

M66311P/FP

16-Bit LED Driver with Shift Register and Latch

REJ03F0177-0201 Rev.2.01 Mar 31, 2008

Description

M66311P/FP is a LED array driver having a 16 bit serial-input and parallel output shiftregister function with direct coupled reset input and output latch function.

This product guarantees the output electric current of 24 mA which is sufficient for anode common LED drive, capable of flowing 16 bits continuously at the same time.

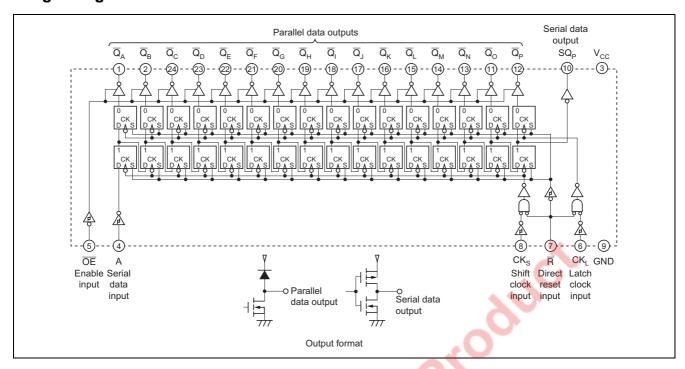
Parallel output is open drain output.

In addition, as this product has been designed in complete CMOS, power consumption can be greatly reduced when compared with conventional BIPOLAR or Bi-CMOS products.

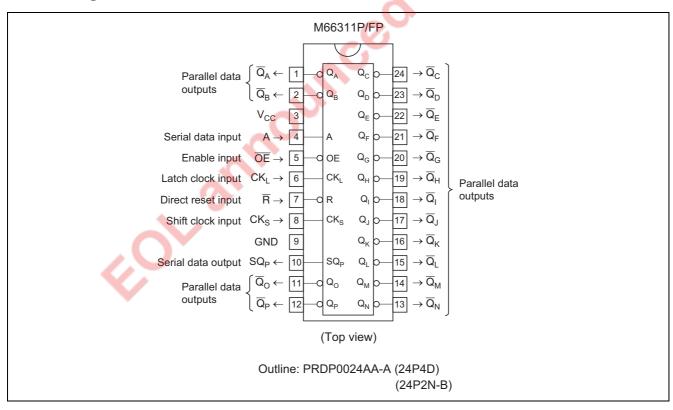
Furthermore, pin lay-out ensures the realization of an easy printed circuit.

Features

- Anode common LED drive
- High output current all parallel output $I_{OL} = 24$ mA simultaneous lighting available
- Low power dissipation: 100 µW/package (max)
 - $(V_{CC} = 5 \text{ V}, \text{ Ta} = 25^{\circ}\text{C}, \text{ quiescent state})$
- High noise margin
 - schmitt input circuit provides responsiveness to a long line length.
- Equipped with direct-coupled reset
- Open drain output
 - (except serial data output)
- Wide operating temperature range: $Ta = -40 \text{ to } +85^{\circ}\text{C}$
- Pin lay-out facilitates printed circuit wiring. (This lay-out facilitates cascade connection and LED connection.)


Application

LED array drive of BUTTON TELEPHONE


LED array drive of ERASER of a PPC copier

Other various LED modules

Logic Diagram

Pin Arrangement

Functional Description

As M66311P/FP uses silicon gate CMOS process, it realizes high-speed and high-output currents sufficient for LED drive while maintaining low power consumption and allowance for high noises.

Each bit of a shiftregister consists of two flip-flops having independent clocks for shifting and latching.

As for clock input, shift clock input CK_S and latch clock input CK_L are independent from each other, shift and latch operations being made when "L" changes to "H".

Serial data input A is the data input of the first–step shiftregister and the signal of A shifts shifting registers one by one when a pulse is impressed to CK_S . When A is "H", the signal of "L" shifts.

When the pulse is impressed to CK_L , the contents of the shifting register at that time are stored in a latching register, and they appear in the outputs from \overline{Q}_A to \overline{Q}_P .

