

# LM3S6965 Microcontroller

DATA SHEET

Copyright © 2007 Luminary Micro, Inc.

# Legal Disclaimers and Trademark Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH LUMINARY MICRO PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN LUMINARY MICRO'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, LUMINARY MICRO ASSUMES NO LIABILITY WHATSOEVER, AND LUMINARY MICRO DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF LUMINARY MICRO'S PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. LUMINARY MICRO'S PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE-SUSTAINING APPLICATIONS.

Luminary Micro may make changes to specifications and product descriptions at any time, without notice. Contact your local Luminary Micro sales office or your distributor to obtain the latest specifications before placing your product order.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Luminary Micro reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Copyright © 2007 Luminary Micro, Inc. All rights reserved. Stellaris is a registered trademark and Luminary Micro and the Luminary Micro logo are trademarks of Luminary Micro, Inc. or its subsidiaries in the United States and other countries. ARM and Thumb are registered trademarks and Cortex is a trademark of ARM Limited. Other names and brands may be claimed as the property of others.

Luminary Micro, Inc. 108 Wild Basin, Suite 350 Austin, TX 78746 Main: +1-512-279-8800 Fax: +1-512-279-8879 http://www.luminarymicro.com







LUMINARY MICRO<sup>™</sup>

# **Table of Contents**

| About   | This Document                               | 20 |
|---------|---------------------------------------------|----|
| Audiend | ce                                          | 20 |
| About 7 | About This Manual                           |    |
| Related | Related Documents 2                         |    |
| Docum   | entation Conventions                        | 20 |
| 1       | Overview                                    | 22 |
| 1.1     | Product Features                            |    |
| 1.2     | Target Applications                         | 28 |
| 1.3     | High-Level Block Diagram                    | 28 |
| 1.4     | Functional Overview                         | 29 |
| 1.4.1   | ARM Cortex™-M3                              | 30 |
| 1.4.2   | Motor Control Peripherals                   | 30 |
| 1.4.3   | Serial Communications Peripherals           | 31 |
| 1.4.4   | System Peripherals                          | 32 |
| 1.4.5   | Memory Peripherals                          | 33 |
| 1.4.6   | Additional Features                         | 34 |
| 1.4.7   | Hardware Details                            | 34 |
| 2       | Cortex-M3 Core                              | 36 |
| 2.1     | Block Diagram                               |    |
| 2.2     | Functional Description                      | 37 |
| 2.2.1   | Serial Wire and JTAG Debug                  | 37 |
| 2.2.2   | Embedded Trace Macrocell (ETM)              | 38 |
| 2.2.3   | Trace Port Interface Unit (TPIU)            | 38 |
| 2.2.4   | ROM Table                                   | 38 |
| 2.2.5   | Memory Protection Unit (MPU)                | 38 |
| 2.2.6   | Nested Vectored Interrupt Controller (NVIC) | 38 |
| 3       | Memory Map                                  | 42 |
| 4       | Interrupts                                  | 44 |
| 5       | JTAG                                        | 47 |
| 5.1     | Block Diagram                               |    |
| 5.2     | Functional Description                      | 48 |
| 5.2.1   | JTAG Interface Pins                         | 49 |
| 5.2.2   | JTAG TAP Controller                         | 50 |
| 5.2.3   | Shift Registers                             | 51 |
| 5.2.4   | Operational Considerations                  | 51 |
| 5.3     | Initialization and Configuration            | 54 |
| 5.4     | Register Descriptions                       | 54 |
| 5.4.1   | Instruction Register (IR)                   | 54 |
| 5.4.2   | Data Registers                              | 56 |
| 6       | System Control                              | 58 |
| 6.1     | Functional Description                      |    |
| 6.1.1   | Device Identification                       | 58 |
| 6.1.2   | Reset Control                               | 58 |
| 6.1.3   | Power Control                               | 61 |

| 6.1.4                                                                                                                                                             | Clock Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 61                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.1.5                                                                                                                                                             | System Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 63                                                                                                                                                                                                                                     |
| 6.2                                                                                                                                                               | Initialization and Configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 64                                                                                                                                                                                                                                     |
| 6.3                                                                                                                                                               | Register Map                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 64                                                                                                                                                                                                                                     |
| 6.4                                                                                                                                                               | Register Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 65                                                                                                                                                                                                                                     |
| 7                                                                                                                                                                 | Hibernation Module                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 117                                                                                                                                                                                                                                  |
| 7.1                                                                                                                                                               | Block Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                        |
| 7.2                                                                                                                                                               | Functional Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                        |
| 7.2.1                                                                                                                                                             | Register Access Timing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                        |
| 7.2.2                                                                                                                                                             | Clock Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 119                                                                                                                                                                                                                                  |
| 7.2.3                                                                                                                                                             | Battery Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 119                                                                                                                                                                                                                                  |
| 7.2.4                                                                                                                                                             | Real-Time Clock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 119                                                                                                                                                                                                                                  |
| 7.2.5                                                                                                                                                             | Non-Volatile Memory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . 120                                                                                                                                                                                                                                  |
| 7.2.6                                                                                                                                                             | Power Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 120                                                                                                                                                                                                                                  |
| 7.2.7                                                                                                                                                             | Interrupts and Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 120                                                                                                                                                                                                                                  |
| 7.3                                                                                                                                                               | Initialization and Configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 120                                                                                                                                                                                                                                  |
| 7.3.1                                                                                                                                                             | Initialization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                        |
| 7.3.2                                                                                                                                                             | RTC Match Functionality (No Hibernation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                        |
| 7.3.3                                                                                                                                                             | RTC Match/Wake-Up from Hibernation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                        |
| 7.3.4                                                                                                                                                             | External Wake-Up from Hibernation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 121                                                                                                                                                                                                                                  |
| 7.3.5                                                                                                                                                             | RTC/External Wake-Up from Hibernation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 122                                                                                                                                                                                                                                  |
| 7.4                                                                                                                                                               | Register Map                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                        |
| 7.5                                                                                                                                                               | Register Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 122                                                                                                                                                                                                                                  |
| 0                                                                                                                                                                 | Internal Momeny                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 125                                                                                                                                                                                                                                    |
| 8                                                                                                                                                                 | Internal Memory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 135                                                                                                                                                                                                                                    |
| <b>o</b><br>8.1                                                                                                                                                   | Block Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                        |
| -                                                                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 135                                                                                                                                                                                                                                  |
| 8.1                                                                                                                                                               | Block Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 135<br>. 135                                                                                                                                                                                                                         |
| 8.1<br>8.2                                                                                                                                                        | Block Diagram<br>Functional Description<br>SRAM Memory<br>Flash Memory                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 135<br>. 135<br>. 135<br>. 136                                                                                                                                                                                                       |
| 8.1<br>8.2<br>8.2.1<br>8.2.2<br>8.3                                                                                                                               | Block Diagram<br>Functional Description<br>SRAM Memory<br>Flash Memory<br>Flash Memory Initialization and Configuration                                                                                                                                                                                                                                                                                                                                                                                                                             | . 135<br>. 135<br>. 135<br>. 135<br>. 136<br>. 137                                                                                                                                                                                     |
| 8.1<br>8.2<br>8.2.1<br>8.2.2<br>8.3<br>8.3.1                                                                                                                      | Block Diagram<br>Functional Description<br>SRAM Memory<br>Flash Memory Initialization and Configuration<br>Flash Programming                                                                                                                                                                                                                                                                                                                                                                                                                        | . 135<br>. 135<br>. 135<br>. 136<br>. 137<br>. 137                                                                                                                                                                                     |
| 8.1<br>8.2<br>8.2.1<br>8.2.2<br>8.3<br>8.3.1<br>8.3.2                                                                                                             | Block Diagram<br>Functional Description<br>SRAM Memory<br>Flash Memory<br>Flash Memory Initialization and Configuration<br>Flash Programming<br>Nonvolatile Register Programming                                                                                                                                                                                                                                                                                                                                                                    | . 135<br>. 135<br>. 135<br>. 136<br>. 137<br>. 137<br>. 138                                                                                                                                                                            |
| 8.1<br>8.2<br>8.2.1<br>8.2.2<br>8.3<br>8.3.1<br>8.3.2<br>8.4                                                                                                      | Block Diagram<br>Functional Description<br>SRAM Memory<br>Flash Memory<br>Flash Memory Initialization and Configuration<br>Flash Programming<br>Nonvolatile Register Programming<br>Register Map                                                                                                                                                                                                                                                                                                                                                    | . 135<br>. 135<br>. 135<br>. 136<br>. 137<br>. 137<br>. 138<br>. 138                                                                                                                                                                   |
| 8.1<br>8.2<br>8.2.1<br>8.2.2<br>8.3<br>8.3.1<br>8.3.2                                                                                                             | Block Diagram<br>Functional Description<br>SRAM Memory<br>Flash Memory<br>Flash Memory Initialization and Configuration<br>Flash Programming<br>Nonvolatile Register Programming                                                                                                                                                                                                                                                                                                                                                                    | . 135<br>. 135<br>. 135<br>. 136<br>. 137<br>. 137<br>. 138<br>. 138                                                                                                                                                                   |
| 8.1<br>8.2<br>8.2.1<br>8.2.2<br>8.3<br>8.3.1<br>8.3.2<br>8.4                                                                                                      | Block Diagram<br>Functional Description<br>SRAM Memory<br>Flash Memory<br>Flash Memory Initialization and Configuration<br>Flash Programming<br>Nonvolatile Register Programming<br>Register Map                                                                                                                                                                                                                                                                                                                                                    | . 135<br>. 135<br>. 135<br>. 136<br>. 137<br>. 137<br>. 138<br>. 138                                                                                                                                                                   |
| 8.1<br>8.2<br>8.2.1<br>8.2.2<br>8.3<br>8.3.1<br>8.3.2<br>8.4<br>8.5                                                                                               | Block Diagram         Functional Description         SRAM Memory         Flash Memory         Flash Memory Initialization and Configuration         Flash Programming         Nonvolatile Register Programming         Register Map         Flash Register Descriptions         GPIO         Function Description                                                                                                                                                                                                                                   | . 135<br>. 135<br>. 135<br>. 136<br>. 137<br>. 137<br>. 137<br>. 138<br>. 138<br>. 139<br>. <b>159</b><br>. 159                                                                                                                        |
| 8.1<br>8.2<br>8.2.1<br>8.2.2<br>8.3<br>8.3.1<br>8.3.2<br>8.4<br>8.5<br><b>9</b><br>9.1<br>9.1.1                                                                   | Block Diagram         Functional Description         SRAM Memory         Flash Memory         Flash Memory Initialization and Configuration         Flash Programming         Nonvolatile Register Programming         Register Map         Flash Register Descriptions         GPIO         Function Description         Data Control                                                                                                                                                                                                              | . 135<br>. 135<br>. 135<br>. 136<br>. 137<br>. 137<br>. 138<br>. 138<br>. 138<br>. 138<br>. 139<br>. 159<br>. 159<br>. 159                                                                                                             |
| 8.1<br>8.2<br>8.2.1<br>8.2.2<br>8.3<br>8.3.1<br>8.3.2<br>8.4<br>8.5<br><b>9</b><br>9.1<br>9.1.1<br>9.1.2                                                          | Block Diagram         Functional Description         SRAM Memory         Flash Memory         Flash Memory Initialization and Configuration         Flash Programming         Nonvolatile Register Programming         Register Map         Flash Register Descriptions         GPIO         Function Description         Data Control         Interrupt Control                                                                                                                                                                                    | . 135<br>. 135<br>. 135<br>. 136<br>. 137<br>. 137<br>. 138<br>. 138<br>. 138<br>. 139<br>. 159<br>. 159<br>. 159<br>. 160                                                                                                             |
| 8.1<br>8.2<br>8.2.1<br>8.2.2<br>8.3<br>8.3.1<br>8.3.2<br>8.4<br>8.5<br><b>9</b><br>9.1<br>9.1.1<br>9.1.2<br>9.1.3                                                 | Block Diagram         Functional Description         SRAM Memory         Flash Memory         Flash Memory Initialization and Configuration         Flash Programming         Nonvolatile Register Programming         Register Map         Flash Register Descriptions         GPIO         Function Description         Data Control         Interrupt Control         Mode Control                                                                                                                                                               | . 135<br>. 135<br>. 135<br>. 136<br>. 137<br>. 137<br>. 137<br>. 138<br>. 138<br>. 139<br>. 159<br>. 159<br>. 159<br>. 160<br>. 161                                                                                                    |
| 8.1<br>8.2<br>8.2.1<br>8.2.2<br>8.3<br>8.3.1<br>8.3.2<br>8.4<br>8.5<br><b>9</b><br>9.1<br>9.1.1<br>9.1.2<br>9.1.3<br>9.1.4                                        | Block Diagram         Functional Description         SRAM Memory         Flash Memory         Flash Memory Initialization and Configuration         Flash Programming         Nonvolatile Register Programming         Register Map         Flash Register Descriptions         GPIO         Function Description         Data Control         Interrupt Control         Mode Control         Commit Control                                                                                                                                        | . 135<br>. 135<br>. 135<br>. 136<br>. 137<br>. 137<br>. 137<br>. 138<br>. 138<br>. 138<br>. 138<br>. 139<br>. 159<br>. 159<br>. 159<br>. 160<br>. 161<br>. 161                                                                         |
| 8.1<br>8.2<br>8.2.1<br>8.2.2<br>8.3<br>8.3.1<br>8.3.2<br>8.4<br>8.5<br><b>9</b><br>9.1<br>9.1.1<br>9.1.2<br>9.1.3<br>9.1.4<br>9.1.5                               | Block Diagram         Functional Description         SRAM Memory         Flash Memory         Flash Memory Initialization and Configuration         Flash Programming         Nonvolatile Register Programming         Register Map         Flash Register Descriptions         GPIO         Function Description         Data Control         Interrupt Control         Mode Control         Pad Control                                                                                                                                           | . 135<br>. 135<br>. 135<br>. 136<br>. 137<br>. 137<br>. 137<br>. 138<br>. 138<br>. 138<br>. 138<br>. 139<br>. 159<br>. 159<br>. 159<br>. 160<br>. 161<br>. 161<br>. 161                                                                |
| 8.1<br>8.2<br>8.2.1<br>8.2.2<br>8.3<br>8.3.1<br>8.3.2<br>8.4<br>8.5<br><b>9</b><br>9.1<br>9.1.1<br>9.1.2<br>9.1.3<br>9.1.4<br>9.1.5<br>9.1.6                      | Block Diagram         Functional Description         SRAM Memory         Flash Memory         Flash Memory Initialization and Configuration         Flash Programming         Nonvolatile Register Programming         Register Map         Flash Register Descriptions         GPIO         Function Description         Data Control         Interrupt Control         Mode Control         Pad Control         Identification                                                                                                                    | . 135<br>. 135<br>. 135<br>. 136<br>. 137<br>. 137<br>. 138<br>. 139<br>. 139<br>. 159<br>. 159<br>. 159<br>. 159<br>. 160<br>. 161<br>. 161<br>. 161<br>. 162                                                                         |
| 8.1<br>8.2<br>8.2.1<br>8.2.2<br>8.3<br>8.3.1<br>8.3.2<br>8.4<br>8.5<br><b>9</b><br>9.1<br>9.1.1<br>9.1.2<br>9.1.3<br>9.1.4<br>9.1.5<br>9.1.6<br>9.2               | Block Diagram         Functional Description         SRAM Memory         Flash Memory         Flash Memory Initialization and Configuration         Flash Programming         Nonvolatile Register Programming         Register Map         Flash Register Descriptions         GPIO         Function Description         Data Control         Interrupt Control         Mode Control         Commit Control         Pad Control         Identification         Initialization and Configuration                                                    | . 135<br>. 135<br>. 135<br>. 136<br>. 137<br>. 137<br>. 138<br>. 138<br>. 138<br>. 139<br>. 159<br>. 159<br>. 159<br>. 159<br>. 160<br>. 161<br>. 161<br>. 161<br>. 162<br>. 162                                                       |
| 8.1<br>8.2<br>8.2.1<br>8.2.2<br>8.3<br>8.3.1<br>8.3.2<br>8.4<br>8.5<br><b>9</b><br>9.1<br>9.1.1<br>9.1.2<br>9.1.3<br>9.1.4<br>9.1.5<br>9.1.6<br>9.2<br>9.3        | Block Diagram       Functional Description         SRAM Memory       Flash Memory         Flash Memory Initialization and Configuration       Flash Programming         Nonvolatile Register Programming       Register Map         Flash Register Descriptions       GPIO         Function Description       Data Control         Interrupt Control       Mode Control         Commit Control       Pad Control         Identification       Initialization and Configuration         Register Map       Register Map                              | . 135<br>. 135<br>. 135<br>. 136<br>. 137<br>. 137<br>. 138<br>. 138<br>. 138<br>. 138<br>. 138<br>. 139<br>. 159<br>. 159<br>. 159<br>. 161<br>. 161<br>. 161<br>. 162<br>. 162<br>. 163                                              |
| 8.1<br>8.2<br>8.2.1<br>8.2.2<br>8.3<br>8.3.1<br>8.3.2<br>8.4<br>8.5<br><b>9</b><br>9.1<br>9.1.1<br>9.1.2<br>9.1.3<br>9.1.4<br>9.1.5<br>9.1.6<br>9.2<br>9.3<br>9.4 | Block Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 135<br>. 135<br>. 135<br>. 136<br>. 137<br>. 137<br>. 138<br>. 139<br>. 139<br>. 159<br>. 159<br>. 159<br>. 159<br>. 161<br>. 161<br>. 161<br>. 161<br>. 162<br>. 163<br>. 165                                                       |
| 8.1<br>8.2<br>8.2.1<br>8.2.2<br>8.3<br>8.3.1<br>8.3.2<br>8.4<br>8.5<br><b>9</b><br>9.1<br>9.1.1<br>9.1.2<br>9.1.3<br>9.1.4<br>9.1.5<br>9.1.6<br>9.2<br>9.3        | Block Diagram         Functional Description         SRAM Memory         Flash Memory         Flash Memory Initialization and Configuration         Flash Programming         Nonvolatile Register Programming         Register Map         Flash Register Descriptions         GPIO         Function Description         Data Control         Interrupt Control         Mode Control         Commit Control         Pad Control         Identification         Initialization and Configuration         Register Map         Register Descriptions | . 135<br>. 135<br>. 135<br>. 137<br>. 137<br>. 137<br>. 138<br>. 139<br>. 139<br>. 159<br>. 159<br>. 159<br>. 159<br>. 160<br>. 161<br>. 161<br>. 161<br>. 162<br>. 162<br>. 163<br>. 165<br><b>200</b>                                |
| 8.1<br>8.2<br>8.2.1<br>8.2.2<br>8.3<br>8.3.1<br>8.3.2<br>8.4<br>8.5<br><b>9</b><br>9.1<br>9.1.1<br>9.1.2<br>9.1.3<br>9.1.4<br>9.1.5<br>9.1.6<br>9.2<br>9.3<br>9.4 | Block Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 135<br>. 135<br>. 135<br>. 137<br>. 137<br>. 137<br>. 138<br>. 138<br>. 138<br>. 138<br>. 138<br>. 139<br>. 159<br>. 159<br>. 159<br>. 159<br>. 161<br>. 161<br>. 161<br>. 161<br>. 162<br>. 162<br>. 163<br>. 165<br>. 200<br>. 201 |

| 10.2.1 | GPTM Reset Conditions               | 201 |
|--------|-------------------------------------|-----|
| 10.2.2 | 32-Bit Timer Operating Modes        | 201 |
| 10.2.3 | 16-Bit Timer Operating Modes        | 203 |
| 10.3   | Initialization and Configuration    | 207 |
| 10.3.1 | 32-Bit One-Shot/Periodic Timer Mode | 207 |
| 10.3.2 | 32-Bit Real-Time Clock (RTC) Mode   | 208 |
| 10.3.3 | 16-Bit One-Shot/Periodic Timer Mode | 208 |
| 10.3.4 | 16-Bit Input Edge Count Mode        | 209 |
| 10.3.5 | 16-Bit Input Edge Timing Mode       |     |
| 10.3.6 | 16-Bit PWM Mode                     |     |
| 10.4   | Register Map                        | 210 |
| 10.5   | Register Descriptions               |     |
| 11     | Watchdog Timer                      |     |
| 11.1   | Block Diagram                       |     |
| 11.2   | Functional Description              |     |
| 11.3   | Initialization and Configuration    |     |
| 11.4   | Register Map                        |     |
| 11.4   | Register Descriptions               |     |
|        |                                     |     |
| 12     |                                     |     |
| 12.1   | Block Diagram                       |     |
| 12.2   | Functional Description              |     |
| 12.2.1 | Sample Sequencers                   |     |
| 12.2.2 | Module Control                      |     |
| 12.2.3 | Hardware Sample Averaging Circuit   |     |
|        | Analog-to-Digital Converter         |     |
| 12.2.5 | Test Modes                          |     |
| 12.2.6 | Internal Temperature Sensor         |     |
| 12.3   | Initialization and Configuration    |     |
| 12.3.1 | Module Initialization               |     |
| 12.3.2 | Sample Sequencer Configuration      |     |
| 12.4   | Register Map                        |     |
| 12.5   | Register Descriptions               | 262 |
| 13     | UART                                | 289 |
| 13.1   | Block Diagram                       | 290 |
| 13.2   | Functional Description              |     |
| 13.2.1 | Transmit/Receive Logic              | 290 |
| 13.2.2 | Baud-Rate Generation                | 291 |
| 13.2.3 | Data Transmission                   | 292 |
| 13.2.4 | Serial IR (SIR)                     | 292 |
| 13.2.5 | FIFO Operation                      | 293 |
| 13.2.6 | Interrupts                          | 293 |
| 13.2.7 | Loopback Operation                  | 294 |
| 13.2.8 | IrDA SIR block                      | 294 |
| 13.3   | Initialization and Configuration    | 294 |
| 13.4   | Register Map                        | 295 |
| 13.5   | Register Descriptions               | 296 |
| 14     | SSI                                 | 329 |

| 14.1   | Block Diagram                                         | 329 |
|--------|-------------------------------------------------------|-----|
| 14.2   | Functional Description                                | 329 |
| 14.2.1 | Bit Rate Generation                                   | 330 |
| 14.2.2 | FIFO Operation                                        | 330 |
| 14.2.3 | Interrupts                                            | 330 |
| 14.2.4 | Frame Formats                                         |     |
| 14.3   | Initialization and Configuration                      | 338 |
| 14.4   | Register Map                                          |     |
| 14.5   | Register Descriptions                                 | 340 |
| 15     | Inter-Integrated Circuit (I <sup>2</sup> C) Interface | 363 |
| 15.1   | Block Diagram                                         | 363 |
| 15.2   | Functional Description                                | 363 |
| 15.2.1 | I <sup>2</sup> C Bus Functional Overview              | 364 |
| 15.2.2 | Available Speed Modes                                 | 366 |
| 15.2.3 | Interrupts                                            | 367 |
| 15.2.4 | Loopback Operation                                    | 367 |
| 15.2.5 | Command Sequence Flow Charts                          | 368 |
| 15.3   | Initialization and Configuration                      | 374 |
| 15.4   | I <sup>2</sup> C Register Map                         | 375 |
| 15.5   | Register Descriptions (I <sup>2</sup> C Master)       | 376 |
| 15.6   | Register Descriptions (I2C Slave)                     | 389 |
| 16     | Ethernet                                              | 398 |
| 16.1   | Block Diagram                                         | 399 |
| 16.2   | Functional Description                                | 399 |
| 16.2.1 | Internal MII Operation                                | 399 |
| 16.2.2 | PHY Configuration/Operation                           | 400 |
| 16.2.3 | MAC Configuration/Operation                           |     |
| 16.2.4 | Interrupts                                            | 403 |
| 16.3   | Initialization and Configuration                      | 404 |
| 16.4   | Ethernet MAC Register Map                             | 404 |
| 16.5   | Ethernet MAC Register Descriptions                    | 405 |
| 16.6   | MII Management Register Map                           | 422 |
| 16.7   | MII Management Register Descriptions                  | 423 |
| 17     | Analog Comparators                                    | 442 |
| 17.1   | Block Diagram                                         |     |
| 17.2   |                                                       |     |
| 17.2.1 |                                                       |     |
| 17.3   | Initialization and Configuration                      |     |
| 17.4   | Register Map                                          |     |
| 17.5   | Register Descriptions                                 |     |
| 18     | PWM                                                   | 454 |
| 18.1   | Block Diagram                                         |     |
| 18.2   | Functional Description                                |     |
| 18.2.1 | PWM Timer                                             |     |
| 18.2.2 | PWM Comparators                                       |     |
| 18.2.3 |                                                       |     |
| 10.2.5 | PWM Signal Generator                                  | 456 |

| 18.2.5  | Interrupt/ADC-Trigger Selector                       | 457 |
|---------|------------------------------------------------------|-----|
| 18.2.6  | Synchronization Methods                              | 457 |
| 18.2.7  | Fault Conditions                                     | 458 |
| 18.2.8  | Output Control Block                                 | 458 |
| 18.3    | Initialization and Configuration                     | 458 |
| 18.4    | Register Map                                         | 459 |
| 18.5    | Register Descriptions                                | 460 |
| 19      | QEI                                                  | 485 |
| 19.1    | Block Diagram                                        |     |
| 19.2    | Functional Description                               |     |
| 19.3    | Initialization and Configuration                     |     |
| 19.4    | Register Map                                         |     |
| 19.5    | Register Descriptions                                |     |
| 20      | Pin Diagram                                          |     |
| 21      | Signal Tables                                        |     |
|         | •                                                    |     |
| 22      | Operating Characteristics                            | 518 |
| 23      | Electrical Characteristics                           |     |
| 23.1    | DC Characteristics                                   |     |
| 23.1.1  | Maximum Ratings                                      | 519 |
| 23.1.2  | Recommended DC Operating Conditions                  | 519 |
| 23.1.3  | On-Chip Low Drop-Out (LDO) Regulator Characteristics | 520 |
| 23.1.4  | Power Specifications                                 | 520 |
| 23.1.5  | Flash Memory Characteristics                         | 522 |
| 23.2    | AC Characteristics                                   | 522 |
| 23.2.1  | Load Conditions                                      | 522 |
| 23.2.2  | Clocks                                               | 522 |
| 23.2.3  | Temperature Sensor                                   | 523 |
| 23.2.4  | Analog-to-Digital Converter                          | 523 |
| 23.2.5  | Analog Comparator                                    | 524 |
| 23.2.6  | I <sup>2</sup> C                                     | 524 |
| 23.2.7  | Ethernet Controller                                  | 525 |
| 23.2.8  | Hibernation Module                                   | 528 |
| 23.2.9  | Synchronous Serial Interface (SSI)                   | 528 |
| 23.2.10 | JTAG and Boundary Scan                               | 530 |
| 23.2.11 | General-Purpose I/O                                  | 531 |
| 23.2.12 | Reset                                                | 532 |
| 24      | Package Information                                  | 534 |
| 25      | Ordering Information                                 | 536 |
| 25.1    | Ordering Information                                 |     |
| 25.2    | Company Information                                  |     |
| 25.3    | Support Information                                  |     |
| Α       | Serial Flash Loader                                  | 537 |
| A.1     | Serial Flash Loader                                  |     |
| A.2     | Interfaces                                           |     |
| A.2.1   | UART                                                 |     |
| A.2.2   |                                                      |     |
|         |                                                      |     |

| A.3   | Packet Handling           | 538 |
|-------|---------------------------|-----|
| A.3.1 | Packet Format             | 538 |
| A.3.2 | Sending Packets           | 538 |
| A.3.3 | Receiving Packets         | 538 |
| A.4   | Commands                  | 539 |
| A.4.1 | COMMAND_PING (0X20)       | 539 |
| A.4.2 | COMMAND_GET_STATUS (0x23) | 539 |
| A.4.3 | COMMAND_DOWNLOAD (0x21)   | 539 |
| A.4.4 | COMMAND_SEND_DATA (0x24)  | 540 |
| A.4.5 | COMMAND_RUN (0x22)        | 540 |
| A.4.6 | COMMAND_RESET (0x25)      | 540 |

# List of Figures

| Figure 1-1.                  | Stellaris® Fury-class High-Level Block Diagram                        | 29  |
|------------------------------|-----------------------------------------------------------------------|-----|
| Figure 2-1.                  | CPU Block Diagram                                                     | 37  |
| Figure 2-2.                  | TPIU Block Diagram                                                    | 38  |
| Figure 5-1.                  | JTAG Module Block Diagram                                             | 48  |
| Figure 5-2.                  | Test Access Port State Machine                                        | 51  |
| Figure 5-3.                  | IDCODE Register Format                                                | 56  |
| Figure 5-4.                  | BYPASS Register Format                                                | 57  |
| Figure 5-5.                  | Boundary Scan Register Format                                         | 57  |
| Figure 6-1.                  | External Circuitry to Extend Reset                                    | 59  |
| Figure 7-1.                  | Hibernation Module Block Diagram                                      | 118 |
| Figure 8-1.                  | Flash Block Diagram                                                   | 135 |
| Figure 9-1.                  | GPIODATA Write Example                                                | 160 |
| Figure 9-2.                  | GPIODATA Read Example                                                 |     |
| Figure 10-1.                 | GPTM Module Block Diagram                                             | 201 |
| Figure 10-2.                 | 16-Bit Input Edge Count Mode Example                                  |     |
| Figure 10-3.                 | 16-Bit Input Edge Time Mode Example                                   |     |
| Figure 10-4.                 | 16-Bit PWM Mode Example                                               |     |
| Figure 11-1.                 | WDT Module Block Diagram                                              |     |
| Figure 12-1.                 | ADC Module Block Diagram                                              |     |
| Figure 12-2.                 | Internal Temperature Sensor Characteristic                            |     |
| Figure 13-1.                 | UART Module Block Diagram                                             |     |
| Figure 13-2.                 | UART Character Frame                                                  |     |
| Figure 13-3.                 | IrDA Data Modulation                                                  |     |
| Figure 14-1.                 | SSI Module Block Diagram                                              |     |
| Figure 14-2.                 | TI Synchronous Serial Frame Format (Single Transfer)                  |     |
| Figure 14-3.                 | TI Synchronous Serial Frame Format (Continuous Transfer)              |     |
| Figure 14-4.                 | Freescale SPI Format (Single Transfer) with SPO=0 and SPH=0           |     |
| Figure 14-5.                 | Freescale SPI Format (Continuous Transfer) with SPO=0 and SPH=0       |     |
| Figure 14-6.                 | Freescale SPI Frame Format with SPO=0 and SPH=1                       |     |
| Figure 14-7.                 | Freescale SPI Frame Format (Single Transfer) with SPO=1 and SPH=0     |     |
| Figure 14-8.                 | Freescale SPI Frame Format (Continuous Transfer) with SPO=1 and SPH=0 |     |
| Figure 14-9.                 | Freescale SPI Frame Format with SPO=1 and SPH=1                       |     |
| -                            | MICROWIRE Frame Format (Single Frame)                                 |     |
| -                            | MICROWIRE Frame Format (Continuous Transfer)                          |     |
|                              | MICROWIRE Frame Format, SSIFss Input Setup and Hold Requirements      |     |
|                              | I <sup>2</sup> C Block Diagram                                        |     |
| Figure 15-2.                 | I <sup>2</sup> C Bus Configuration                                    |     |
| Figure 15-3.                 | START and STOP Conditions                                             |     |
| Figure 15-4.                 | Complete Data Transfer with a 7-Bit Address                           |     |
| Figure 15-5.                 | R/S Bit in First Byte                                                 |     |
| Figure 15-6.                 | Data Validity During Bit Transfer on the I <sup>2</sup> C Bus         |     |
| Figure 15-0.<br>Figure 15-7. | Master Single SEND                                                    |     |
| -                            | •                                                                     |     |
| Figure 15-8.<br>Figure 15-9. | Master Single RECEIVE                                                 |     |
| •                            | Master Burst RECEIVE                                                  |     |
|                              |                                                                       |     |
| rigure 15-11.                | Master Burst RECEIVE after Burst SEND                                 | 372 |

| Figure 15-12. | Master Burst SEND after Burst RECEIVE                                       | 373 |
|---------------|-----------------------------------------------------------------------------|-----|
| Figure 15-13. | Slave Command Sequence                                                      | 374 |
| Figure 16-1.  | Ethernet Controller Block Diagram                                           | 399 |
| Figure 16-2.  | Ethernet Controller                                                         | 399 |
| Figure 16-3.  | Ethernet Frame                                                              | 401 |
| Figure 17-1.  | Analog Comparator Module Block Diagram                                      | 442 |
| Figure 17-2.  | Structure of Comparator Unit                                                | 443 |
| Figure 17-3.  | Comparator Internal Reference Structure                                     | 444 |
| Figure 18-1.  | PWM Module Block Diagram                                                    | 454 |
| Figure 18-2.  | PWM Count-Down Mode                                                         | 455 |
| Figure 18-3.  | PWM Count-Up/Down Mode                                                      | 456 |
| Figure 18-4.  | PWM Generation Example In Count-Up/Down Mode                                | 456 |
| Figure 18-5.  | PWM Dead-Band Generator                                                     | 457 |
| Figure 19-1.  | QEI Block Diagram                                                           | 486 |
| Figure 19-2.  | Quadrature Encoder and Velocity Predivider Operation                        | 487 |
| Figure 20-1.  | Pin Connection Diagram                                                      | 502 |
| Figure 23-1.  | Load Conditions                                                             | 522 |
| Figure 23-2.  | I <sup>2</sup> C Timing                                                     | 525 |
| Figure 23-3.  | External XTLP Oscillator Characteristics                                    | 527 |
| Figure 23-4.  | Hibernation Module Timing                                                   | 528 |
| Figure 23-5.  | SSI Timing for TI Frame Format (FRF=01), Single Transfer Timing Measurement | 529 |
| Figure 23-6.  | SSI Timing for MICROWIRE Frame Format (FRF=10), Single Transfer             | 529 |
| Figure 23-7.  | SSI Timing for SPI Frame Format (FRF=00), with SPH=1                        | 530 |
| Figure 23-8.  | JTAG Test Clock Input Timing                                                | 531 |
| Figure 23-9.  | JTAG Test Access Port (TAP) Timing                                          | 531 |
| Figure 23-10. | JTAG TRST Timing                                                            | 531 |
| Figure 23-11. | External Reset Timing (RST)                                                 | 532 |
| Figure 23-12. | Power-On Reset Timing                                                       | 533 |
| Figure 23-13. | Brown-Out Reset Timing                                                      | 533 |
| Figure 23-14. | Software Reset Timing                                                       | 533 |
| Figure 23-15. | Watchdog Reset Timing                                                       | 533 |
| Figure 24-1.  | 100-Pin LQFP Package                                                        | 534 |

