Description

The M66288FP is a high-speed field memory with three FIFO (First In First Out) memories of 262144 -word $\times 8$-bit configuration (2M-bit), which uses high-performance silicon gate CMOS process technology. One of three FIFO memories consists of two FIFO memories of 262144 -word x 4 -bit (1M-bit). Eight types of operation can be performed by mode settings.

Features

- Memory configuration
- High - speed cycle
- High - speed access
Total memory capacity is 6M-bit (static memory). Eight types of memory configurations can be selected.
- High - speed 12.5 ns (Min.) fmax 80 MHz
9.0 ns (Max.)
- Supply voltage 2.0 ns (Min.)
- Variable length delay bit
- Eight modes can be selected
- Write and Read function can be operated completely independently and asynchronously
- Output type 3 state output
- Package 100pin 14x14mm body LQFP (PLQP0100KB-A, 100P6Q-A)

Application

W-CDMA base station, Digital PPC, Digital television, VTR and so on.

Pin Configuration (Top view)

Mode Descriptions Drawing
1K-word = 1024-word

256K-word				
8-bit bus I/F			12-bit bus I/F	
MODE 1	MODE 2	MODE 3	MODE 4	MODE 5
The three pieces of 256 K -word x 8 -bit FIFO can be operated completely independently.	The three pieces of 256 K -word x 8 -bit FIFO are cascade-connected. (Note 1)	The two pieces of 256 K -word x 8 -bit FIFO are cascade-connected and, a piece of 256 K -word x 8 -bit FIFO can be operated completely independently. (Note 1)	The two pieces of 256K-word x 12-bit FIFO can be operated completely independently. (Note 2)	The two pieces of 256 K -word x 12-bit FIFO are cascade-connected (Note 1, Note 2)
3 -system individual input	1-system input	(1) 1 -system input (2) 1 -system input	2-system individual input.	1-system input
3 -system individual output	The simultaneous output of the $1,2,3$ line delay data.	(1) The simultaneous output of the 1,2 line delay data. (2) 1-system output	2 -system individual output.	The simultaneous output of the 1, 2 line delay data.

768K-word	512K-word \& 256K-word
8-bit bus I/F	
MODE 6	MODE 7
A piece of 768 K -word x 8 -bit FIFO can be operated completely independently.	A piece of 512 K -word $\times 8$-bit FIFO and a piece of 256 K -word $\times 8$-bit FIFO can be operated completely independently.
1-system input	2-system individual input
1-system output	2-system individual output

Note1: Write and read operation of FIFO after the 2 nd line is controlled by the read system pin of the 1 st line FIFO.
Maximum number of words on this mode is 256 K -word. Line delay is achieved without outer connection.
Note2: Please refer to pin assignment tables in "Operation Description" of Mode 4, Mode 5, and Mode 8 for assignment of external pins, $D x<11: 0>$ and $Q x<11: 0>$ when used in 12-bit bus interface.

Block Diagram

Pin Function Descriptions

Pin name	Name	Input I Output	Number of pins	Function
WCK x	Write clock input	Input	3	They are write clock inputs.
WE x	Write enable input	Input	3	They are write enable control inputs. When they are " L ", a write enable status is provided.
WRES x	Write reset input	Input	3	They are write reset inputs to initialize a write address counter of internal FIFO. When they are "L", a write reset status is provided.
RCK x	Read clock input	Input	3	They are read clock inputs.
REx	Read enable input	Input	3	They are read enable control inputs. When they are "L", a read enable status is provided.
RRES x	Read reset input	Input	3	They are read reset inputs to initialize a read address counter of internal FIFO. When they are "L", a read reset status is provided.
Dx < 7:0>	Data input	Input	24	They are 8-bit input data bus.
Qx <7:0>	Data output	Output	24	They are 8-bit output data bus.
MODE<3:1>	Mode setting input	Input	3	They are operation mode setting inputs. For setting, refer to Mode setting table of Page5.
TEST<3:1>	Test setting input	Input	3	They are test setting inputs. Setting of TEST1 depends on the rising time of the 1.8 V system power supply. For further details, refer to page 12. TEST2 and TEST3 should be fixed at "L".
VcclO	Power supply pin for I/O	-	9	This is a 3.3 V power supply pin for I/O.
Vcc18	Power supply pin for internal circuit	-	5	This is a 1.8 V power supply pin for internal circuit.
GND	Ground pin	-	14	This is a ground pin.

