3.0 V, SOTiny $^{\text {™ }} 0.8 \Omega$ Dual SPDT Analog Switch with -1.0 V to 4.2 V Operating Range

Features

- Analog Signal Range: -1.0 V to V_{CC} when switch is "ON"
- -1.0V Undershoot Protection when switch is "OFF"
- CMOS Technology for Bus and Analog Applications
- Low On-Resistance: 0.8Ω (+3.3V Supply)
- Wide V_{CC} Range: 1.5 V to $4.2 \mathrm{~V} \pm 10 \%$
- Low Power Consumption : $5 \mu \mathrm{~W}$
- Rail-to-Rail switching throughout Signal Range
- Fast Switching Speed: 50ns max. at 3.3 V
- High Off Isolation: -50 dB at 1 MHz
- -45dB (1 MHz) Crosstalk Rejection Reduces Signal Distortion
- Break-Before-Make Switching
- Extended Industrial Temperature Range: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Packaging: (Pb-free \& Green)
-12-contact TDFN (ZE)
-12-contact TDFN (ZG)

Applications

- Cell Phones
- PDAs
- Portable Instrumentation
- Battery Powered Communications
- Computer Peripherals

Pin Description

Pin Number	Name $^{(\mathbf{1 , 2 , 3})}$	Description
8,11	NOx	Data Port (Normally Open)
3,6	GNDx	Ground
2,5	NCx	Data Port (Normally Closed)
1,4	COMx	Common Output/Data Port
9,12	$\mathrm{~V}_{\mathrm{CCx}}$	Positive Power Supply ${ }^{(1)}$
7,10	INx	Logic Control

Notes:

1. $\mathrm{X}=0$ or 1
2. $\quad \mathrm{V}_{\mathrm{CC} 0}$ and $\mathrm{V}_{\mathrm{CC} 1}$ are not internally connected. Each must be powered seperately.
3. GND_{0} and GND_{1} are not internally connected. Each must be powered seperately.

Description

The PI3A3160C is a high-bandwidth, fast Dual single-pole doublethrow (SPDT) CMOS switch. It can be used as an analog switch or as a low-delay bus switch. Specified over a wide operating power supply voltage range, 1.5 V to $4.2 \mathrm{~V} \pm 10 \%$, the switch has a typical On-Resistance of 0.8Ω at 3.3 V .

Break-before-make switching prevents both switches from being enabled simultaneously. This eliminates signal disruption during switching.
Control inputs, IN, tolerates input drive signals up to 3.3 V , independent of supply voltage.
PI3A3160C is a lower voltage and On-Resistance replacement for the PI5A3158.

Block Diagram / Pin Configuration

Function Table

Logic Input	Function
0	NCx Connected to COMx
1	NOx Connected to COMx

Absolute Maximum Ratings
Voltages Referenced to GND
$V_{C C}$
\qquad -0.5 V to 4.6 V
$\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\mathrm{COM}}, \mathrm{V}_{\mathrm{NC}}, \mathrm{V}_{\mathrm{NO}}{ }^{(1)}$
\qquad -1.5 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
or 30 mA , whichever occurs first
Current (any terminal)
\qquad $\pm 200 \mathrm{~mA}$
Peak Current, COM, NO, NC
(Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle).
\qquad $\pm 400 \mathrm{~mA}$
Temp Range
\qquad $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Notes:

1. Signals on NC, NO, COM, or IN exceeding V_{CC} or GND are clamped by internal diodes. Limit forward diode current to 30 mA .

Caution: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Electrical Specifications - Single +3.3 V Supply
$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	Min. ${ }^{(1)}$	Typ. ${ }^{(2)}$	Max. ${ }^{(1)}$	Units
Analog Switch						
Analog Signal Range ${ }^{(3)}$	V ${ }_{\text {ANALOG }}$		-1.0		V_{CC}	V
On-Resistance	R_{ON}	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=+1.5 \mathrm{~V} \end{aligned}$			1.3	Ω
On-Resistance Match Between Channels ${ }^{(4)}$	$\Delta \mathrm{R}_{\mathrm{ON}}$				0.15	
On-Resistance Flatness ${ }^{(5)}$	$\mathrm{R}_{\mathrm{FLAT}}(\mathrm{ON})$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.8 \mathrm{~V}, 2.0 \mathrm{~V} \end{aligned}$			0.1	
NO or NC Off Leakage Current ${ }^{(6)}$	$\mathrm{I}_{\mathrm{NO}(\mathrm{OFF})}$ or $\mathrm{I}_{\mathrm{NC}(\mathrm{OFF})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=+2.0 \mathrm{~V} \end{aligned}$	-2		2	
COM On Leakage Current ${ }^{(6)}$	$\mathrm{I}_{\mathrm{COM}(\mathrm{ON})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=+2.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=+2.0 \mathrm{~V} \end{aligned}$	-2		2	A

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet. $\mathrm{T}_{\mathrm{A}}=40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.

Typical values are tested $\mathrm{w} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
3. Guaranteed by design.
4. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}} \max .-\mathrm{R}_{\mathrm{ON}} \min$.
5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.
6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at $+25^{\circ} \mathrm{C}$.