# **List of Tables**

| Table 1.    | Documentation Conventions                                          | 20  |
|-------------|--------------------------------------------------------------------|-----|
| Table 3-1.  | Memory Map                                                         | 42  |
| Table 4-1.  | Exception Types                                                    | 44  |
| Table 4-2.  | Interrupts                                                         | 45  |
| Table 5-1.  | JTAG Port Pins Reset State                                         | 49  |
| Table 5-2.  | JTAG Instruction Register Commands                                 |     |
| Table 6-1.  | System Control Register Map                                        | 64  |
| Table 6-2.  | VADJ to VOUT                                                       | 69  |
| Table 6-3.  | Default Crystal Field Values and PLL Programming                   |     |
| Table 7-1.  | Hibernation Module Register Map                                    | 122 |
| Table 8-1.  | Flash Protection Policy Combinations                               | 137 |
| Table 8-2.  | Flash Resident Registers                                           | 138 |
| Table 8-3.  | Internal Memory Register Map                                       | 138 |
| Table 9-1.  | GPIO Pad Configuration Examples                                    | 162 |
| Table 9-2.  | GPIO Interrupt Configuration Example                               | 163 |
| Table 9-3.  | GPIO Register Map                                                  |     |
| Table 10-1. | 16-Bit Timer With Prescaler Configurations                         | 204 |
| Table 10-2. | Timers Register Map                                                | 210 |
| Table 11-1. | Watchdog Timer Register Map                                        |     |
| Table 12-1. | Samples and FIFO Depth of Sequencers                               | 257 |
| Table 12-2. | ADC Register Map                                                   | 261 |
| Table 13-1. | UART Register Map                                                  | 295 |
| Table 14-1. | SSI Register Map                                                   | 339 |
| Table 15-1. | Examples of I <sup>2</sup> C Master Timer Period versus Speed Mode | 366 |
| Table 15-2. | Inter-Integrated Circuit (I <sup>2</sup> C) Interface Register Map |     |
| Table 15-3. | Write Field Decoding for I2CMCS[3:0] Field (Sheet 1 of 3)          |     |
| Table 16-1. | TX & RX FIFO Organization                                          |     |
| Table 16-2. | Ethernet MAC Register Map                                          |     |
| Table 16-3. | MII Management Register Map                                        |     |
| Table 17-1. | Comparator 0 Operating Modes                                       |     |
| Table 17-2. | Comparator 1 Operating Modes                                       |     |
| Table 17-3. | Internal Reference Voltage and ACREFCTL Field Values               | 444 |
| Table 17-4. | Analog Comparators Register Map                                    |     |
| Table 18-1. | PWM Register Map                                                   | 459 |
| Table 18-2. | PWM Generator Action Encodings                                     | 480 |
| Table 19-1. | QEI Register Map                                                   |     |
| Table 21-1. | Signals by Pin Number                                              |     |
| Table 21-2. | Signals by Signal Name                                             |     |
| Table 21-3. | Signals by Function, Except for GPIO                               | 512 |
| Table 21-4. | GPIO Pins and Alternate Functions                                  | 516 |
| Table 22-1. | Temperature Characteristics                                        |     |
| Table 22-2. | Thermal Characteristics                                            |     |
| Table 23-1. | Maximum Ratings                                                    |     |
| Table 23-2. | Recommended DC Operating Conditions                                |     |
| Table 23-3. | LDO Regulator Characteristics                                      |     |
| Table 23-4. | Detailed Power Specifications                                      |     |

| Table 23-5.  | Flash Memory Characteristics                         | 522 |
|--------------|------------------------------------------------------|-----|
| Table 23-6.  | Phase Locked Loop (PLL) Characteristics              | 522 |
| Table 23-7.  | Clock Characteristics                                |     |
| Table 23-8.  | Crystal Characteristics                              | 523 |
| Table 23-9.  | Temperature Sensor Characteristics                   | 523 |
| Table 23-10. | ADC Characteristics                                  | 523 |
| Table 23-11. | Analog Comparator Characteristics                    | 524 |
| Table 23-12. | Analog Comparator Voltage Reference Characteristics  | 524 |
| Table 23-13. | I <sup>2</sup> C Characteristics                     | 524 |
| Table 23-14. | 100BASE-TX Transmitter Characteristics               | 525 |
| Table 23-15. | 100BASE-TX Transmitter Characteristics (informative) | 525 |
| Table 23-16. | 100BASE-TX Receiver Characteristics                  | 525 |
| Table 23-17. | 10BASE-T Transmitter Characteristics                 | 525 |
| Table 23-18. | 10BASE-T Transmitter Characteristics (informative)   | 526 |
| Table 23-19. | 10BASE-T Receiver Characteristics                    | 526 |
| Table 23-20. | Isolation Transformers                               |     |
| Table 23-21. | Ethernet Reference Crystal                           | 527 |
| Table 23-22. | External XTLP Oscillator Characteristics             | 527 |
| Table 23-23. | Hibernation Module Characteristics                   | 528 |
| Table 23-24. | SSI Characteristics                                  | 528 |
| Table 23-25. | JTAG Characteristics                                 | 530 |
| Table 23-26. | GPIO Characteristics                                 | 532 |
| Table 23-27. | Reset Characteristics                                | 532 |
| Table 25-1.  | Part Ordering Information                            | 536 |
|              |                                                      |     |

