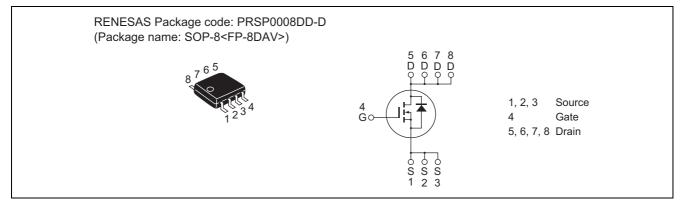


RJK0351DSP


Silicon N Channel Power MOS FET Power Switching

REJ03G1721-0200 Rev.2.00 Jul 10, 2008

Features

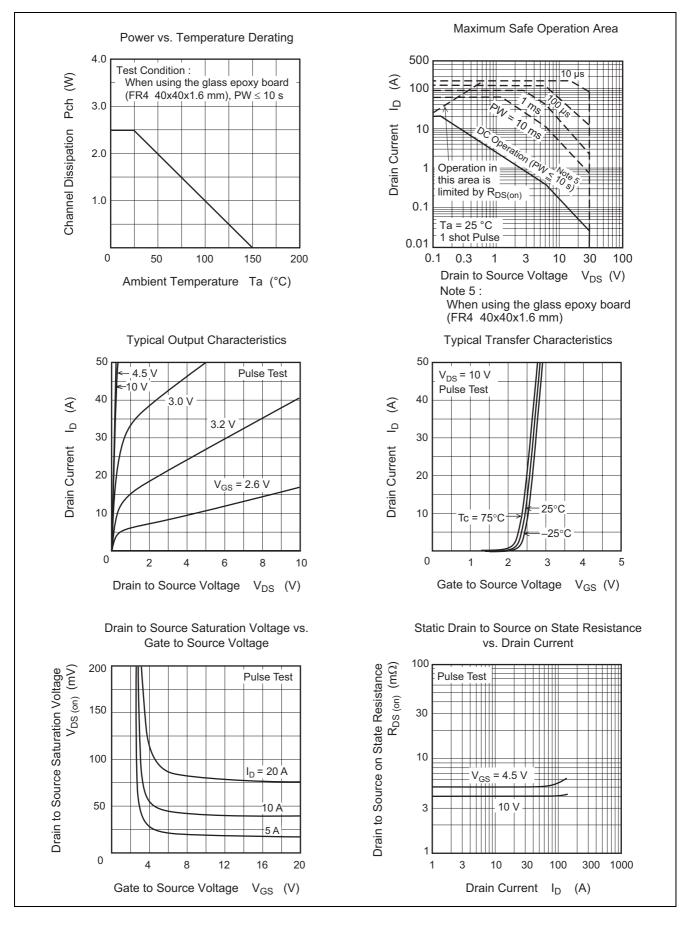
- Capable of 4.5 V gate drive
- Low drive current
- High density mounting
- Low on-resistance
- $R_{DS(on)} = 4.0 \text{ m}\Omega \text{ typ.}$ (at $V_{GS} = 10 \text{ V}$)
- Pb-free