Note: X of the pin name shows A, B and C.

> A = A-system, B = B-system, C = C-system.

Mode Setting

MODE<3:1> should be set to " L " or " H " as shown below to select the 8 operation modes

MODE 3	MODE 2	MODE 1	Operation mode
L	L	L	MODE 1
L	L	H	MODE 2
L	H	L	MODE 3
L	H	H	MODE 4
H	L	L	MODE 5
H	L	H	MODE 6
H	H	L	MODE 7
H	H	H	MODE 8

Mode1 Operation Description

<Mode 1>
In mode 1, three pieces of 256K-word x 8-bit FIFO can be controlled completely independently. Taking FIFO (A) as an example, the operation of FIFO memory is described below. The operation of FIFO (B) and FIFO (C) are the same as that of FIFO (A).

When write enable input WEA is "L", the contents of data input $D A<7: 0>$ are written into FIFO (A) in synchronization with the rising of write clock input WCKA. At this time, the write address counter of FIFO (A) is incremented.
When WEA is " H ", this IC disable to write data into FIFO (A) and the write address counter of FIFO (A) is not incremented.

When write reset input WRESA is "L", the write address counter of FIFO (A) is initialized.

When read enable input REA is " L ", the contents of FIFO (A) are outputted to data output QA<7:0> in synchronization with the rising of read clock input RCKA. At this time, the read address counter of FIFO (A) is incremented.
When REA is " H ", this IC disable to read data from FIFO (A) and the read address counter of FIFO (A) is not incremented. Also QA<7:0> become high impedance state.
When read reset input RRESA is "L", the read address counter of FIFO (A) is initialized.

Mode2 Operation Description

<Mode 2>
In mode 2, three pieces of 256K-word x 8-bit FIFO are cascade-connected and it is possible to generate delay data for 3 -lines without external wiring.

When write enable input WEA is "L", the contents of data input DA<7:0> are written into FIFO (A) in synchronization with the rising of write clock input WCKA. At this time, the write address counter of FIFO (A) is incremented. When WEA is " H ", this IC disable to write data into FIFO (A) and the write address counter of FIFO (A) is not incremented.
When write reset input WRESA is "L", the write address counter of FIFO (A) is initialized.

When read enable input REA is "L", the contents of FIFO (A), FIFO (B) and FIFO (C) are outputted to each $Q A<7: 0>, Q B<7: 0>, Q C<7: 0>$ in synchronization with the rising of read clock input RCKA. At this time, the read address counters of all FIFOs are incremented.
Also the data of the upper FIFO is written into the lower FIFO in synchronization with the rising of RCKA. At this time, the write address counters of FIFO (B) and FIFO (C) are incremented simultaneously. When REA is " H ", this IC disable to read data from FIFO (A), FIFO (B) and FIFO (C) and the read address counter of each FIFO is not incremented. All data outputs become high impedance state. And this IC also disable to write data into FIFO (B) and FIFO (C) and the write address counter of FIFO (B) and FIFO (C) is not incremented.
When read reset input RRESA is "L", the read address counter of FIFO (A) and the write/read address counters of FIFO (B) and FIFO (C) are initialized.

In mode 2, only all pins for the A-system, $\mathrm{QB}<7: 0>$ and $\mathrm{QC}<7: 0>$ are used. Therefore, the write/read control pins for the B/C-system, $D B<7: 0>$ and DC<7:0> should be fixed at "L" or "H".

Note: Write and read operation of FIFO (B) and FIFO (C) after the 2 nd line is controlled by the read system pin of the 1st line FIFO (A).
Maximum number of words on this mode is 256 K -word.

