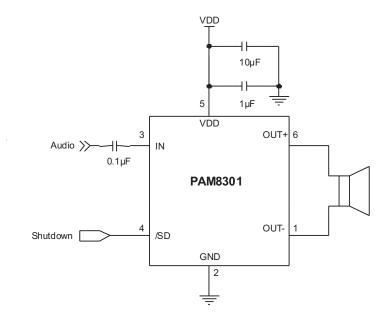


Key Features

- 1.5W Output at 10% THD with a 8Ω Load and 5V Power Supply
- Filterless, Low Quiescent Current and Low EMI
- High Efficiency up to 88%
- Superior Low Noise
- Short Circuit Protection
- Thermal Shutdown
- Few External Components to Save Space and Cost
- Tiny SOT23-6 Package
- Pb-Free Package

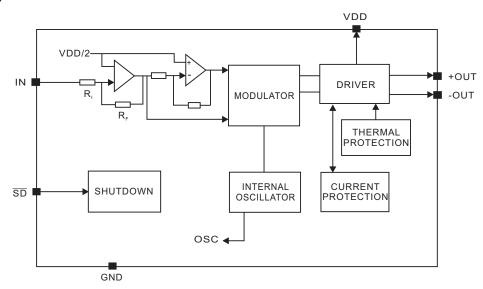
Applications

- PMP/MP4
- GPS
- Portable Speakers
- Walkie Talkie
- Handsfree phones/Speaker Phones
- Cellular Phones

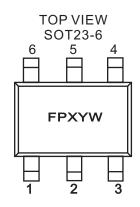

General Description

The PAM8301 is a 1.5W class-D mono audio amplifier. Its low THD+N feature offers high-quality sound reproduction. The new filterless architecture allows the device to drive speaker directly instead of using low-pass output filters, therefore save system cost and PCB area.

With the same number of external components, the efficiency of the PAM8301 is much better than that of class-AB cousins. It can optimize battery life thus is ideal for portable applications.


The PAM8301 is available in SOT23-6 package.

Typical Application



Block Diagram

Pin Configuration & Marking Information

FP: Product Code of PAM8301

X: Internal Code

Y: Year W: Week

Pin Number	Pin Name	Description		
1	OUT-	Negative Output		
2	GND	Ground		
3	IN	Input		
4	SD	Shutdown, active low		
5	VDD	Power Supply		
6	OUT+	Positive Output		

Absolute Maximum Ratings

These are stress ratings only and functional operation is not implied. Exposure to absolute maximum ratings for prolonged time periods may affect device reliability. All voltages are with respect to ground.

Supply Voltage at no Input Signal6.6V	Maximum Junction Temperature150°C
Input Voltage0.3V to V _{DD} +0.3V	Storage Temperature65°C to 150°C
	Soldering Temperature300°C, 5sec

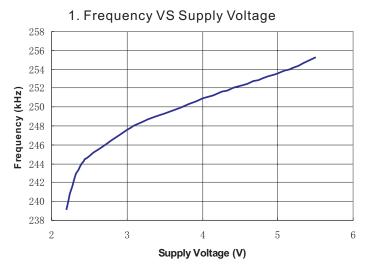
Recommended Operating Conditions

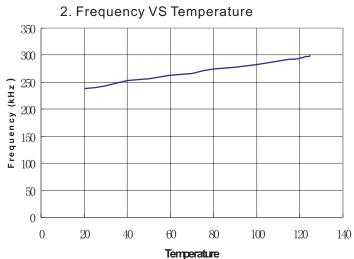
Supply voltage Range2.5V to 5.5V	Operation Temperature Range40°C to 85°C
Max. Supply Voltage (for Max. duration of	Junction Temperature Range40°C to 125°C
30 minutes)6.0V	•

