1-Mbit (128K x 8) Static RAM #### **Features** - Pin- and function-compatible with CY7C1019B - · High speed - $t_{AA} = 10 \text{ ns}$ - · Low active power - $I_{CC} = 80 \text{ mA} @ 10 \text{ ns}$ - · Low CMOS standby power - $I_{SB2} = 3 \text{ mA}$ - · 2.0V Data retention - · Automatic power-down when deselected - · CMOS for optimum speed/power - Center power/ground pinout - Easy memory expansion with CE and OE options - Functionally equivalent to CY7C1019B - Available in Pb-free 32-pin 400-Mil wide Molded SOJ and 32-pin TSOP II packages ## Functional Description [1] The CY7C1019D is a high-performance CMOS static RAM organized as 131,072 words by 8 bits. Easy memory expansion is provided by an active LOW Chip Enable ($\overline{\text{CE}}$), an active LOW Output Enable ($\overline{\text{OE}}$), and tri-state drivers. This device has an automatic power-down feature that significantly reduces power consumption when deselected. The eight input and output pins (IO_0 through IO_7) are placed in a high-impedance state when: - Deselected (CE HIGH) - Outputs are disabled (OE HIGH) - When the write operation is active (CE LOW, and WE LOW). Write to the device by taking Chip Enable ($\overline{\text{CE}}$) and Write Enable ($\overline{\text{WE}}$) inputs LOW. Data on the eight IO pins (IO₀ through IO₇) is then written into the location specified on the address pins (A₀ through A₁₆). Read from the device by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing Write Enable ($\overline{\text{WE}}$) HIGH. Under these conditions, the contents of the memory location specified by the address pins appears on the IO pins. #### **Logic Block Diagram** #### Note 1. For guidelines on SRAM system design, please refer to the 'System Design Guidelines' Cypress application note, available on the internet at www.cypress.com. [+] Feedback ### **Pin Configuration** #### **Selection Guide** | | -10 (Industrial) | Unit | |---------------------------|------------------|------| | Maximum Access Time | 10 | ns | | Maximum Operating Current | 80 | mA | | Maximum Standby Current | 3 | mA | #### **Maximum Ratings** Exceeding the maximum ratings may impair the useful life of the device. These user guidelines are not tested. Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......-55°C to +125°C Supply Voltage on V_{CC} to Relative GND $^{[2]}$... $^{-0.5}$ V to $^{+0.5}$ V DC Voltage Applied to Outputs in High-Z State $^{[2]}$-0.5V to $^{-0.5}$ V to $^{-0.5}$ V DC Input Voltage $^{[2]}$-0.5V to $^{-0.5}$ V | Current into Outputs (LOW) | 20 mA | |--|-----------| | Static Discharge Voltage(per MIL-STD-883, Method 3015) | . > 2001V | | Latch-up Current | > 200 mA | ### **Operating Range** | Range | Ambient
Temperature | V _{CC} | Speed | |------------|------------------------|-----------------|-------| | Industrial | –40°C to +85°C | 5V ± 0.5V | 10 ns | ### Electrical Characteristics (Over the Operating Range) | Davamatav | Description | Took Conditions | | –10 (Industrial) | | Unit | |------------------|--|--|-----------------|------------------|-----------------------|------| | Parameter | Description | Test Conditions | rest Conditions | | Max | | | V _{OH} | Output HIGH Voltage | I _{OH} = -4.0 mA | | 2.4 | | V | | V _{OL} | Output LOW Voltage | I _{OL} = 8.0 mA | | | 0.4 | V | | V _{IH} | Input HIGH Voltage | | | 2.2 | V _{CC} + 0.5 | V | | V _{IL} | Input LOW Voltage [2] | | | -0.5 | 0.8 | V | | I _{IX} | Input Leakage Current | $GND \le V_I \le V_{CC}$ | | -1 | +1 | μΑ | | I _{OZ} | Output Leakage Current | GND ≤ V _I ≤ V _{CC} , Output Disabl | ed | -1 | +1 | μΑ | | I _{CC} | V _{CC} Operating Supply Current | V _{CC} = Max, | 100 MHz | | 80 | mA | | | | $I_{OUT} = 0 \text{ mA},$
$f = f_{max} = 1/t_{RC}$ | 83 MHz | | 72 | mA | | | | max no | 66 MHz | | 58 | mA | | | | | 40 MHz | | 37 | mA | | I _{SB1} | Automatic CE Power-Down
