

*Customer:

Specification swt805-s

CUSTOMER

Checked by	Approved by

SUPPLIER

Drawn by	Approved by

Rev. 00

January, 2009

www.acriche.com

Contents

- 1. Description
- 2. Absolute Maximum Ratings
- 3. Electro Characteristics
- 4. Optical characteristics
- 5. Reliability Test Item and Condition
- 6. Color & Binning
- 7. Material
- 8. Outline Dimension
- 9. Packing
- 10. Soldering
- 11. Precaution for use
- 12. Handling of Silicone Resin LEDs

Rev. 00

January, 2009

www.acriche.com

Revision History

Revision No.	Date	Page.	Summary
00	October. 23. 2008		Initial release
N			

Rev. 00

January, 2009

www.acriche.com

SWT805-S

1. Description

This surface-mount LED comes in standard package dimension. It has a substrate made up of a molded plastic reflector sitting on top of a bent lead frame. The die is attached within the reflector cavity and the cavity is encapsulated by epoxy or silicone.

The package design coupled with careful selection of component materials allow these products to perform with high reliability in a larger temperature range -40° C to 100° C. The high reliability feature is crucial to Automotive interior and Indoor ESS.

Features

- White colored SMT package
- InGaN/Sic material
- Suitable for all SMT assembly and soldering methods
- Pb-Free Reflow soldering application
- RoHS compliant

Applications

- White Back-light unit
- Electric Signs and Signals
- Interior automotive
- Office Automation,
 Electrical Appliances,
 Industrial Equipment

Rev. 00
January, 2009

2. Absolute maximum ratings*1

Parameter	Symbol	Value	Unit
Power Dissipation	P_d	120	mW
Forward Current	$I_{\it F}$	30	mA
Peak Forward Current	$I_{\it FM}$ *2	90	mA
Reverse Voltage	V_R	5	V
Operating Temperature	T _{opr}	-40 ~ +85	°C
Storage Temperature	T_{stg}	-40 ~ +100	°C

^{*1} Care is to be taken that power dissipation does not exceed the absolute maximum rating of the product.

3. Electric characteristics

Parameter	Symb ol	Condition	Min	Тур	Max	Unit
Forward Voltage*1	V_{F}	$I_F = 20 \text{mA}$	2.9	3.2	3.4	V
Reverse Current	I_R	V_R =5V	-	-	10	μА
Luminous Intensity*2	I_V	$I_F = 20 \text{mA}$	1,400	1,900	2,500	mcd
Luminous flux	Φ	$I_F = 20 \text{mA}$		4.75		lm
Viewing Angle *3	2 <i>θ</i> _{1/2}	$I_F = 20 \text{mA}$	-	115	-	deg.

^{*1.}Forward Voltage Measurement allowance is $\pm 0.1 \text{V}$

[Note] All measurements were made under the standardized environment of SSC.

Rev. 00

January, 2009

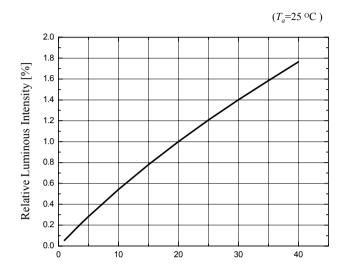
www.acriche.com

^{*2} I_{FM} was measured at $T_W \le 1$ msec of pulse width and D $\le 1/10$ of duty ratio.

^{*2.}The luminous intensity IV was measured at the peak of the spatial pattern which may not be aligned with the mechanical axis of the LED package. Luminous Intensity Measurement allowance is $\pm 7\%$

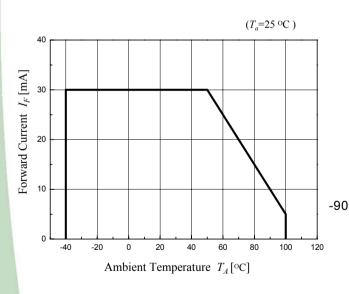
^{*3.2} θ ½ is the off-axis where the luminous intensity is 1/2 of the peak intensity.

^{*4} Estimated time to 50% degradation of initial luminous intensity.