Mode3 Operation Description

<Mode 3>
In mode 3, two pieces of 256K-word x 8-bit FIFO are cascade-connected and the other FIFO is configured completely independently.
This makes it possible to generate delay data for 2 -lines without external wiring and to control the other independent one FIFO memory.

When write enable input WEA is " L ", the contents of data input $\mathrm{DA}<7: 0>$ are written into FIFO (A) in synchronization with the rising of write clock input WCKA. At this time, the write address counter of FIFO (A) is incremented. When WEA is "H", this IC disable to write data into FIFO (A) and the write address counter of FIFO (A) is not incremented.

When write reset input WRESA is "L", the write address counter of FIFO (A) is initialized.

When read enable input REA is " L ", the contents of FIFO (A) and FIFO (B) are outputted to each QA<7:0> and QB<7:0> in synchronization with the rising of read clock input RCKA. At this time, the read address counters of FIFO (A) and FIFO (B) are incremented.

Also the data of FIFO (A) is written into FIFO (B) in synchronization with the rising of RCKA. At this time, the write address counter of FIFO (B) is incremented simultaneously.

When REA is " H ", this IC disable to read data from FIFO (A) and FIFO (B) and the read address counter of each FIFO is not incremented. QA<7:0> and $Q B<7: 0>$ become high impedance state. And this IC also disable to write data into FIFO (B) and the write address counter of FIFO (B) is not incremented.

When read reset input RRESA is "L", the read address counter of FIFO (A) and the write/read address counter of FIFO (B) are initialized.

The operation of FIFO (C) is the same as that of mode 1.

In mode 3, only all pins for the A / C-system and $\mathrm{QB}<7: 0>$ are used. Therefore the write/read control pins for the B-system and DB<7:0> should be fixed at "L" or "H".

Note: Write and read operation of FIFO (B) at the 2nd line is controlled by the read system pin of the 1st line

 FIFO (A).Maximum number of words on this mode is 256 K -word.

Mode4 Operation Description

<Mode 4>
In mode 4, two pieces of 256K-word x 12-bit FIFO can be controlled completely independently. Taking FIFO (A) as an example, the operation of FIFO memory is described below. The operation of FIFO (B) is the same as that of FIFO (A).

When write enable input WEA is "L", the contents of data input DA<7:0> and $D B<3: 0>$ are written into FIFO (A) in synchronization with the rising of write clock input WCKA. At this time, the write address counter of FIFO (A) is incremented. When WEA is "H", this IC disable to write data into FIFO(A) and the write address counter of FIFO (A) is not incremented.
When write reset input WRESA is "L", the write address counter of FIFO (A) is initialized

When read enable input REA is " L ", the contents of FIFO (A) are outputted to data output $Q A<7: 0>$ and $Q B<3: 0>$ in synchronization with the rising of read clock input RCKA. At this time, the read address counter of FIFO (A) is incremented. When REA is " H ", this IC disable to read data from FIFO (A) and the read address counter of FIFO (A) is not incremented. Also $Q A<7: 0>$ and $Q B<3: 0>$ become high impedance state.

When read reset input RRESA is "L", the read address counter of FIFO (A) is initialized.

Also, set the 12-bit I/O buses of FIFO (A) and FIFO (B) as shown in the table below. In mode 4, only all pins for the A / B-system, $\mathrm{DC}<7: 0>$ and $\mathrm{QC}<7: 0>$ are used. Therefore the write/read control pins for the C -system should be fixed at "L" or "H".

