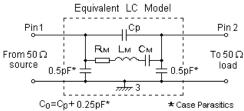


Tel: +44 118 979 1238 Fax: +44 118 979 1283

Email: info@actcrystals.com

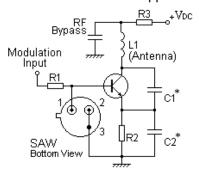
The ACTR433F/433.92/TO39-2.6 is a true one-port, surface-acoustic-wave (SAW) resonator in a low-profile metal TO-39 case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at 433.920 MHz.

1.Package Dimension (TO-39)

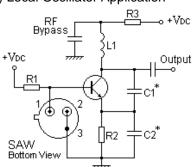


2.

Pin	Configuration	
1	Input / Output	
2	Output / Input	
3	Case Ground	


Dimension	Data (unit: mm)				
Α	9.30±0.20				
В	5.08±0.10				
С	3.40±0.20				
D	3±0.20/5±0.20				
Е	0.45±0.20				

3. Equivalent LC Model and Test Circuit



4. Typical Application Circuits

1) Low-Power Transmitter Application

2) Local Oscillator Application

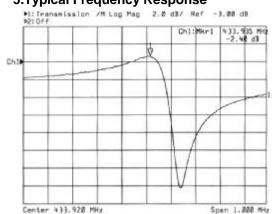
In keeping with our ongoing policy of product evolvement and improvement, the above specification is subject to change without notice.

ISO9001: 2000 Registered - Registration number 6830/2

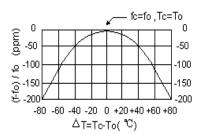
For quotations or further information please contact us at:

3 The Business Centre, Molly Millars Lane, Wokingham, Berks, RG41 2EY, UK

Issue: 1 C1
Date: SEPT 04


Tel: +44 118 979 1238 Fax: +44 118 979 1283

Issue: 1 C1


Date: SEPT 04

Email: info@actcrystals.com

5. Typical Frequency Response

6.Temperature Characteristics

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

7.Performance

7-1.Maximum Ratings

Rating	Value	Units	
CW RF Power Dissipation	0	dBm	
DC Voltage Between Any Two Pins	±30V	VDC	
Case Temperature	-40 to +85	°C	

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Units
Centre Frequency (+25 °C)	Absolute Frequency	f _C	433.845		433.995	MHz
	Tolerance from 433.920MHz	Δf_{C}		±75		kHz
Insertion Loss		IL		2.6	3.1	dB
Quality Factor	Unloaded Q	Q _U		10,400		
	50 Ω Loaded Q	Q_L		2,700		
Temperature Stability	Turnover Temperature	T ₀	25		55	°C
	Turnover Frequency	f_0		f _C		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/°C 2
Frequency Aging Absolute Value during the First Year		f _A		≤10		ppm/yr
DC Insulation Resistance Between Any Two Pins			1.0			МΩ
RF Equivalent RLC Model	Motional Resistance	R _M		35	43	Ω
	Motional Inductance	L _M		133.7606		μН
	Motional Capacitance	См		1.0068		fF
	Pin 1 to Pin 2 Static Capacitance	C ₀	1.9	2.2	2.5	pF

i CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

In keeping with our ongoing policy of product evolvement and improvement, the above specification is subject to change without notice.

ISO9001: 2000 Registered - Registration number 6830/2

For quotations or further information please contact us at:

3 The Business Centre, Molly Millars Lane, Wokingham, Berks, RG41 2EY, UK

+44 118 979 1238 +44 118 979 1283 Fax: Email: info@actcrystals.com

- 1. The centre frequency, f_C , is measured at the minimum IL point with the resonator in the 50 Ω test system. 2. Unless noted otherwise, case temperature $T_C = +25^{\circ}C \pm 2^{\circ}C$.
- 3. Frequency aging is the change in fc with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- Turnover temperature, T₀, is the temperature of maximum (or turnover) frequency, f₀. The nominal frequency at any case temperature, T_C , may be calculated from: $f = f_0 [1 - FTC (T_0 - T_C)^2]$.
- This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (non-motional) capacitance between Pin1 and Pin2. The measurement includes case parasitic capacitance.
- 6. Derived mathematically from one or more of the following directly measured parameters: f c, IL, 3 dB bandwidth, f_C versus T_C, and C₀.
- 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.