Current—TTL Inputs | $\begin{aligned} &\text{Max V}_{CC}, \overline{CE} \geq V_{IH} \\ &V_{IN} \geq V_{IH} \text{ or } V_{IN} \leq V_{IL}, f = f_{max} \end{aligned}$ | | | 10 | mA | | I _{SB2} | Automatic CE Power-Down
Current—CMOS Inputs | $\begin{aligned} &\text{Max V}_{\text{CC}}, \overline{\text{CE}} \geq \text{V}_{\text{CC}} - 0.3\text{V}, \\ &\text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.3\text{V}, \text{ or V}_{\text{IN}} \leq 0.3\text{V} \end{aligned}$ | , f = 0 | | 3 | mA | #### Note Document #: 38-05464 Rev. *E ^{2.} V_{IL} (min) = -2.0V and V_{IH} (max) = V_{CC} + 1V for pulse durations of less than 5 ns. ### Capacitance [3] | Parameter | Description | Test Conditions | Max | Unit | |------------------|--------------------|--|-----|------| | C _{IN} | Input Capacitance | $T_A = 25$ °C, $f = 1$ MHz, $V_{CC} = 5.0$ V | 6 | pF | | C _{OUT} | Output Capacitance | | 8 | pF | #### Thermal Resistance [3] | Parameter | Description | Test Conditions | 400-Mil
Wide SOJ | TSOP II | Unit | |-----------------|--|---|---------------------|---------|------| | Θ_{JA} | Thermal Resistance (Junction to Ambient) | Still Air, soldered on a 3 × 4.5 inch, four-layer printed circuit board | 56.29 | 62.22 | °C/W | | Θ _{JC} | Thermal Resistance (Junction to Case) | | 38.14 | 21.43 | °C/W | #### AC Test Loads and Waveforms [4] #### **High-Z characteristics:** #### Notes - 3. Tested initially and after any design or process changes that may affect these parameters. - 4. AC characteristics (except High-Z) are tested using the load conditions shown in Figure (a). High-Z characteristics are tested for all speeds using the test load shown in Figure (c). ## Switching Characteristics (Over the Operating Range) [5] | D | Description | -10 (Inc | lustrial) | 1124 | |-----------------------------------|---|----------|-----------|------| | Parameter | Description | Min | Max | Unit | | Read Cycle | | - | 1 | 1 | | t _{power} ^[6] | V _{CC} (typical) to the first access | 100 | | μS | | t _{RC} | Read Cycle Time | 10 | | ns | | t _{AA} | Address to Data Valid | | 10 | ns | | t _{OHA} | Data Hold from Address Change | 3 | | ns | | t _{ACE} | CE LOW to Data Valid | | 10 | ns | | t _{DOE} | OE LOW to Data Valid | | 5 | ns | | t _{LZOE} | OE LOW to Low Z | 0 | | ns | | t _{HZOE} | OE HIGH to High Z [7, 8] | | 5 | ns | | t _{LZCE} | CE LOW to Low Z [8] | 3 | | ns | | t _{HZCE} | CE HIGH to High Z [7, 8] | | 5 | ns | | t _{PU} ^[9] | CE LOW to Power-Up | 0 | | ns | | t _{PD} ^[9] | CE HIGH to Power-Down | | 10 | ns | | Write Cycle [10, | 11] | | • | | | t _{WC} | Write Cycle Time | 10 | | ns | | t _{SCE} | CE LOW to Write End | 7 | | ns | | t _{AW} | Address Set-Up to Write End | 7 | | ns | | t _{HA} | Address Hold from Write End | 0 | | ns | | t _{SA} | Address Set-Up to Write Start | 0 | | ns | | t _{PWE} | WE Pulse Width | 7 | | ns | | t _{SD} | Data Set-Up to Write End | 6 | | ns | | t _{HD} | Data Hold from Write End | 0 | | ns | | t _{LZWE} | WE HIGH to Low Z [8] | 3 | | ns | | t _{HZWE} | WE LOW to High Z [7, 8] | | 5 | ns | - Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance. - 6. t_{POWER} gives the minimum amount of time that the power supply should be at typical V_{CC} values until the first memory access can be performed. 7. t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with a load capacitance of 5 pF as in (c) of "AC Test Loads and Waveforms [4]" on page 4. Transition is measured when the outputs enter a high impedance state. - 8. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZCE} is less than t_{LZOE} , and t_{HZWE} is less than t_{LZWE} for any given device. - 9. This parameter is guaranteed by design and is not tested. - 10. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. CE and WE must be LOW to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write. - 11. The minimum write cycle time for Write Cycle no. 3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}. ### Data Retention Characteristics (Over the Operating Range) | Parameter | Description | Conditions | Min | Max | Unit | |--------------------------------|--------------------------------------|---|-----------------|-----|------| | V_{DR} | V _{CC} for Data Retention | | 2.0 | | V | | I _{CCDR} | Data Retention Current | $V_{CC} = V_{DR} = 2.0V$, $\overline{CE} \ge V_{CC} - 0.3V$,
