right channel			
CODEC_LOUT	0	Analog line out, left channel			
		DLL			
HCLK	I	DLL feedback clock			
Test					
TEST	I	1: test mode, 0: normal mode			
DLL / PLL / OSC Power					
VCC18A_PLL[1:2]	Ι	PLL analog power (1.8V).			
GNDA_PLL[1:2]	Ι	PLL analog ground			
VCC18A_DLL	Ι	DLL analog power (1.8V).			
GNDA_DLL	Ι	DLL analog ground			
VCC18IO_OSC	Ι	OSCH power (1.8V).			
GNDIO_OSC	Ι	OSCH ground			

1.4 System Block Diagram

Figure 1 Block Diagram of EM7A8620

2. Function Descriptions

2.1 CPU

The CPU is a general-purpose 32-bit embedded RISC processor. It's a Harvard architecture design with six pipeline stages. It includes separate instruction / data caches, separate instruction / data scratchpads, a write buffer, a branch target buffer, a protection unit, and an ICE interface.

2.2 SDRAM Controller

The SDRAM memory controller supports one 8-, 16- or 32-bit wide bank. The SDRAM controller performs auto-refreshing during normal operation, and supports SDRAM self-refreshing during Sleep. The SDRAMC shares the address / data bus with Static Memory Controller. The SDRAMC features include:

- Wide address range up to 256 M bytes
- Support various SDRAM types
- Support a programmable auto-refresh and self-refresh

2.3 Static Memory Controller

The Static Memory Controller supports Flash memory, SRAM and ROM. Each chip select can be individually programmed to an 8-, 16- or 32-bit wide data bus. The features include:

- Support ROM, FLASH, burst-ROM, asynchronous SRAM
- Wide address range up to 64M bytes

2.4 10/100 Ethernet

The Ethernet MAC 10/100 is a high quality 10/100 Ethernet controller with DMA functions. It includes AHB interface, DMA channel, MAC, and PHY. The Ethernet features include:

- 10Mbps/100Mbps operation
- Half and Full duplex modes
- Support flow control for full duplex and backpressure for half duplex
- Fully compliant with IEEE 802.3u, FDDI-TP-PMD and IEEE 802.3
- Support Auto Negotiation detection and Auto Crossover detection
- Network status LEDs

2.5 Direct Memory Access

The DMA provides up to 4 channels for memory-to-memory, memory-to-peripheral, peripheral-to-peripheral, and peripheral-to-memory transfer with the shared buffer. The features include:

- Up to 4 DMA channels
- Provide memory-to-memory, memory-to-peripheral, peripheral-to-peripheral, and peripheral-to-memory transfer
- Round Robin arbitration scheme with four priority levels
- Support chain transfer
- Support 8/16/32-bit data width transfer

2.6 I²C

The I^2C is a two-wire bidirectional serial bus. The I^2C bus interface controller allows the host processor to serve as a master or slave residing on the I^2C bus. Data are transmitted to and received from the I^2C bus via a buffered interface. The features include:

- Support Master and Slave modes
- Programable standard and fast modes
- Support 7-bit, 10-bit and general call addressing modes
- Built in Glitch de-bounce circuits
- Programmable address in the slave mode
- Slave mode general call address detection

2.7 UART

The features include:

- Programmable baud rates up to 115.2 Kbps
- Configurable Start, Stop, and Parity bits.
- Support DMA for large data transfer
- Fully programmable serial interface:
 - 5-, 6-, 7-, or 8-bit characters
 - Even, odd, and no parity detection
 - 1-, 1.5-, or 2-stop bit generation

2.8 I2S/SPI Controller

The I²S/SPI controller are friendly to connected external audio codec device. The I²S interface transfers digitized audio between the system memory and an external I²S Codec which is controlled by SPI interface.

- Support I²S or SPI functions
- Support Master mode or Slave mode
- Programmable frame/sync polarity, serial bit clock polarity and frequency.
- Programmable MSB or LSB first
- Programmable zero bits padding and right or left justification in I²S Mode
- Support DMA for large data transfer

2.9 PCM Controller

The PCM controller provides PCM BUS for PCM data transferring between SLIC/DAA. The PCM controller features include:

- Support Master and Slave mode.
- Programmable serial bit clock frequency.
- Programmable frame sync length.
- Support DMA for large data transfer

2.10 LCD Dot Matrix Controller

The Dot Matrix controller provides an asynchronous MPU command interface. The features include:

- Uniform LCD Dot Matrix Interface
- Programmable nibble mode or byte mode data/address bus

2.11 Timer

It provides 3 independent sets of timers. The features include:

- Three independent 32-bit timer
- Internal clock source
- Support Interrupts when overflow and time-up
- Support decrementing mode

2.12 Watch Dog Timer (WDT)

The WDT generates one or a combination of the following signals: reset, interrupt or external interrupt. The features include:

- Support System Reset, Interrupt and/or External Interrupt when timeout
- 32-bit down counter
- Variable time-out period of reset
- Access protection
- Watchdog reset is asserted, which resets the system except the PMU and RTC.