Electrical Specifications - Single +3.3V Supply (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	Min. ${ }^{(1)}$	Typ. ${ }^{(2)}$	Max. ${ }^{(1)}$	Units
Logic Input						
Input High Voltage	V_{IH}	Guaranteed Logic High Level	1.4			V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	Guaranteed Logic LowLevel			0.5	
Input Current with Voltage High	$\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$, all others $=0 \mathrm{~V}$	-1		1	$\mu \mathrm{A}$
Input Current with Voltage Low	$\mathrm{I}_{\text {INL }}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$, all others $=\mathrm{V}_{\mathrm{CC}}$	-1		1	

Dynamic

Turn-On-Time	ton	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}$ or $\mathrm{V}_{\mathrm{NC}}=2.0 \mathrm{~V}$, Figure 1			50	ns
Turn-Off-Time	toff				50	
Break-Before-Make	tBBM	Figure 3	1		20	
Charge Injection ${ }^{(3)}$	Q	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \text { Figure } 2 \\ & \hline \end{aligned}$		110		pC
Off Isolation ${ }^{(4)}$	$\mathrm{O}_{\text {IRR }}$	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=1 \mathrm{MHz}$, Figure 4		-50		dB
CrossTalk ${ }^{(5)}$	$\mathrm{X}_{\text {TALK }}$	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=1 \mathrm{MHz}$, Figure 5				
NC or NO OffCapacitance	$\mathrm{C}_{\mathrm{NC} / \mathrm{NO}}$ (OFF)	$\mathrm{f}=1 \mathrm{MHz}$, Figure 6		35		pF
COM On Capacitance	$\mathrm{C}_{\text {COM(ON) }}$	$\mathrm{f}=1 \mathrm{MHz}$, Figure 7		110		
Control Input Capacitance	$\mathrm{C}_{\text {IN }}$	$\mathrm{f}=1 \mathrm{MHz}$		1		
-3dB Bandwidth	B_{W}	NO or NC to COM		65		MHz

Supply

Power Supply Range	V_{CC}		1.5		4.6	V
Positive Supply Current	I_{CC}	$\mathrm{V}_{\mathrm{CC}}=4.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{CC}	210	280	350	$\mu \mathrm{~A}$

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet. $\mathrm{T}_{\mathrm{A}}=40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing. Typical values are tested $\mathrm{w} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
3. Guaranteed by design..
4. Off Isolation $=20 \log _{10}\left[\mathrm{~V}_{\mathrm{COM}} /\left(\mathrm{V}_{\mathrm{NO}}\right.\right.$ or $\left.\left.\mathrm{V}_{\mathrm{NC}}\right)\right]$. See Figure 4.
5. Between any two switches. See Figure 5.

Electrical Specifications - Single $+\mathbf{2 . 5 V}$ Supply
$\left(\mathrm{V}_{\mathrm{CC}}=+2.5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	Min. ${ }^{(1)}$	Typ. ${ }^{(2)}$	Max. ${ }^{(1)}$	Units
Analog Switch						
Analog Signal Range ${ }^{(3)}$	VANALOG		-1		$\mathrm{V}_{\text {CC }}$	V
On-Resistance	R_{ON}	$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=-8 \mathrm{~mA},$ V_{NO} or $\mathrm{V}_{\mathrm{N}} \mathrm{C}=1.8 \mathrm{~V}$		0.9		Ω
On-Resistance Match Between Channels ${ }^{(4)}$	$\Delta \mathrm{R}_{\mathrm{ON}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=-8 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.8 \mathrm{~V}, 1.8 \mathrm{~V} \end{aligned}$		0.1		
On-Resistance Flatness ${ }^{(5)}$	$\mathrm{R}_{\mathrm{FLAT}(\mathrm{ON})}$			0.01		

Dynamic

Turn-On-Time	t_{ON}	$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$, V_{NO} or $\mathrm{V}_{\mathrm{NC}}=1.8 \mathrm{~V}$, Figure 1	$\mathrm{t}_{\mathrm{OFF}}$			50

Supply

Positive Supply Current	I_{CC}	$\mathrm{V}_{\mathrm{CC}}=2.75 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ or V_{CC} All Channels on or off	120	160	200	$\mu \mathrm{~A}$

Logic Input

V						
	V_{IH}	Guaranteed Logic High Level	1.4			0.5
Input Low Voltage	V_{IL}	Guaranteed Logic Low Level			1	$\mu \mathrm{~A}$
Input High Current	$\mathrm{I}_{\mathrm{INH}}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$, all others $=0 \mathrm{~V}$	-1		1	
Input Low Current	$\mathrm{I}_{\mathrm{INL}}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$, all others $=\mathrm{V}_{\mathrm{CC}}$	-1		1	

Parameter	Symbol	Conditions	Min. $^{(1)}$	Typ. $^{(\mathbf{2})}$	Max. $^{(\mathbf{1)}}$	Units
Positive Supply Current	I_{CC}	$\mathrm{V}_{\mathrm{CC}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{CC}	70	350	400	$\mu \mathrm{~A}$

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet. $\mathrm{T}_{\mathrm{A}}=40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing. Typical values are tested w $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
3. Guaranteed by design.
4. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}}$ max. $-\mathrm{R}_{\mathrm{ON}}$ min.
5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.

Test Circuits/Timing Diagrams

LOGIC INPUT WAVEFORMS INVERTED FOR SWITCHES THAT HAVE OPPOSITE LOGIC * 1.5V FOR 3.3V SUPPLY

Figure 1. Switching Time

Figure 2. Charge Injection

Figure 3. Break-Before-Make Interval

Test Circuits/Timing Diagrams (continued)

Figure 4. Off Isolation/On-Channel Bandwidth

Figure 6. Channel-Off Capacitance

Figure 8. Bandwidth

Figure 5. Crosstalk

Figure 7. Channel-On Capacitance

Packaging Mechanical: 12-Contact TDFN (ZE)

Packaging Mechanical: 12-Contact TDFN (ZG)

Ordering Information

Ordering Code	Package Code	Package Type	Top Mark
PI3A3160CZEEX	ZE	Pb-free \& Green, 12-contact TDFN	YH
PI3A3160CZGEX	ZG	Pb-free \& Green, 12-contact TDFN	YH

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- $\mathrm{E}=\mathrm{Pb}$-free and Green
- X suffix = Tape/Reel