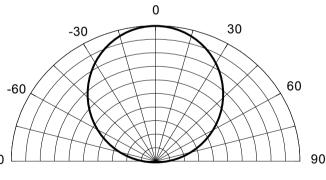


4. Optical characteristics

Forward Current vs. Forward Voltage


$(T_a = 25 \text{ °C })$ $[V_a]_{4|0}$ 10° 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2Forward Voltage $V_F(V)$

Relative Luminous Intensity vs Forward Current



Forward Current I_F [mA]

Forward Current Derating Curve

Radiation Diagram

Rev. 00

January, 2009

www.acriche.com

5. Reliability Test

Item	Reference	Test Condition	Duration / Cycle	Number of Damage
Thermal Shock	Internal Reference	T _a =-40°C (30MIN) ~ 100°C (30MIN)	100 Cycle	0/22
Temperature Cycle	EIAJ ED-4701	T _a =-40°C (30MIN) ~ 25°C (5MIN) ~ 100°C (30MIN) ~ 25°C (5MIN)	100 Cycle	0/22
High Temperature Storage	EIAJ ED-4701	T _a =100°C	1,000 Hours	0/22
High Temperature High Humidity Storage	EIAJ ED-4701	<i>T_a</i> =85°C, RH=85%	1,000 Hours	0/22
Low Temperature Storage	EIAJ ED-4701	<i>T_a</i> =-40°C	1,000 Hours	0/22
Operating Endurance Test	Internal Reference	T _a =25°C, I _F =20mA	1,000 Hours	0/22
High Temperature / Humidity Life	Internal Reference	T _a =60°C, RH=90%, I _F =20mA	1,000 Hours	0/22
High Temperature Life Test	Internal Reference	T _a =60°C, I _F =20mA	1,000 Hours	0/22
Low Temperature Life Test	Internal Reference	T _a =-40°C, I _F =20mA	1,000 Hours	0/22
ESD(HBM)	MIL-STD- 883D	1KV at 1.5kΩ; 100pF	3 Time	0/22

* Criteria for Judging the Damage

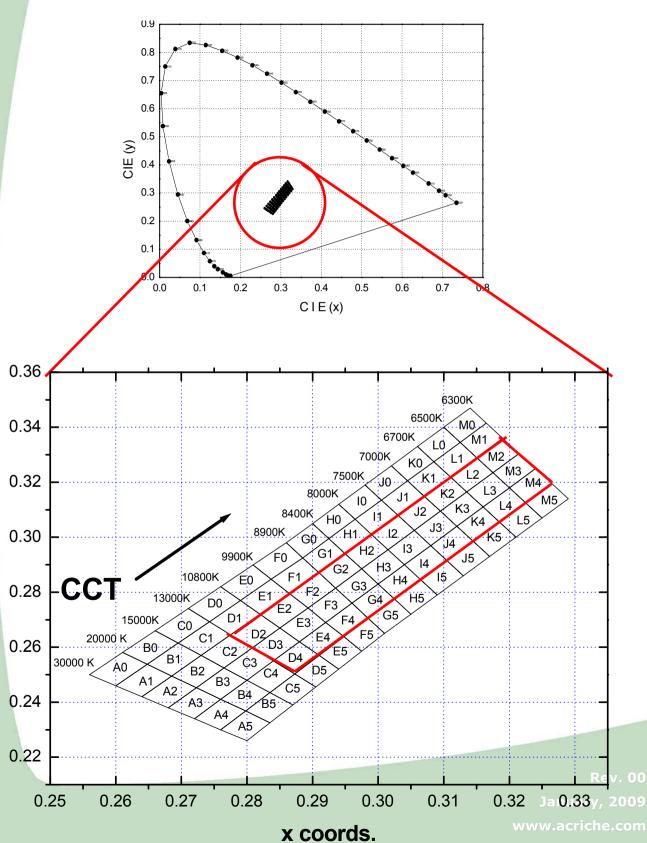
Item	Symbol Condition -		Criteria for Judgement	
item	Symbol	Condition	MIN	MAX
Forward Voltage	V_F	<i>I_F</i> =20mA	-	USL*1 × 1.1
Reverse Current	I _R	V _R =5V	-	100 μΑ
Luminous Intensity	I_V	<i>I_F</i> =20mA	LSL*2 × 0.7	-

Note: *1 USL: Upper Standard Level *2 LSL: Lower Standard Level

*ESD guarantee condition

Item	Test Condition	Criteria for Judgement	Test Form
НВМ	1,000 V	I_R =100 μ A and below	CONTACT

Rev. 00


January, 2009

www.acriche.com

y coords.