# List of Registers

| Register 2:       Brown-Out Reset Control (PBORCTL), offset 0x030       68         Register 3:       LDO Power Control (LDOPCTL), offset 0x054       69         Register 4:       Raw Interrupt Status (RIS), offset 0x050       70         Register 5:       Interrupt Mask Control (IMC), offset 0x054       71         Register 7:       Reset Cause (RESC), offset 0x056       72         Register 7:       Reset Cause (RESC), offset 0x054       74         Register 9:       XTAL to PLL Translation (PLLCFG), offset 0x064       78         Register 10:       Device Capabilities 1 (DC1), offset 0x004       82         Register 11:       Device Capabilities 1 (DC1), offset 0x004       82         Register 12:       Device Capabilities 2 (DC2), offset 0x010       84         Register 13:       Device Capabilities 2 (DC2), offset 0x014       87         Register 14:       Device Capabilities 2 (DC2), offset 0x018       89         Register 15:       Device Capabilities 2 (DC2), offset 0x018       89         Register 16:       Device Capabilities 2 (DC2), offset 0x018       89         Register 17:       Device Capabilities 4 (DC4), offset 0x014       87         Register 12:       Device Capabilities 4 (DC4), offset 0x014       89         Register 20:       Deeg Sleep Mode Clock Gating Control Register 0 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | System Cor                                                            | ntrol                                                                 | 58  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------|--|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|---------------------------------------------------------------------------------------------------------------|--------------|--|--|-----------------|--------------|--|--|------------------------------------------------------|---|--|--|--|-------------|------------------------------------------|--|--|-------------|--|--|
| Register 3:       LDD Power Control (LDDPCTL), offset 0x034       69         Register 4:       Raw Interrupt Status (RIS), offset 0x054       70         Register 5:       Masked Interrupt Status and Clear (MISC), offset 0x058       72         Register 6:       Masked Interrupt Status and Clear (MISC), offset 0x060       74         Register 7:       Reset Cause (RESC), offset 0x05C       73         Register 9:       XTAL to PLL Translation (PLLCFG), offset 0x064       78         Register 10:       Run-Mode Clock Configuration 2 (RCC2), offset 0x070       79         Register 11:       Device Capabilities 0 (DC0), offset 0x004       81         Register 12:       Device Capabilities 0 (DC1), offset 0x010       85         Register 13:       Device Capabilities 1 (DC1), offset 0x010       85         Register 15:       Device Capabilities 3 (DC3), offset 0x014       87         Register 15:       Device Capabilities 3 (DC3), offset 0x016       89         Register 18:       Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x100       92         Register 19:       Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x120       96         Register 21:       Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x120       96         Register 22:       Sleep Mode Clock Gating Control Register 1 (RCGC1), offset 0x14 <td>Register 1:</td> <td>Device Identification 0 (DID0), offset 0x000</td> <td> 66</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Register 1:                                                           | Device Identification 0 (DID0), offset 0x000                          | 66  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |
| Register 4:       Raw Interrupt Status (RIS), offset 0x050       70         Register 5:       Interrupt Mask Control (IMC), offset 0x054       71         Register 7:       Reset Cause (RESC), offset 0x05C       73         Register 8:       Run-Mode Clock Configuration (RCC), offset 0x064       74         Register 9:       XTAL to PLL Translation (PLLCFG), offset 0x064       78         Register 10:       Run-Mode Clock Configuration 2 (RCC2), offset 0x070       79         Register 11:       Device Capabilities 0 (DC1), offset 0x004       82         Register 12:       Device Capabilities 1 (DC1), offset 0x004       82         Register 13:       Device Capabilities 1 (DC1), offset 0x014       87         Register 14:       Device Capabilities 3 (DC3), offset 0x010       85         Register 15:       Device Capabilities 3 (DC3), offset 0x010       89         Register 16:       Device Capabilities 3 (DC3), offset 0x010       92         Register 17:       Device Capabilities 4 (DC4), offset 0x016       91         Register 20:       Deep Sleep Mode Clock Gating Control Register 0 (BCGC0), offset 0x110       94         Register 21:       Run Mode Clock Gating Control Register 1 (BCGC1), offset 0x124       104         Register 22:       Sleep Mode Clock Gating Control Register 1 (BCGC1), offset 0x124       104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Register 2:                                                           | Brown-Out Reset Control (PBORCTL), offset 0x030                       | 68  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |
| Register 5:       Interrupt Mask Control (IMC), offset 0x054       71         Register 6:       Masked Interrupt Status and Clear (MISC), offset 0x058       72         Register 7:       Reset Cause (RESC), offset 0x060       73         Register 9:       XTAL to PLL Translation (PLLCFG), offset 0x060       74         Register 10:       Run-Mode Clock Configuration (SLPCLKOFG), offset 0x070       78         Register 11:       Deep Sleep Clock Configuration (SLPCLKOFG), offset 0x144       81         Register 12:       Device Capabilities 0 (DC0), offset 0x004       82         Register 13:       Device Capabilities 1 (DC1), offset 0x014       82         Register 14:       Device Capabilities 2 (DC2), offset 0x014       87         Register 15:       Device Capabilities 3 (DC3), offset 0x014       87         Register 16:       Device Capabilities 3 (DC3), offset 0x016       91         Register 17:       Device Capabilities 3 (DC3), offset 0x016       91         Register 18:       Run Mode Clock Gating Control Register 0 (SCGC0), offset 0x100       92         Register 20:       Deep Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x104       98         Register 21:       Run Mode Clock Gating Control Register 1 (SCGC1), offset 0x104       98         Register 22:       Sleep Mode Clock Gating Control Register 2 (SCGC2), o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Register 3:                                                           | LDO Power Control (LDOPCTL), offset 0x034                             | 69  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |
| Register 6:       Masked Interrupt Status and Clear (MISC), offset 0x058       72         Register 7:       Reset Cause (RESC), offset 0x05C       73         Register 8:       Kun-Mode Clock Configuration (RCC), offset 0x060       74         Register 9:       XTAL to PLL Translation (PLLCFG), offset 0x060       78         Register 10:       Run-Mode Clock Configuration 2 (RCC2), offset 0x070       79         Register 11:       Device Identification 1 (DD1), offset 0x004       82         Register 12:       Device Capabilities 0 (DC0), offset 0x008       84         Register 13:       Device Capabilities 2 (DC2), offset 0x010       85         Register 15:       Device Capabilities 3 (DC3), offset 0x016       89         Register 16:       Device Capabilities 3 (DC3), offset 0x016       89         Register 17:       Device Capabilities 3 (DC3), offset 0x016       89         Register 18:       Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x100       92         Register 19:       Sleep Mode Clock Gating Control Register 10 (DCGC1), offset 0x104       98         Register 21:       Run Mode Clock Gating Control Register 1 (SCGC1), offset 0x104       98         Register 22:       Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x104       98         Register 23:       Deep Sleep Mode Clock Gating Control Registe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Register 4:                                                           | Raw Interrupt Status (RIS), offset 0x050                              |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |
| Register 7:         Reset Cause (RESC), offset 0x05C         73           Register 8:         Run-Mode Clock Configuration (RCC), offset 0x060         74           Register 9:         XTAL to PLL Translation (PLLCFG), offset 0x070         79           Register 10:         Deep Sleep Clock Configuration 2 (RCC2), offset 0x070         79           Register 11:         Deevice Capabilities 0 (DC0), offset 0x004         82           Register 12:         Device Capabilities 1 (DC1), offset 0x014         81           Register 13:         Device Capabilities 1 (DC1), offset 0x014         85           Register 14:         Device Capabilities 2 (DC2), offset 0x014         87           Register 15:         Device Capabilities 3 (DC3), offset 0x014         87           Register 16:         Device Capabilities 3 (DC3), offset 0x014         87           Register 17:         Device Capabilities 3 (DC3), offset 0x016         91           Register 18:         Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x110         94           Register 21:         Run Mode Clock Gating Control Register 1 (SCGC0), offset 0x124         96           Register 22:         Beep Mode Clock Gating Control Register 1 (SCGC1), offset 0x144         101           Register 23:         Deep Sleep Mode Clock Gating Control Register 2 (RCGC2), offset 0x18         107           <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Register 5:                                                           |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |
| Register 7:         Reset Cause (RESC), offset 0x05C         73           Register 8:         Run-Mode Clock Configuration (RCC), offset 0x060         74           Register 9:         XTAL to PLL Translation (PLLCFG), offset 0x070         79           Register 10:         Deep Sleep Clock Configuration 2 (RCC2), offset 0x070         79           Register 11:         Deevice Capabilities 0 (DC0), offset 0x004         82           Register 12:         Device Capabilities 1 (DC1), offset 0x014         81           Register 13:         Device Capabilities 1 (DC1), offset 0x014         85           Register 14:         Device Capabilities 2 (DC2), offset 0x014         87           Register 15:         Device Capabilities 3 (DC3), offset 0x014         87           Register 16:         Device Capabilities 3 (DC3), offset 0x014         87           Register 17:         Device Capabilities 3 (DC3), offset 0x016         91           Register 18:         Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x110         94           Register 21:         Run Mode Clock Gating Control Register 1 (SCGC0), offset 0x124         96           Register 22:         Beep Mode Clock Gating Control Register 1 (SCGC1), offset 0x144         101           Register 23:         Deep Sleep Mode Clock Gating Control Register 2 (RCGC2), offset 0x18         107           <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Register 6:                                                           | Masked Interrupt Status and Clear (MISC), offset 0x058                | 72  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |
| Register 9:         XTAL to PLL Translation (PLLCFG), offset 0x064         78           Register 10:         Run-Mode Clock Configuration 2 (RCC2), offset 0x070         79           Register 11:         Deep Sleep Clock Configuration 0 (SLPCLKCFG), offset 0x144         81           Register 12:         Device Capabilities 0 (DC0), offset 0x008         84           Register 13:         Device Capabilities 1 (DC1), offset 0x010         85           Register 15:         Device Capabilities 2 (DC2), offset 0x014         87           Register 16:         Device Capabilities 2 (DC2), offset 0x018         89           Register 17:         Device Capabilities 3 (DC3), offset 0x016         91           Register 18:         Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x110         94           Register 20:         Deep Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x120         96           Register 21:         Run Mode Clock Gating Control Register 1 (DCGC1), offset 0x144         101           Register 22:         Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x144         101           Register 23:         Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124         104           Register 24:         Run Mode Clock Gating Control Register 2 (DCGC2), offset 0x148         109           Register 25:         Sleep Mode Clock Gating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Register 7:                                                           | Reset Cause (RESC), offset 0x05C                                      | 73  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |
| Register 9:         XTAL to PLL Translation (PLLCFG), offset 0x064         78           Register 10:         Run-Mode Clock Configuration 2 (RCC2), offset 0x070         79           Register 11:         Deep Sleep Clock Configuration 0 (DSLPCLKCFG), offset 0x144         81           Register 12:         Device Capabilities 0 (DC0), offset 0x008         84           Register 13:         Device Capabilities 1 (DC1), offset 0x010         85           Register 15:         Device Capabilities 2 (DC2), offset 0x014         87           Register 16:         Device Capabilities 2 (DC2), offset 0x018         89           Register 17:         Device Capabilities 3 (DC3), offset 0x018         89           Register 18:         Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x110         94           Register 20:         Deep Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x120         96           Register 21:         Run Mode Clock Gating Control Register 1 (DCGC1), offset 0x144         101           Register 22:         Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124         104           Register 23:         Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124         104           Register 24:         Run Mode Clock Gating Control Register 2 (DCGC2), offset 0x128         117           Register 25:         Sleep Mode Clock Gating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Register 8:                                                           | Run-Mode Clock Configuration (RCC), offset 0x060                      | 74  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |
| Register 11:       Deep Sleep Clock Configuration (DSLPCLKCFG), offset 0x144       81         Register 12:       Device Identification 1 (DID1), offset 0x004       82         Register 13:       Device Capabilities 0 (DC0), offset 0x008       84         Register 14:       Device Capabilities 1 (DC1), offset 0x010       85         Register 15:       Device Capabilities 2 (DC2), offset 0x014       87         Register 16:       Device Capabilities 3 (DC3), offset 0x016       89         Register 17:       Device Capabilities 4 (DC4), offset 0x010       92         Register 18:       Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x110       94         Register 20:       Deep Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x120       96         Register 21:       Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x114       101         Register 22:       Sleep Mode Clock Gating Control Register 1 (RCGC1), offset 0x124       104         Register 23:       Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x114       101         Register 24:       Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x118       109         Register 25:       Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x118       109         Register 26:       Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128       111 </td <td>Register 9:</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Register 9:                                                           |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |
| Register 12:       Device Identification 1 (DID1), offset 0x004       82         Register 13:       Device Capabilities 0 (DC0), offset 0x008       84         Register 14:       Device Capabilities 2 (DC2), offset 0x014       85         Register 15:       Device Capabilities 3 (DC3), offset 0x014       87         Register 16:       Device Capabilities 4 (DC4), offset 0x01C       91         Register 17:       Device Capabilities 4 (DC4), offset 0x01C       91         Register 19:       Sleep Mode Clock Gating Control Register 0 (SCGC0), offset 0x110       94         Register 20:       Deep Sleep Mode Clock Gating Control Register 0 (SCGC0), offset 0x110       94         Register 21:       Run Mode Clock Gating Control Register 1 (SCGC1), offset 0x104       98         Register 22:       Deep Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x114       101         Register 23:       Deep Sleep Mode Clock Gating Control Register 1 (SCGC2), offset 0x114       104         Register 24:       Run Mode Clock Gating Control Register 2 (SCGC2), offset 0x118       109         Register 25:       Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118       109         Register 26:       Software Reset Control 0 (SRCR0), offset 0x040       113         Register 27:       Software Reset Control 0 (SRCR1), offset 0x044       114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Register 10:                                                          | Run-Mode Clock Configuration 2 (RCC2), offset 0x070                   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |
| Register 13:Device Capabilities 0 (DC0), offset 0x00884Register 14:Device Capabilities 1 (DC1), offset 0x01085Register 15:Device Capabilities 2 (DC2), offset 0x01487Register 16:Device Capabilities 3 (DC3), offset 0x01889Register 17:Device Capabilities 4 (DC4), offset 0x01091Register 18:Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x10092Register 19:Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x11094Register 20:Deep Sleep Mode Clock Gating Control Register 1 (RCGC1), offset 0x12096Register 21:Run Mode Clock Gating Control Register 1 (SCGC1), offset 0x114101Register 23:Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124104Register 24:Run Mode Clock Gating Control Register 1 (DCGC1), offset 0x10498Register 25:Sleep Mode Clock Gating Control Register 2 (RCGC2), offset 0x108107Register 26:Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128111Register 27:Software Reset Control 0 (SRCR0), offset 0x044114Register 28:Software Reset Control 1 (SRCR1), offset 0x048116Hibernation RTC Match 0 (HIBRTCM), offset 0x004123Register 3:Hibernation RTC Match 0 (HIBRTCM), offset 0x004124Register 4:Hibernation RTC Match 1 (HIBRTCM), offset 0x014129Register 7:Hibernation RTC Match 1 (HIBRTCM), offset 0x014129Register 3:Hibernation RTC Match 1 (HIBRTCM), offset 0x024133 <td>Register 11:</td> <td>Deep Sleep Clock Configuration (DSLPCLKCFG), offset 0x144</td> <td> 81</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Register 11:                                                          | Deep Sleep Clock Configuration (DSLPCLKCFG), offset 0x144             | 81  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |
| Register 14:Device Capabilities 1 (DC1), offset 0x01085Register 15:Device Capabilities 2 (DC2), offset 0x01487Register 16:Device Capabilities 3 (DC3), offset 0x01889Register 17:Device Capabilities 4 (DC4), offset 0x01C91Register 18:Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x10092Register 19:Sleep Mode Clock Gating Control Register 0 (SCGC0), offset 0x10094Register 20:Deep Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x12096Register 21:Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x124101Register 22:Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x124104Register 23:Deep Sleep Mode Clock Gating Control Register 2 (RCGC2), offset 0x118109Register 24:Run Mode Clock Gating Control Register 2 (SCGC2), offset 0x118109Register 25:Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x118109Register 26:Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128111Register 27:Software Reset Control 0 (SRCR0), offset 0x044114Register 28:Software Reset Control 1 (SRCR1), offset 0x048116Hibernation RTC Match 1 (HIBRTCC), offset 0x004123Register 3:Hibernation RTC Match 1 (HIBRTCM), offset 0x004124Register 4:Hibernation RTC Match 1 (HIBRTCM), offset 0x004126Register 5:Hibernation RTC Match 1 (HIBRTCM), offset 0x014129Register 6:Hibernation RTC Match 1 (HIBRTCM), offset 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Register 12:                                                          | Device Identification 1 (DID1), offset 0x004                          | 82  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |
| Register 15:       Device Capabilities 2 (DC2), offset 0x014       87         Register 16:       Device Capabilities 3 (DC3), offset 0x018       89         Register 17:       Device Capabilities 4 (DC4), offset 0x01C       91         Register 18:       Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x110       94         Register 19:       Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x110       94         Register 20:       Deep Sleep Mode Clock Gating Control Register 1 (RCGC1), offset 0x120       96         Register 21:       Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x104       98         Register 22:       Sleep Mode Clock Gating Control Register 1 (RCGC1), offset 0x114       101         Register 23:       Deep Sleep Mode Clock Gating Control Register 1 (RCGC2), offset 0x118       104         Register 24:       Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x118       107         Register 25:       Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118       109         Register 26:       Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128       111         Register 27:       Software Reset Control 1 (SRCR1), offset 0x040       113         Register 28:       Software Reset Control 2 (SRCR2), offset 0x048       116         Hibernation RTC Counter (HIBRTCC), offset 0x000       123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Register 13:                                                          | Device Capabilities 0 (DC0), offset 0x008                             | 84  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |
| Register 16:Device Capabilities 3 (DC3), offset 0x01889Register 17:Device Capabilities 4 (DC4), offset 0x01C91Register 18:Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x10092Register 19:Sleep Mode Clock Gating Control Register 0 (SCGC0), offset 0x11094Register 20:Deep Sleep Mode Clock Gating Control Register 1 (RCGC1), offset 0x12096Register 21:Run Mode Clock Gating Control Register 1 (SCGC1), offset 0x10498Register 22:Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x114101Register 23:Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124104Register 24:Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108107Register 25:Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118109Register 26:Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128111Register 27:Software Reset Control 1 (SRCR1), offset 0x040113Register 28:Software Reset Control 2 (SRCR2), offset 0x048116Hibernation RTC Counter (HIBRTCM), offset 0x000123Register 3:Hibernation RTC Match 0 (HIBRTCM1), offset 0x000126Register 5:Hibernation RTC Load (HIBRTCL), offset 0x000127Register 6:Hibernation RTC Load (HIBRTCL), offset 0x000127Register 7:Hibernation RTC Match 1 (HIBRTCL), offset 0x014129Register 7:Hibernation RTC Load (HIBRTCL), offset 0x014129Register 7:Hibernation RTC Load (HIBRTCL), offset 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Register 14:                                                          | Device Capabilities 1 (DC1), offset 0x010                             | 85  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |
| Register 17:Device Capabilities 4 (DC4), offset 0x01C91Register 18:Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x10092Register 19:Sleep Mode Clock Gating Control Register 0 (SCGC0), offset 0x11094Register 20:Deep Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x12096Register 21:Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x12498Register 22:Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x124101Register 23:Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124104Register 24:Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108107Register 25:Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118109Register 26:Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128111Register 27:Software Reset Control 1 (SRCR0), offset 0x040113Register 28:Software Reset Control 2 (SRCR2), offset 0x048114Register 31:Hibernation RTC Counter (HIBRTCC), offset 0x004123Register 32:Hibernation RTC Match 0 (HIBRTCM0), offset 0x004124Register 34:Hibernation RTC Load (HIBRTCLD), offset 0x004127Register 54:Hibernation RTC Load (HIBRTCLD), offset 0x000127Register 75:Hibernation RTC Load (HIBRTCLD), offset 0x014129Register 76:Hibernation Interrupt Mask (HIBMIS), offset 0x014129Register 76:Hibernation Interrupt Mask (HIBRIS), offset 0x014129Register 76: <td< td=""><td>Register 15:</td><td>Device Capabilities 2 (DC2), offset 0x014</td><td> 87</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Register 15:                                                          | Device Capabilities 2 (DC2), offset 0x014                             | 87  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |
| Register 18:Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x10092Register 19:Sleep Mode Clock Gating Control Register 0 (SCGC0), offset 0x11094Register 20:Deep Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x12096Register 21:Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x10498Register 22:Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x114101Register 23:Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124104Register 24:Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108107Register 25:Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118109Register 26:Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128111Register 27:Software Reset Control 0 (SRCR0), offset 0x040113Register 28:Software Reset Control 1 (SRCR1), offset 0x044114Register 29:Software Reset Control 2 (SRCR2), offset 0x048116Hibernation Module117Register 3:Hibernation RTC Counter (HIBRTCC), offset 0x004123Register 4:Hibernation RTC Match 0 (HIBRTCM1), offset 0x004124Register 5:Hibernation RTC Match 0 (HIBRTCLD), offset 0x014129Register 6:Hibernation RTC Load (HIBRTCLD), offset 0x014129Register 7:Hibernation RTC Load (HIBRTCLD), offset 0x014129Register 7:Hibernation Interrupt Status (HIBRIS), offset 0x016131Register 7:Hibernation Interrupt Status (HIBRIS), offset 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Register 16:                                                          | Device Capabilities 3 (DC3), offset 0x018                             | 89  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |
| Register 19:Sleep Mode Clock Gating Control Register 0 (SCGC0), offset 0x11094Register 20:Deep Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x12096Register 21:Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x10498Register 22:Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x114101Register 23:Deep Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x124104Register 24:Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x124104Register 25:Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118109Register 26:Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128111Register 27:Software Reset Control 0 (SRCR0), offset 0x040113Register 28:Software Reset Control 1 (SRCR1), offset 0x044114Register 29:Software Reset Control 2 (SRCR2), offset 0x048116Hibernation RTC Counter (HIBRTCC), offset 0x004123Register 3:Hibernation RTC Match 0 (HIBRTCM0), offset 0x004124Register 4:Hibernation RTC Match 1 (HBRTCM1), offset 0x004125Register 5:Hibernation RTC Load (HIBRTCLD), offset 0x014129Register 7:Hibernation RTC Match 1 (HIBRTCLD), offset 0x014129Register 7:Hibernation RTC Match 1 (HIBRTCLD), offset 0x014129Register 7:Hibernation RTC Load (HIBRTCLD), offset 0x014129Register 7:Hibernation Raw Interrupt Status (HIBNIS), offset 0x016131Register 7:Hibernation Raw Interrupt St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Register 17:                                                          | Device Capabilities 4 (DC4), offset 0x01C                             | 91  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |
| Register 20:Deep Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x12096Register 21:Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x10498Register 22:Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x114101Register 23:Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124104Register 24:Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108107Register 25:Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118109Register 26:Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128111Register 27:Software Reset Control 0 (SRCR0), offset 0x040113Register 28:Software Reset Control 2 (SRCR2), offset 0x044114Register 29:Software Reset Control 2 (SRCR2), offset 0x048116Hibernation Module117117Register 3:Hibernation RTC Counter (HIBRTCC), offset 0x004123Register 4:Hibernation RTC Match 0 (HIBRTCM1), offset 0x004124Register 5:Hibernation RTC Match 1 (HIBRTCLD), offset 0x002126Register 6:Hibernation RTC Load (HIBRTCLD), offset 0x014127Register 7:Hibernation RTC Load (HIBRTCLD), offset 0x014129Register 8:Hibernation Interrupt Mask (HIBIM), offset 0x014120Register 9:Hibernation RTC Tim (HIBRTCT), offset 0x014130Register 9:Hibernation Interrupt Status (HIBRIS), offset 0x012131Register 9:Hibernation RTC Trim (HIBRTCT), offset 0x024133 <tr<< td=""><td>Register 18:</td><td>Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x100</td><td> 92</td></tr<<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Register 18:                                                          | Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x100        | 92  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |
| Register 21:Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x10498Register 22:Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x114101Register 23:Deep Sleep Mode Clock Gating Control Register 2 (RCGC2), offset 0x108107Register 24:Run Mode Clock Gating Control Register 2 (SCGC2), offset 0x108107Register 25:Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118109Register 26:Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128111Register 27:Software Reset Control 0 (SRCR0), offset 0x040113Register 28:Software Reset Control 1 (SRCR1), offset 0x044114Register 29:Software Reset Control 2 (SRCR2), offset 0x048116HibernationModule117Register 3:Hibernation RTC Counter (HIBRTCC), offset 0x000123Register 4:Hibernation RTC Match 0 (HIBRTCM1), offset 0x004124Register 5:Hibernation RTC Load (HIBRTCLD), offset 0x004126Register 5:Hibernation RTC Load (HIBRTCLD), offset 0x001127Register 6:Hibernation RTC Load (HIBRTCLD), offset 0x014129Register 7:Hibernation Raw Interrupt Status (HIBNIS), offset 0x016131Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x016131Register 7:Hibernation Raw Interrupt Status (HIBNIS), offset 0x016131Register 9:Hibernation RTC Trim (HIBRTCT), offset 0x020132Register 9:Hibernation RTC Trim (HIBRTCT), offset 0x020132Regis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Register 19:                                                          | Sleep Mode Clock Gating Control Register 0 (SCGC0), offset 0x110      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |
| Register 22:Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x114101Register 23:Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124104Register 24:Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108107Register 25:Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118109Register 26:Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128111Register 27:Software Reset Control 0 (SRCR0), offset 0x040113Register 28:Software Reset Control 1 (SRCR1), offset 0x044114Register 29:Software Reset Control 2 (SRCR2), offset 0x048116 <b>Hibernation Module117</b> Register 1:Hibernation RTC Counter (HIBRTCC), offset 0x000123Register 2:Hibernation RTC Match 0 (HIBRTCM1), offset 0x004124Register 3:Hibernation RTC Match 1 (HIBRTCLD), offset 0x000125Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x001127Register 5:Hibernation RTC Load (HIBRTCLD), offset 0x014129Register 6:Hibernation Interrupt Mask (HIBIN), offset 0x014129Register 7:Hibernation Interrupt Status (HIBRIS), offset 0x01C131Register 9:Hibernation RTC Trim (HIBRTCT), offset 0x020132Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x024133Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 11:Hibernation RTC Trim (HIBRTCT), offset 0x024134 <tr <tr="">Internal Memory134<td>Register 20:</td><td>Deep Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x120</td><td></td></tr> <tr><td>Register 23:Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124104Register 24:Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108107Register 25:Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118109Register 26:Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128111Register 27:Software Reset Control 0 (SRCR0), offset 0x040113Register 28:Software Reset Control 1 (SRCR1), offset 0x044114Register 29:Software Reset Control 2 (SRCR2), offset 0x048116Hibernation Module117Register 1:Hibernation RTC Counter (HIBRTCC), offset 0x000123Register 3:Hibernation RTC Match 0 (HIBRTCM0), offset 0x004124Register 3:Hibernation RTC Match 1 (HIBRTCLD), offset 0x000125Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x000126Register 5:Hibernation Control (HIBCTL), offset 0x014129Register 7:Hibernation Raw Interrupt Mask (HIBIN), offset 0x014129Register 8:Hibernation Raw Interrupt Status (HIBRIS), offset 0x01C131Register 9:Hibernation RTC Trim (HIBRTCT), offset 0x020132Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 11:Hibernation Raw Interrupt Status (HIBMIS), offset 0x01C131Register 12:Hibernation Raw Interrupt Status (HIBRIS), offset 0x01C131Register 13:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 10:Hibernation RTC Tri</td><td>Register 21:</td><td>Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x104</td><td></td></tr> <tr><td>Register 24:Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108107Register 25:Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118109Register 26:Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128111Register 27:Software Reset Control 0 (SRCR0), offset 0x040113Register 28:Software Reset Control 1 (SRCR1), offset 0x044114Register 29:Software Reset Control 2 (SRCR2), offset 0x048116HibernationModule117Register 1:Hibernation RTC Counter (HIBRTCC), offset 0x000123Register 2:Hibernation RTC Match 0 (HIBRTCM1), offset 0x004124Register 3:Hibernation RTC Match 1 (HIBRTCLD), offset 0x000125Register 4:Hibernation Control (HIBCTL), offset 0x010127Register 5:Hibernation Control (HIBCTL), offset 0x014129Register 6:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018130Register 8:Hibernation Raw Interrupt Status (HIBRIS), offset 0x01C131Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020132Register 9:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 11:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 12:Hibernation Interrupt Clear (HIBIC), offset 0x020132Register 13:Hibernation Interrupt Clear (HIBIC), offset 0x024133Register 14:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 15:Hibernation RTC Trim (HIBRTCT), offset 0x024</td><td>Register 22:</td><td>Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x114</td><td> 101</td></tr> <tr><td>Register 25:Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118109Register 26:Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128111Register 27:Software Reset Control 0 (SRCR0), offset 0x040113Register 28:Software Reset Control 1 (SRCR1), offset 0x044114Register 29:Software Reset Control 2 (SRCR2), offset 0x048116Hibernation Module117Register 1:Hibernation RTC Counter (HIBRTCC), offset 0x000123Register 29:Hibernation RTC Match 0 (HIBRTCM0), offset 0x004124Register 3:Hibernation RTC Match 0 (HIBRTCM1), offset 0x008125Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x000126Register 5:Hibernation Control (HIBCTL), offset 0x010127Register 6:Hibernation Interrupt Mask (HIBIN), offset 0x014129Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018130Register 8:Hibernation Interrupt Clear (HIBIC), offset 0x020132Register 9:Hibernation RTC Trim (HIBRTCT), offset 0x020132Register 11:Hibernation RTC Trim (HIBRTCT), offset 0x020134Internal Memory134</td><td>Register 23:</td><td>Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124</td><td> 104</td></tr> <tr><td>Register 26:Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128111Register 27:Software Reset Control 0 (SRCR0), offset 0x040113Register 28:Software Reset Control 1 (SRCR1), offset 0x044114Register 29:Software Reset Control 2 (SRCR2), offset 0x048116<b>Hibernation Module117</b>Register 1:Hibernation RTC Counter (HIBRTCC), offset 0x000123Register 2:Hibernation RTC Match 0 (HIBRTCM0), offset 0x004124Register 3:Hibernation RTC Match 1 (HIBRTCLD), offset 0x000125Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x000126Register 5:Hibernation Control (HIBCTL), offset 0x000127Register 6:Hibernation RTC Load (HIBRTCLD), offset 0x001127Register 7:Hibernation Raw Interrupt Mask (HIBIM), offset 0x014129Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018130Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020132Register 9:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 11:Hibernation RTC Trim (HIBRTCT), offset 0x030-0x12C134Internal Memory135</td><td>Register 24:</td><td>Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108</td><td> 107</td></tr> <tr><td>Register 27:Software Reset Control 0 (SRCR0), offset 0x040113Register 28:Software Reset Control 1 (SRCR1), offset 0x044114Register 29:Software Reset Control 2 (SRCR2), offset 0x048116HibernationModule117Register 1:Hibernation RTC Counter (HIBRTCC), offset 0x000123Register 2:Hibernation RTC Match 0 (HIBRTCM0), offset 0x004124Register 3:Hibernation RTC Match 1 (HIBRTCM1), offset 0x008125Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x000126Register 5:Hibernation Control (HIBCTL), offset 0x010127Register 6:Hibernation Interrupt Mask (HIBIM), offset 0x014129Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x016131Register 8:Hibernation Raw Interrupt Status (HIBMIS), offset 0x010131Register 9:Hibernation RTC Trim (HIBRTCT), offset 0x020132Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 11:Hibernation Data (HIBDATA), offset 0x030-0x12C134Internal Memory135</td><td>Register 25:</td><td>Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118</td><td> 109</td></tr> <tr><td>Register 28:Software Reset Control 1 (SRCR1), offset 0x044114Register 29:Software Reset Control 2 (SRCR2), offset 0x048116<b>Hibernation Module117</b>Register 1:Hibernation RTC Counter (HIBRTCC), offset 0x000123Register 2:Hibernation RTC Match 0 (HIBRTCM0), offset 0x004124Register 3:Hibernation RTC Match 1 (HIBRTCM1), offset 0x008125Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x000126Register 5:Hibernation Control (HIBCTL), offset 0x010127Register 6:Hibernation Interrupt Mask (HIBIM), offset 0x014129Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x016131Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020132Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 11:Hibernation Data (HIBDATA), offset 0x030-0x12C134Internal Memory135</td><td>Register 26:</td><td>Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128</td><td> 111</td></tr> <tr><td>Register 29:Software Reset Control 2 (SRCR2), offset 0x048116HibernationModule117Register 1:Hibernation RTC Counter (HIBRTCC), offset 0x000123Register 2:Hibernation RTC Match 0 (HIBRTCM0), offset 0x004124Register 3:Hibernation RTC Match 1 (HIBRTCM1), offset 0x008125Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x000126Register 5:Hibernation Control (HIBCTL), offset 0x010127Register 6:Hibernation Interrupt Mask (HIBIM), offset 0x014129Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x016131Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020132Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 11:Hibernation RTC Trim (HIBRTCT), offset 0x030-0x12C134Internal Memory135</td><td>Register 27:</td><td>Software Reset Control 0 (SRCR0), offset 0x040</td><td> 113</td></tr> <tr><td>HibernationModule117Register 1:Hibernation RTC Counter (HIBRTCC), offset 0x000123Register 2:Hibernation RTC Match 0 (HIBRTCM0), offset 0x004124Register 3:Hibernation RTC Match 1 (HIBRTCM1), offset 0x008125Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x00C126Register 5:Hibernation Control (HIBCTL), offset 0x010127Register 6:Hibernation Interrupt Mask (HIBIM), offset 0x014129Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018130Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020132Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 11:Hibernation Data (HIBDATA), offset 0x030-0x12C134Internal Memory135</td><td>Register 28:</td><td>Software Reset Control 1 (SRCR1), offset 0x044</td><td> 114</td></tr> <tr><td>Register 1:Hibernation RTC Counter (HIBRTCC), offset 0x000123Register 2:Hibernation RTC Match 0 (HIBRTCM0), offset 0x004124Register 3:Hibernation RTC Match 1 (HIBRTCM1), offset 0x008125Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x00C126Register 5:Hibernation Control (HIBCTL), offset 0x010127Register 6:Hibernation Interrupt Mask (HIBIM), offset 0x014129Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018130Register 8:Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C131Register 9:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 10:Hibernation Data (HIBDATA), offset 0x030-0x12C134Internal Memory135</td><td>Register 29:</td><td>Software Reset Control 2 (SRCR2), offset 0x048</td><td> 116</td></tr> <tr><td>Register 1:Hibernation RTC Counter (HIBRTCC), offset 0x000123Register 2:Hibernation RTC Match 0 (HIBRTCM0), offset 0x004124Register 3:Hibernation RTC Match 1 (HIBRTCM1), offset 0x008125Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x00C126Register 5:Hibernation Control (HIBCTL), offset 0x010127Register 6:Hibernation Interrupt Mask (HIBIM), offset 0x014129Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018130Register 8:Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C131Register 9:Hibernation RTC Trim (HIBRTCT), offset 0x020132Register 10:Hibernation Data (HIBDATA), offset 0x030-0x12C134Internal Memory135</td><td>Hibernation</td><td>Module</td><td> 117</td></tr> <tr><td>Register 2:Hibernation RTC Match 0 (HIBRTCM0), offset 0x004124Register 3:Hibernation RTC Match 1 (HIBRTCM1), offset 0x008125Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x00C126Register 5:Hibernation Control (HIBCTL), offset 0x010127Register 6:Hibernation Interrupt Mask (HIBIM), offset 0x014129Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018130Register 8:Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C131Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020132Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x030-0x12C134Internal Memory135</td><td></td><td></td><td></td></tr> <tr><td>Register 3:Hibernation RTC Match 1 (HIBRTCM1), offset 0x008125Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x00C126Register 5:Hibernation Control (HIBCTL), offset 0x010127Register 6:Hibernation Interrupt Mask (HIBIM), offset 0x014129Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018130Register 8:Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C131Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020132Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 11:Hibernation Data (HIBDATA), offset 0x030-0x12C134Internal Memory135</td><td>Register 2:</td><td></td><td></td></tr> <tr><td>Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x00C126Register 5:Hibernation Control (HIBCTL), offset 0x010127Register 6:Hibernation Interrupt Mask (HIBIM), offset 0x014129Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018130Register 8:Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C131Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020132Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x030-0x12C134Internal Memory135</td><td>•</td><td></td><td></td></tr> <tr><td>Register 5:Hibernation Control (HIBCTL), offset 0x010127Register 6:Hibernation Interrupt Mask (HIBIM), offset 0x014129Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018130Register 8:Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C131Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020132Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 11:Hibernation Data (HIBDATA), offset 0x030-0x12C134Internal Memory135</td><td>Register 4:</td><td></td><td></td></tr> <tr><td>Register 6:Hibernation Interrupt Mask (HIBIM), offset 0x014129Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018130Register 8:Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C131Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020132Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 11:Hibernation Data (HIBDATA), offset 0x030-0x12C134Internal Memory135</td><td>Register 5:</td><td></td><td></td></tr> <tr><td>Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018130Register 8:Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C131Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020132Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 11:Hibernation Data (HIBDATA), offset 0x030-0x12C134Internal Memory135</td><td>Register 6:</td><td></td><td></td></tr> <tr><td>Register 8:Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C131Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020132Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 11:Hibernation Data (HIBDATA), offset 0x030-0x12C134Internal Memory135</td><td>Register 7:</td><td></td><td></td></tr> <tr><td>Register 9:       Hibernation Interrupt Clear (HIBIC), offset 0x020       132         Register 10:       Hibernation RTC Trim (HIBRTCT), offset 0x024       133         Register 11:       Hibernation Data (HIBDATA), offset 0x030-0x12C       134         Internal Memory       135</td><td>-</td><td>Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C</td><td> 131</td></tr> <tr><td>Register 10:       Hibernation RTC Trim (HIBRTCT), offset 0x024       133         Register 11:       Hibernation Data (HIBDATA), offset 0x030-0x12C       134         Internal Memory       135</td><td>Register 9:</td><td></td><td></td></tr> <tr><td>Register 11:       Hibernation Data (HIBDATA), offset 0x030-0x12C       134         Internal Memory       135</td><td>Register 10:</td><td></td><td></td></tr> <tr><td>Internal Memory</td><td>Register 11:</td><td></td><td></td></tr> <tr><td>Register 1: Flash Memory Address (FMA), offset 0x000</td><td>•</td><td></td><td></td></tr> <tr><td></td><td>Register 1:</td><td>Flash Memory Address (FMA), offset 0x000</td><td></td></tr> <tr><td></td><td>Register 2:</td><td></td><td></td></tr> | Register 20:                                                          | Deep Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x120 |     | Register 23:Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124104Register 24:Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108107Register 25:Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118109Register 26:Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128111Register 27:Software Reset Control 0 (SRCR0), offset 0x040113Register 28:Software Reset Control 1 (SRCR1), offset 0x044114Register 29:Software Reset Control 2 (SRCR2), offset 0x048116Hibernation Module117Register 1:Hibernation RTC Counter (HIBRTCC), offset 0x000123Register 3:Hibernation RTC Match 0 (HIBRTCM0), offset 0x004124Register 3:Hibernation RTC Match 1 (HIBRTCLD), offset 0x000125Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x000126Register 5:Hibernation Control (HIBCTL), offset 0x014129Register 7:Hibernation Raw Interrupt Mask (HIBIN), offset 0x014129Register 8:Hibernation Raw Interrupt Status (HIBRIS), offset 0x01C131Register 9:Hibernation RTC Trim (HIBRTCT), offset 0x020132Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 11:Hibernation Raw Interrupt Status (HIBMIS), offset 0x01C131Register 12:Hibernation Raw Interrupt Status (HIBRIS), offset 0x01C131Register 13:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 10:Hibernation RTC Tri | Register 21: | Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x104 |  | Register 24:Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108107Register 25:Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118109Register 26:Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128111Register 27:Software Reset Control 0 (SRCR0), offset 0x040113Register 28:Software Reset Control 1 (SRCR1), offset 0x044114Register 29:Software Reset Control 2 (SRCR2), offset 0x048116HibernationModule117Register 1:Hibernation RTC Counter (HIBRTCC), offset 0x000123Register 2:Hibernation RTC Match 0 (HIBRTCM1), offset 0x004124Register 3:Hibernation RTC Match 1 (HIBRTCLD), offset 0x000125Register 4:Hibernation Control (HIBCTL), offset 0x010127Register 5:Hibernation Control (HIBCTL), offset 0x014129Register 6:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018130Register 8:Hibernation Raw Interrupt Status (HIBRIS), offset 0x01C131Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020132Register 9:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 11:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 12:Hibernation Interrupt Clear (HIBIC), offset 0x020132Register 13:Hibernation Interrupt Clear (HIBIC), offset 0x024133Register 14:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 15:Hibernation RTC Trim (HIBRTCT), offset 0x024 | Register 22: | Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x114 | 101 | Register 25:Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118109Register 26:Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128111Register 27:Software Reset Control 0 (SRCR0), offset 0x040113Register 28:Software Reset Control 1 (SRCR1), offset 0x044114Register 29:Software Reset Control 2 (SRCR2), offset 0x048116Hibernation Module117Register 1:Hibernation RTC Counter (HIBRTCC), offset 0x000123Register 29:Hibernation RTC Match 0 (HIBRTCM0), offset 0x004124Register 3:Hibernation RTC Match 0 (HIBRTCM1), offset 0x008125Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x000126Register 5:Hibernation Control (HIBCTL), offset 0x010127Register 6:Hibernation Interrupt Mask (HIBIN), offset 0x014129Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018130Register 8:Hibernation Interrupt Clear (HIBIC), offset 0x020132Register 9:Hibernation RTC Trim (HIBRTCT), offset 0x020132Register 11:Hibernation RTC Trim (HIBRTCT), offset 0x020134Internal Memory134 | Register 23: | Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124 | 104 | Register 26:Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128111Register 27:Software Reset Control 0 (SRCR0), offset 0x040113Register 28:Software Reset Control 1 (SRCR1), offset 0x044114Register 29:Software Reset Control 2 (SRCR2), offset 0x048116 <b>Hibernation Module117</b> Register 1:Hibernation RTC Counter (HIBRTCC), offset 0x000123Register 2:Hibernation RTC Match 0 (HIBRTCM0), offset 0x004124Register 3:Hibernation RTC Match 1 (HIBRTCLD), offset 0x000125Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x000126Register 5:Hibernation Control (HIBCTL), offset 0x000127Register 6:Hibernation RTC Load (HIBRTCLD), offset 0x001127Register 7:Hibernation Raw Interrupt Mask (HIBIM), offset 0x014129Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018130Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020132Register 9:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 11:Hibernation RTC Trim (HIBRTCT), offset 0x030-0x12C134Internal Memory135 | Register 24: | Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108 | 107 | Register 27:Software Reset Control 0 (SRCR0), offset 0x040113Register 28:Software Reset Control 1 (SRCR1), offset 0x044114Register 29:Software Reset Control 2 (SRCR2), offset 0x048116HibernationModule117Register 1:Hibernation RTC Counter (HIBRTCC), offset 0x000123Register 2:Hibernation RTC Match 0 (HIBRTCM0), offset 0x004124Register 3:Hibernation RTC Match 1 (HIBRTCM1), offset 0x008125Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x000126Register 5:Hibernation Control (HIBCTL), offset 0x010127Register 6:Hibernation Interrupt Mask (HIBIM), offset 0x014129Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x016131Register 8:Hibernation Raw Interrupt Status (HIBMIS), offset 0x010131Register 9:Hibernation RTC Trim (HIBRTCT), offset 0x020132Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 11:Hibernation Data (HIBDATA), offset 0x030-0x12C134Internal Memory135 | Register 25: | Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118 | 109 | Register 28:Software Reset Control 1 (SRCR1), offset 0x044114Register 29:Software Reset Control 2 (SRCR2), offset 0x048116 <b>Hibernation Module117</b> Register 1:Hibernation RTC Counter (HIBRTCC), offset 0x000123Register 2:Hibernation RTC Match 0 (HIBRTCM0), offset 0x004124Register 3:Hibernation RTC Match 1 (HIBRTCM1), offset 0x008125Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x000126Register 5:Hibernation Control (HIBCTL), offset 0x010127Register 6:Hibernation Interrupt Mask (HIBIM), offset 0x014129Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x016131Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020132Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 11:Hibernation Data (HIBDATA), offset 0x030-0x12C134Internal Memory135 | Register 26: | Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128 | 111 | Register 29:Software Reset Control 2 (SRCR2), offset 0x048116HibernationModule117Register 1:Hibernation RTC Counter (HIBRTCC), offset 0x000123Register 2:Hibernation RTC Match 0 (HIBRTCM0), offset 0x004124Register 3:Hibernation RTC Match 1 (HIBRTCM1), offset 0x008125Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x000126Register 5:Hibernation Control (HIBCTL), offset 0x010127Register 6:Hibernation Interrupt Mask (HIBIM), offset 0x014129Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x016131Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020132Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 11:Hibernation RTC Trim (HIBRTCT), offset 0x030-0x12C134Internal Memory135 | Register 27: | Software Reset Control 0 (SRCR0), offset 0x040 | 113 | HibernationModule117Register 1:Hibernation RTC Counter (HIBRTCC), offset 0x000123Register 2:Hibernation RTC Match 0 (HIBRTCM0), offset 0x004124Register 3:Hibernation RTC Match 1 (HIBRTCM1), offset 0x008125Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x00C126Register 5:Hibernation Control (HIBCTL), offset 0x010127Register 6:Hibernation Interrupt Mask (HIBIM), offset 0x014129Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018130Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020132Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 11:Hibernation Data (HIBDATA), offset 0x030-0x12C134Internal Memory135 | Register 28: | Software Reset Control 1 (SRCR1), offset 0x044 | 114 | Register 1:Hibernation RTC Counter (HIBRTCC), offset 0x000123Register 2:Hibernation RTC Match 0 (HIBRTCM0), offset 0x004124Register 3:Hibernation RTC Match 1 (HIBRTCM1), offset 0x008125Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x00C126Register 5:Hibernation Control (HIBCTL), offset 0x010127Register 6:Hibernation Interrupt Mask (HIBIM), offset 0x014129Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018130Register 8:Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C131Register 9:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 10:Hibernation Data (HIBDATA), offset 0x030-0x12C134Internal Memory135 | Register 29: | Software Reset Control 2 (SRCR2), offset 0x048 | 116 | Register 1:Hibernation RTC Counter (HIBRTCC), offset 0x000123Register 2:Hibernation RTC Match 0 (HIBRTCM0), offset 0x004124Register 3:Hibernation RTC Match 1 (HIBRTCM1), offset 0x008125Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x00C126Register 5:Hibernation Control (HIBCTL), offset 0x010127Register 6:Hibernation Interrupt Mask (HIBIM), offset 0x014129Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018130Register 8:Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C131Register 9:Hibernation RTC Trim (HIBRTCT), offset 0x020132Register 10:Hibernation Data (HIBDATA), offset 0x030-0x12C134Internal Memory135 | Hibernation | Module | 117 | Register 2:Hibernation RTC Match 0 (HIBRTCM0), offset 0x004124Register 3:Hibernation RTC Match 1 (HIBRTCM1), offset 0x008125Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x00C126Register 5:Hibernation Control (HIBCTL), offset 0x010127Register 6:Hibernation Interrupt Mask (HIBIM), offset 0x014129Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018130Register 8:Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C131Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020132Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x030-0x12C134Internal Memory135 |  |  |  | Register 3:Hibernation RTC Match 1 (HIBRTCM1), offset 0x008125Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x00C126Register 5:Hibernation Control (HIBCTL), offset 0x010127Register 6:Hibernation Interrupt Mask (HIBIM), offset 0x014129Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018130Register 8:Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C131Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020132Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 11:Hibernation Data (HIBDATA), offset 0x030-0x12C134Internal Memory135 | Register 2: |  |  | Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x00C126Register 5:Hibernation Control (HIBCTL), offset 0x010127Register 6:Hibernation Interrupt Mask (HIBIM), offset 0x014129Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018130Register 8:Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C131Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020132Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x030-0x12C134Internal Memory135 | • |  |  | Register 5:Hibernation Control (HIBCTL), offset 0x010127Register 6:Hibernation Interrupt Mask (HIBIM), offset 0x014129Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018130Register 8:Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C131Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020132Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 11:Hibernation Data (HIBDATA), offset 0x030-0x12C134Internal Memory135 | Register 4: |  |  | Register 6:Hibernation Interrupt Mask (HIBIM), offset 0x014129Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018130Register 8:Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C131Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020132Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 11:Hibernation Data (HIBDATA), offset 0x030-0x12C134Internal Memory135 | Register 5: |  |  | Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018130Register 8:Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C131Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020132Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 11:Hibernation Data (HIBDATA), offset 0x030-0x12C134Internal Memory135 | Register 6: |  |  | Register 8:Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C131Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020132Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 11:Hibernation Data (HIBDATA), offset 0x030-0x12C134Internal Memory135 | Register 7: |  |  | Register 9:       Hibernation Interrupt Clear (HIBIC), offset 0x020       132         Register 10:       Hibernation RTC Trim (HIBRTCT), offset 0x024       133         Register 11:       Hibernation Data (HIBDATA), offset 0x030-0x12C       134         Internal Memory       135 | - | Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C | 131 | Register 10:       Hibernation RTC Trim (HIBRTCT), offset 0x024       133         Register 11:       Hibernation Data (HIBDATA), offset 0x030-0x12C       134         Internal Memory       135 | Register 9: |  |  | Register 11:       Hibernation Data (HIBDATA), offset 0x030-0x12C       134         Internal Memory       135 | Register 10: |  |  | Internal Memory | Register 11: |  |  | Register 1: Flash Memory Address (FMA), offset 0x000 | • |  |  |  | Register 1: | Flash Memory Address (FMA), offset 0x000 |  |  | Register 2: |  |  |
| Register 20:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Deep Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x120 |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |
| Register 23:Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124104Register 24:Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108107Register 25:Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118109Register 26:Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128111Register 27:Software Reset Control 0 (SRCR0), offset 0x040113Register 28:Software Reset Control 1 (SRCR1), offset 0x044114Register 29:Software Reset Control 2 (SRCR2), offset 0x048116Hibernation Module117Register 1:Hibernation RTC Counter (HIBRTCC), offset 0x000123Register 3:Hibernation RTC Match 0 (HIBRTCM0), offset 0x004124Register 3:Hibernation RTC Match 1 (HIBRTCLD), offset 0x000125Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x000126Register 5:Hibernation Control (HIBCTL), offset 0x014129Register 7:Hibernation Raw Interrupt Mask (HIBIN), offset 0x014129Register 8:Hibernation Raw Interrupt Status (HIBRIS), offset 0x01C131Register 9:Hibernation RTC Trim (HIBRTCT), offset 0x020132Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 11:Hibernation Raw Interrupt Status (HIBMIS), offset 0x01C131Register 12:Hibernation Raw Interrupt Status (HIBRIS), offset 0x01C131Register 13:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 10:Hibernation RTC Tri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Register 21:                                                          | Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x104        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |
| Register 24:Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108107Register 25:Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118109Register 26:Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128111Register 27:Software Reset Control 0 (SRCR0), offset 0x040113Register 28:Software Reset Control 1 (SRCR1), offset 0x044114Register 29:Software Reset Control 2 (SRCR2), offset 0x048116HibernationModule117Register 1:Hibernation RTC Counter (HIBRTCC), offset 0x000123Register 2:Hibernation RTC Match 0 (HIBRTCM1), offset 0x004124Register 3:Hibernation RTC Match 1 (HIBRTCLD), offset 0x000125Register 4:Hibernation Control (HIBCTL), offset 0x010127Register 5:Hibernation Control (HIBCTL), offset 0x014129Register 6:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018130Register 8:Hibernation Raw Interrupt Status (HIBRIS), offset 0x01C131Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020132Register 9:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 11:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 12:Hibernation Interrupt Clear (HIBIC), offset 0x020132Register 13:Hibernation Interrupt Clear (HIBIC), offset 0x024133Register 14:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 15:Hibernation RTC Trim (HIBRTCT), offset 0x024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Register 22:                                                          | Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x114      | 101 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |
| Register 25:Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118109Register 26:Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128111Register 27:Software Reset Control 0 (SRCR0), offset 0x040113Register 28:Software Reset Control 1 (SRCR1), offset 0x044114Register 29:Software Reset Control 2 (SRCR2), offset 0x048116Hibernation Module117Register 1:Hibernation RTC Counter (HIBRTCC), offset 0x000123Register 29:Hibernation RTC Match 0 (HIBRTCM0), offset 0x004124Register 3:Hibernation RTC Match 0 (HIBRTCM1), offset 0x008125Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x000126Register 5:Hibernation Control (HIBCTL), offset 0x010127Register 6:Hibernation Interrupt Mask (HIBIN), offset 0x014129Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018130Register 8:Hibernation Interrupt Clear (HIBIC), offset 0x020132Register 9:Hibernation RTC Trim (HIBRTCT), offset 0x020132Register 11:Hibernation RTC Trim (HIBRTCT), offset 0x020134Internal Memory134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Register 23:                                                          | Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124 | 104 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |
| Register 26:Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128111Register 27:Software Reset Control 0 (SRCR0), offset 0x040113Register 28:Software Reset Control 1 (SRCR1), offset 0x044114Register 29:Software Reset Control 2 (SRCR2), offset 0x048116 <b>Hibernation Module117</b> Register 1:Hibernation RTC Counter (HIBRTCC), offset 0x000123Register 2:Hibernation RTC Match 0 (HIBRTCM0), offset 0x004124Register 3:Hibernation RTC Match 1 (HIBRTCLD), offset 0x000125Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x000126Register 5:Hibernation Control (HIBCTL), offset 0x000127Register 6:Hibernation RTC Load (HIBRTCLD), offset 0x001127Register 7:Hibernation Raw Interrupt Mask (HIBIM), offset 0x014129Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018130Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020132Register 9:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 11:Hibernation RTC Trim (HIBRTCT), offset 0x030-0x12C134Internal Memory135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Register 24:                                                          | Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108        | 107 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |
| Register 27:Software Reset Control 0 (SRCR0), offset 0x040113Register 28:Software Reset Control 1 (SRCR1), offset 0x044114Register 29:Software Reset Control 2 (SRCR2), offset 0x048116HibernationModule117Register 1:Hibernation RTC Counter (HIBRTCC), offset 0x000123Register 2:Hibernation RTC Match 0 (HIBRTCM0), offset 0x004124Register 3:Hibernation RTC Match 1 (HIBRTCM1), offset 0x008125Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x000126Register 5:Hibernation Control (HIBCTL), offset 0x010127Register 6:Hibernation Interrupt Mask (HIBIM), offset 0x014129Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x016131Register 8:Hibernation Raw Interrupt Status (HIBMIS), offset 0x010131Register 9:Hibernation RTC Trim (HIBRTCT), offset 0x020132Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 11:Hibernation Data (HIBDATA), offset 0x030-0x12C134Internal Memory135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Register 25:                                                          | Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118      | 109 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |
| Register 28:Software Reset Control 1 (SRCR1), offset 0x044114Register 29:Software Reset Control 2 (SRCR2), offset 0x048116 <b>Hibernation Module117</b> Register 1:Hibernation RTC Counter (HIBRTCC), offset 0x000123Register 2:Hibernation RTC Match 0 (HIBRTCM0), offset 0x004124Register 3:Hibernation RTC Match 1 (HIBRTCM1), offset 0x008125Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x000126Register 5:Hibernation Control (HIBCTL), offset 0x010127Register 6:Hibernation Interrupt Mask (HIBIM), offset 0x014129Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x016131Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020132Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 11:Hibernation Data (HIBDATA), offset 0x030-0x12C134Internal Memory135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Register 26:                                                          | Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128 | 111 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |
| Register 29:Software Reset Control 2 (SRCR2), offset 0x048116HibernationModule117Register 1:Hibernation RTC Counter (HIBRTCC), offset 0x000123Register 2:Hibernation RTC Match 0 (HIBRTCM0), offset 0x004124Register 3:Hibernation RTC Match 1 (HIBRTCM1), offset 0x008125Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x000126Register 5:Hibernation Control (HIBCTL), offset 0x010127Register 6:Hibernation Interrupt Mask (HIBIM), offset 0x014129Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x016131Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020132Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 11:Hibernation RTC Trim (HIBRTCT), offset 0x030-0x12C134Internal Memory135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Register 27:                                                          | Software Reset Control 0 (SRCR0), offset 0x040                        | 113 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |
| HibernationModule117Register 1:Hibernation RTC Counter (HIBRTCC), offset 0x000123Register 2:Hibernation RTC Match 0 (HIBRTCM0), offset 0x004124Register 3:Hibernation RTC Match 1 (HIBRTCM1), offset 0x008125Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x00C126Register 5:Hibernation Control (HIBCTL), offset 0x010127Register 6:Hibernation Interrupt Mask (HIBIM), offset 0x014129Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018130Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020132Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 11:Hibernation Data (HIBDATA), offset 0x030-0x12C134Internal Memory135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Register 28:                                                          | Software Reset Control 1 (SRCR1), offset 0x044                        | 114 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |
| Register 1:Hibernation RTC Counter (HIBRTCC), offset 0x000123Register 2:Hibernation RTC Match 0 (HIBRTCM0), offset 0x004124Register 3:Hibernation RTC Match 1 (HIBRTCM1), offset 0x008125Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x00C126Register 5:Hibernation Control (HIBCTL), offset 0x010127Register 6:Hibernation Interrupt Mask (HIBIM), offset 0x014129Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018130Register 8:Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C131Register 9:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 10:Hibernation Data (HIBDATA), offset 0x030-0x12C134Internal Memory135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Register 29:                                                          | Software Reset Control 2 (SRCR2), offset 0x048                        | 116 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |
| Register 1:Hibernation RTC Counter (HIBRTCC), offset 0x000123Register 2:Hibernation RTC Match 0 (HIBRTCM0), offset 0x004124Register 3:Hibernation RTC Match 1 (HIBRTCM1), offset 0x008125Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x00C126Register 5:Hibernation Control (HIBCTL), offset 0x010127Register 6:Hibernation Interrupt Mask (HIBIM), offset 0x014129Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018130Register 8:Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C131Register 9:Hibernation RTC Trim (HIBRTCT), offset 0x020132Register 10:Hibernation Data (HIBDATA), offset 0x030-0x12C134Internal Memory135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hibernation                                                           | Module                                                                | 117 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |
| Register 2:Hibernation RTC Match 0 (HIBRTCM0), offset 0x004124Register 3:Hibernation RTC Match 1 (HIBRTCM1), offset 0x008125Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x00C126Register 5:Hibernation Control (HIBCTL), offset 0x010127Register 6:Hibernation Interrupt Mask (HIBIM), offset 0x014129Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018130Register 8:Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C131Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020132Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x030-0x12C134Internal Memory135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |
| Register 3:Hibernation RTC Match 1 (HIBRTCM1), offset 0x008125Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x00C126Register 5:Hibernation Control (HIBCTL), offset 0x010127Register 6:Hibernation Interrupt Mask (HIBIM), offset 0x014129Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018130Register 8:Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C131Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020132Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 11:Hibernation Data (HIBDATA), offset 0x030-0x12C134Internal Memory135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Register 2:                                                           |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |
| Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x00C126Register 5:Hibernation Control (HIBCTL), offset 0x010127Register 6:Hibernation Interrupt Mask (HIBIM), offset 0x014129Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018130Register 8:Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C131Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020132Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x030-0x12C134Internal Memory135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                     |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |
| Register 5:Hibernation Control (HIBCTL), offset 0x010127Register 6:Hibernation Interrupt Mask (HIBIM), offset 0x014129Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018130Register 8:Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C131Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020132Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 11:Hibernation Data (HIBDATA), offset 0x030-0x12C134Internal Memory135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Register 4:                                                           |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |
| Register 6:Hibernation Interrupt Mask (HIBIM), offset 0x014129Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018130Register 8:Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C131Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020132Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 11:Hibernation Data (HIBDATA), offset 0x030-0x12C134Internal Memory135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Register 5:                                                           |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |
| Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018130Register 8:Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C131Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020132Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 11:Hibernation Data (HIBDATA), offset 0x030-0x12C134Internal Memory135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Register 6:                                                           |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |
| Register 8:Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C131Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020132Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024133Register 11:Hibernation Data (HIBDATA), offset 0x030-0x12C134Internal Memory135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Register 7:                                                           |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |
| Register 9:       Hibernation Interrupt Clear (HIBIC), offset 0x020       132         Register 10:       Hibernation RTC Trim (HIBRTCT), offset 0x024       133         Register 11:       Hibernation Data (HIBDATA), offset 0x030-0x12C       134         Internal Memory       135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                     | Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C            | 131 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |
| Register 10:       Hibernation RTC Trim (HIBRTCT), offset 0x024       133         Register 11:       Hibernation Data (HIBDATA), offset 0x030-0x12C       134         Internal Memory       135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Register 9:                                                           |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |
| Register 11:       Hibernation Data (HIBDATA), offset 0x030-0x12C       134         Internal Memory       135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Register 10:                                                          |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |
| Internal Memory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Register 11:                                                          |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |
| Register 1: Flash Memory Address (FMA), offset 0x000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                     |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Register 1:                                                           | Flash Memory Address (FMA), offset 0x000                              |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Register 2:                                                           |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |                                                                                                                                                                                                                                                                                                                                                        |             |  |  |                                                                                                                                                                                                                                                                                   |             |  |  |                                                                                                                                                                                                                                                                                       |   |                                                            |     |                                                                                                                                                                                                 |             |  |  |                                                                                                               |              |  |  |                 |              |  |  |                                                      |   |  |  |  |             |                                          |  |  |             |  |  |

| Register 3:  | Flash Memory Control (FMC), offset 0x008                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Register 4:  | Flash Controller Raw Interrupt Status (FCRIS), offset 0x00C                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 144 |
| Register 5:  | Flash Controller Interrupt Mask (FCIM), offset 0x010                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| Register 6:  | Flash Controller Masked Interrupt Status and Clear (FCMISC), offset 0x014                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| Register 7:  | USec Reload (USECRL), offset 0x140                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| Register 8:  | Flash Memory Protection Read Enable 0 (FMPRE0), offset 0x130 and 0x200                                                                                                                                                                                                                                                                                                                                                                                                                                          | . 148 |
| Register 9:  | Flash Memory Protection Program Enable 0 (FMPPE0), offset 0x134 and 0x400                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 149 |
| Register 10: | User Debug (USER_DBG), offset 0x1D0                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 150 |
| Register 11: | User Register 0 (USER_REG0), offset 0x1E0                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 151 |
| Register 12: | User Register 1 (USER_REG1), offset 0x1E4                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 152 |
| Register 13: | Flash Memory Protection Read Enable 1 (FMPRE1), offset 0x204                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 153 |
| Register 14: | Flash Memory Protection Read Enable 2 (FMPRE2), offset 0x208                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 154 |
| Register 15: | Flash Memory Protection Read Enable 3 (FMPRE3), offset 0x20C                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| Register 16: | Flash Memory Protection Program Enable 1 (FMPPE1), offset 0x404                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| Register 17: | Flash Memory Protection Program Enable 2 (FMPPE2), offset 0x408                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| Register 18: | Flash Memory Protection Program Enable 3 (FMPPE3), offset 0x40C                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| GPIO         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| Register 1:  | GPIO Data (GPIODATA), offset 0x000                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| •            | GPIO Direction (GPIODIR), offset 0x400                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| Register 2:  | GPIO Interrupt Sense (GPIOIS), offset 0x400                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| Register 3:  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| Register 4:  | GPIO Interrupt Both Edges (GPIOIBE), offset 0x408                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| Register 5:  | GPIO Interrupt Event (GPIOIEV), offset 0x40C                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| Register 6:  | GPIO Interrupt Mask (GPIOIM), offset 0x410                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| Register 7:  | GPIO Raw Interrupt Status (GPIORIS), offset 0x414                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| Register 8:  | GPIO Masked Interrupt Status (GPIOMIS), offset 0x418                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| Register 9:  | GPIO Interrupt Clear (GPIOICR), offset 0x41C                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| Register 10: | GPIO Alternate Function Select (GPIOAFSEL), offset 0x420                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| Register 11: | GPIO 2-mA Drive Select (GPIODR2R), offset 0x500                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| Register 12: | GPIO 4-mA Drive Select (GPIODR4R), offset 0x504                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| Register 13: | GPIO 8-mA Drive Select (GPIODR8R), offset 0x508                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| Register 14: | GPIO Open Drain Select (GPIOODR), offset 0x50C                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| Register 15: | GPIO Pull-Up Select (GPIOPUR), offset 0x510                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| Register 16: | GPIO Pull-Down Select (GPIOPDR), offset 0x514                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| Register 17: | GPIO Slew Rate Control Select (GPIOSLR), offset 0x518                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| Register 18: | GPIO Digital Enable (GPIODEN), offset 0x51C                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 184 |
| Register 19: | GPIO Lock (GPIOLOCK), offset 0x520                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 185 |
| Register 20: | GPIO Commit (GPIOCR), offset 0x524                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 186 |
| Register 21: | GPIO Peripheral Identification 4 (GPIOPeriphID4), offset 0xFD0                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 188 |
| Register 22: | GPIO Peripheral Identification 5 (GPIOPeriphID5), offset 0xFD4                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 189 |
| Register 23: | GPIO Peripheral Identification 6 (GPIOPeriphID6), offset 0xFD8                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 190 |
| Register 24: | GPIO Peripheral Identification 7 (GPIOPeriphID7), offset 0xFDC                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 191 |
| Register 25: | GPIO Peripheral Identification 0 (GPIOPeriphID0), offset 0xFE0                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 192 |
| Register 26: | GPIO Peripheral Identification 1(GPIOPeriphID1), offset 0xFE4                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| Register 27: | GPIO Peripheral Identification 2 (GPIOPeriphID2), offset 0xFE8                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| Register 28: | GPIO Peripheral Identification 3 (GPIOPeriphID3), offset 0xFEC                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| Register 29: | GPIO PrimeCell Identification 0 (GPIOPCellID0), offset 0xFF0                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| Register 30: | GPIO PrimeCell Identification 1 (GPIOPCellID1), offset 0xFF4                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| Register 31: | GPIO PrimeCell Identification 2 (GPIOPCellID2), offset 0xFF8                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
|              | / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , / , |       |