External pin name	Data input bus of FIFO (A)	External pin name	Data output bus of FIFO (A)
DA<7>	$11^{\text {th }}$-bit	QA<7>	$11^{\text {th }}$-bit
DA<6>	$10^{\text {th }}$-bit	QA<6>	$10^{\text {th }}$-bit
DA<5>	$9^{\text {th }}$-bit	QA<5>	$9^{\text {th }}$-bit
DA<4>	$8^{\text {th }}$-bit	QA<4>	$8^{\text {th }}$-bit
DA<3>	$7^{\text {th }}$-bit	QA<3>	$7^{\text {th }}$-bit
DA<2>	$6^{\text {th }}$-bit	QA<2>	$6^{\text {th }}$-bit
DA<1>	$5^{\text {th }}$-bit	QA<1>	$5^{\text {th }}$-bit
DA<0>	$4^{\text {th }}$-bit	QA<0>	$4^{\text {th }}$-bit
DB<3>	$3{ }^{\text {rd }}$-bit	QB<3>	$3^{\text {rd }}$-bit
$\mathrm{DB}<2>$	$2^{\text {nd }}$-bit	QB<2>	$2^{\text {nd }}$-bit
DB<1>	$1^{\text {st }}$-bit	QB<1>	$1^{\text {st }}$-bit
DB<0>	$0^{\text {th }}$-bit	QB<0>	$0^{\text {th }}$-bit

External pin name	Data input bus of FIFO (B)	External pin Name	Data output bus of FIFO (B)
$\mathrm{DC}<7>$	$11^{\text {th }}-$ bit	$\mathrm{QC}<7>$	$11^{\text {th }}$-bit
$\mathrm{DC}<6>$	$10^{\text {th }}$-bit	$\mathrm{QC}<6>$	$10^{\text {th }}$-bit
$\mathrm{DC}<5>$	$9^{\text {th }}-$ bit	$\mathrm{QC}<5>$	$9^{\text {th }}$-bit
$\mathrm{DC}<4>$	$8^{\text {th }}-$ bit	$\mathrm{QC}<4>$	$8^{\text {th }}$-bit
$\mathrm{DC}<3>$	$7^{\text {th }}$-bit	$\mathrm{QC}<3>$	$7^{\text {th }}$-bit
$\mathrm{DC}<2>$	$6^{\text {th }}-$ bit	$\mathrm{QC}<2>$	$6^{\text {th }}$-bit
$\mathrm{DC}<1>$	$5^{\text {th }}$-bit	$\mathrm{QC}<1>$	$5^{\text {th }}$-bit
$\mathrm{DC}<0>$	$4^{\text {th }}$-bit	$\mathrm{QC}<0>$	$4^{\text {th }}$-bit
$\mathrm{DB}<7>$	$3^{\text {rd }}-$ bit	$\mathrm{QB}<7>$	$3^{\text {rd }}$-bit
$\mathrm{DB}<6>$	$2^{\text {nd }}$-bit	$\mathrm{QB}<6>$	$2^{\text {nd }}$-bit
$\mathrm{DB}<5>$	$1^{\text {st }}$-bit	$\mathrm{QB}<5>$	$1^{\text {st }}$-bit
$\mathrm{DB}<4>$	$0^{\text {th }}-$ bit	$\mathrm{QB}<4>$	$0^{\text {th }}$-bit

Mode5 Operation Description

<Mode 5>
In mode 5, two pieces of 256 K -word x 12 -bit FIFO are cascade-connected and it is possible to generate delay data for 2 -lines without external wiring

When write enable input WEA is "L", the contents of data input DA<7:0> and $\mathrm{DB}<3: 0>$ are written into FIFO (A) in synchronization with the rising of write clock input WCKA. At this time, the write address counter of FIFO (A) is incremented.
When WEA is " H ", this IC disable to write data into FIFO (A) and the write address counter of FIFO (A) is not incremented.
When write reset input WRESA is "L", the write address counter of FIFO (A) is initialized.
When read enable input REA is " L ", the contents of FIFO (A) and FIFO (B) are outputted to each $Q A<7: 0>, Q B<3: 0>$ and $Q C<7: 0>, Q B<7: 4>$ in synchronization with the rising of read clock input RCKA. At this time, the read address counters of FIFO (A) and FIFO (B) are incremented.
Also the data of FIFO (A) is written into FIFO (B) in synchronization with the rising of RCKA. At this time, the write address counter of FIFO (B) is incremented simultaneously.
When REA is " H ", this IC disable to read data from FIFO (A) and FIFO (B) and the read address counter of each FIFO is not incremented.
Also all data outputs become high impedance state. And this IC also disable to write data into FIFO (B) and the write address counter of FIFO (B) is not incremented.
When read reset input RRESA is "L", the read address counter of FIFO (A) and the write /read address counter of FIFO (B) are initialized.