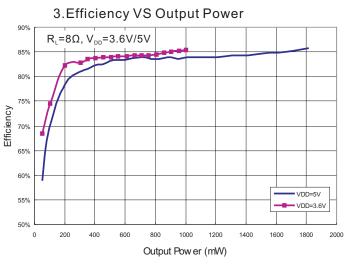
Thermal Information

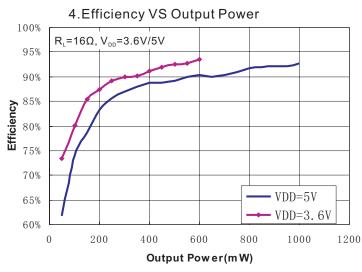
Parameter	Symbol	Package	Maximum	Unit
Thermal Resistance (Junction to Case)	θ_{JC}	SOT23-6	130	°C/W
Thermal Resistance (Junction to Ambient)	θ_{JA}	SOT23-6	250	C/VV

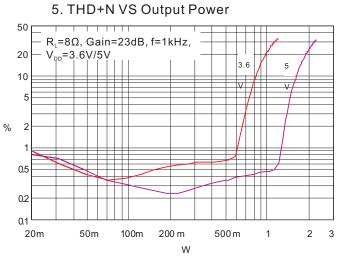
Electrical Characteristic

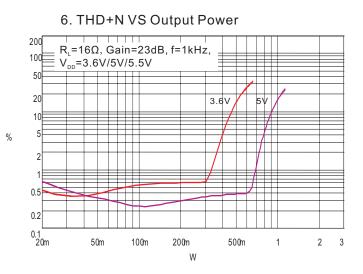

 V_{DD} =5V, Gain = 24dB, R_L =8 Ω , T_A =25°C, unless otherwise noted.

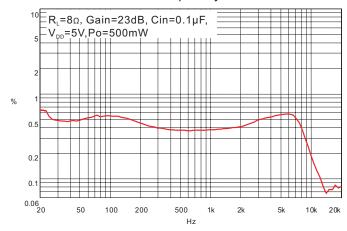

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage Range	V_{DD}			2.5		5.5	V
Quiescent Current	IQ	No Load			4	8	mA
Shutdown Current	I _{SHDN}	V _{SHDN} =0V				1	μA
SHDN Input High	V _{SH}			1.2			V
SHDN Input Low	V_{SL}					0.4	V
Drain-Source On-State	Ь	I _{DS} =100mA	P MOSFET		0.45		Ω
Resistance	R _{DS(ON)}	I _{DS} = TOOTHA	N MOSFET		0.20		
Output Dower	Po	f=1kHz	THD+N=1%		1.2		W
Output Power			THD+N=10%		1.5		
Total Harmonic Distortion Plus	THD+N	$R_L = 8\Omega$, $P_O = 200 \text{mW}$			0.2		%
Noise	I UD+N	$R_L = 8\Omega, P_O = 0.5W$			0.3		70
Power Supply Ripple Rejection	PSRR	No input, f=1kHz, Vpp=200mV		45	50		dB
Gain	Gv				24		dB
Noise	Vn	No A-weighting			180		\/
Noise	VII	A-weighting			120		μV
Oscillator Frequency	f _{OSC}			200	250	300	kHz
Peak Efficiency	η	f=1kHz		85	88		%
Signal to Noise Ratio	SNR	f =20 to 20kHz			78		dB
Over Temperature Protection	OTP				135		°C
Over Temperature Hysteresis	OTH				30		°C

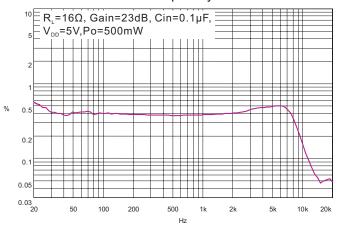



Typical Performance Characteristic

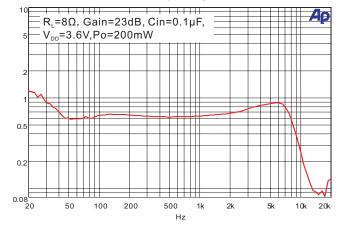

 T_{Δ} =25°C,unless otherwise noted.