| Register 32: | GPIO PrimeCell Identification 3 (GPIOPCellID3), offset 0xFFC                                                                            | 199 |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----|
| Timers       |                                                                                                                                         | 200 |
| Register 1:  | GPTM Configuration (GPTMCFG), offset 0x000                                                                                              |     |
| Register 2:  | GPTM TimerA Mode (GPTMTAMR), offset 0x004                                                                                               | 213 |
| Register 3:  | GPTM TimerB Mode (GPTMTBMR), offset 0x008                                                                                               |     |
| Register 4:  | GPTM Control (GPTMCTL), offset 0x00C                                                                                                    | 215 |
| Register 5:  | GPTM Interrupt Mask (GPTMIMR), offset 0x018                                                                                             | 217 |
| Register 6:  | GPTM Raw Interrupt Status (GPTMRIS), offset 0x01C                                                                                       | 219 |
| Register 7:  | GPTM Masked Interrupt Status (GPTMMIS), offset 0x020                                                                                    | 220 |
| Register 8:  | GPTM Interrupt Clear (GPTMICR), offset 0x024                                                                                            | 221 |
| Register 9:  | GPTM TimerA Interval Load (GPTMTAILR), offset 0x028                                                                                     | 223 |
| Register 10: | GPTM TimerB Interval Load (GPTMTBILR), offset 0x02C                                                                                     | 224 |
| Register 11: | GPTM TimerA Match (GPTMTAMATCHR), offset 0x030                                                                                          | 225 |
| Register 12: | GPTM TimerB Match (GPTMTBMATCHR), offset 0x034                                                                                          | 226 |
| Register 13: | GPTM TimerA Prescale (GPTMTAPR), offset 0x038                                                                                           | 227 |
| Register 14: | GPTM TimerB Prescale (GPTMTBPR), offset 0x03C                                                                                           | 228 |
| Register 15: | GPTM TimerA Prescale Match (GPTMTAPMR), offset 0x040                                                                                    | 229 |
| Register 16: | GPTM TimerB Prescale Match (GPTMTBPMR), offset 0x044                                                                                    | 230 |
| Register 17: | GPTM TimerA (GPTMTAR), offset 0x048                                                                                                     | 231 |
| Register 18: | GPTM TimerB (GPTMTBR), offset 0x04C                                                                                                     | 232 |
| Watchdog T   | ïmer                                                                                                                                    | 233 |
| Register 1:  | Watchdog Load (WDTLOAD), offset 0x000                                                                                                   |     |
| Register 2:  | Watchdog Value (WDTVALUE), offset 0x004                                                                                                 |     |
| Register 3:  | Watchdog Control (WDTCTL), offset 0x008                                                                                                 |     |
| Register 4:  | Watchdog Interrupt Clear (WDTICR), offset 0x00C                                                                                         |     |
| Register 5:  | Watchdog Raw Interrupt Status (WDTRIS), offset 0x010                                                                                    |     |
| Register 6:  | Watchdog Masked Interrupt Status (WDTMIS), offset 0x014                                                                                 |     |
| Register 7:  | Watchdog Test (WDTTEST), offset 0x418                                                                                                   |     |
| Register 8:  | Watchdog Lock (WDTLOCK), offset 0xC00                                                                                                   |     |
| Register 9:  | Watchdog Peripheral Identification 4 (WDTPeriphID4), offset 0xFD0                                                                       |     |
| Register 10: | Watchdog Peripheral Identification 5 (WDTPeriphID5), offset 0xFD4                                                                       |     |
| Register 11: | Watchdog Peripheral Identification 6 (WDTPeriphID6), offset 0xFD8                                                                       |     |
| Register 12: | Watchdog Peripheral Identification 7 (WDTPeriphID7), offset 0xFDC                                                                       |     |
| Register 13: | Watchdog Peripheral Identification 0 (WDTPeriphID0), offset 0xFE0                                                                       |     |
| Register 14: | Watchdog Peripheral Identification 1 (WDTPeriphID1), offset 0xFE4                                                                       |     |
| Register 15: | Watchdog Peripheral Identification 2 (WDTPeriphID2), offset 0xFE8                                                                       |     |
| Register 16: | Watchdog Peripheral Identification 3 (WDTPeriphID3), offset 0xFEC                                                                       |     |
| Register 17: | Watchdog PrimeCell Identification 0 (WDTPCellID0), offset 0xFF0                                                                         |     |
| Register 18: | Watchdog PrimeCell Identification 1 (WDTPCellID1), offset 0xFF4                                                                         |     |
| Register 19: | Watchdog PrimeCell Identification 2 (WDTPCellID2), offset 0xFF8                                                                         |     |
| Register 20: | Watchdog PrimeCell Identification 3 (WDTPCellID3 ), offset 0xFFC                                                                        |     |
| ADC          | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                                                                                                   |     |
| Register 1:  | ADC Active Sample Sequencer (ADCACTSS), offset 0x000                                                                                    |     |
| Register 1:  | ADC Raw Interrupt Status (ADCRIS), offset 0x004                                                                                         |     |
| Register 3:  | ADC Interrupt Mask (ADCIM), offset 0x008                                                                                                |     |
| Register 4:  | ADC Interrupt Status and Clear (ADCISC), offset 0x00C                                                                                   |     |
| Register 5:  | ADC Overflow Status (ADCOSTAT), offset 0x010                                                                                            |     |
| Register 6:  | ADC Event Multiplexer Select (ADCEMUX), offset 0x014                                                                                    |     |
|              | $\gamma \gamma $ |     |

| Register 7:  | ADC Underflow Status (ADCUSTAT), offset 0x018                            | 269   |
|--------------|--------------------------------------------------------------------------|-------|
| Register 8:  | ADC Sample Sequencer Priority (ADCSSPRI), offset 0x020                   | 270   |
| Register 9:  | ADC Processor Sample Sequence Initiate (ADCPSSI), offset 0x028           |       |
| Register 10: | ADC Sample Averaging Control (ADCSAC), offset 0x030                      |       |
| Register 11: | ADC Sample Sequence Input Multiplexer Select 0 (ADCSSMUX0), offset 0x040 | 273   |
| Register 12: | ADC Sample Sequence Control 0 (ADCSSCTL0), offset 0x044                  |       |
| Register 13: | ADC Sample Sequence Result FIFO 0 (ADCSSFIFO0), offset 0x048             |       |
| Register 14: | ADC Sample Sequence Result FIFO 1 (ADCSSFIFO1), offset 0x068             |       |
| Register 15: | ADC Sample Sequence Result FIFO 2 (ADCSSFIFO2), offset 0x088             |       |
| Register 16: | ADC Sample Sequence FIFO 0 Status (ADCSSFSTAT0), offset 0x04C            |       |
| Register 17: | ADC Sample Sequence FIFO 1 Status (ADCSSFSTAT1), offset 0x06C            |       |
| Register 18: | ADC Sample Sequence FIFO 2 Status (ADCSSFSTAT2), offset 0x08C            |       |
| Register 19: | ADC Sample Sequence Input Multiplexer Select 1 (ADCSSMUX1), offset 0x060 |       |
| Register 20: | ADC Sample Sequence Control 1 (ADCSSCTL1), offset 0x064                  |       |
| Register 21: | ADC Sample Sequence Input Multiplexer Select 2 (ADCSSMUX2), offset 0x080 |       |
| Register 22: | ADC Sample Sequence Control 2 (ADCSSCTL2), offset 0x084                  |       |
| Register 23: | ADC Sample Sequence Input Multiplexer Select 3 (ADCSSMUX3), offset 0x0A0 |       |
| Register 24: | ADC Sample Sequence Control 3 (ADCSSCTL3), offset 0x0A4                  |       |
| Register 25: | ADC Sample Sequence Result FIFO 3 (ADCSSFIFO3), offset 0x0A8             |       |
| Register 26: | ADC Sample Sequence FIFO 3 Status (ADCSSFSTAT3), offset 0x0AC            |       |
| Register 27: | ADC Test Mode Loopback (ADCTMLB), offset 0x100                           |       |
| -            |                                                                          |       |
|              |                                                                          |       |
| Register 1:  | UART Data (UARTDR), offset 0x000                                         |       |
| Register 2:  | UART Receive Status/Error Clear (UARTRSR/UARTECR), offset 0x004          |       |
| Register 3:  | UART Flag (UARTFR), offset 0x018                                         |       |
| Register 4:  | UART IrDA Low-Power Register (UARTILPR), offset 0x020                    |       |
| Register 5:  | UART Integer Baud-Rate Divisor (UARTIBRD), offset 0x024                  |       |
| Register 6:  | UART Fractional Baud-Rate Divisor (UARTFBRD), offset 0x028               |       |
| Register 7:  | UART Line Control (UARTLCRH), offset 0x02C                               |       |
| Register 8:  | UART Control (UARTCTL), offset 0x030                                     |       |
| Register 9:  | UART Interrupt FIFO Level Select (UARTIFLS), offset 0x034                |       |
| Register 10: | UART Interrupt Mask (UARTIM), offset 0x038                               |       |
| Register 11: | UART Raw Interrupt Status (UARTRIS), offset 0x03C                        |       |
| Register 12: | UART Masked Interrupt Status (UARTMIS), offset 0x040                     |       |
| Register 13: | UART Interrupt Clear (UARTICR), offset 0x044                             |       |
| Register 14: | UART Peripheral Identification 4 (UARTPeriphID4), offset 0xFD0           |       |
| Register 15: | UART Peripheral Identification 5 (UARTPeriphID5), offset 0xFD4           |       |
| Register 16: | UART Peripheral Identification 6 (UARTPeriphID6), offset 0xFD8           |       |
| Register 17: | UART Peripheral Identification 7 (UARTPeriphID7), offset 0xFDC           |       |
| Register 18: | UART Peripheral Identification 0 (UARTPeriphID0), offset 0xFE0           | 321   |
| Register 19: | UART Peripheral Identification 1 (UARTPeriphID1), offset 0xFE4           | 322   |
| Register 20: | UART Peripheral Identification 2 (UARTPeriphID2), offset 0xFE8           | 323   |
| Register 21: | UART Peripheral Identification 3 (UARTPeriphID3), offset 0xFEC           | 324   |
| Register 22: | UART PrimeCell Identification 0 (UARTPCellID0), offset 0xFF0             | 325   |
| Register 23: | UART PrimeCell Identification 1 (UARTPCellID1), offset 0xFF4             | 326   |
| Register 24: | UART PrimeCell Identification 2 (UARTPCellID2), offset 0xFF8             | 327   |
| Register 25: | UART PrimeCell Identification 3 (UARTPCellID3), offset 0xFFC             | 328   |
| SSI          |                                                                          | . 329 |
|              |                                                                          |       |

| Register 1:   | SSI Control 0 (SSICR0), offset 0x000                                    | 341 |
|---------------|-------------------------------------------------------------------------|-----|
| Register 2:   | SSI Control 1 (SSICR1), offset 0x004                                    | 343 |
| Register 3:   | SSI Data (SSIDR), offset 0x008                                          | 344 |
| Register 4:   | SSI Status (SSISR), offset 0x00C                                        | 345 |
| Register 5:   | SSI Clock Prescale (SSICPSR), offset 0x010                              | 346 |
| Register 6:   | SSI Interrupt Mask (SSIIM), offset 0x014                                | 347 |
| Register 7:   | SSI Raw Interrupt Status (SSIRIS), offset 0x018                         | 348 |
| Register 8:   | SSI Masked Interrupt Status (SSIMIS), offset 0x01C                      | 349 |
| Register 9:   | SSI Interrupt Clear (SSIICR), offset 0x020                              | 350 |
| Register 10:  | SSI Peripheral Identification 4 (SSIPeriphID4), offset 0xFD0            | 351 |
| Register 11:  | SSI Peripheral Identification 5 (SSIPeriphID5), offset 0xFD4            | 352 |
| Register 12:  | SSI Peripheral Identification 6 (SSIPeriphID6), offset 0xFD8            | 353 |
| Register 13:  | SSI Peripheral Identification 7 (SSIPeriphID7), offset 0xFDC            | 354 |
| Register 14:  | SSI Peripheral Identification 0 (SSIPeriphID0), offset 0xFE0            | 355 |
| Register 15:  | SSI Peripheral Identification 1 (SSIPeriphID1), offset 0xFE4            | 356 |
| Register 16:  | SSI Peripheral Identification 2 (SSIPeriphID2), offset 0xFE8            | 357 |
| Register 17:  | SSI Peripheral Identification 3 (SSIPeriphID3), offset 0xFEC            | 358 |
| Register 18:  | SSI PrimeCell Identification 0 (SSIPCellID0), offset 0xFF0              | 359 |
| Register 19:  | SSI PrimeCell Identification 1 (SSIPCellID1), offset 0xFF4              | 360 |
| Register 20:  | SSI PrimeCell Identification 2 (SSIPCellID2), offset 0xFF8              | 361 |
| Register 21:  | SSI PrimeCell Identification 3 (SSIPCellID3), offset 0xFFC              | 362 |
| Inter-Integra | ated Circuit (I <sup>2</sup> C) Interface                               | 363 |
| Register 1:   | I <sup>2</sup> C Master Slave Address (I2CMSA), offset 0x000            |     |
| Register 2:   | I <sup>2</sup> C Master Control/Status (I2CMCS), offset 0x004           |     |
| Register 3:   | I <sup>2</sup> C Master Data (I2CMDR), offset 0x008                     |     |
| Register 4:   | I <sup>2</sup> C Master Timer Period (I2CMTPR), offset 0x00C            |     |
| Register 5:   | I <sup>2</sup> C Master Interrupt Mask (I2CMIMR), offset 0x010          |     |
| Register 6:   | I <sup>2</sup> C Master Raw Interrupt Status (I2CMRIS), offset 0x014    |     |
| Register 7:   | I <sup>2</sup> C Master Masked Interrupt Status (I2CMMIS), offset 0x014 |     |
| Register 8:   | I <sup>2</sup> C Master Interrupt Clear (I2CMICR), offset 0x01C         |     |
| •             | I <sup>2</sup> C Master Configuration (I2CMCR), offset 0x020            |     |
| Register 9:   |                                                                         |     |
| Register 10:  | I <sup>2</sup> C Slave Own Address (I2CSOAR), offset 0x000              |     |
| Register 11:  | I <sup>2</sup> C Slave Control/Status (I2CSCSR), offset 0x004           |     |
| Register 12:  | I <sup>2</sup> C Slave Data (I2CSDR), offset 0x008                      | 393 |
| Register 13:  | I <sup>2</sup> C Slave Interrupt Mask (I2CSIMR), offset 0x00C           |     |
| Register 14:  | I <sup>2</sup> C Slave Raw Interrupt Status (I2CSRIS), offset 0x010     |     |
| Register 15:  | I <sup>2</sup> C Slave Masked Interrupt Status (I2CSMIS), offset 0x014  |     |
| Register 16:  | I <sup>2</sup> C Slave Interrupt Clear (I2CSICR), offset 0x018          | 397 |
| Ethernet      |                                                                         | 398 |
| Register 1:   | Ethernet MAC Raw Interrupt Status (MACRIS), offset 0x000                | 406 |
| Register 2:   | Ethernet MAC Interrupt Acknowledge (MACIACK), offset 0x000              | 408 |
| Register 3:   | Ethernet MAC Interrupt Mask (MACIM), offset 0x004                       |     |
| Register 4:   | Ethernet MAC Receive Control (MACRCTL), offset 0x008                    | 410 |
| Register 5:   | Ethernet MAC Transmit Control (MACTCTL), offset 0x00C                   |     |
| Register 6:   | Ethernet MAC Data (MACDATA), offset 0x010                               | 412 |
| Register 7:   | Ethernet MAC Individual Address 0 (MACIA0), offset 0x014                | 413 |
| Register 8:   | Ethernet MAC Individual Address 1 (MACIA1), offset 0x018                | 414 |

| Register 9:                                                                                                                                                                                                                                                                                                              | Ethernet MAC Threshold (MACTHR), offset 0x01C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 415                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Register 10:                                                                                                                                                                                                                                                                                                             | Ethernet MAC Management Control (MACMCTL), offset 0x020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 416                                                                                                                                                    |
| Register 11:                                                                                                                                                                                                                                                                                                             | Ethernet MAC Management Divider (MACMDV), offset 0x024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 417                                                                                                                                                    |
| Register 12:                                                                                                                                                                                                                                                                                                             | Ethernet MAC Management Address (MACMADD), offset 0x028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 418                                                                                                                                                    |
| Register 13:                                                                                                                                                                                                                                                                                                             | Ethernet MAC Management Transmit Data (MACMTXD), offset 0x02C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 419                                                                                                                                                    |
| Register 14:                                                                                                                                                                                                                                                                                                             | Ethernet MAC Management Receive Data (MACMRXD), offset 0x030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                        |
| Register 15:                                                                                                                                                                                                                                                                                                             | Ethernet MAC Number of Packets (MACNP), offset 0x034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                        |
| Register 16:                                                                                                                                                                                                                                                                                                             | Ethernet MAC Transmission Request (MACTR), offset 0x038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                        |
| Register 17:                                                                                                                                                                                                                                                                                                             | Ethernet PHY Management Register 0 – Control (MR0), offset 0x00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                        |
| Register 18:                                                                                                                                                                                                                                                                                                             | Ethernet PHY Management Register 1 – Status (MR1), offset 0x01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                        |
| Register 19:                                                                                                                                                                                                                                                                                                             | Ethernet PHY Management Register 2 – PHY Identifier 1 (MR2), offset 0x02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                        |
| Register 20:                                                                                                                                                                                                                                                                                                             | Ethernet PHY Management Register 3 – PHY Identifier 2 (MR3), offset 0x03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                        |
| Register 21:                                                                                                                                                                                                                                                                                                             | Ethernet PHY Management Register 4 – Auto-Negotiation Advertisement (MR4), offset 0x04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 430                                                                                                                                                    |
| Register 22:                                                                                                                                                                                                                                                                                                             | Ethernet PHY Management Register 5 – Auto-Negotiation Link Partner Base Page Ability (MR5), offset 0x05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                        |
| Register 23:                                                                                                                                                                                                                                                                                                             | Ethernet PHY Management Register 6 – Auto-Negotiation Expansion (MR6), offset 0x06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                        |
| Register 24:                                                                                                                                                                                                                                                                                                             | Ethernet PHY Management Register 16 – Vendor-Specific (MR16), offset 0x10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                        |
| Register 25:                                                                                                                                                                                                                                                                                                             | Ethernet PHY Management Register 17 – Interrupt Control/Status (MR17), offset 0x11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                        |
| Register 26:                                                                                                                                                                                                                                                                                                             | Ethernet PHY Management Register 18 – Diagnostic (MR18), offset 0x12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                        |
| Register 27:                                                                                                                                                                                                                                                                                                             | Ethernet PHY Management Register 19 – Transceiver Control (MR19), offset 0x13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                        |
| Register 28:                                                                                                                                                                                                                                                                                                             | Ethernet PHY Management Register 23 – LED Configuration (MR23), offset 0x17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                        |
| Register 29:                                                                                                                                                                                                                                                                                                             | Ethernet PHY Management Register 24 –MDI/MDIX Control (MR24), offset 0x18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                        |
| Analag Con                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 440                                                                                                                                                    |
| •                                                                                                                                                                                                                                                                                                                        | 1parators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                        |
| Register 1:                                                                                                                                                                                                                                                                                                              | Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 447                                                                                                                                                    |
| Register 1:<br>Register 2:                                                                                                                                                                                                                                                                                               | Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00<br>Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 447<br>448                                                                                                                                             |
| Register 1:<br>Register 2:<br>Register 3:                                                                                                                                                                                                                                                                                | Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00<br>Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04<br>Analog Comparator Interrupt Enable (ACINTEN), offset 0x08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 447<br>448<br>449                                                                                                                                      |
| Register 1:<br>Register 2:<br>Register 3:<br>Register 4:                                                                                                                                                                                                                                                                 | Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00<br>Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04<br>Analog Comparator Interrupt Enable (ACINTEN), offset 0x08<br>Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 447<br>448<br>449<br>450                                                                                                                               |
| Register 1:<br>Register 2:<br>Register 3:<br>Register 4:<br>Register 5:                                                                                                                                                                                                                                                  | Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00<br>Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04<br>Analog Comparator Interrupt Enable (ACINTEN), offset 0x08<br>Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x10<br>Analog Comparator Status 0 (ACSTAT0), offset 0x20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 447<br>448<br>449<br>450<br>451                                                                                                                        |
| Register 1:<br>Register 2:<br>Register 3:<br>Register 4:<br>Register 5:<br>Register 6:                                                                                                                                                                                                                                   | Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00<br>Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04<br>Analog Comparator Interrupt Enable (ACINTEN), offset 0x08<br>Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x10<br>Analog Comparator Status 0 (ACSTAT0), offset 0x20<br>Analog Comparator Status 1 (ACSTAT1), offset 0x40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 447<br>448<br>449<br>450<br>451<br>451                                                                                                                 |
| Register 1:<br>Register 2:<br>Register 3:<br>Register 4:<br>Register 5:<br>Register 6:<br>Register 7:                                                                                                                                                                                                                    | Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00<br>Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04<br>Analog Comparator Interrupt Enable (ACINTEN), offset 0x08<br>Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x10<br>Analog Comparator Status 0 (ACSTAT0), offset 0x20<br>Analog Comparator Status 1 (ACSTAT1), offset 0x40<br>Analog Comparator Control 0 (ACCTL0), offset 0x24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 447<br>448<br>449<br>450<br>451<br>451<br>452                                                                                                          |
| Register 1:<br>Register 2:<br>Register 3:<br>Register 4:<br>Register 5:<br>Register 6:<br>Register 7:<br>Register 8:                                                                                                                                                                                                     | Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00<br>Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04<br>Analog Comparator Interrupt Enable (ACINTEN), offset 0x08<br>Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x10<br>Analog Comparator Status 0 (ACSTAT0), offset 0x20<br>Analog Comparator Status 1 (ACSTAT1), offset 0x40<br>Analog Comparator Control 0 (ACCTL0), offset 0x24<br>Analog Comparator Control 1 (ACCTL1), offset 0x44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 447<br>448<br>449<br>450<br>451<br>451<br>452<br>452                                                                                                   |
| Register 1:<br>Register 2:<br>Register 3:<br>Register 4:<br>Register 5:<br>Register 6:<br>Register 7:<br>Register 8:<br><b>PWM</b>                                                                                                                                                                                       | Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00<br>Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04<br>Analog Comparator Interrupt Enable (ACINTEN), offset 0x08<br>Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x10<br>Analog Comparator Status 0 (ACSTAT0), offset 0x20<br>Analog Comparator Status 1 (ACSTAT1), offset 0x40<br>Analog Comparator Control 0 (ACCTL0), offset 0x24<br>Analog Comparator Control 1 (ACCTL1), offset 0x44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 447<br>448<br>449<br>450<br>451<br>451<br>452<br>452<br><b>454</b>                                                                                     |
| Register 1:<br>Register 2:<br>Register 3:<br>Register 4:<br>Register 5:<br>Register 6:<br>Register 7:<br>Register 8:<br><b>PWM</b><br>Register 1:                                                                                                                                                                        | Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00<br>Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04<br>Analog Comparator Interrupt Enable (ACINTEN), offset 0x08<br>Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x10<br>Analog Comparator Status 0 (ACSTAT0), offset 0x20<br>Analog Comparator Status 1 (ACSTAT1), offset 0x40<br>Analog Comparator Control 0 (ACCTL0), offset 0x24<br>Analog Comparator Control 1 (ACCTL1), offset 0x44<br>PWM Master Control (PWMCTL), offset 0x000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 447<br>448<br>449<br>450<br>451<br>451<br>452<br>452<br><b>452</b><br><b>454</b><br>461                                                                |
| Register 1:<br>Register 2:<br>Register 3:<br>Register 4:<br>Register 5:<br>Register 6:<br>Register 7:<br>Register 8:<br><b>PWM</b><br>Register 1:<br>Register 2:                                                                                                                                                         | Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00         Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04         Analog Comparator Interrupt Enable (ACINTEN), offset 0x08         Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x10         Analog Comparator Status 0 (ACSTAT0), offset 0x20         Analog Comparator Status 1 (ACSTAT1), offset 0x40         Analog Comparator Control 0 (ACCTL0), offset 0x24         Analog Comparator Control 1 (ACCTL1), offset 0x44         PWM Master Control (PWMCTL), offset 0x000         PWM Time Base Sync (PWMSYNC), offset 0x004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 447<br>448<br>449<br>450<br>451<br>451<br>452<br>452<br>452<br><b>454</b><br>461<br>462                                                                |
| Register 1:<br>Register 2:<br>Register 3:<br>Register 4:<br>Register 5:<br>Register 6:<br>Register 7:<br>Register 8:<br><b>PWM</b><br>Register 1:<br>Register 2:<br>Register 3:                                                                                                                                          | Analog Comparator Masked Interrupt Status (ACRIS), offset 0x00         Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04         Analog Comparator Interrupt Enable (ACINTEN), offset 0x08         Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x10         Analog Comparator Status 0 (ACSTAT0), offset 0x20         Analog Comparator Status 1 (ACSTAT1), offset 0x40         Analog Comparator Control 0 (ACCTL0), offset 0x24         Analog Comparator Control 1 (ACCTL1), offset 0x44         PWM Master Control (PWMCTL), offset 0x000         PWM Time Base Sync (PWMSYNC), offset 0x004         PWM Output Enable (PWMENABLE), offset 0x008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 447<br>448<br>450<br>451<br>451<br>452<br>452<br>452<br>452<br>461<br>462<br>463                                                                       |
| Register 1:<br>Register 2:<br>Register 3:<br>Register 4:<br>Register 5:<br>Register 6:<br>Register 7:<br>Register 8:<br><b>PWM</b><br>Register 1:<br>Register 2:                                                                                                                                                         | Analog Comparator Masked Interrupt Status (ACRIS), offset 0x00         Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04         Analog Comparator Interrupt Enable (ACINTEN), offset 0x08         Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x10         Analog Comparator Status 0 (ACSTAT0), offset 0x20         Analog Comparator Status 1 (ACSTAT1), offset 0x40         Analog Comparator Control 0 (ACCTL0), offset 0x24         Analog Comparator Control 1 (ACCTL1), offset 0x44         PWM Master Control (PWMCTL), offset 0x000         PWM Time Base Sync (PWMSYNC), offset 0x004         PWM Output Enable (PWMENABLE), offset 0x008         PWM Output Inversion (PWMINVERT), offset 0x00C                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 447<br>448<br>450<br>451<br>451<br>452<br>452<br>452<br>452<br>461<br>462<br>463<br>464                                                                |
| Register 1:<br>Register 2:<br>Register 3:<br>Register 4:<br>Register 5:<br>Register 6:<br>Register 7:<br>Register 8:<br><b>PWM</b><br>Register 1:<br>Register 2:<br>Register 3:                                                                                                                                          | Analog Comparator Masked Interrupt Status (ACRIS), offset 0x00         Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04         Analog Comparator Interrupt Enable (ACINTEN), offset 0x08         Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x10         Analog Comparator Status 0 (ACSTAT0), offset 0x20         Analog Comparator Status 1 (ACSTAT1), offset 0x40         Analog Comparator Control 0 (ACCTL0), offset 0x24         Analog Comparator Control 1 (ACCTL1), offset 0x44         PWM Master Control (PWMCTL), offset 0x000         PWM Time Base Sync (PWMSYNC), offset 0x004         PWM Output Enable (PWMENABLE), offset 0x008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 447<br>448<br>450<br>451<br>451<br>452<br>452<br>452<br>452<br>461<br>462<br>463<br>464                                                                |
| Register 1:<br>Register 2:<br>Register 3:<br>Register 4:<br>Register 5:<br>Register 6:<br>Register 7:<br>Register 8:<br><b>PWM</b><br>Register 1:<br>Register 2:<br>Register 3:<br>Register 4:                                                                                                                           | Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00<br>Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04<br>Analog Comparator Interrupt Enable (ACINTEN), offset 0x08<br>Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x10<br>Analog Comparator Status 0 (ACSTAT0), offset 0x20<br>Analog Comparator Status 1 (ACSTAT1), offset 0x40<br>Analog Comparator Control 0 (ACCTL0), offset 0x24<br>Analog Comparator Control 1 (ACCTL1), offset 0x24<br>Analog Comparator Control 1 (ACCTL1), offset 0x44<br>PWM Master Control (PWMCTL), offset 0x000<br>PWM Time Base Sync (PWMSYNC), offset 0x004<br>PWM Output Enable (PWMENABLE), offset 0x008<br>PWM Output Inversion (PWMINVERT), offset 0x001<br>PWM Output Fault (PWMFAULT), offset 0x010<br>PWM Interrupt Enable (PWMINTEN), offset 0x014                                                                                                                                                                                                                                                                                                                                                                          | 447<br>448<br>449<br>450<br>451<br>451<br>452<br>452<br>452<br>452<br>461<br>462<br>463<br>464<br>465<br>466                                           |
| Register 1:<br>Register 2:<br>Register 3:<br>Register 4:<br>Register 5:<br>Register 6:<br>Register 7:<br>Register 8:<br><b>PWM</b><br>Register 1:<br>Register 1:<br>Register 2:<br>Register 3:<br>Register 4:<br>Register 5:                                                                                             | Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00<br>Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04<br>Analog Comparator Interrupt Enable (ACINTEN), offset 0x08<br>Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x10<br>Analog Comparator Status 0 (ACSTAT0), offset 0x20<br>Analog Comparator Status 1 (ACSTAT1), offset 0x40<br>Analog Comparator Control 0 (ACCTL0), offset 0x24<br>Analog Comparator Control 1 (ACCTL1), offset 0x44<br>Analog Comparator Control 1 (ACCTL1), offset 0x44<br>Analog Comparator Control 1 (ACCTL1), offset 0x00<br>PWM Master Control (PWMCTL), offset 0x004<br>PWM Output Enable (PWMENABLE), offset 0x004<br>PWM Output Enable (PWMENABLE), offset 0x007<br>PWM Output Inversion (PWMINVERT), offset 0x007<br>PWM Output Fault (PWMFAULT), offset 0x014<br>PWM Raw Interrupt Status (PWMRIS), offset 0x018                                                                                                                                                                                                                                                                                                                  | 447<br>448<br>450<br>451<br>451<br>452<br>452<br>452<br>452<br>461<br>462<br>463<br>464<br>465<br>466<br>467                                           |
| Register 1:<br>Register 2:<br>Register 3:<br>Register 4:<br>Register 5:<br>Register 6:<br>Register 7:<br>Register 8:<br><b>PWM</b><br>Register 1:<br>Register 2:<br>Register 3:<br>Register 3:<br>Register 4:<br>Register 5:<br>Register 6:                                                                              | Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00<br>Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04<br>Analog Comparator Interrupt Enable (ACINTEN), offset 0x08<br>Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x10<br>Analog Comparator Status 0 (ACSTAT0), offset 0x20<br>Analog Comparator Status 1 (ACSTAT1), offset 0x40<br>Analog Comparator Control 0 (ACCTL0), offset 0x24<br>Analog Comparator Control 1 (ACCTL1), offset 0x24<br>Analog Comparator Control 1 (ACCTL1), offset 0x44<br>PWM Master Control (PWMCTL), offset 0x000<br>PWM Time Base Sync (PWMSYNC), offset 0x004<br>PWM Output Enable (PWMENABLE), offset 0x008<br>PWM Output Inversion (PWMINVERT), offset 0x001<br>PWM Output Fault (PWMFAULT), offset 0x010<br>PWM Interrupt Enable (PWMINTEN), offset 0x014                                                                                                                                                                                                                                                                                                                                                                          | 447<br>448<br>450<br>451<br>451<br>452<br>452<br>452<br>452<br>461<br>462<br>463<br>464<br>465<br>466<br>467                                           |
| Register 1:<br>Register 2:<br>Register 3:<br>Register 4:<br>Register 5:<br>Register 6:<br>Register 7:<br>Register 8:<br><b>PWM</b><br>Register 1:<br>Register 2:<br>Register 3:<br>Register 4:<br>Register 5:<br>Register 6:<br>Register 7:                                                                              | Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00<br>Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04<br>Analog Comparator Interrupt Enable (ACINTEN), offset 0x08<br>Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x10<br>Analog Comparator Status 0 (ACSTAT0), offset 0x20<br>Analog Comparator Status 1 (ACSTAT1), offset 0x40<br>Analog Comparator Control 0 (ACCTL0), offset 0x24<br>Analog Comparator Control 1 (ACCTL1), offset 0x44<br>Analog Comparator Control 1 (ACCTL1), offset 0x44<br>Analog Comparator Control 1 (ACCTL1), offset 0x000<br>PWM Master Control (PWMCTL), offset 0x004<br>PWM Output Enable (PWMSYNC), offset 0x008<br>PWM Output Enable (PWMENABLE), offset 0x008<br>PWM Output Inversion (PWMINVERT), offset 0x007<br>PWM Interrupt Enable (PWMINTEN), offset 0x014<br>PWM Raw Interrupt Status (PWMRIS), offset 0x014<br>PWM Raw Interrupt Status and Clear (PWMISC), offset 0x01C<br>PWM Status (PWMSTATUS), offset 0x020                                                                                                                                                                                                          | 447<br>448<br>449<br>450<br>451<br>452<br>452<br>452<br>452<br>461<br>462<br>463<br>464<br>465<br>466<br>467<br>468<br>469                             |
| Register 1:<br>Register 2:<br>Register 3:<br>Register 4:<br>Register 5:<br>Register 6:<br>Register 7:<br>Register 8:<br><b>PWM</b><br>Register 1:<br>Register 2:<br>Register 3:<br>Register 3:<br>Register 5:<br>Register 5:<br>Register 6:<br>Register 7:<br>Register 7:<br>Register 8:                                 | Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00<br>Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04<br>Analog Comparator Interrupt Enable (ACINTEN), offset 0x08<br>Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x10<br>Analog Comparator Status 0 (ACSTAT0), offset 0x20<br>Analog Comparator Status 1 (ACSTAT1), offset 0x40<br>Analog Comparator Control 0 (ACCTL0), offset 0x24<br>Analog Comparator Control 1 (ACCTL1), offset 0x44<br>Analog Comparator Control 1 (ACCTL1), offset 0x44<br>Analog Comparator Control 1 (ACCTL1), offset 0x04<br>PWM Master Control (PWMCTL), offset 0x000<br>PWM Time Base Sync (PWMSYNC), offset 0x004<br>PWM Output Enable (PWMENABLE), offset 0x008<br>PWM Output Inversion (PWMINVERT), offset 0x007<br>PWM Output Fault (PWMFAULT), offset 0x010<br>PWM Interrupt Enable (PWMINTEN), offset 0x014<br>PWM Raw Interrupt Status and Clear (PWMISC), offset 0x01C                                                                                                                                                                                                                                                        | 447<br>448<br>449<br>450<br>451<br>452<br>452<br>452<br>452<br>461<br>462<br>463<br>464<br>465<br>466<br>467<br>468<br>469                             |
| Register 1:<br>Register 2:<br>Register 3:<br>Register 4:<br>Register 5:<br>Register 6:<br>Register 7:<br>Register 8:<br><b>PWM</b><br>Register 1:<br>Register 2:<br>Register 3:<br>Register 4:<br>Register 5:<br>Register 5:<br>Register 6:<br>Register 7:<br>Register 8:<br>Register 9:                                 | Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00         Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04         Analog Comparator Interrupt Enable (ACINTEN), offset 0x08         Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x10         Analog Comparator Status 0 (ACSTAT0), offset 0x20         Analog Comparator Status 1 (ACSTAT1), offset 0x40         Analog Comparator Control 0 (ACCTL0), offset 0x24         Analog Comparator Control 1 (ACCTL1), offset 0x44         PWM Master Control (PWMCTL), offset 0x000         PWM Time Base Sync (PWMSYNC), offset 0x004         PWM Output Enable (PWMENABLE), offset 0x008         PWM Output Inversion (PWMINVERT), offset 0x007         PWM Interrupt Enable (PWMINVERT), offset 0x014         PWM Interrupt Enable (PWMINTEN), offset 0x014         PWM Raw Interrupt Status and Clear (PWMISC), offset 0x016         PWM Status (PWMSTATUS), offset 0x020         PWM Status (PWMOCTL), offset 0x020         PWM Control (PWMCTL), offset 0x020         PWM Status (PWMSTATUS), offset 0x020         PWM Control (PWMOCTL), offset 0x040         PWM Control (PWMOCTL), offset 0x020               | 447<br>448<br>449<br>450<br>451<br>452<br>452<br>452<br>452<br>461<br>462<br>463<br>464<br>465<br>466<br>467<br>468<br>469<br>470<br>470               |
| Register 1:<br>Register 2:<br>Register 3:<br>Register 4:<br>Register 5:<br>Register 6:<br>Register 7:<br>Register 8:<br><b>PWM</b><br>Register 1:<br>Register 2:<br>Register 2:<br>Register 3:<br>Register 4:<br>Register 5:<br>Register 5:<br>Register 6:<br>Register 7:<br>Register 7:<br>Register 9:<br>Register 9:   | Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00         Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04         Analog Comparator Interrupt Enable (ACINTEN), offset 0x08         Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x10         Analog Comparator Status 0 (ACSTAT0), offset 0x20         Analog Comparator Status 1 (ACSTAT1), offset 0x40         Analog Comparator Control 0 (ACCTL0), offset 0x24         Analog Comparator Control 1 (ACCTL1), offset 0x44         PWM Master Control (PWMCTL), offset 0x000         PWM Time Base Sync (PWMSYNC), offset 0x004         PWM Output Enable (PWMENABLE), offset 0x008         PWM Output Inversion (PWMINVERT), offset 0x007         PWM Interrupt Status and Clear (PWMISC), offset 0x014         PWM Interrupt Status and Clear (PWMISC), offset 0x016         PWM Interrupt Status and Clear (PWMISC), offset 0x016         PWM Status (PWMSTATUS), offset 0x020         PWM Control (PWMCTL), offset 0x020         PWM0 Control (PWMOCTL), offset 0x020         PWM1 Control (PWMOCTL), offset 0x080         PWM1 Control (PWMCTL), offset 0x080         PWM2 Control (PWM2CTL), offset 0x020 | 447<br>448<br>449<br>450<br>451<br>452<br>452<br>452<br>452<br>461<br>462<br>463<br>464<br>465<br>466<br>467<br>468<br>469<br>470<br>470<br>470        |
| Register 1:<br>Register 2:<br>Register 3:<br>Register 4:<br>Register 5:<br>Register 6:<br>Register 7:<br>Register 8:<br><b>PWM</b><br>Register 1:<br>Register 2:<br>Register 3:<br>Register 4:<br>Register 5:<br>Register 5:<br>Register 6:<br>Register 7:<br>Register 8:<br>Register 9:<br>Register 10:<br>Register 11: | Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00         Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04         Analog Comparator Interrupt Enable (ACINTEN), offset 0x08         Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x10         Analog Comparator Status 0 (ACSTAT0), offset 0x20         Analog Comparator Status 1 (ACSTAT1), offset 0x40         Analog Comparator Control 0 (ACCTL0), offset 0x24         Analog Comparator Control 1 (ACCTL1), offset 0x44         PWM Master Control (PWMCTL), offset 0x000         PWM Time Base Sync (PWMSYNC), offset 0x004         PWM Output Enable (PWMENABLE), offset 0x008         PWM Output Inversion (PWMINVERT), offset 0x007         PWM Interrupt Enable (PWMINVERT), offset 0x014         PWM Interrupt Enable (PWMINTEN), offset 0x014         PWM Raw Interrupt Status and Clear (PWMISC), offset 0x016         PWM Status (PWMSTATUS), offset 0x020         PWM Status (PWMOCTL), offset 0x020         PWM Control (PWMCTL), offset 0x020         PWM Status (PWMSTATUS), offset 0x020         PWM Control (PWMOCTL), offset 0x040         PWM Control (PWMOCTL), offset 0x020               | 447<br>448<br>449<br>450<br>451<br>452<br>452<br>452<br>452<br>452<br>461<br>462<br>463<br>464<br>465<br>466<br>467<br>468<br>469<br>470<br>470<br>470 |

