

RD74HV8T04

High-Voltage 8-bit Inverter Buffer

REJ03D0899-0100 Rev.1.00 Jul 14, 2008

Description

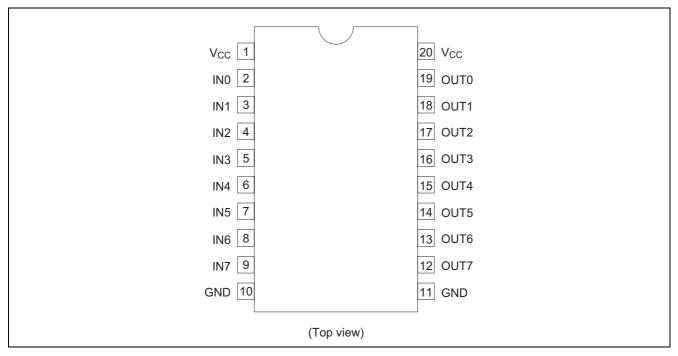
The RD74HV8T04 has eight Inverter in a 20 pin package. Supports the wide power supply voltage and can use it for the other use as a general–purpose driver.

Features

• Wide supply voltage range: 4.5 to 30 V

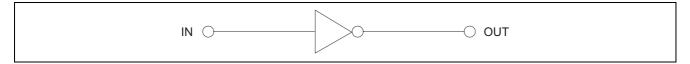
• Operating temperature range : -40 to +85°C

• All inputs V_{IH} (Min.) = 2.4 V, V_{IL} (Max.) = 0.8 V (@ V_{CC} = 10 V to 30 V)


• Output current : I_O short (Typ.) = ± 70 mA (@ V_{CC} = 15 V)

• Ordering Information

Part Name	Bookaga Typa	Package Code	Package	Packing Abbreviation	Surface	
Part Name	Package Type	(Previous Code)	Abbreviation	(Quantity)	Treatment	
RD74HV8T04FPH0	SOP-20 pin (JEITA)	PRSP0020DD-B (FP-20DAV)	FP	H (2,000 pcs/reel)	0 (Ni/Pd/Au)	
RD74HV8T04TH0	TSSOP-20 pin	PTSP0020JB-A (TTP-20DAV)	Т	H (2,000 pcs/reel)	0 (Ni/Pd/Au)	


Note: Please consult the sales office for the above package availability.

Pin Arrangement

These products designed for general and industrial use. It is not supported for special quality or reliability demanded use such as automotive or life support or something like that.

Logic Diagram

Function Table

Input	Output
Н	L
L	Н

H : High level L : Low level

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit	Test Conditions
Supply voltage range	V _{CC}	0 to 30	V	
Input voltage range *1	Vı	-0.5 to V _{CC} + 0.5	V	
Output voltage range *1, 2	Vo	-0.5 to V _{CC} + 0.5	V	
Input clamp current	I _{IK}	±50	mA	$V_{I} < 0$ or $V_{I} > V_{CC}$
Output clamp current	I _{OK}	±75	mA	$V_O < 0$ or $V_O > V_{CC}$
Continuous output current	I _O	±100	mA	$V_O = 0$ to V_{CC}
Continuous current through V _{CC} or GND	I _{CC} or I _{GND}	±100	mA	
Maximum power dissipation	Рт	835	mW	SOP
at Ta = 25°C (in still air) *3	r I	757	11100	TSSOP
Storage temperature	Tstg	-65 to 150	°C	

Notes: The absolute maximum ratings are values which must not individually be exceeded, and furthermore no two of which may be realized at the same time.

- 1. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
- 2. This value is limited to 30 V maximum.
- 3. The maximum package power dissipation was calculated using a junction temperature of 150°C.

Recommended Operating Conditions

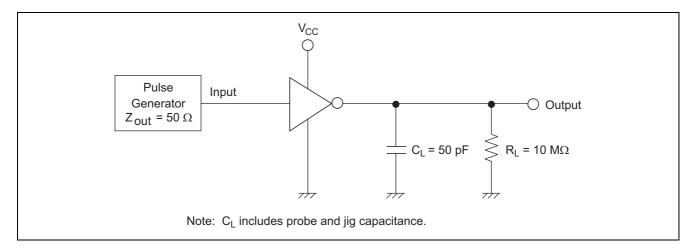
Item	Symbol	Min	Max	Unit	Conditions
Supply voltage range	V_{CC}	4.5	30	V	
Input voltage range	VI	0	V _{CC}	V	
Output voltage range	Vo	0	V _{CC}	V	
			-2.5		V _{CC} = 10 V
	la		- 5		V _{CC} = 15 V
	I _{OH}	_	-10	mA	V _{CC} = 25 V
Output current		_	–15		V _{CC} = 30 V
Output current	l _{OL}	_	2.5		V _{CC} = 10 V
		_	5		V _{CC} = 15 V
		_	10		V _{CC} = 25 V
		_	15		V _{CC} = 30 V
		0	100		V _{CC} < 5 V
Input transition rise or fall rate	Δt / Δν	0	20	ns / V	15 V > V _{CC} ≥ 5 V
		0	10		30 V ≥ V _{CC} ≥ 15 V
Operating free-air temperature	Ta	-4 0	85	°C	

Note: Unused or floating inputs must be held high or low.