Outputs from \overline{Q}_A to \overline{Q}_P are open drain outputs.

To extend the number of bits, use the serial data output SQ_P which shows the output of the shifting register of the 16th bit.

If CK_S and CK_L are connected, the state of the shifting register with one clock delay is outputted to \overline{Q}_A to \overline{Q}_P .

When reset input \overline{R} is changed to "L", \overline{Q}_A to \overline{Q}_P and SQ_P are reset. In this case, shifting and latching registers are set.

If "H" is impressed to output enable input OE, \overline{Q}_A to \overline{Q}_P reaches the high impedance state, but SQ_P does not reach the high impedance state. Furthermore, change in OE does not affect shift operation.

Function Table (Note)

	Input					Parallel Data Output								Serial Data Output										
Operation	Mode	R	CKs	CKL	Α	ŌĒ	$\overline{Q}_{\overline{A}}$	$\overline{Q}_{\overline{B}}$	$\overline{Q}_{\overline{C}}$	$\overline{Q}_{\overline{D}}$	$\overline{Q}_{\overline{E}}$	$\overline{Q}_{\overline{F}}$	$\overline{Q}_{\overline{G}}$	$\overline{Q}_{\overline{H}}$	$\overline{Q}_{\overline{l}}$	$\overline{Q}_{\overline{J}}$	$\overline{Q}_{\overline{K}}$	$\overline{Q}_{\overline{L}}$	$\overline{Q}_{\overline{M}}$	$\overline{Q}_{\overline{N}}$	$\overline{Q}_{\overline{O}}$	$\overline{Q}_{\overline{P}}$	SQ _P	Remarks
Reset		L	Х	Х	Х	Х	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	L	-
Shift	Shift t1	Н	1	Х	Н	L	$\overline{Q}_{\overline{A}}^{0}$	$\overline{Q}_{\overline{B}}^0$	$\overline{Q}_{\overline{C}^0}$	$\overline{Q}_{\overline{D}}^0$	$\overline{Q}_{\overline{E}^0}$	\overline{Q}_{F}^{0}	$\overline{Q}_{\overline{G}}^{0}$	$\overline{Q}_{\overline{H}^0}$	$\overline{Q}_{\overline{l}}^{0}$	$\overline{Q}_{\overline{J}^0}$	$\overline{Q}_{\overline{K}}^0$	$\overline{Q}_{\overline{L}^0}$	$\overline{Q}_{\overline{M}}^{0}$	$\overline{Q}_{\overline{N}}^{0}$	$\overline{Q}_{\overline{O}}^0$	$\overline{Q}_{\overline{P}}^0$	q _o ⁰	Output
latch	Latch t2	Н	Х	1	Х	L	L	q_A^0	q _B ⁰	q _C ⁰	q_D^0	q _E ⁰	q _F ⁰	q_G^0	q _H ⁰	q _I ⁰	q _J ⁰	q _K ⁰	q_L^0	q _M ⁰	q _N ⁰	q _o ⁰	q _o ⁰	lighting "H"
operation	Shift t1	Н	1	Х	L	L	$\overline{Q}_{\overline{A}}^{0}$	$\overline{Q}_{\overline{B}}^0$	$\overline{Q}_{\overline{C}^0}$	$\overline{Q}_{\overline{D}}^0$	$\overline{Q}_{\overline{E}}^{0}$	\overline{Q}_{F}^{0}	$\overline{Q}_{\overline{G}^0}$	$\overline{Q}_{\overline{H}^0}$	$\overline{Q}_{\overline{l}}^{0}$	$\overline{Q}_{\overline{J}^0}$	$\overline{Q}_{\overline{K}}^0$	$\overline{Q}_{\overline{L}^0}$	$\overline{Q}_{\overline{M}}^{0}$	$\overline{Q}_{\overline{N}}^{0}$	$\overline{Q}_{\overline{O}}^0$	$\overline{Q}_{\overline{P}}^0$	q _o ⁰	Output
	Latch t2	Н	Х	1	Х	L	Z	q _A 0	q _B ⁰	q_c^0	q_D^0	q _E 0	q _F 0	q_G^0	q _H ⁰	q _I ⁰	q _J 0	q _K ⁰	q_L^0	q _M ⁰	q _N ⁰	q _o ⁰	q _o 0	lights-out "L"
Output dis	able	Х	Х	Х	Х	Н	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	q_P	_