Also, set the 12-bit I/O buses of FIFO (A) and FIFO (B) as shown in the table below. In mode 5, only all pins for the A-system, $\mathrm{DB}<3: 0>, \mathrm{QB}<7: 0>$ and $Q C<7: 0>$ are used. Therefore the write/read control pins for the B/C-system, $\mathrm{DB}<7: 4>$ and $\mathrm{DC}<7: 0>$ should be fixed at "L" or "H".

External pin Name	Data input bus of FIFO (A)	External pin name	Data output bus of FIFO (A)	External pin Name	Data output bus of FIFO (B)
DA<7>	$11^{\text {th }}$-bit	QA<7>	$11^{\text {th }}$-bit	QC<7>	$11^{\text {th }}$-bit
DA<6>	$10^{\text {th }}$-bit	QA<6>	$10^{\text {th }}$-bit	QC<6>	$10^{\text {th }}$-bit
DA<5>	$9^{\text {th }}$-bit	QA<5>	$9^{\text {th }}$-bit	QC<5>	$9^{\text {th }}$-bit
DA<4>	$8^{\text {th }}$-bit	QA<4>	$8^{\text {th }}$-bit	QC<4>	$8^{\text {th }}$-bit
DA<3>	$7^{\text {th }}$-bit	QA<3>	$7^{\text {th }}$-bit	QC<3>	$7^{\text {th }}$-bit
DA<2>	$6^{\text {th }}$-bit	QA<2>	$6{ }^{\text {th }}$-bit	QC<2>	$6^{\text {th }}$-bit
DA<1>	$5^{\text {th }}$-bit	QA<1>	$5^{\text {th }}$-bit	QC<1>	$5^{\text {th }}$-bit
DA<0>	$4^{\text {th }}$-bit	QA<0>	$4^{\text {th }}$-bit	QC<0>	$4^{\text {th }}$-bit
DB<3>	$3{ }^{\text {rd }}$-bit	QB<3>	$3{ }^{\text {rd }}$-bit	QB<7>	$3{ }^{\text {rd }}$-bit
DB<2>	$2^{\text {nd }}$-bit	QB<2>	$2^{\text {nd }}$-bit	QB<6>	$2^{\text {nd }}$-bit
DB<1>	$1^{\text {st }}$-bit	QB<1>	$1^{\text {st }}$-bit	QB<5>	$1^{\text {st }}$-bit
DB<0>	$0^{\text {th }}$-bit	QB<0>	$0^{\text {th }}$-bit	QB<4>	$0^{\text {th }}$-bit

Note: Write and read operation of FIFO(B) at the 2 nd line is controlled by the read system pin of the 1 st line FIFO(A).
Maximum number of words on this mode is 256 K -word.

Mode6 Operation Description

Mode7 Operation Description

<Mode 7>

In mode 7 , one of 512 K -word $\times 8$-bit FIFO and one of 256 K -word $\times 8$-bit FIFO memory can be controlled completely independently.
The operation of FIFO (A) and FIFO (B) are the same as that of mode 1. In mode 7, only all pins for the A/C-system are used. Therefore, the all input pins for the B-system should be fixed at "L" or "H".

Also $Q B<7: 0>$ become high impedance state.

Mode8 Operation Description

<Mode 8>

In mode 8, one FIFO memory of the 512 K -word x 12-bit composition can be controlled.

The operation of FIFO (A) is the same as that of mode 4.
Also, please set the 12-bit I/O buses of FIFO (A) as mentioned in the table of mode 4 FIFO (A).

In mode 8, only all pins for the A -system, $\mathrm{DB}<3: 0>$ and $\mathrm{QB}<3: 0>$ are used. Therefore, the write/read control pins for the B/C-system, $\mathrm{DB}<7: 4>$ and $\mathrm{DC}<7: 0>$ should be fixed at "L" or "H".

