

3.0V, SOTiny™ 0.8Ω Dual SPDT Analog Switch with -1.0V to 4.2V Operating Range

Features

- Analog Signal Range: -1.0V to V_{CC} when switch is "ON"
- -1.0V Undershoot Protection when switch is "OFF"
- CMOS Technology for Bus and Analog Applications
- Low On-Resistance: 0.8Ω (+3.3V Supply)
- Wide V_{CC} Range: 1.5V to 4.2V $\pm 10\%$
- Low Power Consumption : 5µW
- · Rail-to-Rail switching throughout Signal Range
- Fast Switching Speed: 50ns max. at 3.3V
- High Off Isolation: -50dB at 1 MHz
- -45dB (1 MHz) Crosstalk Rejection Reduces Signal Distortion
- · Break-Before-Make Switching
- Extended Industrial Temperature Range: -40°C to 85°C
- Packaging: (Pb-free & Green)
 - -12-contact TDFN (ZE)
 - -12-contact TDFN (ZG)

Applications

- · Cell Phones
- PDAs
- Portable Instrumentation
- Battery Powered Communications
- Computer Peripherals

Pin Description

Pin Number	Name ^(1,2,3)	Description
8, 11	NOx	Data Port (Normally Open)
3, 6	GNDx	Ground
2, 5	NCx	Data Port (Normally Closed)
1, 4	COMx	Common Output/Data Port
9, 12	V_{CC_X}	Positive Power Supply ⁽¹⁾
7, 10	INx	Logic Control

Notes:

- 1. X = 0 or 1
- V_{CC0} and V_{CC1} are not internally connected. Each must be powered seperately.
- GND₀ and GND₁ are not internally connected. Each must be powered seperately.

Description

The PI3A3160C is a high-bandwidth, fast Dual single-pole double-throw (SPDT) CMOS switch. It can be used as an analog switch or as a low-delay bus switch. Specified over a wide operating power supply voltage range, 1.5V to 4.2V $\pm 10\%$, the switch has a typical On-Resistance of 0.8 Ω at 3.3V.

Break-before-make switching prevents both switches from being enabled simultaneously. This eliminates signal disruption during switching.

Control inputs, IN, tolerates input drive signals up to 3.3V, independent of supply voltage.

PI3A3160C is a lower voltage and On-Resistance replacement for the PI5A3158.

Block Diagram / Pin Configuration

Function Table

1

Logic Input	Function		
0	NCx Connected to COMx		
1	NOx Connected to COMx		

Absolute Maximum Ratings

Voltages Referenced to GND	
V _{CC}	0.5V to 4.6V
$V_{IN}, V_{COM}, V_{NC}, V_{NO}$ $^{(1)}$ or 30mA, whichever occurs first	$-1.5V$ to $V_{CC} + 0.3V$
Current (any terminal)	±200mA
Peak Current, COM, NO, NC	
(Pulsed at 1ms, 10% duty cycle)	±400mA
Temp Range	40°C to $+ 85$ °C

Thermal Information

Continuous Power Dissipation	
TDFN-12 (derate 7.1mW/°C above +70°C)	0.5W
Storage Temperature	–65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Notes:

Caution: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Electrical Specifications - Single +3.3V Supply

 $(V_{CC} = +3.3V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Parameter	Symbol	Conditions	Min.(1)	Typ. (2)	Max. (1)	Units
Analog Switch						
Analog Signal Range (3)	V _{ANALOG}		-1.0		V _{CC}	V
On-Resistance	R _{ON}	$V_{CC} = 2.7V$,			1.3	
On-Resistance Match Between Channels ⁽⁴⁾	$\Delta R_{ m ON}$	$I_{COM} = 100 \text{mA},$ $V_{NO} \text{ or } V_{NC} = +1.5 \text{V}$			0.15	Ω
On-Resistance Flatness ⁽⁵⁾	R _{FLAT(ON)}	V_{CC} = 2.7V, I_{COM} = 100mA, V_{NO} or V_{NC} = 0.8V, 2.0V			0.1	
NO or NC Off Leakage Current ⁽⁶⁾	I _{NO(OFF)} or I _{NC(OFF)}	$V_{CC} = 3.3V, V_{COM} = 0V,$ V_{NO} or $V_{NC} = +2.0V$	-2		2	4
COM On Leakage Current ⁽⁶⁾	I _{COM(ON)}	$V_{CC} = 3.3V, V_{COM} = +2.0V,$ V_{NO} or $V_{NC} = +2.0V$	-2		2	μА

Notes:

- 1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet. $T_A = 40$ °C to +85°C.
- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing. Typical values are tested w $T_A = 25^{\circ} C$
- 3. Guaranteed by design.
- 4. $\Delta R_{ON} = R_{ON} \text{ max.} R_{ON} \text{ min.}$
- 5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.
- 6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.

[.] Signals on NC, NO, COM, or IN exceeding V_{CC} or GND are clamped by internal diodes. Limit forward diode current to 30mA.