2.13 Interrupt Controller

The Interrupt Controller provides both FIQ and IRQ modes to the CPU. The features include:

- Support fast interrupt (FIQ) and standard interrupt (IRQ)
- Interrupts can be routed to either IRQ or FIQ.
- Programmable edge or level trigger interrupt source with positive and negative directions
- Support de-bounce circuit for interrupt input sources
- Programmable enable or disable any interrupt source

2.14 General Purpose Input / Output

32 GPIOs are used to input / output data from system and device. The features include:

- Support configurable as interrupt function
- Programmable edge or level trigger in interrupt mode
- Each port can be pulled high or pulled low
- Programmable Input/Output function

2.15 Real Time Clock

The RTC provides a basic alarm function or long time-based counter. The RTC is set to be 1Hz output and employed as a system timekeeper. The features include:

- Support sleep mode
- Support second, minute, hour and day counters Alarm
- Once-per-second, once-per-minute, once-per-hour, and once-per-day interrupts

2.16 Power Management

Most of the device's clock can be enabled or disabled by using the system configuration registers. The clock to any unit that is not being used is turned off to minimize the power consumption. The PMU provides a method to change the PLL frequency and various power modes.

2.17 Audio CODEC

The Audio CODEC has the following features.

- 90-dB SNR sigma-delta DAC
- 92-dB SNR sigma-delta ADC
- 8K ~ 96KHz sampling rate
- Analog volume control with mute
- Stereo line inputs/outputs
- ADC multiplexed input for stereo-line inputs and microphone

3. DC Characteristics

3.1 Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit
V _{CC}	Core power supply	-0.3 to 3.6	V
V _{IN18}	Input voltage of 1.8v I/O	-0.3 to 2.1	V
V _{IN3}	Input voltage of 3.3V I/O	-0.3 to 3.63	V
V _{IN3}	Input voltage of 3.3V I/O with 5V tolerance	-0.3 to 5.5	V
T _{STG}	Storage temperature	-40 to 150	°C

3.2 Recommended Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
VCC18	Core power supply	1.65	1.8	1.95	V
VCC33	Power supply of 3.3V I/O	3.0	3.3	3.6	V
VCC18A	Power supply of 1.8V I/O	1.65	1.8	1.95	V
VCC18I	Power supply of 1.8V I/O	1.65	1.8	1.95	V
V _{IN3}	Input voltage of 3.3V I/O with 5V tolerance	0	3.3	5.25	V
Tj	Commercial junction operating temperature	0	25	115	°C
T _a	Commercial ambient operating temperature	0		70	°C
	HBM model ESD		1	2000	V
ESD	MM model ESD			200	V
	CDM model ESD				V

3.3 I/O Pad Capacitance

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
C _{IN}	Input capacitance			3.2		pF
C _{OUT}	Output capacitance			3.2		pF
C _{BID}	Bi-directional capacitance			3.2		pF

3.4 DC Characteristics for 3.3V Operation

Recommended operating conditions ($V_{CC} = 3.0V$ to 3.6V)

Symbol	Descriptions	Condition	Min.	Тур.	Max.	Unit
V _{IL}	Input low voltage	LVTTL			0.8	V
V _{Ih}	Input high voltage	LVTTL	2.0			V
Vt	Switching threshold	LVTTL		1.5		V

Product Specification (V1.0) 3.8.2006

V _{t-}	Schmitt trigger negative going threshold voltage	LVTTL	0.8	1.1		V
V _{t+}	Schmitt trigger positive going threshold voltage	LVTTL		1.6	2.0	v
V _{OL}	Output low voltage	$I_{OL} = 2 \sim 16 \text{ mA}$			0.4	V
V _{OH}	Output high voltage	$I_{OL} = -2 \sim -16 \text{ mA}$	2.4			V
R _{PU}	Input pull-up resistance	$V_{in} = 0$	40	75	190	KΩ
R _{PD}	Input pull-down resistance	$V_{in} = 3.3V$	40	75	190	KΩ
	Input leakage current	$V_{in} = 3.3V \text{ or } 0$	-10	±1	10	uA
I _{in}	Input leakage current with pull-up resistance	$V_{in} = 0$	-15	-45	-85	uA
	Input leakage current with pull-down resistance	$V_{in} = 3.3V$	15	45	85	uA
I _{OZ}	Tri-state output leakage current		-10	±1	10	uA

3.5 DC Characteristics for 1.8V Operation

Symbol	Descriptions	Condition	Min.	Тур.	Max.	Unit
V _{IL}	Input low voltage	CMOS		/	0.69	V
V _{Ih}	Input high voltage	CMOS	1.05			V
V _t	Switching threshold	CMOS	\geq	0.85		V
V _{t-}	Schmitt trigger negative going threshold voltage	CMOS	0.59	0.71		V
V_{t^+}	Schmitt trigger positive going threshold voltage	LVTTL		0.98	1.14	V
V _{OL}	Output low voltage	$I_{OL} = 2 \sim 16 \text{ mA}$			0.4	V
V _{OH}	Output high voltage	$I_{\rm OL} = -2 \sim -16 \ {\rm mA}$	1.22			V
R _{PU}	Input pull-up resistance	PU = high PD = low	40	75	190	KΩ
R _{PD}	Input pull-down resistance	PU = high PD = low	40	75	190	KΩ
I _{in}	Input leakage current	$V_{in} = 1.8V \text{ or } 0$	-10	±1	10	uA
I _{OZ}	Tri-state output leakage current		-10	±1	10	uA

Recommended operating conditions (V_{CC} = 1.65V to 1.95V)