Also $Q B<7: 4>$ and $Q C<7: 0>$ become high impedance state.

Electrical Characteristics

Absolute Maximum Ratings ($\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Conditions	Ratings	Unit
Vcc18	Supply voltage (1.8 V power supply)	A value based on GND	-0.3~+2.5	V
VcclO	Supply voltage (3.3 V power supply)		-0.3~+3.8	V
V	Input voltage		-0.3~VcclO+0.3	V
Vo	Output voltage		$-0.3 \sim \mathrm{VcclO}+0.3$	V
Pd_{d}	Maximum power dissipation	$\mathrm{Ta}=70^{\circ} \mathrm{C}$	800	mW
Tstg	Storage temperature		-55~150	${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	Test conditions	Limits			Unit
			Min.	Typ.	Max.	
Vcc18	Supply voltage for internal circuit (1.8 V power supply)	A value based on GND	1.62	1.8	1.98	V
VcclO	Supply voltage for I/O (3.3 V power supply)		3.0	3.3	3.6	V
Topr	Operating ambient temperature		0		70	${ }^{\circ} \mathrm{C}$

DC Characteristics ($\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}, \mathrm{Vcc} 18=1.8 \pm 0.18 \mathrm{~V}, \mathrm{VccIO}=3.3 \pm 0.3 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min.	Typ.	Max.	
VIH	" H " input voltage	A value based on GND	$\begin{array}{ll} \hline 0.8 \quad x \\ \mathrm{VcclO} \end{array}$			V
VIL	"L" input voltage				$\begin{aligned} & 0.2 x \\ & \mathrm{VcclO} \end{aligned}$	V
Vон	" H " output voltage	$\mathrm{IOH}=-4 \mathrm{~mA}$	$\begin{aligned} & \hline \mathrm{VccIO} \\ & \hline \end{aligned}$			V
Vol	"L" output voltage	$\mathrm{loL}=4 \mathrm{~mA}$			0.4	V
ІІн	" H " input current	$\mathrm{V}_{1}=\mathrm{VcclO}$			10	$\mu \mathrm{A}$
ILL	"L" input current	$\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$			-10	$\mu \mathrm{A}$
Iozh	Off state "H" output current	$\mathrm{Vo}=\mathrm{VcclO}$			10	$\mu \mathrm{A}$
lozı	Off state "L" output current	Vo = GND			-10	$\mu \mathrm{A}$
Icc18	Average operating supply current (1.8 V)	$\begin{aligned} & \mathrm{Vcc} 18=1.8 \mathrm{~V} \pm 0.18 \mathrm{~V} \\ & \mathrm{VccIO}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \\ & \mathrm{~V} \text { = repeat "H" and "L" } \\ & \mathrm{Vo}=\text { Output open } \\ & \text { t } W C K=\text { tRCK }=12.5 \mathrm{~ns} \\ & \hline \end{aligned}$			180	mA
IccIO	Average operating supply current (3.3 V)				120	mA
Cl_{1}	Input capacitance	$\mathrm{f}=1 \mathrm{MHz}$			10	pF
Co	Off state output capacitance	$\mathrm{f}=1 \mathrm{MHz}$			15	pF

Power - on

After power-on, this IC initializes some circuits of internal FIFO (1.8 V), using the built-in power-on reset circuit.
This power-on reset is performed by using the $\mathrm{Vcc} 18=1.8 \mathrm{~V}$ system power supply.
Either of the following conditions (1) or (2) should be met according to the power-on time of the Vcc18.
(1) When the power-on time of the Vcc 18 is 1 msec or less:

Some circuits of internal FIFO are initialized by the built-in power-on reset circuit. No restriction is imposed on the power-on sequence between Vcc 18 and $\mathrm{VccIO}=3.3 \mathrm{~V}$ system power supply. When powering on again after power-on, provide an interval of 100 ms or more for the Vcc18. At this time, the TEST1 (pin 99) pin should be fixed at "L".