Note 1

- 1: Change from low-level to high-level
- Q

 Output state Q before CK_L changed
- X: Irrelevant
- q0: Contents of shift register before CKs changed
- q: Contents of shift register
- t₁, t₂: t₂ is set after t₁ is set
- Z: High impedance

Absolute Maximum Ratings

 $(Ta = -40 \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted})$

Item	Symbol	Ratings	Unit	Conditions					
Supply voltage	V _{CC}	-0.5 to +7.0	V						
Input voltage		VI	-0.5 to $V_{CC} + 0.5$	V					
Output voltage	out voltage		voltage		t voltage		-0.5 to $V_{CC} + 0.5$	V	
Input protection diode current	I _{IK}	-20	mA	$V_{I} < 0 V$					
					$V_{I} > V_{CC}$				
Output parasitic diode current	ut parasitic diode current		-20	mA	V _O < 0 V				
			20		$V_{O} > V_{CC}$				
Output current per output pin	\overline{Q}_A to \overline{Q}_P	lo	50	mA					
	SQ _P		±25						
Supply/GND current	Icc	-20, +410	mA	V _{CC} , GND					
Power dissipation	Pd	500	mW	(Note)					
Storage temperature range		Tstg	-65 to +150	°C					

Note: M66311FP; Ta = -40 to +70°C, Ta = 70 to 85°C are derated at -6 mW/°C.

Recommended Operating Conditions

 $(Ta = -40 \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted})$

		Limits						
Item	Symbol	Min	Тур	Max	Unit			
Supply voltage	V _{CC}	4.5	5	5.5	V			
Input voltage	V _I	0	_	V _{cc}	V			
Output voltage	Vo	0	_	V _{cc}	V			
Operating temperature range	Topr	-40	_	+85	°C			

Electrical Characteristics

 $(V_{CC} = 4.5 \text{ to } 5.5V, \text{ unless otherwise noted})$

	Sy			Limits	1					
	mb	Т	a = 25°	С	Ta = -40	to +85°C				
Item	ol	Min	Тур	Max	Min	Max	Unit	Con	ditions	
Positive-going threshold voltage	V _{T+}	0.35×V _{CC}	_	0.7×V _{CC}	0.35×V _{CC}	0.7×V _{CC}	V	$V_O = 0.1 \text{ V}, V_{CC} - 0.1 \text{ V}$ $ I_O = 20 \mu\text{A}$		
Negative-going threshold voltage	V _T	0.2×V _{CC}	_	0.55×V _{CC}	0.2×V _{CC}	0.55×V _{CC}	V	$V_{O} = 0.1 \text{ V}, V_{O}$ $ I_{O} = 20 \mu\text{A}$	_C -0.1 V	
Low-level	V _{OL}	_	_	0.1	_	0.1	V	$V_I = V_{T_+}, \ V_{T-}$	$I_{OL} = 20 \ \mu A$	
output_voltage		_	_	0.44	_	0.53		$V_{CC} = 4.5 \text{ V}$	$I_{OL} = 24 \text{ mA}$	
$\overline{\mathbb{Q}}_{A}$ to $\overline{\mathbb{Q}}_{P}$		_	_	0.73	_	0.94			I _{OL} = 40 mA (Note)	
High-level	V _{OH}	V _{CC} -0.1	_	_	V _{CC} -0.1	_	V	$V_I = V_{T_+}, V_{T-}$	I _{OH} = -20 μA	
output voltage SQ _P		3.83	_		3.66	_	4	$V_{CC} = 4.5 \text{ V}$	$I_{OH} = -4 \text{ mA}$	
Low-level	V _{OL}	_	_	0.1	_	0.1	V	$V_I = V_{T_+}, \ V_{T}$	$I_{OL} = 20 \mu A$	
output voltage SQ _P			_	0.44	_	0.53	.0	V _{CC} = 4.5 V	I _{OL} = 4 mA	
High-level input current	I _{IH}		_	0.5	_	5.0	μА	$V_I = V_{CC}, V_{CC} =$	= 5.5 V	
Low-level input current	I₁∟	_	_	-0.5	_	-5.0	μА	$V_I = GND, V_{CC}$; = 5.5 V	
Maximum	I _O	_	_	1.0	- 0	10.0	μΑ	$V_I = V_{T_+}, \ V_{T}$	$V_O = V_{CC}$	
output leakage current \overline{Q}_A to \overline{Q}_P		_	_	-1.0	70,	/ –10.0		V _{CC} = 5.5 V	V _O = GND	
Quiescent supply current	Icc	_	_	20.0	<u> </u>	200.0	μА	$V_I = V_{CC}$, GND	, V _{CC} = 5.5 V	