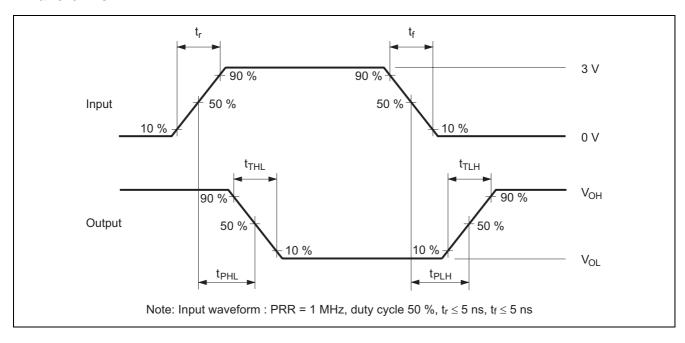
Electrical Characteristics

 $(Ta = -40 \text{ to } 85^{\circ}C)$

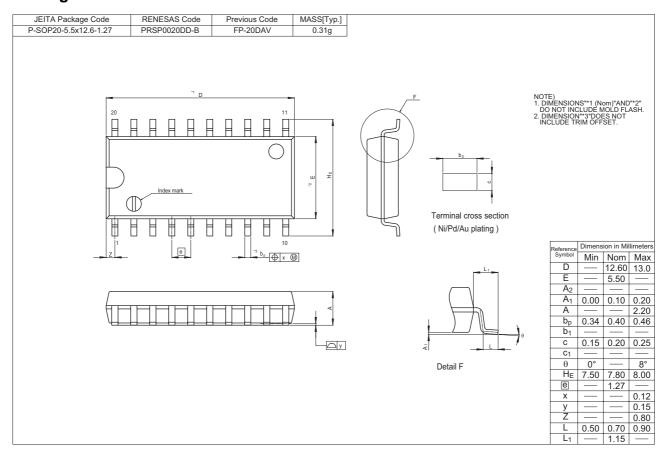
Item	Symbol	V _{CC} (V) *	Min	Тур	Max	Unit	Test condition
	.,	10	2.4	_	_		
		15	2.4	_	_		
	V_{IH}	25	2.4	_	_		
Input voltage		30	2.4	_	_	V	
Input voltage		10	_	_	0.8	V	
	V_{IL}	15	_	_	8.0		
	VIL	25	_	_	8.0		
		30	_	_	8.0		
		10	9.0	_	_		$I_{OH} = -2.5 \text{ mA}$
	V_{OH}	15	14.0	_	_		$I_{OH} = -5 \text{ mA}$
	VOH	25	23.5	_	_	V	$I_{OH} = -10 \text{ mA}$
Output voltage		30	28.0	_	_		$I_{OH} = -15 \text{ mA}$
Output voltage	V _{OL}	10		_	1.0		I_{OL} = 2.5 mA
		15		_	1.0		$I_{OL} = 5 \text{ mA}$
		25		_	1.5		I _{OL} = 10 mA
		30		_	2.0		I _{OL} = 15 mA
Output current	I _{OH} short	15	-46	–70	-95	mA	$V_O = 0V$
Output current	I _{OL} short	15	46	70	95	ША	$V_O = V_{CC}$
Input current	I _{IN}	Vcc		_	±1	μΑ	$V_{IN} = V_{CC}$ or GND
		10		_	0.5		
Quiescent supply current	Icc	15		_	1.0		$V_{IN} = V_{CC}$ or GND
		25		_	2.0	μΑ	AIN - ACC OL GIAD
		30			2.0		
Supply current	I _{SUPP}	10		_	1	mA	V _{CC} = 10 V, VIN = 3.0 V
Supply culterit		30		_	2.0	111/4	$V_{CC} = 30 \text{ V}, \text{VIN} = 3.0 \text{ V}$
Input capacitance	C _{IN}	V _{CC}	_	2.5	_	pF	$V_{IN} = V_{CC}$ or GND

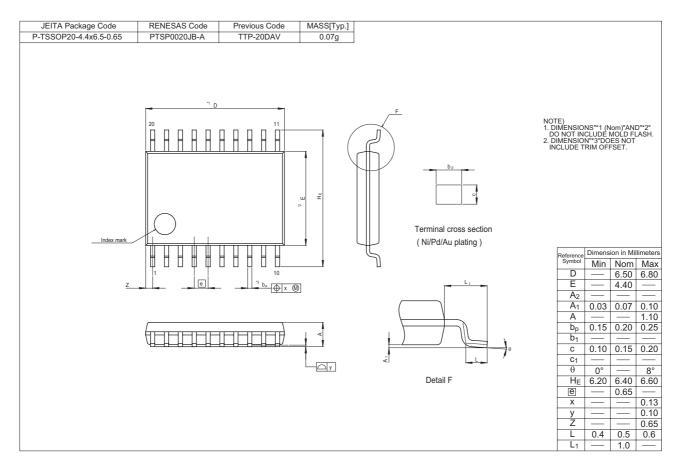

Note: For conditions shown as Min or Max, use the appropriate values under recommended operating conditions.

Switching Characteristics


 $(C_L = 50 \text{ pF}, t_r = t_f = 5 \text{ ns})$

Itam	Cumbal	Vac (\(\)	Та	= -40 to 85	40 to 85°C		FROM	ТО
Item	Symbol	Vcc (V)	Min	Тур	Max	Unit	(Input)	(Output)
		10	15	_	150	ns	IN	OUT
		15	15	_	150			
	t _{PLH}	20	10	_	120			
		25	10	_	120			
Propagation delay time		30	10	_	120			
Fropagation delay time	t₽HL	10	10	_	60	ns	IN	OUT
		15	10	_	60			
		20	10	_	60			
		25	10	_	60			
		30	10	_	60			
	t _{TLH} t _{THL}	10	2	_	30	ns	IN	OUT
Output rise / fall time		15	2	_	30			
		20	2		30			
		25	2	_	30			
		30	2	_	30			


Test Circuit



Waveforms

Package Dimensions

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect of the information in this document in the product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to change without any plan protein. Before purchasing or using any Renesas products listed in this document, in the development is satisfied. The procedure is such as the development of the dev

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510