(2) When the power-on time of the Vcc 18 is more than $1 \mathrm{msec}:$

Some circuits of internal FIFO should be initialized by the TEST1 (pin 99) pin.
Input an initialize reset pulse of 200 ns or more after the power supplies (VcclO, Vcc18) reach to the Vcc level.
There is no problem even if reaching to the Vcc level on which power supply.

Note: Some circuits of internal FIFO can be initialized by the TEST1 pin even if the power-on time of the Vcc18 is 1 msec or less.

Note: Important matter;
Provide write reset cycles and read reset cycles of 100 cycles or more, respectively after the Vcc reaches to the specified voltage after power-on.
When inputting a reset pulse using the TEST1 (pin 99) pin, provide write reset cycles and read reset cycles of 100 cycles or more, respectively after inputting a reset pulse at power-on.
There is no problem in this reset operation if a total of $\mathbf{1 0 0}$ cycles or more is achieved, even if discontinuous reset input is made.

Timing Requirements

$\left(\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}, \mathrm{Vcc18}=1.8 \pm 0.18 \mathrm{~V}, \mathrm{VccIO}=3.3 \pm 0.3 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}\right.$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min.	Typ.	Max.	
t wck	Write clock (WCK) cycle	12.5			ns
t шСКн	Write clock (WCK) "H" pulse width	5			ns
t wCKL	Write clock (WCK) "L" pulse width	5			ns
t RCK	Read clock (RCK) cycle	12.5			ns
t RCKH	Read clock (RCK) "H" pulse width	5			ns
t RCKL	Read clock (RCK) "L" pulse width	5			ns
t DS	Input data setup time to WCK	3.5			ns
t DH	Input data hold time to WCK	1			ns
t Ress	Reset setup time to WCK or RCK	3.5			ns
t RESH	Reset hold time to WCK or RCK	1			ns
t NRESS	Reset non-select setup time to WCK or RCK	3.5			ns
t NRESH	Reset non-select hold time to WCK or RCK	1			ns
t WES	Write enable setup time to WCK	3.5			ns
t WEH	Write enable hold time to WCK	1			ns
t NWES	Write enable non-select setup time to WCK	3.5			ns
t nWEH	Write enable non-select hold time to WCK	1			ns
t Res	Read enable setup time to RCK	3.5			ns
$\mathrm{t}_{\text {REH }}$	Read enable hold time to RCK	1			ns
t NRES	Read enable non-select setup time to RCK	3.5			ns
t NREH	Read enable non-select hold time to RCK	1			ns
$\mathrm{tr}_{\mathrm{r}, \mathrm{t}}{ }_{\text {f }}$	Input pulse rise / fall time			3	ns

Switching Characteristics

$\left(\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}, \mathrm{Vcc18}=1.8 \pm 0.18 \mathrm{~V}, \mathrm{VccIO}=3.3 \pm 0.3 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}\right.$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min.	Typ.	Max.	
t AC	Output access time to RCK			9	ns
t он	Output hold time to RCK	2			ns
t oen	Output enable time to RCK	2		9	ns
t odis	Output disable time to RCK	2		9	ns

Switching Characteristics Measurement Circuit

Input pulse level : 0~VccIO
Input pulse rise/fall time: 1 ns
Decision voltage input : $1 / 2 \mathrm{VccIO}$
Decision voltage output : $1 / 2 \mathrm{VccIO}$ (However, tods (LZ) is 10% of output amplitude and todis (HZ) is 90% of that for decision).
The load capacitance CL includes the floating capacitance of connection and the input capacitance of probe.

todis and toen Measurement Condition

Operating Timing

- Write Cycle

- Write Reset Cycle

- Combination Cycle of Write Reset and Write Enable

Note: There are no restrictions of WE to WRES.

- Read Cycle

- Read Reset Cycle

In case of RE = "L"

- Combination Cycle of Read Reset and Read Enable

Note: There are no restrictions of RE to RRES.