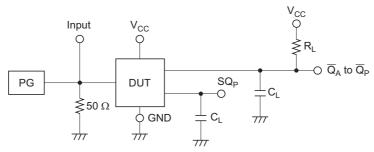
Note: M66311 is used under the condition of an output current I_{OL} = 40 mA, the number of simultaneous drive outputs is restricted as shown in the Duty Cycle-I_{OL} of Standard characteristics.

Switching Characteristics

 $(V_{CC} = 5 V)$

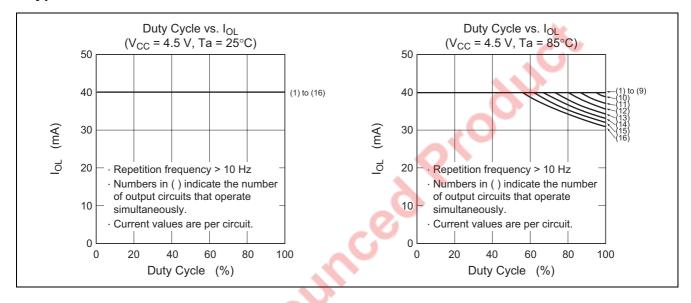
			Ta = 25°C		Ta = -40	to +85°C		
Item	Symbol	Min	Тур	Max	Min	Max	Unit	Conditions
Maximum clock frequency	f _{max}	5	_	_	4	_	MHz	$C_L = 50 \text{ pF}$
Low-level to high-level and	t _{PLH}	_	_	100	_	130	ns	$R_L = 1 \text{ k}\Omega$ (Note 2)
high-level to low-level output propagation time (CK _S -SQ _P)	t _{PHL}	1	_	100	_	130	ns	(Note 2)
$\begin{array}{l} \mbox{High-level to low-level} \\ \mbox{output propagation time } (\overline{R} - \mbox{SQ_P}) \end{array}$	t _{PHL}	1		100	_	130	ns	
Low-level to high-level output propagation time (\overline{R} - \overline{Q}_A to \overline{Q}_P)	t _{PLZ}		_	150	_	200	ns	
Low-level to high-level and	t _{PZL}	-	_	100	_	130	ns	
high-level to low-level output propagation time $(CK_L-\overline{Q}_A \text{ to } \overline{Q}_P)$	t _{PLZ}		_	150	_	200	ns	
Output enable time to low-	t _{PZL}	-	_	100		130	ns	
level and high-level (\overline{OE} – $\overline{\mathbb{Q}}_A$ to $\overline{\mathbb{Q}}_P$)	t _{PLZ}	1	_	150	01	200	ns	
Input Capacitance	Cı	_	_	10		10	pF	
Output Capacitance	Co	_	_	15	_	15	pF	$\overline{OE} = V_{CC}$
Power dissipation Capacitance (Note 1)	C _{PD}		5	0	_	_	pF	

Note: 1. C_{PD} is the internal capacitance of the IC calculated from operation supply current under no-load conditions. (per latch)