Electrical Specifications - Single +3.3V Supply (continued)

 $(V_{CC} = +3.3V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Parameter	Symbol	Conditions	Min. ⁽¹⁾	Typ. (2)	Max. (1)	Units	
Logic Input							
Input High Voltage	V_{IH}	Guaranteed Logic High Level	evel 1.4			17	
Input Low Voltage	$V_{ m IL}$	Guaranteed Logic LowLevel			0.5	V	
Input Current with Voltage High	I _{INH}	$V_{IN}=V_{CC}$, all others = $0V$	-1		1	4	
Input Current with Voltage Low	I _{INL}	V_{IN} = 0V, all others = V_{CC}	-1		1	μΑ	
Dynamic	•		•				
Turn-On-Time	ton	$V_{CC} = 3.3V, V_{NO}$			50		
Turn-Off-Time	t _{OFF}	or $V_{NC} = 2.0V$, Figure 1			50	ns	
Break-Before-Make	t _{BBM}	Figure 3	1		20	7	
Charge Injection ⁽³⁾ $Q \qquad \begin{array}{c} C_L = 1 \text{nF}, V_{GE} N = 0 V, \\ R_{GEN} = 0 \Omega, \text{ Figure 2} \end{array}$		$C_L = 1 \text{nF}, V_{GE} N = 0 \text{V},$ $R_{GEN} = 0 \Omega$, Figure 2		110		pC	
Off Isolation ⁽⁴⁾	O _{IRR}	$R_L = 50\Omega$, $f = 1$ MHz, Figure 4		50		ID	
CrossTalk ⁽⁵⁾	X _{TALK}	$R_L = 50\Omega$, $f = 1$ MHz, Figure 5	1	-50		dB	
NC or NO OffCapacitance	C _{NC/NO} (OFF)	f = 1 MHz, Figure 6		35			
COM On Capacitance	C _{COM(ON)}	f = 1 MHz, Figure 7		110		pF	
		f=1 MHz		1			
-3dB Bandwidth	B_{W}	NO or NC to COM		65		MHz	
Supply	•		•				
Power Supply Range	V _{CC}		1.5		4.6	V	
Positive Supply Current	I _{CC}	$V_{CC} = 4.6V$, $V_{IN} = 0V$ or V_{CC}	210	280	350	μΑ	

Notes:

- 1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet. $T_A = 40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$.
- T_A = 40°C to +85°C.
 Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing. Typical values are tested w T_A = 25°C
- 3. Guaranteed by design..
- 4. Off Isolation = $20\log_{10} [V_{COM} / (V_{NO} \text{ or } V_{NC})]$. See Figure 4.
- 5. Between any two switches. See Figure 5.

Electrical Specifications - Single +2.5V Supply

 $(V_{CC} = +2.5V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Parameter Symbo		Conditions	Min. ⁽¹⁾	Typ. (2)	Max. (1)	Units	
Analog Switch							
Analog Signal Range ⁽³⁾	V _{ANALOG}		-1		V _{CC}	V	
On-Resistance	R _{ON}	$V_{CC} = 2.5V, I_{COM} = -8mA,$ V_{NO} or $V_{NC} = 1.8V$		0.9			
On-Resistance Match Between Channels ⁽⁴⁾	ΔR_{ON}	$V_{CC} = 2.5 \text{V}, I_{COM} = -8 \text{mA},$		0.1		Ω	
On-Resistance Flatness ⁽⁵⁾	R _{FLAT(ON)}	V_{NO} or $V_{NC} = 0.8V$, 1.8V		0.01		ı	
Dynamic	_			-			
Turn-On-Time	t _{ON}	$V_{CC} = 2.5V$,					
Turn-Off-Time t _{OFF}		V_{NO} or $V_{NC} = 1.8V$, Figure 1			50	ns	
Break-Before-Make	t _{BBM}	Figure 3	1		20		
Charge Injection ⁽³⁾ Q		$C_L = 1$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0$ V, Figure 2		90		рC	
Supply							
Positive Supply Current I _{CC}		V_{CC} = 2.75V, V_{IN} = 0V or V_{CC} All Channels on or off	120	160	200	μΑ	
Logic Input							
Input High Voltage V _{IH}		Guaranteed Logic High Level	1.4			V	
Input Low Voltage V _{IL}		Guaranteed Logic Low Level			0.5	v	
Input High Current I _{INH}		$V_{IN} = V_{CC}$, all others = $0V$	-1		1	μΑ	
Input Low Current	I _{INL}	$V_{IN} = 0V$, all others = V_{CC}	-1		1	μΑ	

Parameter	Symbol	Conditions	Min.(1)	Typ. (2)	Max. (1)	Units
Positive Supply Current	I_{CC}	$V_{CC} = 1.5V$, $V_{IN} = 0V$ or V_{CC}	70	350	400	μΑ

Notes:

- 1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet. $T_A = 40$ °C to +85°C.
- Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
 Typical values are tested w T_A = 25°C
- Guaranteed by design.
- 4. $\Delta R_{ON} = R_{ON} \text{ max.} R_{ON} \text{ min.}$
- 5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.

Test Circuits/Timing Diagrams

Figure 1. Switching Time

Figure 2. Charge Injection

Figure 3. Break-Before-Make Interval

Test Circuits/Timing Diagrams (continued)

Figure 4. Off Isolation/On-Channel Bandwidth

Figure 6. Channel-Off Capacitance

Figure 8. Bandwidth

Figure 5. Crosstalk

Figure 7. Channel-On Capacitance

Packaging Mechanical: 12-Contact TDFN (ZE)

Packaging Mechanical: 12-Contact TDFN (ZG)

Ordering Information

Ordering Code Package Code		Package Type	Top Mark	
PI3A3160CZEEX	ZE	Pb-free & Green, 12-contact TDFN	YH	
PI3A3160CZGEX	ZG	Pb-free & Green, 12-contact TDFN	YH	

Notes

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- E = Pb-free and Green
- X suffix = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com