Attentions when Write Cycle and Read Cycle Approach Each Other

The interval m of 16 cycles or more between a write cycle and a read cycle should be secured, when the write cycle goes ahead of the read cycle on the following conditions, that is to say the interval less than 15 cycles is forbidden.

WRES, RRES="H"; WE, RE="L", and
-Both write side and read side are activated continuously

- Either write side or read side is temporarily stopped owing to the stop of WCK or RCK

When this restriction to the interval is broken on these conditions, writing data is guaranteed, but reading data isn't guaranteed not only during breaking it but also during the following 16 cycles after it is applied. In this 16 cycles, read disable and read reset cycles are not counted.

But the following condition is an exception to restrict to forbid the intervals less than 15 cycles.

- Either write side or read side is temporarily stopped owing to reset cycles (WRES or RRES="L") or disable cycles (WE or RE ="H")

Note: Also, when the address counter is incremented up to the last cycle of 1 -line and then returned to 0 cycle, the interval \mathbf{m} of $\mathbf{1 6}$ cycles or more between a write and read cycles should be secured, taking account that they are cyclic and serial lines.

The conditions that the read cycle goes ahead of the write cycle or that write cycle and read cycle are accordant, are exceptions to the restriction to forbid the intervals less than 15 cycles.

Variable Length Delay Bits

The 1-line length (cycle number) of each mode is shown in the table.

Operation MODE	1-line length
MODE 1 - MODE 5	262144-cycle
MODE 6	786432-cycle
MODE 7	524288 -cycle (A-system), 262144-cycle (C-system)
MODE 8	524288 -cycle

The following, the case of the MODE 1 - MODE 5 (1-line length $=262144$-cycle) is explained to an example.

1-line (262144-bit) Delay

In read cycles, an output data is read at the (first) rising edge of RCK (i.e. the start of the cycle). In write cycles, an input data is written at the (second) rising edge of WCK (i.e. the end of the cycle) . So 1-line delay can be made easily according to the control method of the following figure.

WE, RE = "L"

N-bit Delay 1
(Reset at a cycle corresponding to delay length)

$262144 \geq \mathrm{n} \geq 16$
WE, RE = "L"
Note: The interval of 16 cycles or more between a write cycle and a read cycle should be secured to read data written in a certain cycle.

N-bit Delay 2

(Sliding timings of WRES and RRES at a cycle corresponding to delay length)

N-bit Delay 3

(Sliding address by disabling RE at a cycle corresponding to delay length)

Shortest Reading of Written Data in N Cycle when Write and Read Operated Asynchronously

The interval of 16 cycles or more between a write cycle and a read cycle should be secured and WCK and RCK should be inputted for 16 cycles or more based on beginning of write n cycle at any timing to read written data (data fetched at the rising edge of WCK shown *1 in the following figure) with n cycles on write side.
On read side, n cycles should be started after the completion of $n+15$ cycles on write side ($\Delta t \geq 0$ in the following figure). Output data becomes undefined when these restrictions are not filled.

Longest Reading of Written Data in N Cycle: 1-line Delay

Data output Qn of n cycle $<1>^{*}$ can be read immediately before until the start of n cycle $<1>^{*}$ on read side and the start of n cycle <2>* on write side over lap each other.

PACKAGE OUTLINE

All trademarks and registered trademarks are the property of their respective owners.

Notes:

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.
Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.
2. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.
grams, charts, programs, alqorithms, and application circuit examples, is current as of the date this mis please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be Renesas has used reasonable care in compiling the information included in this document b result of errors or omissions in the information included in this document
3. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products
4. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
5. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
(1) artificial life support devices or systems
(2) surgical implantations
(e.g., excision, administration of medication, etc.)
a
Rene porchasers who elect to use Renesas products in any of the foregoing damages arising out of such applications.
6. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.
7. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement sarety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you
8. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products Renesas shal have no liability for damages ansing out of such detachment.
9. This document

Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.
Renesas Technology America, Inc
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501
Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900
Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No. 1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120
Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898
Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd.
10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, \#06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd.

Kukje Center Bldg. 18th FI., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea
Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145
Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