$V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le 0.3V$ | | 3 | mA | | t _{CDR} [3] | Chip Deselect to Data Retention Time | | 0 | | ns | | t _R ^[12] | Operation Recovery Time | | t _{RC} | | ns | #### **Data Retention Waveform** ### **Switching Waveforms** Read Cycle No. 1 (Address Transition Controlled) [13, 14] Read Cycle No. 2 (OE Controlled) [14, 15] #### Notes - 12. Full device operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min)} \ge 50 \ \mu s$ or stable at $V_{CC(min)} \ge 50 \ \mu s$. - 13. Device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$. - 14. WE is HIGH for Read cycle. - 15. Address valid prior to or coincident with $\overline{\text{CE}}$ transition LOW. ### Switching Waveforms (continued) Write Cycle No. 1 (CE Controlled) [16, 17] Write Cycle No. 2 (WE Controlled, OE HIGH During Write) [16, 17] ^{16.} Data IO is high impedance if $\overline{OE} = V_{IH}$. 17. If \overline{CE} goes HIGH simultaneously with \overline{WE} going HIGH, the output remains in a high-impedance state. ^{18.} During this period the IOs are in the output state and input signals should not be applied. ## Switching Waveforms (continued) Write Cycle No. 3 (WE Controlled, OE LOW) [11, 17] #### **Truth Table** | CE | OE | WE | 1O ₀ -1O ₇ | Mode | Power | |----|----|----|----------------------------------|----------------------------|----------------------------| | Н | Х | Χ | High Z | Power-Down | Standby (I _{SB}) | | L | L | Н | Data Out | Read | Active (I _{CC}) | | L | Х | L | Data In | Write | Active (I _{CC}) | | L | Н | Н | High Z | Selected, Outputs Disabled | Active (I _{CC}) | ## **Ordering Information** | Speed (ns) | Ordering Code | Package
Diagram | Package Type | Operating
Range | |------------|------------------|--------------------|---------------------------------------|--------------------| | 10 | CY7C1019D-10VXI | 51-85033 | 32-pin (400-Mil) Molded SOJ (Pb-free) | Industrial | | | CY7C1019D-10ZSXI | 51-85095 | 32-pin TSOP Type II (Pb-free) | | Please contact your local Cypress sales representative for availability of these parts. ### **Package Diagrams** Figure 1. 32-pin (400-Mil) Molded SOJ (51-85033) 51-85033-*B #### Package Diagrams (continued) Figure 2. 32-pin Thin Small Outline Package Type II (51-85095) All product or company names mentioned in this document may be the trademarks of their respective holders. ## **Document History Page** | REV. | ECN NO. | Issue Date | Orig. of
Change | Description of Change | |------|---------|------------|--------------------|--| | ** | 201560 | See ECN | SWI | Advance Information data sheet for C9 IPP | | *A | 233715 | See ECN | RKF | DC parameters are modified as per EROS (Spec # 01-2165) Pb-free offering in the Ordering Information | | *B | 262950 | See ECN | RKF | Added T _{power} Spec in Switching Characteristics table Added Data Retention Characteristics table and waveforms Shaded Ordering Information | | *C | 307598 | See ECN | RKF | Reduced Speed bins to -10 and -12 ns | | *D | 520647 | See ECN | VKN | Converted from Preliminary to Final Removed Commercial Operating range Removed 12 ns speed bin Added I _{CC} values for the frequencies 83MHz, 66MHz and 40MHz Updated Thermal Resistance table Updated Ordering Information Table Changed Overshoot spec from V _{CC} +2V to V _{CC} +1V in footnote #2 | | *E | 802877 | See ECN | VKN | Changed I _{CC} spec from 60 mA to 80 mA for 100MHz, 55 mA to 72 r for 83MHz, 45 mA to 58 mA for 66MHz, 30 mA to 37 mA for 40MH |