SEOUL

6. Color Coordinate & Bin Code Description

*CIE RANK

<IF=20mA, Ta=25℃>

	E2		3	_	4	
	X	У	X	У	X	У
L	0.2820	0.2720	0.2850	0.2670	0.2880	0.2620
	0.2850	0.2670	0.2880	0.2620	0.2910	0.2570
	0.2893	0.2743	0.2920	0.2690	0.2948	0.2638
	0.2865	0.2795	0.2893	0.2743	0.2920	0.2690
	F	2	F	3	F	4
1	х	у	Х	у	Х	у
	0.2865	0.2795	0.2893	0.2743	0.2920	0.2690
	0.2893	0.2743	0.2920	0.2690	0.2948	0.2638
	0.2935	0.2815	0.2960	0.2760	0.2985	0.2705
	0.2910	0.2870	0.2935	0.2815	0.2960	0.2760
	G2 G3		i3	G	4	
	Х	У	х	у	х	У
	x 0.2910	y 0.2870	x 0.2935		x 0.2960	y 0.2760
				У		
	0.2910	0.2870	0.2935	y 0.2815	0.2960	0.2760
	0.2910 0.2935	0.2870 0.2815	0.2935 0.2960	y 0.2815 0.2760	0.2960 0.2985	0.2760 0.2705
	0.2910 0.2935 0.2975 0.2950	0.2870 0.2815 0.2885	0.2935 0.2960 0.3000 0.2975	y 0.2815 0.2760 0.2830	0.2960 0.2985 0.3025 0.3000	0.2760 0.2705 0.2775
	0.2910 0.2935 0.2975 0.2950	0.2870 0.2815 0.2885 0.2940	0.2935 0.2960 0.3000 0.2975	y 0.2815 0.2760 0.2830 0.2885	0.2960 0.2985 0.3025 0.3000	0.2760 0.2705 0.2775 0.2830
	0.2910 0.2935 0.2975 0.2950	0.2870 0.2815 0.2885 0.2940	0.2935 0.2960 0.3000 0.2975	y 0.2815 0.2760 0.2830 0.2885	0.2960 0.2985 0.3025 0.3000	0.2760 0.2705 0.2775 0.2830
	0.2910 0.2935 0.2975 0.2950 H	0.2870 0.2815 0.2885 0.2940 2	0.2935 0.2960 0.3000 0.2975	y 0.2815 0.2760 0.2830 0.2885 3	0.2960 0.2985 0.3025 0.3000 H	0.2760 0.2705 0.2775 0.2830 4
	0.2910 0.2935 0.2975 0.2950 H x 0.2950	0.2870 0.2815 0.2885 0.2940 2 y 0.2940	0.2935 0.2960 0.3000 0.2975 H X 0.2975	y 0.2815 0.2760 0.2830 0.2885 3 y 0.2885	0.2960 0.2985 0.3025 0.3000 H x 0.3000	0.2760 0.2705 0.2775 0.2830 4 y 0.2830

^{*}Measurement Uncertainty of the Color Coordinates : $\pm\ 0.007$

Rev. 00

January, 2009

www.acriche.com

*CIE RANK

<IF=20mA, Ta=25℃>

	I	2	13		I	4
	х	У	Х	У	х	у
	0.2990	0.3010	0.3015	0.2955	0.3040	0.2900
	0.3015	0.2955	0.3040	0.2900	0.3065	0.2845
	0.3055	0.3025	0.3080	0.2970	0.3105	0.2915
	0.3030	0.3080	0.3055	0.3025	0.3080	0.2970
	J	2	J	3	J.	4
7	х	у	Х	у	Х	у
	0.3030	0.3080	0.3055	0.3025	0.3080	0.2970
	0.3055	0.3025	0.3080	0.2970	0.3105	0.2915
	0.3095	0.3095	0.3120	0.3040	0.3145	0.2985
L	0.3070	0.3150	0.3095	0.3095	0.3120	0.3040
L	K	2	К3		K4	
L	Х	У	Х	У	х	у
	0.3070	0.3150	0.3095	0.3095	0.3120	0.3040
	0.3095	0.3095	0.3120	0.3040	0.3145	0.2985
A	0.3135	0.3165	0.3160	0.3110	0.3185	0.3055
	0.3110	0.3220	0.3135	0.3165	0.3160	0.3110
A	L	2	L3		L	4
	Х	У	Х	У	Х	у
	0.3110	0.3220	0.3135	0.3165	0.3160	0.3110
	0.3135	0.3165	0.3160	0.3110	0.3185	0.3055
	0.3175	0.3235	0.3200	0.3180	0.3225	0.3125
	0.3150	0.3290	0.3175	0.3235	0.3200	0.3180