Outline

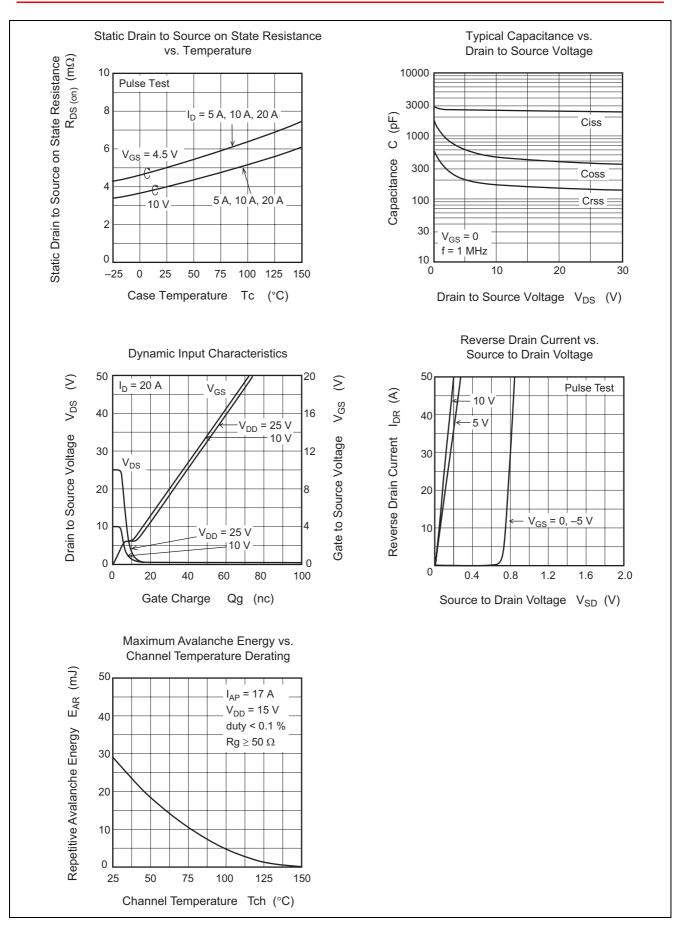
Absolute Maximum Ratings

			$(Ta = 25^{\circ}C)$
Item	Symbol	Ratings	Unit
Drain to source voltage	V _{DSS}	30	V
Gate to source voltage	V _{GSS}	±20	V
Drain current	I _D	20	A
Drain peak current	Note1 I _{D(pulse)}	160	A
Body-drain diode reverse drain current	I _{DR}	20	A
Avalanche current	I _{AP} Note 2	17	A
Avalanche energy	E _{AR} Note 2	28.9	mJ
Channel dissipation	Pch Note3	2.5	W
Channel to ambient thermal impedance	θch-a ^{Note3}	50	°C/W
Channel temperature	Tch	150	٥°C
Storage temperature	Tstg	-55 to +150	۵°

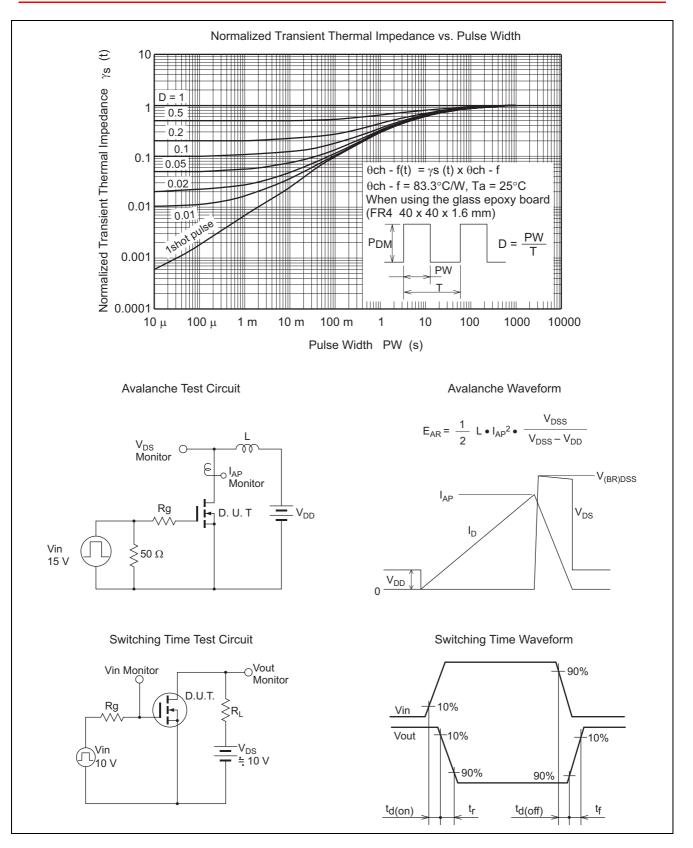
Notes: 1. $PW \le 10 \ \mu s$, duty cycle $\le 1\%$


- 2. Value at Tch = 25°C, Rg \geq 50 Ω
- 3. When using the glass epoxy board (FR4 40 x 40 x 1.6 mm), PW \leq 10s

