HA12181FP

AM Radio Noise Reduction System
REJ03F0130-0200
(Previous: ADE-207-171A)
Rev.2.00
Jun 15, 2005

Functions

- Buffer amp. for audio
- Linear approximate circuit for noise reduction
- IF Amp., detector, audio amp. and AGC circuit for noise detection
- Gate pulse generator

Features

- High noise cancelling capacity: 46 dB typ.
- Less gain loss: $\mathrm{G}_{\mathrm{V}}=-0.5 \mathrm{~dB}$ typ.
- Low total harmonic destortion and high signal-to noise ratio: THD $=0.06 \%$ typ., $\mathrm{S} / \mathrm{N}=75 \mathrm{~dB}$ typ.
- Operation supply voltage range: 7.0 V to $10 \mathrm{~V}(8.2 \mathrm{~V}$ typ.)
- Less external parts count

Block Diagram

Table of Pin Description and External Parts

No. of pin	Name	Function	DC voltage (V) (No input)	Equivalent circuit	External parts		Influence of External parts	
					No.	recommended value	Larger than recommended value	Smaller than recommended value
1	IF AGC	Time	2.7		R500	100 K	Longer time to stabilize AGC.	Longer distortion of recover.
		constant for IF AGC.			C502	3.3μ		
2	Bias1	Bypass for voltage Stabi.	3.2		C500	0.033μ	-	Increased noise.
3	AF input	Input of AF.	3.3		C513	1μ	-	-
4	Bias2	Decide the current of filter network.	1.3		R506	12 K	Cut off frequency of L•P•F and H•P•F shifted lower.	Cut off frequency of L•P•F and $\mathrm{H} \cdot \mathrm{P} \cdot \mathrm{F}$ shifted higher.
5	Phase	Phase circuit	3.3		C512	0.068μ	Must be us recommen	d on the d value.

Table of Pin Description and External Parts (cont.)

No. of pin	Name	Function	DC voltage (V) (No input)	Equivalent circuit	External parts		Influence of External parts	
					No.	recom- mended value	Larger than recommended value	Smaller than recommended value
6	Hold	Hold of level difference.	3.3	(6) $\begin{aligned} & =C_{0}^{C 511} \\ & 0_{0.033 \mu} \end{aligned}$	C511	0.033μ	Must be used on the recommended value.	
7	GND	GND		-	-	-	-	-
8	HighPass.	High- Pass AMP. (Waveform Compensation)	3.3	(8) $=$ $=$ $=0.033 \mu$	C510	0.033μ	Must be used on the recommended value.	
9	AF out	Output of	3.3		C508	1μ	Output DC cut	
					R504	4.7 K	Output load	
10	Wave form	Waveform Compensation	3.3		C509	0.033μ	Must be used on the recommended value.	

Table of Pin Description and External Parts (cont.)

No. of pin	Name	Function	DC voltage (V) (No input)	Equivalent circuit	External parts		Influence of External parts	
					No.	recommended value	Larger than recommended value	Smaller than recommended value
11	Gate	Gate pulse genera- tion	$\prod_{0}^{4.5 \mathrm{v}} \square$		R503	180 K	Gate pulse width become wider.	Gate pulse width become narrow.
					C507	2200 P		
12	Vth	Determination of noise detection sensitivity	1.1		R502	22 K	Higher noise detection sensitivity.	Lower noise detection sensitivity.
13	Vcc	VCc	8.2	-	-	-	-	-
14	IF Det.	IF AGC detector	3.3		C503	0.01μ	-	-
15	$\begin{aligned} & \hline \text { AF } \\ & \text { AGC } \end{aligned}$	Time constant for AF AGC	0		R505	47 K	Longer time to stabilize AGC.	Missoperation in noise detector.
					C504	0.22μ		
16	IF in	IF input	1.3				IF Input	Coupling Instability
							-	

Absolute Maximum Ratings

Item	Symbol	Ratings $\left.25^{\circ} \mathrm{C}\right)$	
Supply voltage	V_{CC}	16	Unit
Power dissipation	Pd	$400^{* 1}$	mW
Operating temperature	Topr	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$

Note: 1. Value at $\mathrm{Ta}=85^{\circ} \mathrm{C}$

Electrical Characteristics (Tentative)

$\left(V_{C C}=8.2 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right.$, Pin 3 input: Vin $=100 \mathrm{mVrms}, \mathrm{f}=1 \mathrm{KHz}$, Pin 16 input: Vin $=74 \mathrm{~dB} \mu$,