| Register 15: | PWM2 Interrupt and Trigger Enable (PWM2INTEN), offset 0x0C4  |     |
|--------------|--------------------------------------------------------------|-----|
| Register 16: | PWM0 Raw Interrupt Status (PWM0RIS), offset 0x048            |     |
| Register 17: | PWM1 Raw Interrupt Status (PWM1RIS), offset 0x088            |     |
| Register 18: | PWM2 Raw Interrupt Status (PWM2RIS), offset 0x0C8            |     |
| Register 19: | PWM0 Interrupt Status and Clear (PWM0ISC), offset 0x04C      |     |
| Register 20: | PWM1 Interrupt Status and Clear (PWM1ISC), offset 0x08C      |     |
| Register 21: | PWM2 Interrupt Status and Clear (PWM2ISC), offset 0x0CC      |     |
| Register 22: | PWM0 Load (PWM0LOAD), offset 0x050                           |     |
| Register 23: | PWM1 Load (PWM1LOAD), offset 0x090                           |     |
| Register 24: | PWM2 Load (PWM2LOAD), offset 0x0D0                           |     |
| Register 25: | PWM0 Counter (PWM0COUNT), offset 0x054                       |     |
| Register 26: | PWM1 Counter (PWM1COUNT), offset 0x094                       |     |
| Register 27: | PWM2 Counter (PWM2COUNT), offset 0x0D4                       |     |
| Register 28: | PWM0 Compare A (PWM0CMPA), offset 0x058                      |     |
| Register 29: | PWM1 Compare A (PWM1CMPA), offset 0x098                      |     |
| Register 30: | PWM2 Compare A (PWM2CMPA), offset 0x0D8                      |     |
| Register 31: | PWM0 Compare B (PWM0CMPB), offset 0x05C                      |     |
| Register 32: | PWM1 Compare B (PWM1CMPB), offset 0x09C                      |     |
| Register 33: | PWM2 Compare B (PWM2CMPB), offset 0x0DC                      |     |
| Register 34: | PWM0 Generator A Control (PWM0GENA), offset 0x060            |     |
| Register 35: | PWM1 Generator A Control (PWM1GENA), offset 0x0A0            |     |
| Register 36: | PWM2 Generator A Control (PWM2GENA), offset 0x0E0            |     |
| Register 37: | PWM0 Generator B Control (PWM0GENB), offset 0x064            |     |
| Register 38: | PWM1 Generator B Control (PWM1GENB), offset 0x0A4            |     |
| Register 39: | PWM2 Generator B Control (PWM2GENB), offset 0x0E4            |     |
| Register 40: | PWM0 Dead-Band Control (PWM0DBCTL), offset 0x068             |     |
| Register 41: | PWM1 Dead-Band Control (PWM1DBCTL), offset 0x0A8             |     |
| Register 42: | PWM2 Dead-Band Control (PWM2DBCTL), offset 0x0E8             |     |
| Register 43: | PWM0 Dead-Band Rising-Edge Delay (PWM0DBRISE), offset 0x06C  |     |
| Register 44: | PWM1 Dead-Band Rising-Edge Delay (PWM1DBRISE), offset 0x0AC  |     |
| Register 45: | PWM2 Dead-Band Rising-Edge Delay (PWM2DBRISE), offset 0x0EC  | 483 |
| Register 46: | PWM0 Dead-Band Falling-Edge-Delay (PWM0DBFALL), offset 0x070 |     |
| Register 47: | PWM1 Dead-Band Falling-Edge-Delay (PWM1DBFALL), offset 0x0B0 |     |
| Register 48: | PWM2 Dead-Band Falling-Edge-Delay (PWM2DBFALL), offset 0x0F0 | 484 |
| QEI          |                                                              | 485 |
| Register 1:  | QEI Control (QEICTL), offset 0x000                           | 490 |
| Register 2:  | QEI Status (QEISTAT), offset 0x004                           | 492 |
| Register 3:  | QEI Position (QEIPOS), offset 0x008                          |     |
| Register 4:  | QEI Maximum Position (QEIMAXPOS), offset 0x00C               |     |
| Register 5:  | QEI Timer Load (QEILOAD), offset 0x010                       | 495 |
| Register 6:  | QEI Timer (QEITIME), offset 0x014                            |     |
| Register 7:  | QEI Velocity Counter (QEICOUNT), offset 0x018                |     |
| Register 8:  | QEI Velocity (QEISPEED), offset 0x01C                        |     |
| Register 9:  | QEI Interrupt Enable (QEIINTEN), offset 0x020                |     |
| Register 10: | QEI Raw Interrupt Status (QEIRIS), offset 0x024              |     |
| Register 11: | QEI Interrupt Status and Clear (QEIISC), offset 0x028        |     |
| ÷            | · · · · ·                                                    |     |

# **About This Document**

This data sheet provides reference information for the LM3S6965 microcontroller, describing the functional blocks of the system-on-chip (SoC) device designed around the ARM® Cortex<sup>™</sup>-M3 core.

# Audience

This manual is intended for system software developers, hardware designers, and application developers.

# **About This Manual**

This document is organized into sections that correspond to each major feature.

# **Related Documents**

The following documents are referenced by the data sheet, and available on the documentation CD or from the Luminary Micro web site at www.luminarymicro.com:

- ARM® Cortex™-M3 Technical Reference Manual
- ARM® CoreSight Technical Reference Manual
- ARM® v7-M Architecture Application Level Reference Manual

The following related documents are also referenced:

IEEE Standard 1149.1-Test Access Port and Boundary-Scan Architecture

This documentation list was current as of publication date. Please check the Luminary Micro web site for additional documentation, including application notes and white papers.

# **Documentation Conventions**

This document uses the conventions shown in Table 1 on page 20.

#### **Table 1. Documentation Conventions**

| Notation              | Meaning                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General Register Nota | tion                                                                                                                                                                                                                                                                                                                                                        |
| REGISTER              | APB registers are indicated in uppercase bold. For example, <b>PBORCTL</b> is the Power-On and Brown-Out Reset Control register. If a register name contains a lowercase n, it represents more than one register. For example, <b>SRCRn</b> represents any (or all) of the three Software Reset Control registers: <b>SRCR0, SRCR1</b> , and <b>SRCR2</b> . |
| bit                   | A single bit in a register.                                                                                                                                                                                                                                                                                                                                 |
| bit field             | Two or more consecutive and related bits.                                                                                                                                                                                                                                                                                                                   |
| offset 0xnnn          | A hexadecimal increment to a register's address, relative to that module's base address as specified in "Memory Map" on page 42.                                                                                                                                                                                                                            |
| Register N            | Registers are numbered consecutively throughout the document to aid in referencing them. The register number has no meaning to software.                                                                                                                                                                                                                    |

| Notation                          | Meaning                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| reserved                          | Register bits marked <i>reserved</i> are reserved for future use. In most cases, reserved bits are set to 0; however, user software should not rely on the value of a reserved bit. To provide software compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |
| уу:хх                             | The range of register bits inclusive from xx to yy. For example, 31:15 means bits 15 through 31 in that register.                                                                                                                                                                                                                 |
| Register Bit/Field<br>Types       | This value in the register bit diagram indicates whether software running on the controller can change the value of the bit field.                                                                                                                                                                                                |
| RC                                | Software can read this field. The bit or field is cleared by hardware after reading the bit/field.                                                                                                                                                                                                                                |
| RO                                | Software can read this field. Always write the chip reset value.                                                                                                                                                                                                                                                                  |
| R/W                               | Software can read or write this field.                                                                                                                                                                                                                                                                                            |
| R/W1C                             | Software can read or write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. A write of a 1 clears the value of the bit in the register; the remaining bits remain unchanged.                                                                                                                |
|                                   | This register type is primarily used for clearing interrupt status bits where the read operation provides the interrupt status and the write of the read value clears only the interrupts being reported at the time the register was read.                                                                                       |
| W1C                               | Software can write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. A write of a 1 clears the value of the bit in the register; the remaining bits remain unchanged. A read of the register returns no meaningful data.                                                                     |
|                                   | This register is typically used to clear the corresponding bit in an interrupt register.                                                                                                                                                                                                                                          |
| WO                                | Only a write by software is valid; a read of the register returns no meaningful data.                                                                                                                                                                                                                                             |
| Register Bit/Field<br>Reset Value | This value in the register bit diagram shows the bit/field value after any reset, unless noted.                                                                                                                                                                                                                                   |
| 0                                 | Bit cleared to 0 on chip reset.                                                                                                                                                                                                                                                                                                   |
| 1                                 | Bit set to 1 on chip reset.                                                                                                                                                                                                                                                                                                       |
| -                                 | Nondeterministic.                                                                                                                                                                                                                                                                                                                 |
| <b>Pin/Signal Notation</b>        |                                                                                                                                                                                                                                                                                                                                   |
| []                                | Pin alternate function; a pin defaults to the signal without the brackets.                                                                                                                                                                                                                                                        |
| pin                               | Refers to the physical connection on the package.                                                                                                                                                                                                                                                                                 |
| signal                            | Refers to the electrical signal encoding of a pin.                                                                                                                                                                                                                                                                                |
| assert a signal                   | Change the value of the signal from the logically False state to the logically True state. For active High signals, the asserted signal value is 1 (High); for active Low signals, the asserted signal value is 0 (Low). The active polarity (High or Low) is defined by the signal name (see SIGNAL and SIGNAL below).           |
| deassert a signal                 | Change the value of the signal from the logically True state to the logically False state.                                                                                                                                                                                                                                        |
| SIGNAL                            | Signal names are in uppercase and in the Courier font. An overbar on a signal name indicates that it is active Low. To assert SIGNAL is to drive it Low; to deassert SIGNAL is to drive it High.                                                                                                                                  |
| SIGNAL                            | Signal names are in uppercase and in the Courier font. An active High signal has no overbar. To assert SIGNAL is to drive it High; to deassert SIGNAL is to drive it Low.                                                                                                                                                         |
| Numbers                           |                                                                                                                                                                                                                                                                                                                                   |
| х                                 | An uppercase X indicates any of several values is allowed, where X can be any legal pattern. For example, a binary value of 0X00 can be either 0100 or 0000, a hex value of 0xX is 0x0 or 0x1, and so on.                                                                                                                         |
| 0x                                | Hexadecimal numbers have a prefix of 0x. For example, 0x00FF is the hexadecimal number FF.<br>Binary numbers are indicated with a b suffix, for example, 1011b. Decimal numbers are written<br>without a prefix or suffix.                                                                                                        |

# **1** Architectural Overview

The Luminary Micro Stellaris<sup>®</sup> family of microcontrollers—the first ARM® Cortex<sup>™</sup>-M3 based controllers—brings high-performance 32-bit computing to cost-sensitive embedded microcontroller applications. These pioneering parts deliver customers 32-bit performance at a cost equivalent to legacy 8- and 16-bit devices, all in a package with a small footprint.

The Stellaris<sup>®</sup> family offers efficient performance and extensive integration, favorably positioning the device into cost-conscious applications requiring significant control-processing and connectivity capabilities. The Stellaris<sup>®</sup> LM3S2000 series, designed for Controller Area Network (CAN) applications, extends the Stellaris family with Bosch CAN networking technology, the golden standard in short-haul industrial networks. The Stellaris<sup>®</sup> LM3S2000 series also marks the first integration of CAN capabilities with the revolutionary Cortex-M3 core. The Stellaris<sup>®</sup> LM3S6000 series combines both a 10/100 Ethernet Media Access Control (MAC) and Physical (PHY) layer, marking the first time that integrated connectivity is available with an ARM Cortex-M3 MCU and the only integrated 10/100 Ethernet MAC and PHY available in an ARM architecture MCU.

The LM3S6965 microcontroller is targeted for industrial applications, including remote monitoring, electronic point-of-sale machines, test and measurement equipment, network appliances and switches, factory automation, HVAC and building control, gaming equipment, motion control, medical instrumentation, and fire and security.

For applications requiring extreme conservation of power, the LM3S6965 microcontroller features a Battery-backed Hibernation module to efficiently power down the LM3S6965 to a low-power state during extended periods of inactivity. With a power-up/power-down sequencer, a continuous time counter (RTC), a pair of match registers, an APB interface to the system bus, and dedicated non-volatile memory, the Hibernation module positions the LM3S6965 microcontroller perfectly for battery applications.

In addition, the LM3S6965 microcontroller offers the advantages of ARM's widely available development tools, System-on-Chip (SoC) infrastructure IP applications, and a large user community. Additionally, the microcontroller uses ARM's Thumb®-compatible Thumb-2 instruction set to reduce memory requirements and, thereby, cost. Finally, the LM3S6965 microcontroller is code-compatible to all members of the extensive Stellaris<sup>®</sup> family; providing flexibility to fit our customers' precise needs.

Luminary Micro offers a complete solution to get to market quickly, with evaluation and development boards, white papers and application notes, an easy-to-use peripheral driver library, and a strong support, sales, and distributor network.

# 1.1 Product Features

The LM3S6965 microcontroller includes the following product features:

- 32-Bit RISC Performance
  - 32-bit ARM® Cortex<sup>™</sup>-M3 v7M architecture optimized for small-footprint embedded applications
  - System timer (SysTick), providing a simple, 24-bit clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism
  - Thumb®-compatible Thumb-2-only instruction set processor core for high code density
  - 50-MHz operation

- Hardware-division and single-cycle-multiplication
- Integrated Nested Vectored Interrupt Controller (NVIC) providing deterministic interrupt handling
- 38 interrupts with eight priority levels
- Memory protection unit (MPU), providing a privileged mode for protected operating system functionality
- Unaligned data access, enabling data to be efficiently packed into memory
- Atomic bit manipulation (bit-banding), delivering maximum memory utilization and streamlined peripheral control
- Internal Memory
  - 256 KB single-cycle flash
    - User-managed flash block protection on a 2-KB block basis
    - User-managed flash data programming
    - User-defined and managed flash-protection block
  - 64 KB single-cycle SRAM
- General-Purpose Timers
  - Four General-Purpose Timer Modules (GPTM), each of which provides two 16-bit timer/counters. Each GPTM can be configured to operate independently as timers or event counters (eight total): as a single 32-bit timer (four total), as one 32-bit Real-Time Clock (RTC) to event capture, for Pulse Width Modulation (PWM), or to trigger analog-to-digital conversions
  - 32-bit Timer modes
    - Programmable one-shot timer
    - Programmable periodic timer
    - Real-Time Clock when using an external 32.768-KHz clock as the input
    - User-enabled stalling in periodic and one-shot mode when the controller asserts the CPU Halt flag during debug
    - ADC event trigger
  - 16-bit Timer modes
    - General-purpose timer function with an 8-bit prescaler
    - Programmable one-shot timer
    - Programmable periodic timer
    - User-enabled stalling when the controller asserts CPU Halt flag during debug

- ADC event trigger
- 16-bit Input Capture modes
  - Input edge count capture
  - Input edge time capture
- 16-bit PWM mode
  - Simple PWM mode with software-programmable output inversion of the PWM signal
- ARM FiRM-compliant Watchdog Timer
  - 32-bit down counter with a programmable load register
  - Separate watchdog clock with an enable
  - Programmable interrupt generation logic with interrupt masking
  - Lock register protection from runaway software
  - Reset generation logic with an enable/disable
  - User-enabled stalling when the controller asserts the CPU Halt flag during debug
- 10/100 Ethernet Controller
  - Conforms to the IEEE 802.3-2002 Specification
  - Full- and half-duplex for both 100 Mbps and 10 Mbps operation
  - Integrated 10/100 Mbps Transceiver (PHY)
  - Automatic MDI/MDI-X cross-over correction
  - Programmable MAC address
  - Power-saving and power-down modes
- Synchronous Serial Interface (SSI)
  - Master or slave operation
  - Programmable clock bit rate and prescale
  - Separate transmit and receive FIFOs, 16 bits wide, 8 locations deep
  - Programmable interface operation for Freescale SPI, MICROWIRE, or Texas Instruments synchronous serial interfaces
  - Programmable data frame size from 4 to 16 bits
  - Internal loopback test mode for diagnostic/debug testing
- UART

- Three fully programmable 16C550-type UARTs with IrDA support
- Separate 16x8 transmit (TX) and 16x12 receive (RX) FIFOs to reduce CPU interrupt service loading
- Programmable baud-rate generator with fractional divider
- Programmable FIFO length, including 1-byte deep operation providing conventional double-buffered interface
- FIFO trigger levels of 1/8, 1/4, 1/2, 3/4, and 7/8
- Standard asynchronous communication bits for start, stop, and parity
- False-start-bit detection
- Line-break generation and detection
- ADC
  - Single- and differential-input configurations
  - Four 10-bit channels (inputs) when used as single-ended inputs
  - Sample rate of one million samples/second
  - Flexible, configurable analog-to-digital conversion
  - Four programmable sample conversion sequences from one to eight entries long, with corresponding conversion result FIFOs
  - Each sequence triggered by software or internal event (timers, analog comparators, PWM or GPIO)
  - On-chip temperature sensor
- Analog Comparators
  - Two independent integrated analog comparators
  - Configurable for output to: drive an output pin, generate an interrupt, or initiate an ADC sample sequence
  - Compare external pin input to external pin input or to internal programmable voltage reference
- I<sup>2</sup>C
  - Two I C modules
  - Master and slave receive and transmit operation with transmission speed up to 100 Kbps in Standard mode and 400 Kbps in Fast mode
  - Interrupt generation
  - Master with arbitration and clock synchronization, multimaster support, and 7-bit addressing mode

- PWM
  - Three PWM generator blocks, each with one 16-bit counter, two comparators, a PWM generator, and a dead-band generator
  - One 16-bit counter
    - Runs in Down or Up/Down mode
    - Output frequency controlled by a 16-bit load value
    - Load value updates can be synchronized
    - Produces output signals at zero and load value
  - Two PWM comparators
    - Comparator value updates can be synchronized
    - Produces output signals on match
  - PWM generator
    - Output PWM signal is constructed based on actions taken as a result of the counter and PWM comparator output signals
    - Produces two independent PWM signals
  - Dead-band generator
    - Produces two PWM signals with programmable dead-band delays suitable for driving a half-H bridge
    - Can be bypassed, leaving input PWM signals unmodified
  - Flexible output control block with PWM output enable of each PWM signal
    - PWM output enable of each PWM signal
    - Optional output inversion of each PWM signal (polarity control)
    - Optional fault handling for each PWM signal
    - Synchronization of timers in the PWM generator blocks
    - · Synchronization of timer/comparator updates across the PWM generator blocks
    - Interrupt status summary of the PWM generator blocks
  - Can initiate an ADC sample sequence
- QEI
  - Two QEI modules
  - Hardware position integrator tracks the encoder position

- Velocity capture using built-in timer
- Interrupt generation on index pulse, velocity-timer expiration, direction change, and quadrature error detection
- GPIOs
  - 0-42 GPIOs, depending on configuration
  - 5-V-tolerant input/outputs
  - Programmable interrupt generation as either edge-triggered or level-sensitive
  - Bit masking in both read and write operations through address lines
  - Can initiate an ADC sample sequence
  - Programmable control for GPIO pad configuration:
    - Weak pull-up or pull-down resistors
    - 2-mA, 4-mA, and 8-mA pad drive
    - Slew rate control for the 8-mA drive
    - Open drain enables
    - Digital input enables
- Power
  - On-chip Low Drop-Out (LDO) voltage regulator, with programmable output user-adjustable from 2.25 V to 2.75 V
  - Hibernation module handles the power-up/down 3.3 V sequencing and control for the core digital logic and analog circuits
  - Low-power options on controller: Sleep and Deep-sleep modes
  - Low-power options for peripherals: software controls shutdown of individual peripherals
  - User-enabled LDO unregulated voltage detection and automatic reset
  - 3.3-V supply brown-out detection and reporting via interrupt or reset
- Flexible Reset Sources
  - Power-on reset (POR)
  - Reset pin assertion
  - Brown-out (BOR) detector alerts to system power drops
  - Software reset
  - Watchdog timer reset

- Internal low drop-out (LDO) regulator output goes unregulated
- Additional Features
  - Six reset sources
  - Programmable clock source control
  - Clock gating to individual peripherals for power savings
  - IEEE 1149.1-1990 compliant Test Access Port (TAP) controller
  - Debug access via JTAG and Serial Wire interfaces
  - Full JTAG boundary scan
- Industrial-range 100-pin RoHS-compliant LQFP package

# **1.2 Target Applications**

- Remote monitoring
- Electronic point-of-sale (POS) machines
- Test and measurement equipment
- Network appliances and switches
- Factory automation
- HVAC and building control
- Gaming equipment
- Motion control
- Medical instrumentation
- Fire and security
- Power and energy
- Transportation

# 1.3 High-Level Block Diagram

Figure 1-1 on page 29 shows the features on the Stellaris® Fury-class family of devices.

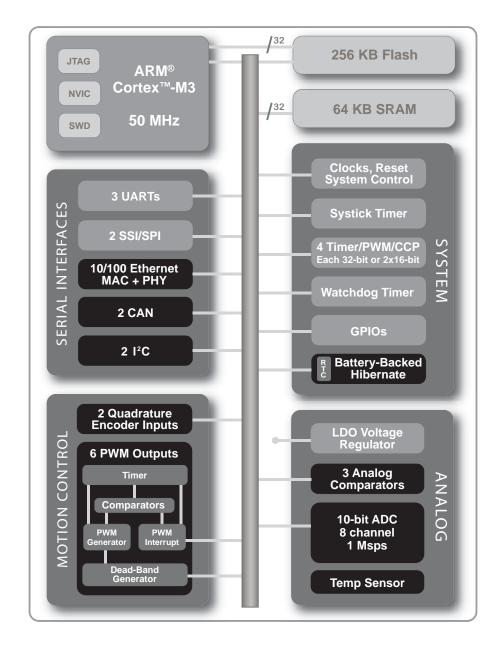



Figure 1-1. Stellaris® Fury-class High-Level Block Diagram

# 1.4 Functional Overview

The following sections provide an overview of the features of the LM3S6965 microcontroller. The page number in parenthesis indicates where that feature is discussed in detail. Ordering and support information can be found in "Ordering and Contact Information" on page 536.

# 1.4.1 ARM Cortex<sup>™</sup>-M3

## 1.4.1.1 Processor Core (see page 36)

All members of the Stellaris<sup>®</sup> product family, including the LM3S6965 microcontroller, are designed around an ARM Cortex<sup>™</sup>-M3 processor core. The ARM Cortex-M3 processor provides the core for a high-performance, low-cost platform that meets the needs of minimal memory implementation, reduced pin count, and low-power consumption, while delivering outstanding computational performance and exceptional system response to interrupts.

"ARM Cortex-M3 Processor Core" on page 36 provides an overview of the ARM core; the core is detailed in the *ARM*® *Cortex*<sup>™</sup>-*M*3 *Technical Reference Manual*.

## 1.4.1.2 System Timer (SysTick)

Cortex-M3 includes an integrated system timer, SysTick. SysTick provides a simple, 24-bit clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter can be used in several different ways, for example:

- An RTOS tick timer which fires at a programmable rate (for example, 100 Hz) and invokes a SysTick routine.
- A high-speed alarm timer using the system clock.
- A variable rate alarm or signal timer—the duration is range-dependent on the reference clock used and the dynamic range of the counter.
- A simple counter. Software can use this to measure time to completion and time used.
- An internal clock source control based on missing/meeting durations. The COUNTFLAG bit-field in the control and status register can be used to determine if an action completed within a set duration, as part of a dynamic clock management control loop.

### 1.4.1.3 Nested Vectored Interrupt Controller (NVIC)

The LM3S6965 controller includes the ARM Nested Vectored Interrupt Controller (NVIC) on the ARM Cortex-M3 core. The NVIC and Cortex-M3 prioritize and handle all exceptions. All exceptions are handled in Handler Mode. The processor state is automatically stored to the stack on an exception, and automatically restored from the stack at the end of the Interrupt Service Routine (ISR). The vector is fetched in parallel to the state saving, which enables efficient interrupt entry. The processor supports tail-chaining, which enables back-to-back interrupts to be performed without the overhead of state saving and restoration. Software can set eight priority levels on 7 exceptions (system handlers) and 38 interrupts.

"Interrupts" on page 44 provides an overview of the NVIC controller and the interrupt map. Exceptions and interrupts are detailed in the *ARM*® *Cortex*™-*M*3 *Technical Reference Manual*.

## 1.4.2 Motor Control Peripherals

To enhance motor control, the LM3S6965 controller features Pulse Width Modulation (PWM) outputs and the Quadrature Encoder Interface (QEI).

#### 1.4.2.1 **PWM** (see page 206)

Pulse width modulation (PWM) is a powerful technique for digitally encoding analog signal levels. High-resolution counters are used to generate a square wave, and the duty cycle of the square wave is modulated to encode an analog signal. Typical applications include switching power supplies and motor control.

On the LM3S6965, PWM motion control functionality can be achieved through dedicated, flexible motion control hardware (the PWM pins) or through the motion control features of the general-purpose timers (using the CCP pins).

#### PWM Pins (see page 454)

The LM3S6965 PWM module consists of three PWM generator blocks and a control block. Each PWM generator block contains one timer (16-bit down or up/down counter), two comparators, a PWM signal generator, a dead-band generator, and an interrupt/ADC-trigger selector. The control block determines the polarity of the PWM signals, and which signals are passed through to the pins.

Each PWM generator block produces two PWM signals that can either be independent signals or a single pair of complementary signals with dead-band delays inserted. The output of the PWM generation blocks are managed by the output control block before being passed to the device pins.

#### CCP Pins (see page 206)

The General-Purpose Timer Module's CCP (Capture Compare PWM) pins are software programmable to support a simple PWM mode with a software-programmable output inversion of the PWM signal.

## 1.4.2.2 QEI (see page 485)

A quadrature encoder, also known as a 2-channel incremental encoder, converts linear displacement into a pulse signal. By monitoring both the number of pulses and the relative phase of the two signals, you can track the position, direction of rotation, and speed. In addition, a third channel, or index signal, can be used to reset the position counter.

The Stellaris quadrature encoder with index (QEI) module interprets the code produced by a quadrature encoder wheel to integrate position over time and determine direction of rotation. In addition, it can capture a running estimate of the velocity of the encoder wheel. The LM3S6965 microcontroller includes two QEI modules, which enables control of two motors at the same time.

### 1.4.3 Serial Communications Peripherals

The LM3S6965 controller supports both asynchronous and synchronous serial communications with three fully programmable 16C550-type UARTs, one SSI module, and two I<sup>2</sup>C modules.

## 1.4.3.1 UART (see page 289)

A Universal Asynchronous Receiver/Transmitter (UART) is an integrated circuit used for RS-232C serial communications, containing a transmitter (parallel-to-serial converter) and a receiver (serial-to-parallel converter), each clocked separately.

The LM3S6965 controller includes three fully programmable 16C550-type UARTs that support data transfer speeds up to 460.8 Kbps. In addition, each UART is capable of supporting IrDA. (Although similar in functionality to a 16C550 UART, it is not register-compatible.)

Separate 16x8 transmit (TX) and 16x12 receive (RX) FIFOs reduce CPU interrupt service loading. The UART can generate individually masked interrupts from the RX, TX, modem status, and error conditions. The module provides a single combined interrupt when any of the interrupts are asserted and are unmasked.

## 1.4.3.2 SSI (see page 329)

Synchronous Serial Interface (SSI) is a four-wire bi-directional communications interface.

The LM3S6965 controller includes one SSI module that provides the functionality for synchronous serial communications with peripheral devices, and can be configured to use the Freescale SPI, MICROWIRE, or TI synchronous serial interface frame formats. The size of the data frame is also configurable, and can be set between 4 and 16 bits, inclusive.

The SSI module performs serial-to-parallel conversion on data received from a peripheral device, and parallel-to-serial conversion on data transmitted to a peripheral device. The TX and RX paths are buffered with internal FIFOs, allowing up to eight 16-bit values to be stored independently.

The SSI module can be configured as either a master or slave device. As a slave device, the SSI module can also be configured to disable its output, which allows a master device to be coupled with multiple slave devices.

The SSI module also includes a programmable bit rate clock divider and prescaler to generate the output serial clock derived from the SSI module's input clock. Bit rates are generated based on the input clock and the maximum bit rate is determined by the connected peripheral.

# 1.4.3.3 I<sup>2</sup>C(see page 363)

The Inter-Integrated Circuit (I<sup>2</sup>C) bus provides bi-directional data transfer through a two-wire design (a serial data line SDA and a serial clock line SCL).

The I<sup>2</sup>C bus interfaces to external I<sup>2</sup>C devices such as serial memory (RAMs and ROMs), networking devices, LCDs, tone generators, and so on. The I<sup>2</sup>C bus may also be used for system testing and diagnostic purposes in product development and manufacture.