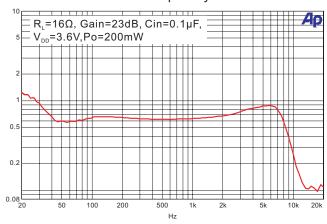


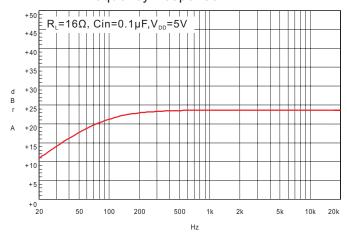


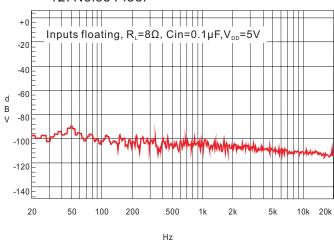

Typical Performance Characteristic

 $T_A=25$ °C, unless otherwise noted.

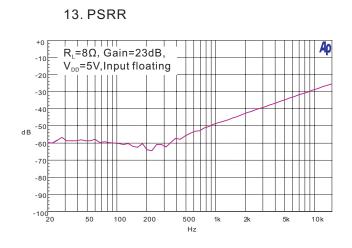

7. THD+N VS Frequency

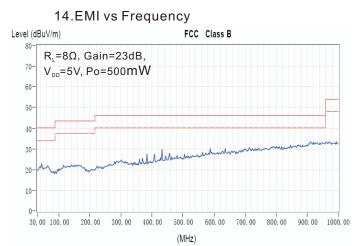

8. THD+N VS Frequency

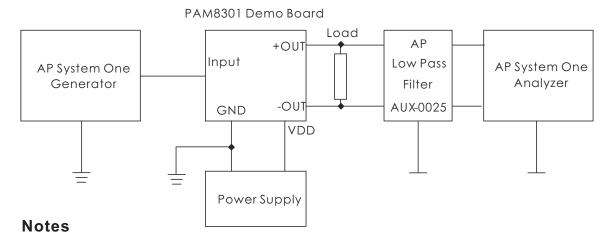

9. THD+N VS Frequency


10. THD+N VS Frequency

11. Frequency Response


12. Noise Floor




Typical Performance Characteristic

T_A=25°C unless otherwise noted.

Test Setup for Performance Testing

- 1. The AP AUX-0025 low pass filter is necessary for every class-D amplifier measurement with AP analyzer.
- 2. Two 22µH inductors are used in series with load resistor to emulate the small speaker for efficiency measurement.

Application Information

Maximum Gain

As shown in block diagram (page 2), the PAM8301 has two internal amplifier stages. The first stage's gain is externally configurable, while the second stage's is internally fixed. The closed-loop gain of the first stage is set by selecting the ratio of R, to R, while the second stage's gain is fixed at 2x. The output of amplifier 1 serves as the input to amplifier 2, thus the two amplifiers produce signals identical in magnitude, but different in phase by 180°. Consequently, the differential gain for the IC is

$$A_{VD} = 20 \log [2 (R_f/R_i)]$$

The PAM8301 sets maximum R_f =80k Ω , minimum $R_i=10k\Omega$, so the maximum closed-gain is 24dB.

Input Capacitors (Ci)

In typical application, an input capacitor, Ci, is required to allow the amplifier to bias input signals to a proper DC level for optimum operation. In this case, Ci and the minimum input impedance Ri (10k internal) form a high pass filter with a corner frequency determined by the following equation:

$$fc = \frac{1}{\left(2\pi RiCi\right)}$$

It is important to choose the value of Ci as it directly affects low frequency performance of the circuit, for example, when an application requires a flat bass response as low as 100Hz. Equation is reconfigured as follows:

$$Ci = \frac{1}{\left(2\pi R_i f_c\right)}$$

As the input resistance is variable, for the Ci value of $0.16\mu F$, one should actually choose the Ci within the range of $0.1\mu F$ to $0.22\mu F$. A further consideration for this capacitor is the leakage path from the input source through the input network (Ri, RF, Ci) to the load. This leakage current creates a DC offset voltage at the input to the amplifier that reduces useful headroom, especially in high gain application. For this reason, a low leakage tantalum or ceramic capacitor is the best choice. When a polarized capacitor is used, the positive side of the capacitor should face the amplifier input in most applications as the DC level is held at VDD/2. which is likely higher than the source DC level. Please note that it is important to confirm the capacitor polarity in the application.