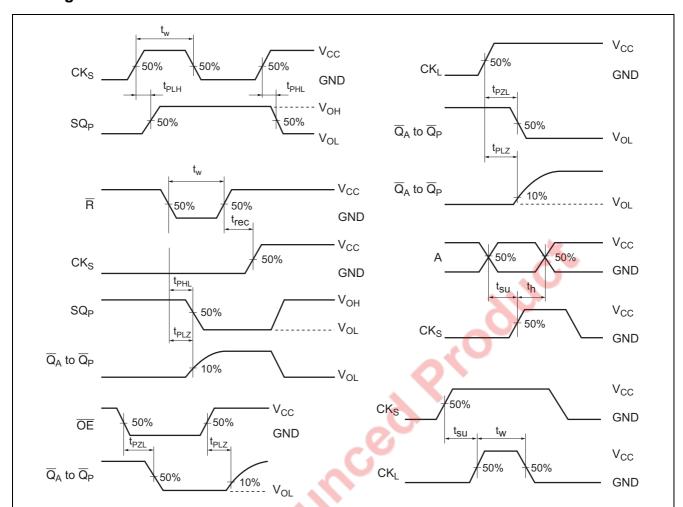

The power dissipated during operation under no-load conditions is calculated using the following formula: $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_I + I_{CC} \bullet V_{CC}$

Timing Requirements

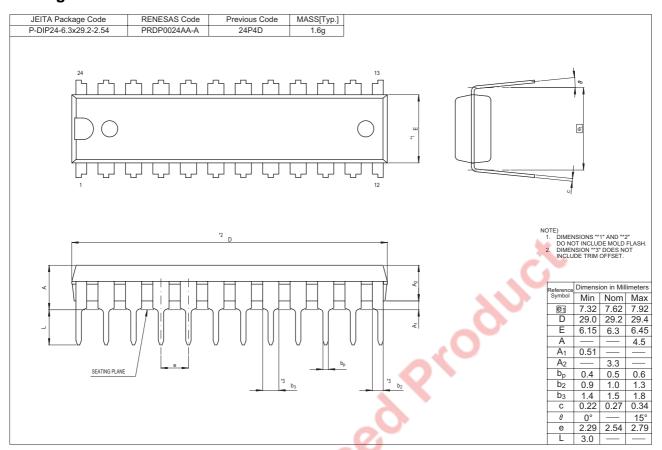
 $(V_{CC} = 5 V)$

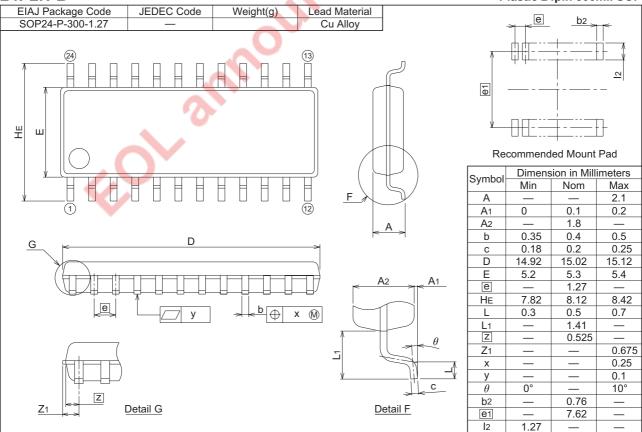

	0		Ta = 25°C		Ta = -40	to +85°C		
Item	Symbol	Min	Тур	Max	Min	Max	Unit	Conditions
CK _S , CK _L , R pulse width	t _w	100	_	_	130	_	ns	(Note 2)
A setup time with respect to CK _S	t _{su}	100	_	_	130	1	ns	
CK _S setup time with respect to CK _L	t _{su}	100	_	_	130		ns	
A hold time with respect to CK _S	t _h	10	_	_	15	_	ns	
R, recovery time with respect to CK _S , CK _L	t _{rec}	50	_	_	70	_	ns	

Note: 2. Test Circuit



- (1) The pulse generator (PG) has the following characteristics (10% to 90%): tr = 6 ns, tf = 6 ns
- (2) The capacitance C_L includes stray wiring capacitance and the probe input capacitance.


Typical Characteristics


Timing Chart

Package Dimensions

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect of the information in this document in the product data, diagrams, charts, programs, algorithms, and application critical examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to the date this document in the such and the procedure of the proced

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510