The LM3S6965 controller includes two  $I^2C$  modules that provide the ability to communicate to other IC devices over an  $I^2C$  bus. The  $I^2C$  bus supports devices that can both transmit and receive (write and read) data.

Devices on the  $I^2C$  bus can be designated as either a master or a slave. Each  $I^2C$  module supports both sending and receiving data as either a master or a slave, and also supports the simultaneous operation as both a master and a slave. The four  $I^2C$  modes are: Master Transmit, Master Receive, Slave Transmit, and Slave Receive.

A Stellaris<sup>®</sup> I<sup>2</sup>C module can operate at two speeds: Standard (100 Kbps) and Fast (400 Kbps).

Both the I<sup>2</sup>C master and slave can generate interrupts. The I<sup>2</sup>C master generates interrupts when a transmit or receive operation completes (or aborts due to an error). The I<sup>2</sup>C slave generates interrupts when data has been sent or requested by a master.

# 1.4.3.4 Ethernet MAC (see page 398)

Ethernet is a frame-based computer networking technology for local area networks (LANs). Ethernet has been standardized as IEEE 802.3. It defines a number of wiring and signaling standards for the physical layer, two means of network access at the Media Access Control (MAC)/Data Link Layer, and a common addressing format.

The Stellaris® Ethernet Controller consists of a fully integrated media access controller (MAC) and network physical (PHY) interface device. The Ethernet Controller conforms to IEEE 802.3 specifications and fully supports 10BASE-T and 100BASE-TX standards. In addition, the Ethernet Controller supports automatic MDI/MDI-X cross-over correction.

# 1.4.4 System Peripherals

# 1.4.4.1 Programmable GPIOs (see page 159)

General-purpose input/output (GPIO) pins offer flexibility for a variety of connections.

The Stellaris<sup>®</sup> GPIO module is composed of seven physical GPIO blocks, each corresponding to an individual GPIO port. The GPIO module is FiRM-compliant (compliant to the ARM Foundation IP for Real-Time Microcontrollers specification) and supports 0-42 programmable input/output pins. The number of GPIOs available depends on the peripherals being used (see "Signal Tables" on page 503 for the signals available to each GPIO pin).

The GPIO module features programmable interrupt generation as either edge-triggered or level-sensitive on all pins, programmable control for GPIO pad configuration, and bit masking in both read and write operations through address lines.

## 1.4.4.2 Four Programmable Timers (see page 200)

Programmable timers can be used to count or time external events that drive the Timer input pins.

The Stellaris<sup>®</sup> General-Purpose Timer Module (GPTM) contains four GPTM blocks. Each GPTM block provides two 16-bit timer/counters that can be configured to operate independently as timers or event counters, or configured to operate as one 32-bit timer or one 32-bit Real-Time Clock (RTC). Timers can also be used to trigger analog-to-digital (ADC) conversions.

When configured in 32-bit mode, a timer can run as a one-shot timer, periodic timer, or Real-Time Clock (RTC). When in 16-bit mode, a timer can run as a one-shot timer or periodic timer, and can extend its precision by using an 8-bit prescaler. A 16-bit timer can also be configured for event capture or Pulse Width Modulation (PWM) generation.

### 1.4.4.3 Watchdog Timer (see page 233)

A watchdog timer can generate nonmaskable interrupts (NMIs) or a reset when a time-out value is reached. The watchdog timer is used to regain control when a system has failed due to a software error or to the failure of an external device to respond in the expected way.

The Stellaris<sup>®</sup> Watchdog Timer module consists of a 32-bit down counter, a programmable load register, interrupt generation logic, and a locking register.

The Watchdog Timer can be configured to generate an interrupt to the controller on its first time-out, and to generate a reset signal on its second time-out. Once the Watchdog Timer has been configured, the lock register can be written to prevent the timer configuration from being inadvertently altered.

### 1.4.5 Memory Peripherals

The LM3S6965 controller offers both SRAM and Flash memory.

### 1.4.5.1 SRAM (see page 135)

The LM3S6965 static random access memory (SRAM) controller supports 64 KB SRAM. The internal SRAM of the Stellaris<sup>®</sup> devices is located at offset 0x0000.0000 of the device memory map. To reduce the number of time-consuming read-modify-write (RMW) operations, ARM has introduced *bit-banding* technology in the new Cortex-M3 processor. With a bit-band-enabled processor, certain regions in the memory map (SRAM and peripheral space) can use address aliases to access individual bits in a single, atomic operation.

## 1.4.5.2 Flash (see page 136)

The LM3S6965 Flash controller supports 256 KB of flash memory. The flash is organized as a set of 1-KB blocks that can be individually erased. Erasing a block causes the entire contents of the block to be reset to all 1s. These blocks are paired into a set of 2-KB blocks that can be individually protected. The blocks can be marked as read-only or execute-only, providing different levels of code protection. Read-only blocks cannot be erased or programmed, protecting the contents of those blocks from being modified. Execute-only blocks cannot be erased or programmed, and can only

be read by the controller instruction fetch mechanism, protecting the contents of those blocks from being read by either the controller or by a debugger.

# 1.4.6 Additional Features

## 1.4.6.1 Memory Map (see page 42)

A memory map lists the location of instructions and data in memory. The memory map for the LM3S6965 controller can be found in "Memory Map" on page 42. Register addresses are given as a hexadecimal increment, relative to the module's base address as shown in the memory map.

The *ARM*® *Cortex*™-*M*3 *Technical Reference Manual* provides further information on the memory map.

## 1.4.6.2 JTAG TAP Controller (see page 47)

The Joint Test Action Group (JTAG) port provides a standardized serial interface for controlling the Test Access Port (TAP) and associated test logic. The TAP, JTAG instruction register, and JTAG data registers can be used to test the interconnects of assembled printed circuit boards, obtain manufacturing information on the components, and observe and/or control the inputs and outputs of the controller during normal operation. The JTAG port provides a high degree of testability and chip-level access at a low cost.

The JTAG port is comprised of the standard five pins: TRST, TCK, TMS, TDI, and TDO. Data is transmitted serially into the controller on TDI and out of the controller on TDO. The interpretation of this data is dependent on the current state of the TAP controller. For detailed information on the operation of the JTAG port and TAP controller, please refer to the *IEEE Standard 1149.1-Test Access Port and Boundary-Scan Architecture*.

The Luminary Micro JTAG controller works with the ARM JTAG controller built into the Cortex-M3 core. This is implemented by multiplexing the TDO outputs from both JTAG controllers. ARM JTAG instructions select the ARM TDO output while Luminary Micro JTAG instructions select the Luminary Micro TDO outputs. The multiplexer is controlled by the Luminary Micro JTAG controller, which has comprehensive programming for the ARM, Luminary Micro, and unimplemented JTAG instructions.

## 1.4.6.3 System Control and Clocks (see page 58)

System control determines the overall operation of the device. It provides information about the device, controls the clocking of the device and individual peripherals, and handles reset detection and reporting.

### 1.4.6.4 Hibernation Module (see page 117)

The Hibernation module provides logic to switch power off to the main processor and peripherals, and to wake on external or time-based events. The Hibernation module includes power-sequencing logic, a real-time clock with a pair of match registers, low-battery detection circuitry, and interrupt signalling to the processor. It also includes 64 32-bit words of non-volatile memory that can be used for saving state during hibernation.

### 1.4.7 Hardware Details

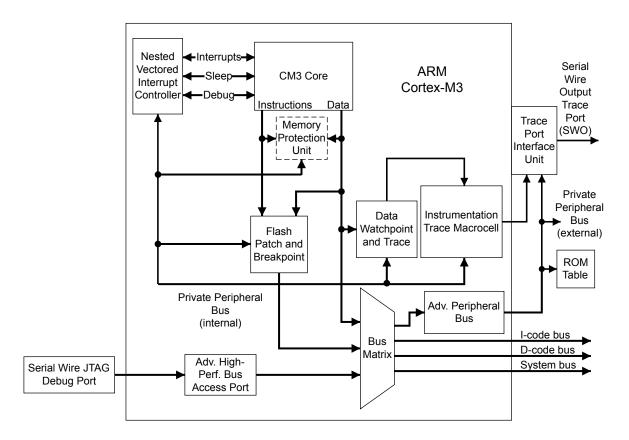
Details on the pins and package can be found in the following sections:

- "Pin Diagram" on page 502
- "Signal Tables" on page 503

- "Operating Characteristics" on page 518
- "Electrical Characteristics" on page 519
- "Package Information" on page 534

# 2 ARM Cortex-M3 Processor Core

The ARM Cortex-M3 processor provides the core for a high-performance, low-cost platform that meets the needs of minimal memory implementation, reduced pin count, and low power consumption, while delivering outstanding computational performance and exceptional system response to interrupts. Features include:


- Compact core.
- Thumb-2 instruction set, delivering the high-performance expected of an ARM core in the memory size usually associated with 8- and 16-bit devices; typically in the range of a few kilobytes of memory for microcontroller class applications.
- Speedy application execution through Harvard architecture characterized by separate buses for instruction and data.
- Exceptional interrupt handling, by implementing the register manipulations required for handling an interrupt in hardware.
- Memory protection unit (MPU) to provide a privileged mode of operation for complex applications.
- Migration from the ARM7(TM) processor family for better performance and power efficiency.
- Full-featured debug solution with a:
  - Serial Wire JTAG Debug Port (SWJ-DP)
  - Flash Patch and Breakpoint (FPB) unit for implementing breakpoints
  - Data Watchpoint and Trigger (DWT) unit for implementing watchpoints, trigger resources, and system profiling
  - Instrumentation Trace Macrocell (ITM) for support of printf style debugging
  - Trace Port Interface Unit (TPIU) for bridging to a Trace Port Analyzer

The Stellaris<sup>®</sup> family of microcontrollers builds on this core to bring high-performance 32-bit computing to cost-sensitive embedded microcontroller applications, such as factory automation and control, industrial control power devices, building and home automation, and stepper motors.

For more information on the ARM Cortex-M3 processor core, see the ARM® Cortex<sup>™</sup>-M3 Technical Reference Manual. For information on SWJ-DP, see the ARM® CoreSight Technical Reference Manual.

# 2.1 Block Diagram





# 2.2 Functional Description

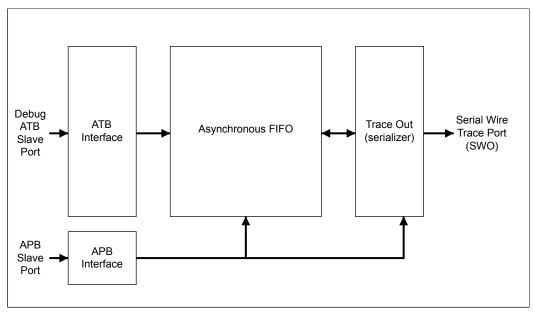
Important: The ARM® Cortex<sup>™</sup>-M3 Technical Reference Manual describes all the features of an ARM Cortex-M3 in detail. However, these features differ based on the implementation. This section describes the Stellaris<sup>®</sup> implementation.

Luminary Micro has implemented the ARM Cortex-M3 core as shown in Figure 2-1 on page 37. As noted in the *ARM*® *Cortex*<sup>™</sup>-*M3 Technical Reference Manual*, several Cortex-M3 components are flexible in their implementation: SW/JTAG-DP, ETM, TPIU, the ROM table, the MPU, and the Nested Vectored Interrupt Controller (NVIC). Each of these is addressed in the sections that follow.

## 2.2.1 Serial Wire and JTAG Debug

Luminary Micro has replaced the ARM SW-DP and JTAG-DP with the ARM CoreSight<sup>™</sup>-compliant Serial Wire JTAG Debug Port (SWJ-DP) interface. This means Chapter 12, "Debug Port," of the *ARM*® *Cortex<sup>™</sup>-M3 Technical Reference Manual* does not apply to Stellaris<sup>®</sup> devices.

The SWJ-DP interface combines the SWD and JTAG debug ports into one module. See the *CoreSight™ Design Kit Technical Reference Manual* for details on SWJ-DP.


## 2.2.2 Embedded Trace Macrocell (ETM)

ETM was not implemented in the Stellaris<sup>®</sup> devices. This means Chapters 15 and 16 of the *ARM*® *Cortex*<sup>™</sup>-*M*3 *Technical Reference Manual* can be ignored.

#### 2.2.3 Trace Port Interface Unit (TPIU)

The TPIU acts as a bridge between the Cortex-M3 trace data from the ITM, and an off-chip Trace Port Analyzer. The Stellaris<sup>®</sup> devices have implemented TPIU as shown in Figure 2-2 on page 38. This is similar to the non-ETM version described in the *ARM*® *Cortex*<sup>™</sup>-*M3 Technical Reference Manual*, however, SWJ-DP only provides SWV output for the TPIU.





### 2.2.4 ROM Table

The default ROM table was implemented as described in the *ARM*<sup>®</sup> *Cortex*<sup>™</sup>-*M3 Technical Reference Manual*.

#### 2.2.5 Memory Protection Unit (MPU)

The Memory Protection Unit (MPU) is included on the LM3S6965 controller and supports the standard ARMv7 Protected Memory System Architecture (PMSA) model. The MPU provides full support for protection regions, overlapping protection regions, access permissions, and exporting memory attributes to the system.

#### 2.2.6 Nested Vectored Interrupt Controller (NVIC)

The Nested Vectored Interrupt Controller (NVIC):

Facilitates low-latency exception and interrupt handling

- Controls power management
- Implements system control registers

The NVIC supports up to 240 dynamically reprioritizable interrupts each with up to 256 levels of priority. The NVIC and the processor core interface are closely coupled, which enables low latency interrupt processing and efficient processing of late arriving interrupts. The NVIC maintains knowledge of the stacked (nested) interrupts to enable tail-chaining of interrupts.

You can only fully access the NVIC from privileged mode, but you can pend interrupts in user-mode if you enable the Configuration Control Register (see the ARM® Cortex<sup>™</sup>-M3 Technical Reference Manual). Any other user-mode access causes a bus fault.

All NVIC registers are accessible using byte, halfword, and word unless otherwise stated.

All NVIC registers and system debug registers are little endian regardless of the endianness state of the processor.

#### 2.2.6.1 Interrupts

The *ARM*® *Cortex*<sup>™</sup>-*M3 Technical Reference Manual* describes the maximum number of interrupts and interrupt priorities. The LM3S6965 microcontroller supports 38 interrupts with eight priority levels.

#### 2.2.6.2 System Timer (SysTick)

Cortex-M3 includes an integrated system timer, SysTick. SysTick provides a simple, 24-bit clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter can be used in several different ways, for example:

- An RTOS tick timer which fires at a programmable rate (for example 100 Hz) and invokes a SysTick routine.
- A high-speed alarm timer using the system clock.
- A variable rate alarm or signal timer—the duration is range-dependent on the reference clock used and the dynamic range of the counter.
- A simple counter. Software can use this to measure time to completion and time used.
- An internal clock source control based on missing/meeting durations. The COUNTFLAG bit-field in the control and status register can be used to determine if an action completed within a set duration, as part of a dynamic clock management control loop.

#### Functional Description

The timer consists of three registers:

- A control and status counter to configure its clock, enable the counter, enable the SysTick interrupt, and determine counter status.
- The reload value for the counter, used to provide the counter's wrap value.
- The current value of the counter.

A fourth register, the SysTick Calibration Value Register, is not implemented in the Stellaris devices.

When enabled, the timer counts down from the reload value to zero, reloads (wraps) to the value in the SysTick Reload Value register on the next clock edge, then decrements on subsequent clocks. Writing a value of zero to the Reload Value register disables the counter on the next wrap. When the counter reaches zero, the COUNTFLAG status bit is set. The COUNTFLAG bit clears on reads.

Writing to the Current Value register clears the register and the COUNTFLAG status bit. The write does not trigger the SysTick exception logic. On a read, the current value is the value of the register at the time the register is accessed.

If the core is in debug state (halted), the counter will not decrement. The timer is clocked with respect to a reference clock. The reference clock can be the core clock or an external clock source.

#### SysTick Control and Status Register

Use the SysTick Control and Status Register to enable the SysTick features. The reset is 0x0000.0000.

| <b>Bit/Field</b> | Name      | Туре | Reset | Description                                                                                                                                                                                                                                                                                               |  |  |
|------------------|-----------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 31:17            | reserved  | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with<br>future products, the value of a reserved bit should be preserved across a<br>read-modify-write operation.                                                                                                       |  |  |
| 16               | COUNTFLAG | R/W  | 0     | Returns 1 if timer counted to 0 since last time this was read. Clears on read by application. If read by the debugger using the DAP, this bit is cleared on read-only if the MasterType bit in the AHB-AP Control Register is set to 0. Otherwise, the COUNTFLAG bit is not changed by the debugger read. |  |  |
| 15:3             | reserved  | R/W  | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                                                                             |  |  |
| 2                | CLKSOURCE | R/W  | 0     | <ul><li>0 = external reference clock. (Not implemented for Stellaris microcontrollers.)</li><li>1 = core clock.</li></ul>                                                                                                                                                                                 |  |  |
|                  |           |      |       | If no reference clock is provided, it is held at 1 and so gives the same time as the core clock. The core clock must be at least 2.5 times faster than the reference clock. If it is not, the count values are Unpredictable.                                                                             |  |  |
| 1                | TICKINT   | R/W  | 0     | 1 = counting down to 0 pends the SysTick handler.                                                                                                                                                                                                                                                         |  |  |
|                  |           |      |       | 0 = counting down to 0 does not pend the SysTick handler. Software can use the COUNTFLAG to determine if ever counted to 0.                                                                                                                                                                               |  |  |
| 0                | ENABLE    | R/W  | 0     | 1 = counter operates in a multi-shot way. That is, counter loads with the Reload value and then begins counting down. On reaching 0, it sets the COUNTFLAG to 1 and optionally pends the SysTick handler, based on TICKINT. It then loads the Reload value again, and begins counting.                    |  |  |
|                  |           |      |       | 0 = counter disabled.                                                                                                                                                                                                                                                                                     |  |  |

#### SysTick Reload Value Register

Use the SysTick Reload Value Register to specify the start value to load into the current value register when the counter reaches 0. It can be any value between 1 and 0x00FFFFFF. A start value of 0 is possible, but has no effect because the SysTick interrupt and COUNTFLAG are activated when counting from 1 to 0.

Therefore, as a multi-shot timer, repeated over and over, it fires every N+1 clock pulse, where N is any value from 1 to 0x00FFFFFF. So, if the tick interrupt is required every 100 clock pulses, 99 must be written into the RELOAD. If a new value is written on each tick interrupt, so treated as single shot, then the actual count down must be written. For example, if a tick is next required after 400 clock pulses, 400 must be written into the RELOAD.

| <b>Bit/Field</b> | Name     | Туре | Reset | Description                                                                                                                                                                                   |
|------------------|----------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:24            | reserved | RO   |       | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |
| 23:0             | RELOAD   | W1C  | -     | Value to load into the SysTick Current Value Register when the counter reaches 0.                                                                                                             |

#### SysTick Current Value Register

Use the SysTick Current Value Register to find the current value in the register.

| <b>Bit/Field</b> | Name     | Туре | Reset | Description                                                                                                                                                                                   |
|------------------|----------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:24            | reserved | RO   |       | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |
| 23:0             | CURRENT  | W1C  |       | Current value at the time the register is accessed. No read-modify-write protection is provided, so change with care.                                                                         |
|                  |          |      |       | This register is write-clear. Writing to it with any value clears the register to 0. Clearing this register also clears the COUNTFLAG bit of the SysTick Control and Status Register.         |

#### SysTick Calibration Value Register

The SysTick Calibration Value register is not implemented.

# 3 Memory Map

The memory map for the LM3S6965 controller is provided in Table 3-1 on page 42.

In this manual, register addresses are given as a hexadecimal increment, relative to the module's base address as shown in the memory map. See also Chapter 4, "Memory Map" in the *ARM*® *Cortex*™*-M3 Technical Reference Manual*.

Note: In Table 3-1 on page 42 addresses not listed are reserved.

#### Table 3-1. Memory Map<sup>a</sup>

| Start            | End         | Description                                       | For details<br>on<br>registers,<br>see page |
|------------------|-------------|---------------------------------------------------|---------------------------------------------|
| Memory           | <b>I</b>    |                                                   |                                             |
| 0x0000.0000      | 0x1FFF.FFFF | On-chip flash <sup>b</sup>                        | 139                                         |
| 0x2000.0000      | 0x200F.FFFF | Bit-banded on-chip SRAM <sup>c</sup>              | 139                                         |
| 0x2010.0000      | 0x21FF.FFFF | Reserved non-bit-banded SRAM space                | -                                           |
| 0x2200.0000      | 0x23FF.FFFF | Bit-band alias of 0x2000.0000 through 0x200F.FFFF | 135                                         |
| 0x2400.0000      | 0x3FFF.FFFF | Reserved non-bit-banded SRAM space                | -                                           |
| FiRM Peripherals |             |                                                   |                                             |
| 0x4000.0000      | 0x4000.0FFF | Watchdog timer                                    | 235                                         |
| 0x4000.1000      | 0x4000.3FFF | Reserved                                          | -                                           |
| 0x4000.4000      | 0x4000.4FFF | GPIO Port A                                       | 165                                         |
| 0x4000.5000      | 0x4000.5FFF | GPIO Port B                                       | 165                                         |
| 0x4000.6000      | 0x4000.6FFF | GPIO Port C                                       | 165                                         |
| 0x4000.7000      | 0x4000.7FFF | GPIO Port D                                       | 165                                         |
| 0x4000.8000      | 0x4000.8FFF | SSIO                                              | 340                                         |
| 0x4000.A000      | 0x4000.BFFF | Reserved                                          | -                                           |
| 0x4000.C000      | 0x4000.CFFF | UART0                                             | 296                                         |
| 0x4000.D000      | 0x4000.DFFF | UART1                                             | 296                                         |
| 0x4000.E000      | 0x4000.EFFF | UART2                                             | 296                                         |
| 0x4000.F000      | 0x4000.FFFF | Reserved                                          | -                                           |
| 0x4001.0000      | 0x4001.FFFF | Reserved for future FiRM peripherals              | -                                           |
| Peripherals      | l           |                                                   |                                             |
| 0x4002.0000      | 0x4002.07FF | I2C Master 0                                      | 376                                         |
| 0x4002.0800      | 0x4002.0FFF | I2C Slave 0                                       | 389                                         |
| 0x4002.1000      | 0x4002.17FF | I2C Master 1                                      | 376                                         |
| 0x4001.1800      | 0x4002.1FFF | I2C Slave 1                                       | 389                                         |
| 0x4002.2000      | 0x4002.3FFF | Reserved                                          | -                                           |
| 0x4002.4000      | 0x4002.4FFF | GPIO Port E                                       | 165                                         |
| 0x4002.5000      | 0x4002.5FFF | GPIO Port F                                       | 165                                         |
| 0x4002.6000      | 0x4002.6FFF | GPIO Port G                                       | 165                                         |
| 0x4002.8000      | 0x4002.8FFF | PWM                                               | 460                                         |
| 0x4002.9000      | 0x4002.BFFF | Reserved                                          | -                                           |

| Start              | End         | Description                                         | For details             |  |
|--------------------|-------------|-----------------------------------------------------|-------------------------|--|
|                    |             |                                                     | on                      |  |
|                    |             |                                                     | registers, see page     |  |
| 0x4002.C000        | 0x4002.CFFF | QEI0                                                | 489                     |  |
| 0x4002.D000        | 0x4002.DFFF | QEI1                                                | 489                     |  |
| 0x4002.E000        | 0x4002.FFFF | Reserved                                            | -                       |  |
| 0x4003.0000        | 0x4003.0FFF | Timer0                                              | 211                     |  |
| 0x4003.1000        | 0x4003.1FFF | Timer1                                              | 211                     |  |
| 0x4003.2000        | 0x4003.2FFF | Timer2                                              | 211                     |  |
| 0x4003.3000        | 0x4003.3FFF | Timer3                                              | 211                     |  |
| 0x4003.4000        | 0x4003.7FFF | Reserved                                            | -                       |  |
| 0x4003.8000        | 0x4003.8FFF | ADC                                                 | 262                     |  |
| 0x4003.9000        | 0x4003.BFFF | Reserved                                            | -                       |  |
| 0x4003.C000        | 0x4003.CFFF | Analog Comparators                                  | 442                     |  |
| 0x4003.D000        | 0x4003.FFFF | Reserved                                            | -                       |  |
| 0x4004.3000        | 0x4004.7FFF | Reserved                                            | -                       |  |
| 0x4004.8000        | 0x4004.8FFF | Ethernet Controller                                 | 405                     |  |
| 0x4004.9000        | 0x4004.BFFF | Reserved                                            | -                       |  |
| 0x4004.C000        | 0x400F.BFFF | Reserved                                            | -                       |  |
| 0x400F.C000        | 0x400F.CFFF | Hibernation Module                                  | 122                     |  |
| 0x400F.D000        | 0x400F.DFFF | Flash control                                       | 139                     |  |
| 0x400F.E000        | 0x400F.EFFF | System control                                      | 65                      |  |
| 0x400F.F000        | 0x400F.FFFF | Reserved                                            | -                       |  |
| 0x4011.1000        | 0x4011.1FFF | Reserved                                            | -                       |  |
| 0x4012.0000        | 0x41FF.FFFF | Reserved for non bit-banded peripheral space        | -                       |  |
| 0x4200.0000        | 0x43FF.FFFF | Bit-banded alias of 0x4000.0000 through 0x400F.FFFF | -                       |  |
| 0x4400.0000        | 0x5E32.FFFF | Reserved for non bit-banded peripheral space        | -                       |  |
| 0x5E34.0000        | 0x5FFF.FFFF | Reserved                                            | -                       |  |
| 0x6000.0000        | 0xDFFF.FFFF | Reserved for external devices                       | -                       |  |
| Private Peripheral | Bus         |                                                     |                         |  |
| 0xE000.0000        | 0xE000.0FFF | Instrumentation Trace Macrocell (ITM)               | ARM®                    |  |
| 0xE000.1000        | 0xE000.1FFF | Data Watchpoint and Trace (DWT)                     | Cortex™-M3<br>Technical |  |
| 0xE000.2000        | 0xE000.2FFF | Flash Patch and Breakpoint (FPB)                    | Reference               |  |
| 0xE000.3000        | 0xE000.DFFF | Reserved                                            | Manual                  |  |
| 0xE000.E000        | 0xE000.EFFF | Nested Vectored Interrupt Controller (NVIC)         |                         |  |
| 0xE000.F000        | 0xE003.FFFF | Reserved                                            |                         |  |
| 0xE004.0000        | 0xE004.0FFF | Trace Port Interface Unit (TPIU)                    | ]                       |  |
| 0xE004.1000        | 0xE004.1FFF | Reserved                                            | -                       |  |
| 0xE004.2000        | 0xE00F.FFFF | Reserved                                            | -                       |  |
| 0xE010.0000        | 0xFFFF.FFFF | Reserved for vendor peripherals                     | -                       |  |

a. All reserved space returns a bus fault when read or written.

b. The unavailable flash will bus fault throughout this range.

c. The unavailable SRAM will bus fault throughout this range.

# 4 Interrupts

The ARM Cortex-M3 processor and the Nested Vectored Interrupt Controller (NVIC) prioritize and handle all exceptions. All exceptions are handled in Handler Mode. The processor state is automatically stored to the stack on an exception, and automatically restored from the stack at the end of the Interrupt Service Routine (ISR). The vector is fetched in parallel to the state saving, which enables efficient interrupt entry. The processor supports tail-chaining, which enables back-to-back interrupts to be performed without the overhead of state saving and restoration.

Table 4-1 on page 44 lists all the exceptions. Software can set eight priority levels on seven of these exceptions (system handlers) as well as on 38 interrupts (listed in Table 4-2 on page 45).

Priorities on the system handlers are set with the NVIC System Handler Priority registers. Interrupts are enabled through the NVIC Interrupt Set Enable register and prioritized with the NVIC Interrupt Priority registers. You can also group priorities by splitting priority levels into pre-emption priorities and subpriorities. All the interrupt registers are described in Chapter 8, "Nested Vectored Interrupt Controller" in the *ARM*® *Cortex*<sup>TM</sup>-*M3 Technical Reference Manual*.

Internally, the highest user-settable priority (0) is treated as fourth priority, after a Reset, NMI, and a Hard Fault. Note that 0 is the default priority for all the settable priorities.

If you assign the same priority level to two or more interrupts, their hardware priority (the lower the position number) determines the order in which the processor activates them. For example, if both GPIO Port A and GPIO Port B are priority level 1, then GPIO Port A has higher priority.

See Chapter 5, "Exceptions" and Chapter 8, "Nested Vectored Interrupt Controller" in the *ARM*® *Cortex*<sup>™</sup>-*M*3 *Technical Reference Manual* for more information on exceptions and interrupts.

**Note:** In Table 4-2 on page 45 interrupts not listed are reserved.

| Exception Type                  | Position | Priority <sup>a</sup> | Description                                                                                                                                                 |  |
|---------------------------------|----------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| -                               | 0        | -                     | Stack top is loaded from first entry of vector table on reset.                                                                                              |  |
| Reset                           | 1        | -3 (highest)          | Invoked on power up and warm reset. On first instruction, drops to lowest priority (and then is called the base level of activation). This is asynchronous. |  |
| Non-Maskable<br>Interrupt (NMI) | 2        | -2                    | Cannot be stopped or preempted by any exception but reset. This is asynchronous.                                                                            |  |
|                                 |          |                       | An NMI is only producible by software, using the NVIC Interrupt Control State register.                                                                     |  |
| Hard Fault                      | 3        | -1                    | All classes of Fault, when the fault cannot activate due to priority or the configurable fault handler has been disabled. This is synchronous.              |  |
| Memory Management               | 4        | settable              | MPU mismatch, including access violation and no match. This is synchronous.                                                                                 |  |
|                                 |          |                       | The priority of this exception can be changed.                                                                                                              |  |
| Bus Fault                       | 5        | settable              | Pre-fetch fault, memory access fault, and other address/memory related faults. This is synchronous when precise and asynchronous when imprecise.            |  |
|                                 |          |                       | You can enable or disable this fault.                                                                                                                       |  |
| Usage Fault                     | 6        | settable              | Usage fault, such as undefined instruction executed or illegal state transition attempt. This is synchronous.                                               |  |
| -                               | 7-10     | -                     | Reserved.                                                                                                                                                   |  |
| SVCall                          | 11       | settable              | System service call with SVC instruction. This is synchronous.                                                                                              |  |

#### Table 4-1. Exception Types

| Exception Type | Position        | Priority <sup>a</sup> | Description                                                                                                                                                                            |
|----------------|-----------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Debug Monitor  | 12              | settable              | Debug monitor (when not halting). This is synchronous, but only active when enabled. It does not activate if lower priority than the current activation.                               |
| -              | 13              | -                     | Reserved.                                                                                                                                                                              |
| PendSV         | 14              | settable              | Pendable request for system service. This is asynchronous and only pended by software.                                                                                                 |
| SysTick        | 15              | settable              | System tick timer has fired. This is asynchronous.                                                                                                                                     |
| Interrupts     | 16 and<br>above | settable              | Asserted from outside the ARM Cortex-M3 core and fed through the NVIC (prioritized). These are all asynchronous. Table 4-2 on page 45 lists the interrupts on the LM3S6965 controller. |

a. 0 is the default priority for all the settable priorities.

#### Table 4-2. Interrupts

| Interrupt (Bit in Interrupt Registers) | Description         |
|----------------------------------------|---------------------|
| 0                                      | GPIO Port A         |
| 1                                      | GPIO Port B         |
| 2                                      | GPIO Port C         |
| 3                                      | GPIO Port D         |
| 4                                      | GPIO Port E         |
| 5                                      | UART0               |
| 6                                      | UART1               |
| 7                                      | SSI0                |
| 8                                      | 12C0                |
| 9                                      | PWM Fault           |
| 10                                     | PWM Generator 0     |
| 11                                     | PWM Generator 1     |
| 12                                     | PWM Generator 2     |
| 13                                     | QEI0                |
| 14                                     | ADC Sequence 0      |
| 15                                     | ADC Sequence 1      |
| 16                                     | ADC Sequence 2      |
| 17                                     | ADC Sequence 3      |
| 18                                     | Watchdog timer      |
| 19                                     | Timer0 A            |
| 20                                     | Timer0 B            |
| 21                                     | Timer1 A            |
| 22                                     | Timer1 B            |
| 23                                     | Timer2 A            |
| 24                                     | Timer2 B            |
| 25                                     | Analog Comparator 0 |
| 26                                     | Analog Comparator 1 |
| 28                                     | System Control      |
| 29                                     | Flash Control       |
| 30                                     | GPIO Port F         |

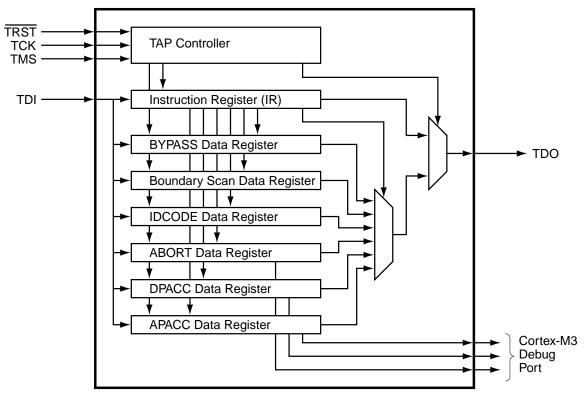
| Interrupt (Bit in Interrupt Registers) | Description         |
|----------------------------------------|---------------------|
| 31                                     | GPIO Port G         |
| 33                                     | UART2               |
| 35                                     | Timer3 A            |
| 36                                     | Timer3 B            |
| 37                                     | I2C1                |
| 38                                     | QEI1                |
| 42                                     | Ethernet Controller |
| 43                                     | Hibernation Module  |
| 44-47                                  | Reserved            |

# 5 JTAG Interface

The Joint Test Action Group (JTAG) port is an IEEE standard that defines a Test Access Port and Boundary Scan Architecture for digital integrated circuits and provides a standardized serial interface for controlling the associated test logic. The TAP, Instruction Register (IR), and Data Registers (DR) can be used to test the interconnections of assembled printed circuit boards and obtain manufacturing information on the components. The JTAG Port also provides a means of accessing and controlling design-for-test features such as I/O pin observation and control, scan testing, and debugging.

The JTAG port is comprised of the standard five pins: TRST, TCK, TMS, TDI, and TDO. Data is transmitted serially into the controller on TDI and out of the controller on TDO. The interpretation of this data is dependent on the current state of the TAP controller. For detailed information on the operation of the JTAG port and TAP controller, please refer to the *IEEE Standard 1149.1-Test Access Port and Boundary-Scan Architecture*.