Item	Symbol	Min	Typ	Max	Unit	Test Conditions
Supply current	Icc	-	11.0	-	mA	No input signal, IC only
Output voltage	Vout	70	95	120	mVrms	Pin 3 input only
Total harmonic distortion	THD1	-	0.06	0.3	\%	
Signal-to-noise ratio	S/N (1)	60	75	-	dB	$\begin{aligned} & \text { Pin } 3 \text { input Vin }=100 \\ & \mathrm{mVrms} \text { (Reference), } \mathrm{Rg} \\ & =10 \mathrm{~K} \Omega \end{aligned}$
Strong input total harmonic distortion	THD2	-	1.0	2.5	\%	Pin 3 input Vin $=500$ mVrms
Recovered output voltage	Vo (AF)	50	78	120	mVrms	Pin 16 input only
Recovered output signal-to-noise-ratio	S/N (2)	35	45	-	dB	
Noise suppression ratio	NSR	35	46	-	dB	Input the waveform below. Pin 3 input Vin = 100 mVrms (Reference) no input sine wave

Figure 1 Input Waveform at Measurement of Noise Suppression Ratio

Test Circuit

Note: 1. Resistors tolerance are within $\pm 5 \%$.
2. Capacitors tolerance (C509 to C512) are within $\pm 5 \%$, other capacitor are within $\pm 10 \%$.

Operation Principle

Figure 2 System Block Diagram of AM Radio

A system block diagram of AM Radio using the HA12181FP is shown in Figure 2 and waveforms at each point in the system are illustrated in Figure 3. For AM wave with impulse noise from ANT, the pulse spreads its width each time when the AM wave passes through a selection filter.

The pulse width becomes the order of several hundred microseconds at detector output (Point C).
A radio without a noise canceller produces large noise to the audience. This IC perfectly detects every noise by using the signals from 1st IFT (Point B) in front of the narrow band filter.

The wave process circuit approximates the voltage linearly at the pulse to reduce the noise in the output
The principle for wave processing follows. Further investigation make it clear that the pulse width of impulse noise is constant (several handred microseconds) and independent of the waveform or waveheight.

Therefore the former and later voltage (VA, VB) of the pulse can be found at the same time (T1) by means of the wave and the delayed one for this time, as shown in the right figure.

Each Point in the Figure	Waveform including Noise

Figure 3 Waveforms at Each Point in the System
In an actual circuit, the differential voltage between input and output of phase shift circuit is changed to the capacitor C511 at pin 6.

At the time of T1, when the switch turns to the noise processing mode (the switch positions in Figure 4 are inverted), the voltage difference (VA - VB) is held in C511.

C509 at pin 10 is changed by the differential voltage between the held voltage and the output voltage at pin 9 (VA):
$V A-(V A-V B)=V B$.

As the initial voltage of C509 is equal to the output voltage (VA) before the switch change, the voltage between terminals of C509 is changed from VA to VB.

The waveform which change up to C509 becomes the output, because the voltage of C509 appears at pin 9 through the buffer.

The changed up waveform of C509 is almost linearly approximated because of the constant current change by the feedback from the output at pin 9 .

At the time of T2 when the awitches change to the normal mode (the switch position in Figure 4), the output recovers smoothly as the voltage of C509 is VB.

However the unmatch of the wave delay time due to the pulse width or the phase circuit and the offset of circuit make a slight step difference on the waverform at the moment of switch change.

LPF, consisting of R1 and C509 make it smooth.
The frequency characteristics, which is detriorated by LPF in the normalmode, is compensated so that it might become flat. C509 and C510 should have the same capacity, and the tolerance must be within $\pm 5 \%$.

Figure 4 Waveform Processing Circuit

Evaluation Circuit for Noise Reduction Effect

Example of Noise Reduction Effect

PC Board Layout Pattern

(Top view)

Main Characteristics

Package Dimensions

RenesasTechnology Corp. Sales Strategic Planning Div. Nippon Blidg, 2-6--2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's Renesas Technology Corp. convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party
diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
2. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
3. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
4. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials
5. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
6. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.
http://www.renesas.com

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.
Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501
Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology Hong Kong Ltd.

7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2730-6071
Renesas Technology Taiwan Co., Ltd.
10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology (Shanghai) Co., Ltd.
Unit2607 Ruijing Building, No. 205 Maoming Road (S), Shanghai 200020, China
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952
Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, \#06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