^{*}Measurement Uncertainty of the Color Coordinates : $\pm \ 0.007$

Rev. 00

January, 2009

www.acriche.com

Bin Code Description

▶ Part Number : SWT805 - S

Bin Code				
Luminous Intensity	CIE	Forward Voltage		
J6	EX	Z		

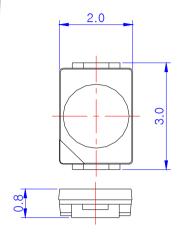
Luminous Intensity (mcd) $@ I_F = 20 \text{mA}$				
Bin Code	Min.	Max.		
J6	1,600	1,700		
J7	1,700	1,800		
J8	1,800	1,900		
K9	1,900	2,000		
K0	2,000	2,100		
K1	2,100	2,200		
K2	2,200	2,300		

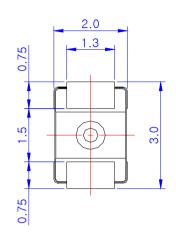
Color Rank @ <i>I_F</i> = 20mA		
A0~M0		
A1~M1		
A2~M2		
A3~M3		
A4~M4		
A5~M5		

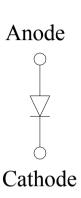
Forward Voltage (V) @ <i>I_F</i> = 20mA			
Bin Code	Min.	Max.	
Z	2.9	3.4	

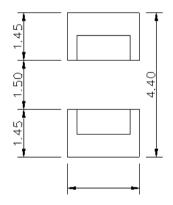
7. Material

item	Reflector	Wire	Encapsulate	Chip
Material	PPA	Gold	Silicone	SiC


Rev. 00


January, 2009


www.acriche.com

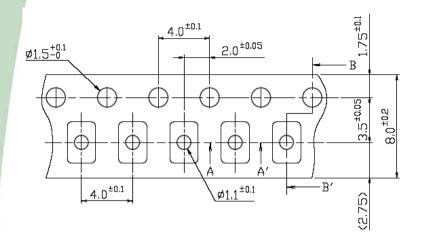

8. Outline Dimension

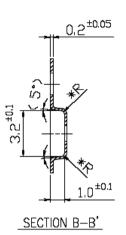
(Tolerance: ±0.2 mm)

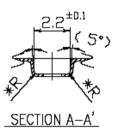
Recommended Solder Pattern

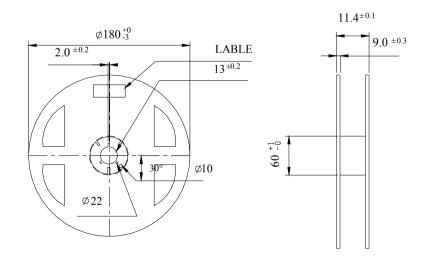
Management of Molding surface

(Tolerance:+ 0, - 0.1 mm)


Rev. 00

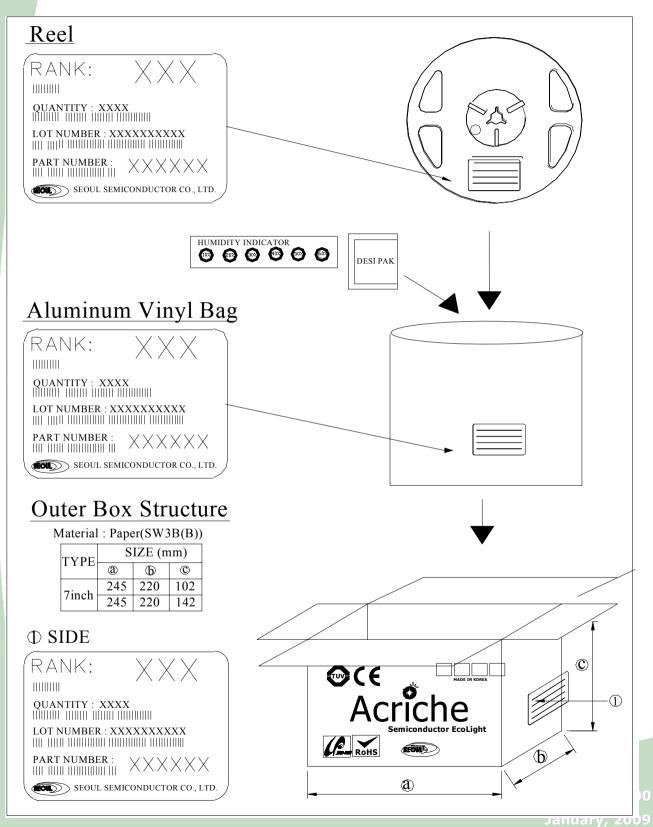

January, 2009


www.acricne.com



9. packing

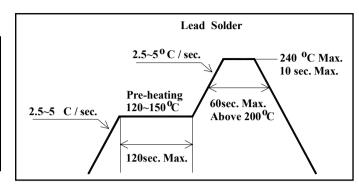
(Tolerance: ±0.2, Unit: mm)