The Luminary Micro JTAG controller works with the ARM JTAG controller built into the Cortex-M3 core. This is implemented by multiplexing the TDO outputs from both JTAG controllers. ARM JTAG instructions select the ARM TDO output while Luminary Micro JTAG instructions select the Luminary Micro TDO outputs. The multiplexer is controlled by the Luminary Micro JTAG controller, which has comprehensive programming for the ARM, LMI, and unimplemented JTAG instructions.


The JTAG module has the following features:

- IEEE 1149.1-1990 compatible Test Access Port (TAP) controller
- Four-bit Instruction Register (IR) chain for storing JTAG instructions
- IEEE standard instructions:
  - BYPASS instruction
  - IDCODE instruction
  - SAMPLE/PRELOAD instruction
  - EXTEST instruction
  - INTEST instruction
- ARM additional instructions:
  - APACC instruction
  - DPACC instruction
  - ABORT instruction
- Integrated ARM Serial Wire Debug (SWD)

See the *ARM*® *Cortex*™-*M3 Technical Reference Manual* for more information on the ARM JTAG controller.

# 5.1 Block Diagram





# 5.2 Functional Description

A high-level conceptual drawing of the JTAG module is shown in Figure 5-1 on page 48. The JTAG module is composed of the Test Access Port (TAP) controller and serial shift chains with parallel update registers. The TAP controller is a simple state machine controlled by the TRST, TCK and TMS inputs. The current state of the TAP controller depends on the current value of TRST and the sequence of values captured on TMS at the rising edge of TCK. The TAP controller determines when the serial shift chains capture new data, shift data from TDI towards TDO, and update the parallel load registers. The current state of the TAP controller also determines whether the Instruction Register (IR) chain or one of the Data Register (DR) chains is being accessed.

The serial shift chains with parallel load registers are comprised of a single Instruction Register (IR) chain and multiple Data Register (DR) chains. The current instruction loaded in the parallel load register determines which DR chain is captured, shifted, or updated during the sequencing of the TAP controller.

Some instructions, like EXTEST and INTEST, operate on data currently in a DR chain and do not capture, shift, or update any of the chains. Instructions that are not implemented decode to the BYPASS instruction to ensure that the serial path between TDI and TDO is always connected (see Table 5-2 on page 54 for a list of implemented instructions).

See "JTAG and Boundary Scan" on page 530 for JTAG timing diagrams.

# 5.2.1 JTAG Interface Pins

The JTAG interface consists of five standard pins: TRST, TCK, TMS, TDI, and TDO. These pins and their associated reset state are given in Table 5-1 on page 49. Detailed information on each pin follows.

| Pin Name | Data Direction | Internal Pull-Up | Internal Pull-Down | Drive Strength | Drive Value |
|----------|----------------|------------------|--------------------|----------------|-------------|
| TRST     | Input          | Enabled          | Disabled           | N/A            | N/A         |
| TCK      | Input          | Enabled          | Disabled           | N/A            | N/A         |
| TMS      | Input          | Enabled          | Disabled           | N/A            | N/A         |
| TDI      | Input          | Enabled          | Disabled           | N/A            | N/A         |
| TDO      | Output         | Enabled          | Disabled           | 2-mA driver    | High-Z      |

#### Table 5-1. JTAG Port Pins Reset State

## 5.2.1.1 Test Reset Input (TRST)

The TRST pin is an asynchronous active Low input signal for initializing and resetting the JTAG TAP controller and associated JTAG circuitry. When TRST is asserted, the TAP controller resets to the Test-Logic-Reset state and remains there while TRST is asserted. When the TAP controller enters the Test-Logic-Reset state, the JTAG Instruction Register (IR) resets to the default instruction, IDCODE.

By default, the internal pull-up resistor on the  $\overline{\text{TRST}}$  pin is enabled after reset. Changes to the pull-up resistor settings on GPIO Port B should ensure that the internal pull-up resistor remains enabled on PB7/TRST; otherwise JTAG communication could be lost.

## 5.2.1.2 Test Clock Input (TCK)

The TCK pin is the clock for the JTAG module. This clock is provided so the test logic can operate independently of any other system clocks. In addition, it ensures that multiple JTAG TAP controllers that are daisy-chained together can synchronously communicate serial test data between components. During normal operation, TCK is driven by a free-running clock with a nominal 50% duty cycle. When necessary, TCK can be stopped at 0 or 1 for extended periods of time. While TCK is stopped at 0 or 1, the state of the TAP controller does not change and data in the JTAG Instruction and Data Registers is not lost.

By default, the internal pull-up resistor on the TCK pin is enabled after reset. This assures that no clocking occurs if the pin is not driven from an external source. The internal pull-up and pull-down resistors can be turned off to save internal power as long as the TCK pin is constantly being driven by an external source.

## 5.2.1.3 Test Mode Select (TMS)

The TMS pin selects the next state of the JTAG TAP controller. TMS is sampled on the rising edge of TCK. Depending on the current TAP state and the sampled value of TMS, the next state is entered. Because the TMS pin is sampled on the rising edge of TCK, the *IEEE Standard 1149.1* expects the value on TMS to change on the falling edge of TCK.

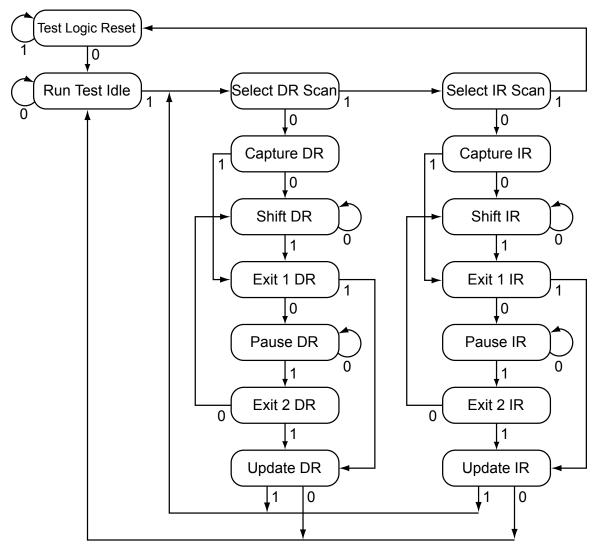
Holding TMS high for five consecutive TCK cycles drives the TAP controller state machine to the Test-Logic-Reset state. When the TAP controller enters the Test-Logic-Reset state, the JTAG Instruction Register (IR) resets to the default instruction, IDCODE. Therefore, this sequence can be used as a reset mechanism, similar to asserting TRST. The JTAG Test Access Port state machine can be seen in its entirety in Figure 5-2 on page 51.

By default, the internal pull-up resistor on the TMS pin is enabled after reset. Changes to the pull-up resistor settings on GPIO Port C should ensure that the internal pull-up resistor remains enabled on PC1/TMS; otherwise JTAG communication could be lost.

## 5.2.1.4 Test Data Input (TDI)

The TDI pin provides a stream of serial information to the IR chain and the DR chains. TDI is sampled on the rising edge of TCK and, depending on the current TAP state and the current instruction, presents this data to the proper shift register chain. Because the TDI pin is sampled on the rising edge of TCK, the *IEEE Standard 1149.1* expects the value on TDI to change on the falling edge of TCK.

By default, the internal pull-up resistor on the TDI pin is enabled after reset. Changes to the pull-up resistor settings on GPIO Port C should ensure that the internal pull-up resistor remains enabled on PC2/TDI; otherwise JTAG communication could be lost.


## 5.2.1.5 Test Data Output (TDO)

The TDO pin provides an output stream of serial information from the IR chain or the DR chains. The value of TDO depends on the current TAP state, the current instruction, and the data in the chain being accessed. In order to save power when the JTAG port is not being used, the TDO pin is placed in an inactive drive state when not actively shifting out data. Because TDO can be connected to the TDI of another controller in a daisy-chain configuration, the *IEEE Standard 1149.1* expects the value on TDO to change on the falling edge of TCK.

By default, the internal pull-up resistor on the TDO pin is enabled after reset. This assures that the pin remains at a constant logic level when the JTAG port is not being used. The internal pull-up and pull-down resistors can be turned off to save internal power if a High-Z output value is acceptable during certain TAP controller states.

### 5.2.2 JTAG TAP Controller

The JTAG TAP controller state machine is shown in Figure 5-2 on page 51. The TAP controller state machine is reset to the Test-Logic-Reset state on the assertion of a Power-On-Reset (POR) or the assertion of TRST. Asserting the correct sequence on the TMS pin allows the JTAG module to shift in new instructions, shift in data, or idle during extended testing sequences. For detailed information on the function of the TAP controller and the operations that occur in each state, please refer to *IEEE Standard 1149.1*.



#### Figure 5-2. Test Access Port State Machine

### 5.2.3 Shift Registers

The Shift Registers consist of a serial shift register chain and a parallel load register. The serial shift register chain samples specific information during the TAP controller's CAPTURE states and allows this information to be shifted out of TDO during the TAP controller's SHIFT states. While the sampled data is being shifted out of the chain on TDO, new data is being shifted into the serial shift register on TDI. This new data is stored in the parallel load register during the TAP controller's UPDATE states. Each of the shift registers is discussed in detail in "Register Descriptions" on page 54.

## 5.2.4 Operational Considerations

There are certain operational considerations when using the JTAG module. Because the JTAG pins can be programmed to be GPIOs, board configuration and reset conditions on these pins must be considered. In addition, because the JTAG module has integrated ARM Serial Wire Debug, the method for switching between these two operational modes is described below.

## 5.2.4.1 GPIO Functionality

When the controller is reset with either a POR or  $\overline{RST}$ , the JTAG/SWD port pins default to their JTAG/SWD configurations. The default configuration includes enabling digital functionality (setting **GPIODEN** to 1), enabling the pull-up resistors (setting **GPIOPUR** to 1), and enabling the alternate hardware function (setting **GPIOAFSEL** to 1) for the PB7 and PC[3:0] JTAG/SWD pins.

It is possible for software to configure these pins as GPIOs after reset by writing 0s to PB7 and PC[3:0] in the **GPIOAFSEL** register. If the user does not require the JTAG/SWD port for debugging or board-level testing, this provides five more GPIOs for use in the design.

Caution – If the JTAG pins are used as GPIOs in a design, PB7 and PC2 cannot have external pull-down resistors connected to both of them at the same time. If both pins are pulled Low during reset, the controller has unpredictable behavior. If this happens, remove one or both of the pull-down resistors, and apply  $\overline{\text{RST}}$  or power-cycle the part.

In addition, it is possible to create a software sequence that prevents the debugger from connecting to the Stellaris<sup>®</sup> microcontroller. If the program code loaded into flash immediately changes the JTAG pins to their GPIO functionality, the debugger may not have enough time to connect and halt the controller before the JTAG pin functionality switches. This may lock the debugger out of the part. This can be avoided with a software routine that restores JTAG functionality based on an external or software trigger.

The commit control registers provide a layer of protection against accidental programming of critical hardware peripherals. Writes to protected bits of the **GPIO Alternate Function Select (GPIOAFSEL)** register (see page 175) are not committed to storage unless the **GPIO Lock (GPIOLOCK)** register (see page 185) has been unlocked and the appropriate bits of the **GPIO Commit (GPIOCR)** register (see page 186) have been set to 1.

#### Recovering a "Locked" Device

If software configures any of the JTAG/SWD pins as GPIO and loses the ability to communicate with the debugger, there is a debug sequence that can be used to recover the device. Performing a total of ten JTAG-to-SWD and SWD-to-JTAG switch sequences while holding the device in reset mass erases the flash memory. The sequence to recover the device is:

- **1.** Assert and hold the  $\overline{RST}$  signal.
- 2. Perform the JTAG-to-SWD switch sequence.
- 3. Perform the SWD-to-JTAG switch sequence.
- 4. Perform the JTAG-to-SWD switch sequence.
- 5. Perform the SWD-to-JTAG switch sequence.
- 6. Perform the JTAG-to-SWD switch sequence.
- 7. Perform the SWD-to-JTAG switch sequence.
- 8. Perform the JTAG-to-SWD switch sequence.
- 9. Perform the SWD-to-JTAG switch sequence.
- 10. Perform the JTAG-to-SWD switch sequence.
- **11.** Perform the SWD-to-JTAG switch sequence.

**12.** Release the  $\overline{RST}$  signal.

The JTAG-to-SWD and SWD-to-JTAG switch sequences are described in "ARM Serial Wire Debug (SWD)" on page 53. When performing switch sequences for the purpose of recovering the debug capabilities of the device, only steps 1 and 2 of the switch sequence need to be performed.

#### 5.2.4.2 ARM Serial Wire Debug (SWD)

In order to seamlessly integrate the ARM Serial Wire Debug (SWD) functionality, a serial-wire debugger must be able to connect to the Cortex-M3 core without having to perform, or have any knowledge of, JTAG cycles. This is accomplished with a SWD preamble that is issued before the SWD session begins.

The preamble used to enable the SWD interface of the SWJ-DP module starts with the TAP controller in the Test-Logic-Reset state. From here, the preamble sequences the TAP controller through the following states: Run Test Idle, Select DR, Select IR, Test Logic Reset, Test Logic Reset, Run Test Idle, Run Test Idle, Select DR, Select IR, Test Logic Reset, Test Logic Reset, Run Test Idle, Run Test Idle, Select DR, Select IR, Test Logic Reset, Test Logic Reset, Run Test Idle, Run Test Idle, Select IR, and Test Logic Reset states.

Stepping through this sequences of the TAP state machine enables the SWD interface and disables the JTAG interface. For more information on this operation and the SWD interface, see the ARM® *Cortex*<sup>TM</sup>-*M3 Technical Reference Manual* and the ARM® *CoreSight Technical Reference Manual*.

Because this sequence is a valid series of JTAG operations that could be issued, the ARM JTAG TAP controller is not fully compliant to the *IEEE Standard 1149.1*. This is the only instance where the ARM JTAG TAP controller does not meet full compliance with the specification. Due to the low probability of this sequence occurring during normal operation of the TAP controller, it should not affect normal performance of the JTAG interface.

#### JTAG-to-SWD Switching

To switch the operating mode of the Debug Access Port (DAP) from JTAG to SWD mode, the external debug hardware must send a switch sequence to the device. The 16-bit switch sequence for switching to SWD mode is defined as b1110011110011110, transmitted LSB first. This can also be represented as 16'hE79E when transmitted LSB first. The complete switch sequence should consist of the following transactions on the TCK/SWCLK and TMS/SWDIO signals:

- 1. Send at least 50 TCK/SWCLK cycles with TMS/SWDIO set to 1. This ensures that both JTAG and SWD are in their reset/idle states.
- 2. Send the 16-bit JTAG-to-SWD switch sequence, 16'hE79E.
- Send at least 50 TCK/SWCLK cycles with TMS/SWDIO set to 1. This ensures that if SWJ-DP was already in SWD mode, before sending the switch sequence, the SWD goes into the line reset state.

#### SWD-to-JTAG Switching

To switch the operating mode of the Debug Access Port (DAP) from SWD to JTAG mode, the external debug hardware must send a switch sequence to the device. The 16-bit switch sequence for switching to JTAG mode is defined as b1110011110011110, transmitted LSB first. This can also be represented as 16'hE73C when transmitted LSB first. The complete switch sequence should consist of the following transactions on the TCK/SWCLK and TMS/SWDIO signals:

1. Send at least 50 TCK/SWCLK cycles with TMS/SWDIO set to 1. This ensures that both JTAG and SWD are in their reset/idle states.

- 2. Send the 16-bit SWD-to-JTAG switch sequence, 16'hE73C.
- 3. Send at least 5 TCK/SWCLK cycles with TMS/SWDIO set to 1. This ensures that if SWJ-DP was already in JTAG mode, before sending the switch sequence, the JTAG goes into the Test Logic Reset state.

# 5.3 Initialization and Configuration

After a Power-On-Reset or an external reset ( $\mathbb{RST}$ ), the JTAG pins are automatically configured for JTAG communication. No user-defined initialization or configuration is needed. However, if the user application changes these pins to their GPIO function, they must be configured back to their JTAG functionality before JTAG communication can be restored. This is done by enabling the five JTAG pins ( $\mathbb{PB7}$  and  $\mathbb{PC}[3:0]$ ) for their alternate function using the **GPIOAFSEL** register.

# 5.4 Register Descriptions

There are no APB-accessible registers in the JTAG TAP Controller or Shift Register chains. The registers within the JTAG controller are all accessed serially through the TAP Controller. The registers can be broken down into two main categories: Instruction Registers and Data Registers.

## 5.4.1 Instruction Register (IR)

The JTAG TAP Instruction Register (IR) is a four-bit serial scan chain with a parallel load register connected between the JTAG TDI and TDO pins. When the TAP Controller is placed in the correct states, bits can be shifted into the Instruction Register. Once these bits have been shifted into the chain and updated, they are interpreted as the current instruction. The decode of the Instruction Register bits is shown in Table 5-2 on page 54. A detailed explanation of each instruction, along with its associated Data Register, follows.

| IR[3:0]    | Instruction      | Description                                                                                                                        |
|------------|------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 0000       | EXTEST           | Drives the values preloaded into the Boundary Scan Chain by the SAMPLE/PRELOAD instruction onto the pads.                          |
| 0001       | INTEST           | Drives the values preloaded into the Boundary Scan Chain by the SAMPLE/PRELOAD instruction into the controller.                    |
| 0010       | SAMPLE / PRELOAD | Captures the current I/O values and shifts the sampled values out of the Boundary Scan Chain while new preload data is shifted in. |
| 1000       | ABORT            | Shifts data into the ARM Debug Port Abort Register.                                                                                |
| 1010       | DPACC            | Shifts data into and out of the ARM DP Access Register.                                                                            |
| 1011       | APACC            | Shifts data into and out of the ARM AC Access Register.                                                                            |
| 1110       | IDCODE           | Loads manufacturing information defined by the <i>IEEE Standard 1149.1</i> into the IDCODE chain and shifts it out.                |
| 1111       | BYPASS           | Connects TDI to TDO through a single Shift Register chain.                                                                         |
| All Others | Reserved         | Defaults to the BYPASS instruction to ensure that TDI is always connected to TDO.                                                  |

#### Table 5-2. JTAG Instruction Register Commands

## 5.4.1.1 EXTEST Instruction

The EXTEST instruction does not have an associated Data Register chain. The EXTEST instruction uses the data that has been preloaded into the Boundary Scan Data Register using the SAMPLE/PRELOAD instruction. When the EXTEST instruction is present in the Instruction Register, the preloaded data in the Boundary Scan Data Register associated with the outputs and output enables are used to drive the GPIO pads rather than the signals coming from the core. This allows

tests to be developed that drive known values out of the controller, which can be used to verify connectivity.

### 5.4.1.2 INTEST Instruction

The INTEST instruction does not have an associated Data Register chain. The INTEST instruction uses the data that has been preloaded into the Boundary Scan Data Register using the SAMPLE/PRELOAD instruction. When the INTEST instruction is present in the Instruction Register, the preloaded data in the Boundary Scan Data Register associated with the inputs are used to drive the signals going into the core rather than the signals coming from the GPIO pads. This allows tests to be developed that drive known values into the controller, which can be used for testing. It is important to note that although the RST input pin is on the Boundary Scan Data Register chain, it is only observable.

## 5.4.1.3 SAMPLE/PRELOAD Instruction

The SAMPLE/PRELOAD instruction connects the Boundary Scan Data Register chain between TDI and TDO. This instruction samples the current state of the pad pins for observation and preloads new test data. Each GPIO pad has an associated input, output, and output enable signal. When the TAP controller enters the Capture DR state during this instruction, the input, output, and output-enable signals to each of the GPIO pads are captured. These samples are serially shifted out of TDO while the TAP controller is in the Shift DR state and can be used for observation or comparison in various tests.

While these samples of the inputs, outputs, and output enables are being shifted out of the Boundary Scan Data Register, new data is being shifted into the Boundary Scan Data Register from TDI. Once the new data has been shifted into the Boundary Scan Data Register, the data is saved in the parallel load registers when the TAP controller enters the Update DR state. This update of the parallel load register preloads data into the Boundary Scan Data Register that is associated with each input, output, and output enable. This preloaded data can be used with the EXTEST and INTEST instructions to drive data into or out of the controller. Please see "Boundary Scan Data Register" on page 57 for more information.

### 5.4.1.4 ABORT Instruction

The ABORT instruction connects the associated ABORT Data Register chain between TDI and TDO. This instruction provides read and write access to the ABORT Register of the ARM Debug Access Port (DAP). Shifting the proper data into this Data Register clears various error bits or initiates a DAP abort of a previous request. Please see the "ABORT Data Register" on page 57 for more information.

### 5.4.1.5 DPACC Instruction

The DPACC instruction connects the associated DPACC Data Register chain between TDI and TDO. This instruction provides read and write access to the DPACC Register of the ARM Debug Access Port (DAP). Shifting the proper data into this register and reading the data output from this register allows read and write access to the ARM debug and status registers. Please see "DPACC Data Register" on page 57 for more information.

### 5.4.1.6 APACC Instruction

The APACC instruction connects the associated APACC Data Register chain between TDI and TDO. This instruction provides read and write access to the APACC Register of the ARM Debug Access Port (DAP). Shifting the proper data into this register and reading the data output from this register allows read and write access to internal components and buses through the Debug Port. Please see "APACC Data Register" on page 57 for more information.

## 5.4.1.7 IDCODE Instruction

The IDCODE instruction connects the associated IDCODE Data Register chain between TDI and TDO. This instruction provides information on the manufacturer, part number, and version of the ARM core. This information can be used by testing equipment and debuggers to automatically configure their input and output data streams. IDCODE is the default instruction that is loaded into the JTAG Instruction Register when a power-on-reset (POR) is asserted, TRST is asserted, or the Test-Logic-Reset state is entered. Please see "IDCODE Data Register" on page 56 for more information.

#### 5.4.1.8 BYPASS Instruction

The BYPASS instruction connects the associated BYPASS Data Register chain between TDI and TDO. This instruction is used to create a minimum length serial path between the TDI and TDO ports. The BYPASS Data Register is a single-bit shift register. This instruction improves test efficiency by allowing components that are not needed for a specific test to be bypassed in the JTAG scan chain by loading them with the BYPASS instruction. Please see "BYPASS Data Register" on page 56 for more information.

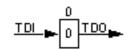
#### 5.4.2 Data Registers

The JTAG module contains six Data Registers. These include: IDCODE, BYPASS, Boundary Scan, APACC, DPACC, and ABORT serial Data Register chains. Each of these Data Registers is discussed in the following sections.

#### 5.4.2.1 IDCODE Data Register

The format for the 32-bit IDCODE Data Register defined by the *IEEE Standard 1149.1* is shown in Figure 5-3 on page 56. The standard requires that every JTAG-compliant device implement either the IDCODE instruction or the BYPASS instruction as the default instruction. The LSB of the IDCODE Data Register is defined to be a 1 to distinguish it from the BYPASS instruction, which has an LSB of 0. This allows auto configuration test tools to determine which instruction is the default instruction.

The major uses of the JTAG port are for manufacturer testing of component assembly, and program development and debug. To facilitate the use of auto-configuration debug tools, the IDCODE instruction outputs a value of 0x3BA00477. This value indicates an ARM Cortex-M3, Version 1 processor. This allows the debuggers to automatically configure themselves to work correctly with the Cortex-M3 during debug.

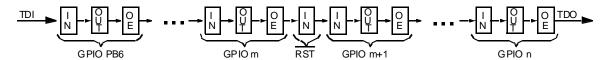

#### Figure 5-3. IDCODE Register Format



### 5.4.2.2 BYPASS Data Register

The format for the 1-bit BYPASS Data Register defined by the *IEEE Standard 1149.1* is shown in Figure 5-4 on page 57. The standard requires that every JTAG-compliant device implement either the BYPASS instruction or the IDCODE instruction as the default instruction. The LSB of the BYPASS Data Register is defined to be a 0 to distinguish it from the IDCODE instruction, which has an LSB of 1. This allows auto configuration test tools to determine which instruction is the default instruction.

Figure 5-4. BYPASS Register Format




### 5.4.2.3 Boundary Scan Data Register

The format of the Boundary Scan Data Register is shown in Figure 5-5 on page 57. Each GPIO pin, in a counter-clockwise direction from the JTAG port pins, is included in the Boundary Scan Data Register. Each GPIO pin has three associated digital signals that are included in the chain. These signals are input, output, and output enable, and are arranged in that order as can be seen in the figure. In addition to the GPIO pins, the controller reset pin,  $\overline{RST}$ , is included in the chain. Because the reset pin is always an input, only the input signal is included in the Data Register chain.

When the Boundary Scan Data Register is accessed with the SAMPLE/PRELOAD instruction, the input, output, and output enable from each digital pad are sampled and then shifted out of the chain to be verified. The sampling of these values occurs on the rising edge of TCK in the Capture DR state of the TAP controller. While the sampled data is being shifted out of the Boundary Scan chain in the Shift DR state of the TAP controller, new data can be preloaded into the chain for use with the EXTEST and INTEST instructions. These instructions either force data out of the controller, with the EXTEST instruction, or into the controller, with the INTEST instruction.

#### Figure 5-5. Boundary Scan Register Format



For detailed information on the order of the input, output, and output enable bits for each of the GPIO ports, please refer to the Stellaris<sup>®</sup> Family Boundary Scan Description Language (BSDL) files, downloadable from www.luminarymicro.com.

#### 5.4.2.4 APACC Data Register

The format for the 35-bit APACC Data Register defined by ARM is described in the *ARM*® *Cortex*<sup>™</sup>-*M*3 *Technical Reference Manual.* 

#### 5.4.2.5 DPACC Data Register

The format for the 35-bit DPACC Data Register defined by ARM is described in the *ARM*® *Cortex*<sup>™</sup>-*M*3 *Technical Reference Manual*.

#### 5.4.2.6 ABORT Data Register

The format for the 35-bit ABORT Data Register defined by ARM is described in the *ARM*® *Cortex*<sup>™</sup>-*M*3 *Technical Reference Manual*.

# 6 System Control

System control determines the overall operation of the device. It provides information about the device, controls the clocking to the core and individual peripherals, and handles reset detection and reporting.

# 6.1 Functional Description

The System Control module provides the following capabilities:

- Device identification, see "Device Identification" on page 58
- Local control, such as reset (see "Reset Control" on page 58), power (see "Power Control" on page 61) and clock control (see "Clock Control" on page 61)
- System control (Run, Sleep, and Deep-Sleep modes), see "System Control" on page 63

#### 6.1.1 Device Identification

Seven read-only registers provide software with information on the microcontroller, such as version, part number, SRAM size, flash size, and other features. See the **DID0**, **DID1**, and **DC0-DC4** registers.

#### 6.1.2 Reset Control

This section discusses aspects of hardware functions during reset as well as system software requirements following the reset sequence.

### 6.1.2.1 CMOD0 and CMOD1 Test-Mode Control Pins

Two pins, CMOD0 and CMOD1, are defined for use by Luminary Micro for testing the devices during manufacture. They have no end-user function and should not be used. The CMOD pins should be connected to ground.

#### 6.1.2.2 Reset Sources

The controller has five sources of reset:

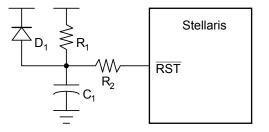
- 1. External reset input pin (RST) assertion, see "RST Pin Assertion" on page 58.
- 2. Power-on reset (POR), see "Power-On Reset (POR)" on page 59.
- 3. Internal brown-out (BOR) detector, see "Brown-Out Reset (BOR)" on page 59.
- 4. Software-initiated reset (with the software reset registers), see "Software Reset" on page 60.
- 5. A watchdog timer reset condition violation, see "Watchdog Timer Reset" on page 60.

After a reset, the **Reset Cause (RESC)** register is set with the reset cause. The bits in this register are sticky and maintain their state across multiple reset sequences, except when an internal POR is the cause, and then all the other bits in the **RESC** register are cleared except for the POR indicator.

#### 6.1.2.3 RST Pin Assertion

The external reset pin ( $\mathbb{RST}$ ) resets the controller. This resets the core and all the peripherals except the JTAG TAP controller (see "JTAG Interface" on page 47). The external reset sequence is as follows:

- **1.** The external reset pin  $(\overline{RST})$  is asserted and then de-asserted.
- The internal reset is released and the core loads from memory the initial stack pointer, the initial program counter, the first instruction designated by the program counter, and begins execution. A few clocks cycles from RST de-assertion to the start of the reset sequence is necessary for synchronization.


The external reset timing is shown in Figure 23-11 on page 532.

#### 6.1.2.4 Power-On Reset (POR)

The Power-On Reset (POR) circuit monitors the power supply voltage ( $V_{DD}$ ). The POR circuit generates a reset signal to the internal logic when the power supply ramp reaches a threshold value ( $V_{TH}$ ). If the application only uses the POR circuit, the  $\overline{RST}$  input needs to be connected to the power supply ( $V_{DD}$ ) through a pull-up resistor (1K to 10K  $\Omega$ ).

The device must be operating within the specified operating parameters at the point when the on-chip power-on reset pulse is complete. The 3.3-V power supply to the device must reach 3.0 V within 10 msec of it crossing 2.0 V to guarantee proper operation. For applications that require the use of an external reset to hold the device in reset longer than the internal POR, the  $\overline{RST}$  input may be used with the circuit as shown in Figure 6-1 on page 59.

#### Figure 6-1. External Circuitry to Extend Reset



The  $R_1$  and  $C_1$  components define the power-on delay. The  $R_2$  resistor mitigates any leakage from the  $\overline{RST}$  input. The diode (D<sub>1</sub>) discharges C<sub>1</sub> rapidly when the power supply is turned off.

The Power-On Reset sequence is as follows:

- **1.** The controller waits for the later of external reset ( $\overline{RST}$ ) or internal POR to go inactive.
- 2. The internal reset is released and the core loads from memory the initial stack pointer, the initial program counter, the first instruction designated by the program counter, and begins execution.

The internal POR is only active on the initial power-up of the controller. The Power-On Reset timing is shown in Figure 23-12 on page 533.

Note: The power-on reset also resets the JTAG controller. An external reset does not.

#### 6.1.2.5 Brown-Out Reset (BOR)

A drop in the input voltage resulting in the assertion of the internal brown-out detector can be used to reset the controller. This is initially disabled and may be enabled by software.

The system provides a brown-out detection circuit that triggers if the power supply  $(V_{DD})$  drops below a brown-out threshold voltage  $(V_{BTH})$ . If a brown-out condition is detected, the system may generate a controller interrupt or a system reset.

Brown-out resets are controlled with the **Power-On and Brown-Out Reset Control (PBORCTL)** register. The BORIOR bit in the **PBORCTL** register must be set for a brown-out condition to trigger a reset.

The brown-out reset is equivelent to an assertion of the external  $\overline{RST}$  input and the reset is held active until the proper V<sub>DD</sub> level is restored. The **RESC** register can be examined in the reset interrupt handler to determine if a Brown-Out condition was the cause of the reset, thus allowing software to determine what actions are required to recover.

The internal Brown-Out Reset timing is shown in Figure 23-13 on page 533.

#### 6.1.2.6 Software Reset

Software can generate a reset to the entire system or may reset a specific peripheral.

Peripherals can be individually reset by software via three registers that control reset signals to each peripheral (see the **SRCRn** registers). If the bit position corresponding to a peripheral is set, the peripheral is reset. The encoding of the reset registers is consistent with the encoding of the clock gating control for peripherals and on-chip functions (see "System Control" on page 63). Writing a bit lane with a value of 1 initiates a reset of the corresponding unit. Note that all reset signals for all clocks of the specified unit are asserted as a result of a software-initiated reset.

The entire system can be reset by software by setting the SYSRESETREQ bit in the Cortex-M3 Application Interrupt and Reset Control register resets the entire system including the core. The software-initiated system reset sequence is as follows:

- 1. A software system reset is initiated by writing the SYSRESETREQ bit in the ARM Cortex-M3 Application Interrupt and Reset Control register.
- 2. An internal reset is asserted.
- 3. The internal reset is deasserted and the controller loads from memory the initial stack pointer, the initial program counter, and the first instruction designated by the program counter, and then begins execution.

The software-initiated system reset timing is shown in Figure 23-14 on page 533.

#### 6.1.2.7 Watchdog Timer Reset

The watchdog timer module's function is to prevent system hangs. The watchdog timer can be configured to generate an interrupt to the controller on its first time-out, and to generate a reset signal on its second time-out.

After the first time-out event, the 32-bit counter is reloaded with the value of the **Watchdog Timer Load (WDTLOAD)** register, and the timer resumes counting down from that value. If the timer counts down to its zero state again before the first time-out interrupt is cleared, and the reset signal has been enabled, the watchdog timer asserts its reset signal to the system. The watchdog timer reset sequence is as follows:

- 1. The watchdog timer times out for the second time without being serviced.
- 2. An internal reset is asserted.
- 3. The internal reset is released and the controller loads from memory the initial stack pointer, the initial program counter, the first instruction designated by the program counter, and begins execution.

The watchdog reset timing is shown in Figure 23-15 on page 533.

#### 6.1.3 Power Control

The Stellaris<sup>®</sup> microcontroller provides an integrated LDO regulator that may be used to provide power to the majority of the controller's internal logic. The LDO regulator provides software a mechanism to adjust the regulated value, in small increments (VSTEP), over the range of 2.25 V to 2.75 V (inclusive)—or 2.5 V  $\pm$  10%. The adjustment is made by changing the value of the VADJ field in the **LDO Power Control (LDOPCTL)** register.

**Note:** The use of the LDO is optional. The internal logic may be supplied by the on-chip LDO or by an external regulator. If the LDO is used, the LDO output pin is connected to the VDD25 pins on the printed circuit board. The LDO requires decoupling capacitors on the printed circuit board. If an external regulator is used, it is strongly recommended that the external regulator supply the controller only and not be shared with other devices on the printed circuit board.

#### 6.1.4 Clock Control

System control determines the control of clocks in this part.

#### 6.1.4.1 Fundamental Clock Sources

There are four clock sources for use in the device:

- Internal Oscillator (IOSC): The internal oscillator is an on-chip clock source. It does not require the use of any external components. The frequency of the internal oscillator is 12 MHz ± 30%. Applications that do not depend on accurate clock sources may use this clock source to reduce system cost. The internal oscillator is the clock source the device uses during and following POR. If the main oscillator is required, software must enable the main oscillator following reset and allow the main oscillator to stabilize before changing the clock reference.
- Main Oscillator: The main oscillator provides a frequency-accurate clock source by one of two means: an external single-ended clock source is connected to the OSCO input pin, or an external crystal is connected across the OSCO input and OSC1 output pins. The crystal value allowed depends on whether the main oscillator is used as the clock reference source to the PLL. If so, the crystal must be one of the supported frequencies between 3.579545 MHz through 8.192 MHz (inclusive). If the PLL is not being used, the crystal may be any one of the supported frequencies between 1 MHz and 8.192 MHz. The single-ended clock source range is from DC through the specified speed of the device. The supported crystals are listed in Table 6-3 on page 77.
- Internal 30-kHz oscillator: The internal 30-kHz oscillator is similar to the internal oscillator, except that it provides an operational frequency of 30 kHz ± 30%. It is intended for use during Deep-Sleep power-saving modes. This power-savings mode benefits from reduced internal switching and also allows the main oscillator to be powered down.
- External real-time oscillator: The external real-time oscillator provides a low-frequency, accurate clock reference. It is intended to provide the system with a real-time clock source. The real-time oscillator is part of the Hibernation Module ("Hibernation Module" on page 117) and may also provide an accurate source of Deep-Sleep or Hibernate mode power savings.