Power Supply Decoupling (Cs)

The PAM8301 is a high-performance CMOS audio amplifier that requires adequate power supply decoupling to ensure the output THD and PSRR as low as possible. Power supply decoupling affects low frequency response. Optimum decoupling is achieved by using two capacitors of different types that target different types of noise on the power supply leads. For higher frequency transients, spikes, or digital hash on the line, a good low equivalent-series-resistance (ESR) ceramic capacitor, typically 1.0µF is good, placing it as close as possible to the device VDD terminal. For filtering lower-frequency noise signals, a capacitor of 10µF or

larger, closely located to near the audio power amplifier is recommended.

Shutdown Operation

In order to reduce shutdown power consumption, the PAM8301 contains shutdown circuitry for turn off the amplifier. This shutdown feature turns the amplifier off when a logic low is applied on the SHDOWN pin. By switching the shutdown pin over to GND, the PAM8301 supply current draw will be minimized in idle mode.

For the best power on/off pop performance, the amplifier should be set in the shutdown mode prior to power on/off operation.

Under Voltage Lock-out (UVLO)

The PAM8301 incorporates circuitry to detect low on or off voltage. When the supply voltage drops to 2.1V or below, the PAM8301 goes into a state of shutdown, and the device comes out of its shutdown state and starts to normal operation by reset the power supply or SD pin.

How to Reduce EMI (Electro Magnetic Interference)

A simple solution is to put an additional capacitor $1000\mu F$ at power supply terminal for power line coupling if the traces from amplifier to speakers are short (<20cm).

Most applications require a ferrite bead filter as shown at Figure 1. The ferrite filter depresses EMI of around 1MHz and higher. When selecting a ferrite bead, choose one with high impedance at high frequencies and low impedance at low frequencies.

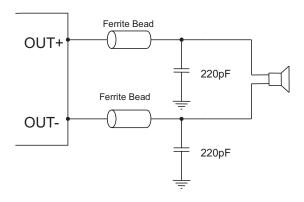
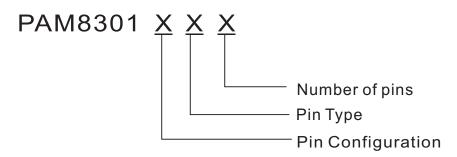
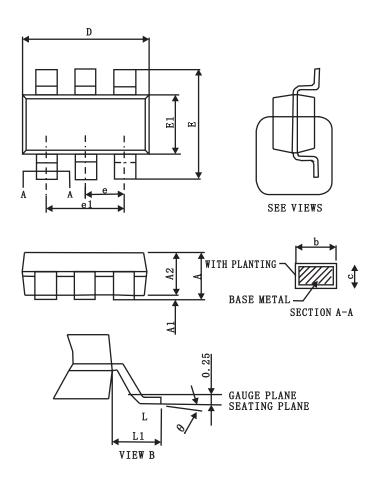



Figure 1: Ferrite Bead Filter to Reduce EMI

Ordering Information


Pin Configuration	Package Type	Number of pins
A:	A: SOT23-6	F: 6
1: OUT-		
2: GND		
3: IN		
4: SD		
5: VDD		
6: OUT+		

Part Number Marking		Package Type	Standard Package	
PAM8301AAF	PAM8301AAF FPXYW		3,000 Units/Tape & Reel	

Outline Dimensions

SOT23-6

Symbol	А	A1	A2	b	С	D	E
Spec	1.20±0.25	0.10±0.05	1.10±0.2	0.40±0.1	0.15±0.07	2.90±0.1	2.80±0.2
Symbol	E1	е	e 1	L	L1	θ	
Spec	1.60±0.1	0.95BSC	1.90BSC	0.55±0.25	0.60REF	4°±4°	

Unit: Millimeter