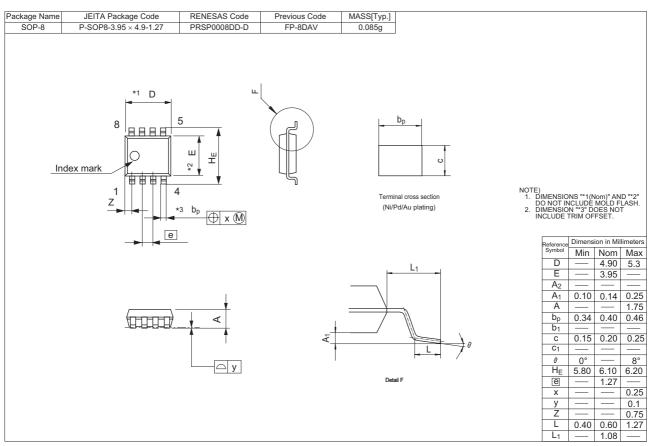
Electrical Characteristics


						$(Ta = 25^{\circ}C)$
Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Drain to source breakdown voltage	V _{(BR)DSS}	30	—	—	V	$I_D = 10 \text{ mA}, V_{GS} = 0$
Gate to source leak current	I _{GSS}	_	—	± 0.1	μΑ	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0$
Zero gate voltage drain current	I _{DSS}		—	1	μΑ	$V_{DS} = 30 V, V_{GS} = 0$
Gate to source cutoff voltage	V _{GS(off)}	1.2	—	2.5	V	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 1 \text{ mA}$
Static drain to source on state	R _{DS(on)}		4.0	5.2	mΩ	$I_D = 10 \text{ A}, V_{GS} = 10 \text{ V}^{\text{Note4}}$
resistance	R _{DS(on)}		5.0	6.9	mΩ	$I_D = 10 \text{ A}, V_{GS} = 4.5 \text{ V}^{Note4}$
Forward transfer admittance	y _{fs}		51	_	S	$I_D = 10 \text{ A}, V_{DS} = 10 \text{ V}^{Note4}$
Input capacitance	Ciss		2560	_	pF	V _{DS} = 10 V
Output capacitance	Coss		470	_	pF	V _{GS} = 0 f = 1 MHz
Reverse transfer capacitance	Crss		180	_	pF	
Total gate charge	Qg		17		nC	$V_{DD} = 10 V$ $V_{GS} = 4.5 V$ $I_D = 20 A$
Gate to source charge	Qgs	_	6.3	—	nC	
Gate to drain charge	Qgd	_	3.7	—	nC	
Turn-on delay time	t _{d(on)}	_	8.6	—	ns	$\label{eq:VGS} \begin{split} V_{GS} &= 10 \text{ V}, \text{ I}_{D} = 10 \text{ A} \\ V_{DD} &\cong 10 \text{ V} \\ \text{R}_{L} &= 1.0 \Omega \\ \text{Rg} &= 4.7 \Omega \end{split}$
Rise time	tr	_	4.6	—	ns	
Turn-off delay time	t _{d(off)}	_	52	—	ns	
Fall time	t _f	_	6.6	—	ns	
Body–drain diode forward voltage	V_{DF}		0.77	1.01	V	$I_F = 20 \text{ A}, V_{GS} = 0^{Note4}$
Body–drain diode reverse recovery time	t _{rr}	—	25	—	ns	$I_{F} = 20 \text{ A}, V_{GS} = 0$ $di_{F}/dt = 100 \text{ A}/\mu \text{s}$

Notes: 4. Pulse test


Main Characteristics

RENESAS



RENESAS

RENESAS

Package Dimensions

Ordering Information

Part No.	Quantity	Shipping Container
RJK0351DSP-00-J0	2500 pcs	Taping

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Benesas lechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
 Pines
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
 But not infinited to, product data. diagrams, charts, programs, algorithms, and application scuch as the development of weapons of mass and regulations, and proceedures required by such laws and regulation.
 All information in this document, included in this document for the purpose of military application scuch as the development of weapons of mass and regulations, and proceedures required by such laws and regulations.
 All information included in this document such as product data, diagrams, charts, programs, algorithms, and application carcuit examples, is current as of the date this document, when exporting the products or the technology described herein, you should follow the applicable export control laws and regulations, and proceedures required by such laws and regulations.
 Renesas has used reasonable care in compiling the information in this document, but Renesas assumes no liability whattowere for any damages incurred as a fast used in this document, but Renesas assumes no liability whattowere of neitary application states are the explorability of the total system before deciding about the applicability or otherwise in systems the failue on malfunction of which may cause a direct threads for the purpose, leave and mediation in the date this document. Jou should evaluate the information in link document to use and regulations.
 When using or otherwise regulations in the information in this document. Dut Renesas as subletion data and applications and regulations and regulations and regulations.
 When using or otherwise regulation the

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com