- (1) Quantity: 2,000pcs/Reel
- (2) Cumulative Tolerance : Cumulative Tolerance/10 pitches to be ± 0.2 mm
- (3) Adhesion Strength of Cover Tape: Adhesion strength to be 0.1-0.7N when the cover tape is turned off from the carrier tape at the angle of 10° to the carrier tape
- (4) Package: P/N, Manufacturing data Code No. and quantity to be indicated on a damp proof Package

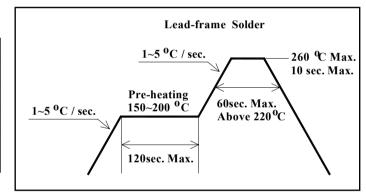
January 2000

www.acriche.com

Reel Packing Structure


www.acriche.com

10. soldering


(1) Lead Solder

Lead Solder		
Pre-heat	120~150℃	
Pre-heat time	120 sec. Max.	
Peak-Temperature	240℃ Max.	
Soldering time Condition	10 sec. Max.	

(2) Lead-Free Solder

Lead Free Solder		
Pre-heat	150~200℃	
Pre-heat time	120 sec. Max.	
Peak-Temperature	260℃ Max.	
Soldering time Condition	10 sec. Max.	

- (3) Hand Soldering conditions

 Do not exceed 4 seconds at maximum 315°C under soldering iron.
- (4) The encapsulated material of the LEDs is silicone.

Precautions should be taken to avoid the strong pressure on the encapsulated part.

So when using the chip mounter, the picking up nozzle that does not affect the silicone resign should be used.

Note: In case that the soldered products are reused in soldering process, we don't guarantee the products.

Kev. UU

January, 2009

www.acriciie.com

11. precaution for use

(1) Storage

In order to avoid the absorption of moisture, it is recommended to store in a dry box (or a desicator) with a desiccant. Otherwise, to store them in the following environment is recommended.

Temperature: 5°C ~30°C Humidity: maximum 70%RH

(2) Attention after open.

LED is correspond to SMD, when LED be soldered dip, interfacial separation may affect the light transmission efficiency, causing the light intensity to drop. Attention in followed; Keeping of a fraction

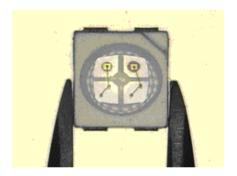
Temperature: 5 ~ 40°C Humidity: less than 10%

- (3) In the case of more than 1 week passed after opening or change color of indicator on desiccant, components shall be dried 10-12hr. at $60\pm5^{\circ}$ C.
- (4) Any mechanical force or any excess vibration shall not be accepted to apply during cooling process to normal temperature after soldering.
- (5) Quick cooling shall be avoided.
- (6) Components shall not be mounted on warped direction of PCB.
- (7) Anti radioactive ray design is not considered for the products.
- (8) This device should not be used in any type of fluid such as water, oil, organic solvent etc. When washing is required, IPA should be used.
- (9) When the LEDs are illuminating, operating current should be decided after considering the ambient maximum temperature.
- (10) The LEDs must be soldered within seven days after opening the moisture-proof packing.
- (11) Repack unused products with anti-moisture packing, fold to close any opening and then store in a dry place.
- (12) The appearance and specifications of the product may be modified for improvement without notice.

Rev. 00

January, 2009

www.acriche.com



12. Handling of Silicone Resin LEDs

(1) During processing, mechanical stress on the surface should be minimized as much as possible. Sharp objects of all types should not be used to pierce the sealing compound.

(2) In general, LEDs should only be handled from the side. By the way, this also applies to LEDs without a silicone sealant, since the surface can also become scratched.

(3) When populating boards in SMT production, there are basically no restrictions regarding the form of the pick and place nozzle, except that mechanical pressure on the surface of the resin must be prevented.

This is assured by choosing a pick and place nozzle which is larger than the LED's reflector area.

(4) Silicone differs from materials conventionally used for the manufacturing of LEDs. These conditions must be considered during the handling of such devices. Compared to standard encapsulants, silicone is generally softer, and the surface is more likely to attract dust.

As mentioned previously, the increased sensitivity to dust requires special care during processing. In cases where a minimal level of dirt and dust particles cannot be guaranteed, a suitable cleaning solution must be applied to the surface after the soldering of components.

(5) SSC suggests using isopropyl alcohol for cleaning. In case other solvents are used, it must be assured that these solvents do not dissolve the package or resin. Ultrasonic cleaning is not recommended. Ultrasonic cleaning may cause damage to the LED.

Kev. UU

January, 2009

www.acriche.com