The internal system clock (sysclk), is derived from any of the four sources plus two others: the output of the internal PLL, and the internal oscillator divided by four ( $3 \text{ MHz} \pm 30\%$ ). The frequency of the PLL clock reference must be in the range of 3.579545 MHz to 8.192 MHz (inclusive).

The **Run-Mode Clock Configuration (RCC)** and **Run-Mode Clock Configuration 2 (RCC2)** registers provide control for the system clock. The **RCC2** register is provided to extend fields that offer additional encodings over the **RCC** register. When used, the **RCC2** register field values are used by the logic over the corresponding field in the **RCC** register. In particular, **RCC2** provides for a larger assortment of clock configuration options.

#### 6.1.4.2 Crystal Configuration for the Main Oscillator (MOSC)

The main oscillator supports the use of a select number of crystals in the range of 1 MHz through 8.192 MHz. This method allows Luminary Micro to provide the best possible PLL settings.

Table 6-3 on page 77 describes the available crystal choices and default programming values.

Software configures the **RCC** register XTAL field with the crystal number. If the PLL is used in the design, the XTAL field value is internally translated to the PLL settings.

#### 6.1.4.3 PLL Frequency Configuration

The PLL is disabled by default during power-on reset and is enabled later by software if required. Software configures the PLL input reference clock source, specifies the output divisor to set the system clock frequency, and enables the PLL to drive the output.

If the main oscillator provides the clock reference to the PLL, the translation provided by hardware and used to program the PLL is available for software in the **XTAL to PLL Translation (PLLCFG)** register (see page 78). The internal translation provides a translation within ± 1% of the targetted PLL VCO frequency.

Table 6-3 on page 77 describes the available crystal choices and default programming of the **PLLCFG** register. The crystal number is written into the XTAL field of the **Run-Mode Clock Configuration (RCC)** register. Any time the XTAL field changes, the new settings are translated and the internal PLL settings are updated.

#### 6.1.4.4 PLL Modes

The PLL has two modes of operation: Normal and Power-Down

- Normal: The PLL multiplies the input clock reference and drives the output.
- Power-Down: Most of the PLL internal circuitry is disabled and the PLL does not drive the output.

The modes are programmed using the RCC/RCC2 register fields (see page 74 and page 79).

#### 6.1.4.5 PLL Operation

If the PLL configuration is changed, the PLL output frequency is unstable until it reconverges (relocks) to the new setting. The time between the configuration change and relock is  $T_{READY}$  (see Table 23-6 on page 522). During this time, the PLL is not usable as a clock reference.

The PLL is changed by one of the following:

- Change to the XTAL value in the RCC register—writes of the same value do not cause a relock.
- Change in the PLL from Power-Down to Normal mode.

A counter is defined to measure the  $T_{READY}$  requirement. The counter is clocked by the main oscillator. The range of the main oscillator has been taken into account and the down counter is set to 0x1200 (that is, ~600 µs at a 8.192 MHz external oscillator clock). Hardware is provided to keep the PLL from being used as a system clock until the  $T_{READY}$  condition is met after one of the two

changes above. It is the user's responsibility to have a stable clock source (like the main oscillator) before the **RCC/RCC2** register is switched to use the PLL.

#### 6.1.5 System Control

For power-savings purposes, the **RCGCn**, **SCGCn**, and **DCGCn** registers control the clock gating logic for each peripheral or block in the system while the controller is in Run, Sleep, and Deep-Sleep mode, respectively.

In Run mode, the processor executes code. In Sleep mode, the clock frequency of the active peripherals is unchanged, but the processor is not clocked and therefore no longer executes code. In Deep-Sleep mode, the clock frequency of the active peripherals may change (depending on the Run mode clock configuration) in addition to the processor clock being stopped. An interrupt returns the device to Run mode from one of the sleep modes; the sleep modes are entered on request from the code. Each mode is described in more detail below.

There are four levels of operation for the device defined as:

- Run Mode. Run Mode provides normal operation of the processor and all of the peripherals that are currently enabled by the RCGCn registers. The system clock can be any of the available clock sources including the PLL.
- Sleep Mode. Sleep mode is entered by the Cortex-M3 core executing a WFI (Wait for Interrupt) instruction. Any properly configured interrupt event in the system will bring the processor back into Run mode. See the system control NVIC section of the ARM® Cortex<sup>TM</sup>-M3 Technical Reference Manual for more details.

In Sleep Mode, the Cortex-M3 processor core and the memory subsystem are not clocked. Peripherals are clocked that are enabled in the **SCGCn** register when auto-clock gating is enabled (see the **RCC** register) or the **RCGCn** register when the auto-clock gating is disabled. The system clock has the same source and frequency as that during Run mode.

■ **Deep-Sleep Mode.** Deep-Sleep mode is entered by first writing the Deep Sleep Enable bit in the ARM Cortex-M3 NVIC system control register and then executing a WFI instruction. Any properly configured interrupt event in the system will bring the processor back into Run mode. See the system control NVIC section of the ARM® Cortex<sup>TM</sup>-M3 Technical Reference Manual for more details.

The Cortex-M3 processor core and the memory subsystem are not clocked. Peripherals are clocked that are enabled in the **DCGCn** register when auto-clock gating is enabled (see the **RCC** register) or the **RCGCn** register when auto-clock gating is disabled. The system clock source is the main oscillator by default or the internal oscillator specified in the **DSLPCLKCFG** register if one is enabled. When the **DSLPCLKCFG** register is used, the internal oscillator is powered up, if necessary, and the main oscillator is powered down. If the PLL is running at the time of the WFI instruction, hardware will power the PLL down and override the SYSDIV field of the active **RCC/RCC2** register to be /16 or /64, respectively. When the Deep-Sleep exit event occurs, hardware brings the system clock back to the source and frequency it had at the onset of Deep-Sleep mode before enabling the clocks that had been stopped during the Deep-Sleep duration.

Hibernate Mode. In this mode, the power supplies are turned off to the main part of the device and only the Hibernation module's circuitry is active. An external wake event or RTC event is required to bring the device back to Run mode. The Cortex-M3 processor and peripherals outside of the Hibernation module see a normal "power on" sequence and the processor starts running code. It can determine that it has been restarted from Hibernate mode by inspecting the Hibernation module registers.

# 6.2 Initialization and Configuration

The PLL is configured using direct register writes to the RCC/RCC2 register. If the RCC2 register is being used, the USERCC2 bit must be set and the appropriate RCC2 bit/field is used. The steps required to successfully change the PLL-based system clock are:

- 1. Bypass the PLL and system clock divider by setting the BYPASS bit and clearing the USESYS bit in the **RCC** register. This configures the system to run off a "raw" clock source (using the main oscillator or internal oscillator) and allows for the new PLL configuration to be validated before switching the system clock to the PLL.
- 2. Select the crystal value (XTAL) and oscillator source (OSCSRC), and clear the PWRDN bit in RCC/RCC2. Setting the XTAL field automatically pulls valid PLL configuration data for the appropriate crystal, and clearing the PWRDN bit powers and enables the PLL and its output.
- 3. Select the desired system divider (SYSDIV) in RCC/RCC2 and set the USESYS bit in RCC. The SYSDIV field determines the system frequency for the microcontroller.
- 4. Wait for the PLL to lock by polling the PLLLRIS bit in the **Raw Interrupt Status (RIS**) register.
- 5. Enable use of the PLL by clearing the BYPASS bit in RCC/RCC2.

# 6.3 Register Map

"Register Map" on page 64 lists the System Control registers, grouped by function. The offset listed is a hexadecimal increment to the register's address, relative to the System Control base address of 0x400F.E000.

- **Note:** Spaces in the System Control register space that are not used are reserved for future or internal use by Luminary Micro, Inc. Software should not modify any reserved memory address.
- **Note:** A BV in the Reset column indicates the reset value is a Build Value and part-specific. See the page number referenced for the reset value description.

| Table 6-1. | System | Control | <b>Register</b> M | Лар |
|------------|--------|---------|-------------------|-----|
|------------|--------|---------|-------------------|-----|

| Offset | Name    | Туре | Reset       | Description             | See<br>page |
|--------|---------|------|-------------|-------------------------|-------------|
| 0x000  | DID0    | RO   | -           | Device Identification 0 | 66          |
| 0x004  | DID1    | RO   | BV          | Device Identification 1 | 82          |
| 0x008  | DC0     | RO   | BV          | Device Capabilities 0   | 84          |
| 0x010  | DC1     | RO   | BV          | Device Capabilities 1   | 85          |
| 0x014  | DC2     | RO   | BV          | Device Capabilities 2   | 87          |
| 0x018  | DC3     | RO   | BV          | Device Capabilities 3   | 89          |
| 0x01C  | DC4     | RO   | BV          | Device Capabilities 4   | 91          |
| 0x030  | PBORCTL | R/W  | 0x0000.7FFD | Brown-Out Reset Control | 68          |

| Offset | Name       | Туре  | Reset       | Description                                     | See<br>page |
|--------|------------|-------|-------------|-------------------------------------------------|-------------|
| 0x034  | LDOPCTL    | R/W   | 0x0000.0000 | LDO Power Control                               | 69          |
| 0x040  | SRCR0      | R/W   | 0x00000000  | Software Reset Control 0                        | 113         |
| 0x044  | SRCR1      | R/W   | 0x00000000  | Software Reset Control 1                        | 114         |
| 0x048  | SRCR2      | R/W   | 0x00000000  | Software Reset Control 2                        | 116         |
| 0x050  | RIS        | RO    | 0x0000.0000 | Raw Interrupt Status                            | 70          |
| 0x054  | IMC        | R/W   | 0x0000.0000 | Interrupt Mask Control                          | 71          |
| 0x058  | MISC       | R/W1C | 0x0000.0000 | Masked Interrupt Status and Clear               | 72          |
| 0x05C  | RESC       | R/W   | -           | Reset Cause                                     | 73          |
| 0x060  | RCC        | R/W   | 0x07AE.3AD1 | Run-Mode Clock Configuration                    | 74          |
| 0x064  | PLLCFG     | RO    | -           | XTAL to PLL Translation                         | 78          |
| 0x070  | RCC2       | R/W   | 0x0780.2800 | Run-Mode Clock Configuration 2                  | 79          |
| 0x100  | RCGC0      | R/W   | 0x00000040  | Run Mode Clock Gating Control Register 0        | 92          |
| 0x104  | RCGC1      | R/W   | 0x00000000  | Run Mode Clock Gating Control Register 1        | 98          |
| 0x108  | RCGC2      | R/W   | 0x00000000  | Run Mode Clock Gating Control Register 2        | 107         |
| 0x110  | SCGC0      | R/W   | 0x00000040  | Sleep Mode Clock Gating Control Register 0      | 94          |
| 0x114  | SCGC1      | R/W   | 0x00000000  | Sleep Mode Clock Gating Control Register 1      | 101         |
| 0x118  | SCGC2      | R/W   | 0x00000000  | Sleep Mode Clock Gating Control Register 2      | 109         |
| 0x120  | DCGC0      | R/W   | 0x00000040  | Deep Sleep Mode Clock Gating Control Register 0 | 96          |
| 0x124  | DCGC1      | R/W   | 0x00000000  | Deep Sleep Mode Clock Gating Control Register 1 | 104         |
| 0x128  | DCGC2      | R/W   | 0x00000000  | Deep Sleep Mode Clock Gating Control Register 2 | 111         |
| 0x144  | DSLPCLKCFG | R/W   | 0x0780.0000 | Deep Sleep Clock Configuration                  | 81          |

# 6.4 Register Descriptions

All addresses given are relative to the System Control base address of 0x400F.E000.

# Register 1: Device Identification 0 (DID0), offset 0x000

This register identifies the version of the device.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 400F.E000<br>:000 |         | 0 (DID0) | )       |         |         |         |         |             |                       |         |                                     |          |            |          |         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------|----------|---------|---------|---------|---------|---------|-------------|-----------------------|---------|-------------------------------------|----------|------------|----------|---------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 31                | 30      | 29       | 28      | 27      | 26      | 25      | 24      | 23          | 22                    | 21      | 20                                  | 19       | 18         | 17       | 16      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | reserved          |         | VER      |         |         | re      | served  | -       |             |                       | I       | CL                                  | I<br>ASS | 1          | 1        | · ]     |
| Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RO                | RO      | RO       | RO      | RO      | RO      | RO      | RO      | RO          | RO                    | RO      | RO                                  | RO       | RO         | RO       | RO      |
| Reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                 | 0       | 0        | 1       | 0       | 0       | 0       | 0       | 0           | 0                     | 0       | 0                                   | 0        | 0          | 0        | 1       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15                | 14      | 13       | 12      | 11      | 10      | 9       | 8       | 7           | 6                     | 5       | 4                                   | 3        | 2          | 1        | 0       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | '                 |         |          | MA      | JOR     | 8       | 1       | 1       |             |                       |         | I MI                                | NOR      | 1          | 1        | '       |
| Type<br>Reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RO<br>-           | RO<br>- | RO<br>-  | RO<br>- | RO<br>- | RO<br>- | RO<br>- | RO<br>- | RO<br>-     | RO<br>-               | RO<br>- | RO<br>-                             | RO<br>-  | RO<br>-    | RO<br>-  | RO<br>- |
| Bit/F                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | liold             |         | Name     |         | Turno   |         | Ponot   | Descr   | intion      |                       |         |                                     |          |            |          |         |
| DIVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | leiu              |         | Name     |         | Туре    |         | Reset   | Desci   | ιριιοπ      |                       |         |                                     |          |            |          |         |
| 31 reserved RO 0 Software should not rely on the value of a reserved bit. To p compatibility with future products, the value of a reserved bit preserved across a read-modify-write operation.                                                                                                                                                                                                                                                                                |                   |         |          |         |         |         |         |         |             |                       |         |                                     |          |            |          |         |
| 30:                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28                |         | VER      |         | RO      |         | 1       |         |             |                       |         | gister fori<br>VER field            |          |            |          | number  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |         |          |         |         |         |         | Value   | e Descr     | iption                |         |                                     |          |            |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |         |          |         |         |         |         | 1       |             | evision d<br>lass dev |         | ID0 regis                           | ter form | at, for St | ellaris® |         |
| 27:                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24                |         | reserved |         | RO      |         | 0       | compa   | atibility v | vith futu             | e produ | he value<br>ucts, the<br>dify-write | value of | a reserv   |          |         |
| 23:16 CLASS RO 1 The CLASS field value identifies the internal design from which all mask<br>sets are generated for all devices in a particular product line. The CLASS<br>field value is changed for new product lines, for changes in fab process<br>(for example, a remap or shrink), or any case where the MAJOR or MINOR<br>fields require differentiation from prior devices. The value of the CLASS<br>field is encoded as follows (all other encodings are reserved): |                   |         |          |         |         |         |         |         |             |                       |         | e CLASS<br>process<br>r MINOR       |          |            |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |         |          |         |         |         |         | Value   | e Descr     | iption                |         |                                     |          |            |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |         |          |         |         |         |         | 0       | Stellar     | is® Sar               | dstorm  | -class de                           | vices    |            |          |         |

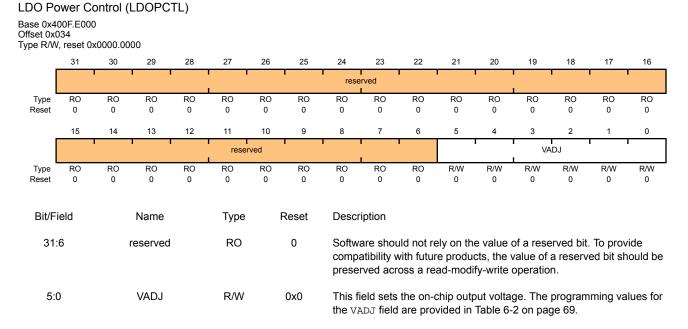
0 Stellaris® Sandstorm-class devices.

1 Stellaris® Fury-class devices.

| Bit/Field | Name  | Туре | Reset | Description                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
|-----------|-------|------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 15:8      | MAJOR | RO   | -     | This field specifies the major revision number of the device. The major revision reflects changes to base layers of the design. The major revision number is indicated in the part number as a letter (A for first revision, B for second, and so on). This field is encoded as follows: |  |  |  |  |  |  |  |
|           |       |      |       | Value Description                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|           |       |      |       | 0 Revision A (initial device)                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
|           |       |      |       | 1 Revision B (first base layer revision)                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
|           |       |      |       | 2 Revision C (second base layer revision)                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
|           |       |      |       | and so on.                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| 7:0       | MINOR | RO   | -     | This field specifies the minor revision number of the device. The minor revision reflects changes to the metal layers of the design. The MINOR field value is reset when the MAJOR field is changed. This field is numeric and is encoded as follows:                                    |  |  |  |  |  |  |  |
|           |       |      |       | Value Description                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|           |       |      |       | 0 Initial device, or a major revision update.                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
|           |       |      |       | 1 First metal layer change.                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
|           |       |      |       | 2 Second metal layer change.                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |

and so on.

# Register 2: Brown-Out Reset Control (PBORCTL), offset 0x030


This register is responsible for controlling reset conditions after initial power-on reset.

| Brown-Out Reset Control (PBORCTL)                               |
|-----------------------------------------------------------------|
| Base 0x400F.E000<br>Offset 0x030<br>Type R/W, reset 0x0000.7FFD |

|       | 31                              | 30 | 29       | 28 | 27         | 26 | 25                                                                                                                                                           | 24                                                                                                                          | 23                                                                            | 22      | 21 | 20                      | 19 | 18 | 17         | 16       |
|-------|---------------------------------|----|----------|----|------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------|----|-------------------------|----|----|------------|----------|
|       |                                 | 1  | 1 1      |    |            |    | 1                                                                                                                                                            | rese                                                                                                                        | rved                                                                          |         | 1  | 1                       |    | 1  | 1          |          |
| Туре  | RO                              | RO | RO       | RO | RO         | RO | RO                                                                                                                                                           | RO                                                                                                                          | RO                                                                            | RO      | RO | RO                      | RO | RO | RO         | RO       |
| Reset | 0                               | 0  | 0        | 0  | 0          | 0  | 0                                                                                                                                                            | 0                                                                                                                           | 0                                                                             | 0       | 0  | 0                       | 0  | 0  | 0          | 0        |
|       | 15                              | 14 | 13       | 12 | 11         | 10 | 9                                                                                                                                                            | 8                                                                                                                           | 7                                                                             | 6       | 5  | 4                       | 3  | 2  | 1          | 0        |
|       |                                 | 1  | 1 1      |    | r r        |    | rese                                                                                                                                                         | l<br>erved                                                                                                                  | 1                                                                             |         | 1  | 1                       | 1  | T  | BORIOR     | reserved |
| Туре  | RO                              | RO | RO       | RO | RO         | RO | RO                                                                                                                                                           | RO                                                                                                                          | RO                                                                            | RO      | RO | RO                      | RO | RO | R/W        | RO       |
| Reset | 0                               | 0  | 0        | 0  | 0          | 0  | 0                                                                                                                                                            | 0                                                                                                                           | 0                                                                             | 0       | 0  | 0                       | 0  | 0  | 0          | 0        |
|       | Bit/Field Name<br>31:2 reserved |    |          |    | Type<br>RO |    | Reset<br>0                                                                                                                                                   |                                                                                                                             | Description<br>Software should not rely on the value of a reserved bit. To pr |         |    |                         |    |    | t. To prov | ride     |
|       |                                 |    |          |    |            |    |                                                                                                                                                              | •                                                                                                                           | ,                                                                             |         | •  | icts, the vify-write of |    |    | ved bit sh | ould be  |
| 1     |                                 |    | BORIOR   |    | R/W        |    | 0                                                                                                                                                            | BOR                                                                                                                         | Interrupt                                                                     | or Rese | et |                         |    |    |            |          |
|       |                                 |    |          |    |            |    |                                                                                                                                                              | This bit controls how a BOR event is signaled to the controller. If reset is signaled. Otherwise, an interrupt is signaled. |                                                                               |         |    |                         |    |    |            |          |
| 0     |                                 |    | reserved |    | RO         |    | 0 Software should not rely on the value of a reserv<br>compatibility with future products, the value of a<br>preserved across a read-modify-write operation. |                                                                                                                             |                                                                               |         |    |                         |    |    | •          |          |

## Register 3: LDO Power Control (LDOPCTL), offset 0x034

The VADJ field in this register adjusts the on-chip output voltage (V<sub>OUT</sub>).



#### Table 6-2. VADJ to VOUT

| VADJ Value | $V_{OUT}(V)$ | VADJ Value | $V_{OUT}$ (V) | VADJ Value | V <sub>OUT</sub> (V) |
|------------|--------------|------------|---------------|------------|----------------------|
| 0x1B       | 2.75         | 0x1F       | 2.55          | 0x03       | 2.35                 |
| 0x1C       | 2.70         | 0x00       | 2.50          | 0x04       | 2.30                 |
| 0x1D       | 2.65         | 0x01       | 2.45          | 0x05       | 2.25                 |
| 0x1E       | 2.60         | 0x02       | 2.40          | 0x06-0x3F  | Reserved             |

# Register 4: Raw Interrupt Status (RIS), offset 0x050

Central location for system control raw interrupts. These are set and cleared by hardware.

Raw Interrupt Status (RIS) Base 0x400F.E000 Offset 0x050 Type RO, reset 0x0000.0000

| i ypo i (o, | 10000 07                                                                                                                                                                                                      | 0000.00 | 00       |    |          |    |       |                                                                                                                                                                                                                                                                                                                    |           |                                         |                    |                      |           |          |                                        |          |  |  |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|----|----------|----|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------|--------------------|----------------------|-----------|----------|----------------------------------------|----------|--|--|
|             | 31                                                                                                                                                                                                            | 30      | 29       | 28 | 27       | 26 | 25    | 24                                                                                                                                                                                                                                                                                                                 | 23        | 22                                      | 21                 | 20                   | 19        | 18       | 17                                     | 16       |  |  |
|             |                                                                                                                                                                                                               | 1       | 1 1      |    | · ·      |    | 1     | rese                                                                                                                                                                                                                                                                                                               | rved      |                                         |                    |                      |           |          | 1                                      |          |  |  |
| Туре        | RO                                                                                                                                                                                                            | RO      | RO       | RO | RO       | RO | RO    | RO                                                                                                                                                                                                                                                                                                                 | RO        | RO                                      | RO                 | RO                   | RO        | RO       | RO                                     | RO       |  |  |
| Reset       | 0                                                                                                                                                                                                             | 0       | 0        | 0  | 0        | 0  | 0     | 0                                                                                                                                                                                                                                                                                                                  | 0         | 0                                       | 0                  | 0                    | 0         | 0        | 0                                      | 0        |  |  |
|             | 15                                                                                                                                                                                                            | 14      | 13       | 12 | 11       | 10 | 9     | 8                                                                                                                                                                                                                                                                                                                  | 7         | 6                                       | 5                  | 4                    | 3         | 2        | 1                                      | 0        |  |  |
|             |                                                                                                                                                                                                               | r       | · ·      |    | reserved |    | 1     | 1                                                                                                                                                                                                                                                                                                                  |           | PLLLRIS                                 |                    | rese                 | rved      |          | BORRIS                                 | reserved |  |  |
| Туре        | RO                                                                                                                                                                                                            | RO      | RO       | RO | RO       | RO | RO    | RO                                                                                                                                                                                                                                                                                                                 | RO        | RO                                      | RO                 | RO                   | RO        | RO       | RO                                     | RO       |  |  |
| Reset       | 0                                                                                                                                                                                                             | 0       | 0        | 0  | 0        | 0  | 0     | 0                                                                                                                                                                                                                                                                                                                  | 0         | 0                                       | 0                  | 0                    | 0         | 0        | 0                                      | 0        |  |  |
|             |                                                                                                                                                                                                               |         |          |    | _        |    | _     | _                                                                                                                                                                                                                                                                                                                  |           |                                         |                    |                      |           |          |                                        |          |  |  |
| Bit/F       | ield                                                                                                                                                                                                          |         | Name     |    | Туре     |    | Reset | Descr                                                                                                                                                                                                                                                                                                              | iption    |                                         |                    |                      |           |          |                                        |          |  |  |
| 31:         | 31:7 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation. |         |          |    |          |    |       |                                                                                                                                                                                                                                                                                                                    |           |                                         |                    |                      |           |          |                                        |          |  |  |
| 6           |                                                                                                                                                                                                               |         | PLLLRIS  |    | RO       |    | 0     | PLL L                                                                                                                                                                                                                                                                                                              | ock Ra    | w Interrup                              | t Status           | S                    |           |          |                                        |          |  |  |
|             |                                                                                                                                                                                                               |         |          |    |          |    |       | This b                                                                                                                                                                                                                                                                                                             | it is set | when the                                | PLL T <sub>I</sub> | <sub>READY</sub> Tir | mer asse  | erts.    |                                        |          |  |  |
| 5:2         | 2                                                                                                                                                                                                             |         | reserved |    | RO       |    | 0     | compa                                                                                                                                                                                                                                                                                                              | atibility | uld not re<br>with future<br>ross a rea | e produ            | cts, the v           | alue of a | a reserv | •                                      |          |  |  |
| 1           |                                                                                                                                                                                                               |         | BORRIS   |    | RO       |    | 0     | Browr                                                                                                                                                                                                                                                                                                              | -Out R    | eset Raw                                | Interru            | pt Status            |           |          |                                        |          |  |  |
|             |                                                                                                                                                                                                               |         |          |    |          |    |       | This bit is the raw interrupt status for any brown-out conditions. If s a brown-out condition is currently active. This is an unregistered sig from the brown-out detection circuit. An interrupt is reported if the BO bit in the <b>IMC</b> register is set and the BORIOR bit in the <b>PBORCTL</b> registered. |           |                                         |                    |                      |           |          |                                        |          |  |  |
| 0           |                                                                                                                                                                                                               |         | reserved |    | RO       |    | 0     | compa                                                                                                                                                                                                                                                                                                              | atibility |                                         | e produ            | cts, the v           | alue of a | a reserv | pit. To provide<br>prved bit should be |          |  |  |

## Register 5: Interrupt Mask Control (IMC), offset 0x054

Central location for system control interrupt masks.

# Interrupt Mask Control (IMC)

Base 0x400F.E000 Offset 0x054 Type R/W, reset 0x0000.0000

| .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,                                                                                                                                                                                                                                |          |                                                                                                                                                                                     |    |            |    |       |                                                                                                                                                                                               |           |                                           |           |            |          |           |       |          |  |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------|----|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------|-----------|------------|----------|-----------|-------|----------|--|
|                                         | 31                                                                                                                                                                                                                               | 30       | 29                                                                                                                                                                                  | 28 | 27         | 26 | 25    | 24                                                                                                                                                                                            | 23        | 22                                        | 21        | 20         | 19       | 18        | 17    | 16       |  |
|                                         |                                                                                                                                                                                                                                  | 1        | , ,                                                                                                                                                                                 |    | <u>г г</u> |    | 1     | rese                                                                                                                                                                                          | rved      | <del>, ,</del>                            |           |            |          | r         | 1     | ,        |  |
| Туре                                    | RO                                                                                                                                                                                                                               | RO       | RO                                                                                                                                                                                  | RO | RO         | RO | RO    | RO                                                                                                                                                                                            | RO        | RO                                        | RO        | RO         | RO       | RO        | RO    | RO       |  |
| Reset                                   | 0                                                                                                                                                                                                                                | 0        | 0                                                                                                                                                                                   | 0  | 0          | 0  | 0     | 0                                                                                                                                                                                             | 0         | 0                                         | 0         | 0          | 0        | 0         | 0     | 0        |  |
|                                         |                                                                                                                                                                                                                                  |          |                                                                                                                                                                                     |    |            |    |       |                                                                                                                                                                                               |           |                                           |           |            |          |           |       |          |  |
|                                         | 15                                                                                                                                                                                                                               | 14       | 13                                                                                                                                                                                  | 12 | 11         | 10 | 9     | 8                                                                                                                                                                                             | 7         | 6                                         | 5         | 4          | 3        | 2         | 1     | 0        |  |
|                                         |                                                                                                                                                                                                                                  | 1        | 1 1                                                                                                                                                                                 |    | reserved   |    |       |                                                                                                                                                                                               |           | PLLLIM                                    |           | rese       |          |           | BORIM | reserved |  |
| Туре                                    | RO                                                                                                                                                                                                                               | RO       | RO                                                                                                                                                                                  | RO | RO         | RO | RO    | RO                                                                                                                                                                                            | RO        | R/W                                       | RO        | RO         | RO       | RO        | R/W   | RO       |  |
| Reset                                   | 0                                                                                                                                                                                                                                | 0        | 0                                                                                                                                                                                   | 0  | 0          | 0  | 0     | 0                                                                                                                                                                                             | 0         | 0                                         | 0         | 0          | 0        | 0         | 0     | 0        |  |
| Bit/F                                   | ield                                                                                                                                                                                                                             |          | Name                                                                                                                                                                                |    | Туре       |    | Reset | t Description                                                                                                                                                                                 |           |                                           |           |            |          |           |       |          |  |
| 31:                                     | 1:7       reserved       RO       0       Software should not rely on the value of a reserved bit. To provid compatibility with future products, the value of a reserved bit sho preserved across a read-modify-write operation. |          |                                                                                                                                                                                     |    |            |    |       |                                                                                                                                                                                               |           |                                           |           |            |          |           |       |          |  |
| 6                                       |                                                                                                                                                                                                                                  |          | PLLLIM                                                                                                                                                                              |    | R/W        |    | 0     | PLL L                                                                                                                                                                                         | ock Inte  | errupt Mas                                | sk        |            |          |           |       |          |  |
|                                         |                                                                                                                                                                                                                                  |          |                                                                                                                                                                                     |    |            |    |       | contro                                                                                                                                                                                        | ller inte | fies wheth<br>rrupt. If se<br>ise, an inf | et, an ir | terrupt is | s genera | ated if P |       |          |  |
| 5:2                                     | 2                                                                                                                                                                                                                                |          | reserved                                                                                                                                                                            |    | RO         |    | 0     | compa                                                                                                                                                                                         | atibility | uld not re<br>with future<br>ross a rea   | produ     | cts, the v | alue of  | a reserv  | •     |          |  |
| 1                                       |                                                                                                                                                                                                                                  |          | BORIM                                                                                                                                                                               |    | R/W        |    | 0     | Brown                                                                                                                                                                                         | -Out R    | eset Inter                                | rupt Ma   | sk         |          |           |       |          |  |
|                                         |                                                                                                                                                                                                                                  |          | This bit specifies whether a brown-out condition is promoted to a controller interrupt. If set, an interrupt is generated if BORRIS is so otherwise, an interrupt is not generated. |    |            |    |       |                                                                                                                                                                                               |           |                                           |           |            |          |           |       |          |  |
| 0                                       |                                                                                                                                                                                                                                  | reserved |                                                                                                                                                                                     |    | RO         | 0  |       | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |           |                                           |           |            |          |           |       |          |  |

## Register 6: Masked Interrupt Status and Clear (MISC), offset 0x058

Central location for system control result of RIS AND IMC to generate an interrupt to the controller. All of the bits are R/W1C and this action also clears the corresponding raw interrupt bit in the RIS register (see page 70).

#### Masked Interrupt Status and Clear (MISC)

Base 0x400F.E000 Offset 0x058 Type R/W1C, reset 0x0000.0000

|               | 31      | 30                                                                        | 29       | 28      | 27       | 26      | 25      | 24      | 23        | 22          | 21       | 20             | 19        | 18         | 17         | 16       |
|---------------|---------|---------------------------------------------------------------------------|----------|---------|----------|---------|---------|---------|-----------|-------------|----------|----------------|-----------|------------|------------|----------|
|               |         | 1                                                                         | і і      |         | г г      |         | 1       | rese    | rved      | · ·         |          | 1              |           | 1          | 1          |          |
| Type<br>Reset | RO<br>0 | RO<br>0                                                                   | RO<br>0  | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0   | RO<br>0     | RO<br>0  | RO<br>0        | RO<br>0   | RO<br>0    | RO<br>0    | RO<br>0  |
| Reset         |         |                                                                           |          |         |          |         |         |         |           |             |          | 0              |           |            | 0          |          |
| 1             | 15      | 14                                                                        | 13       | 12      | 11       | 10      | 9       | 8       | 7         | 6           | 5        | 4              | 3         | 2          | 1          | 0        |
|               |         |                                                                           |          |         | reserved |         |         |         | 1         | PLLLMIS     |          | rese           | rved      | -          | BORMIS     | reserved |
| Type<br>Reset | RO<br>0 | RO<br>0                                                                   | RO<br>0  | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0   | R/W1C<br>0  | RO<br>0  | RO<br>0        | RO<br>0   | RO<br>0    | R/W1C<br>0 | RO<br>0  |
| Reset         | U       | 0                                                                         | 0        | 0       | 0        | 0       | 0       | 0       | 0         | 0           | 0        | 0              | U         | 0          | 0          | 0        |
|               | :       |                                                                           | Nama     |         | Turne    |         | Deeet   | Deser   |           |             |          |                |           |            |            |          |
| Bit/F         | leia    |                                                                           | Name     |         | Туре     |         | Reset   | Descr   | iption    |             |          |                |           |            |            |          |
| 31:           | :7      | reserved RO 0 Software should not rely on the value of a reserved bit. To |          |         |          |         |         |         |           |             |          | •              |           |            |            |          |
|               |         |                                                                           |          |         |          |         |         |         |           | with future | •        |                |           |            | ed bit sh  | ould be  |
|               |         |                                                                           |          |         |          |         |         | preser  | veu ac    | ioss a rea  | ia-moai  | iy-write o     | operatio  | <b>11.</b> |            |          |
| 6             |         | F                                                                         | PLLLMIS  |         | R/W1C    |         | 0       | PLL L   | ock Ma    | sked Inter  | rupt Sta | atus           |           |            |            |          |
|               |         |                                                                           |          |         |          |         |         | This bi | it is set | when the I  |          | -ADY time      | r assert  | s. The in  | terrupt is | cleared  |
|               |         |                                                                           |          |         |          |         |         | by wri  | ting a 1  | to this bit |          |                |           |            |            |          |
| 5:2           | 2       | r                                                                         | reserved |         | RO       |         | 0       | Softwa  | are sho   | uld not re  | ly on th | e value d      | of a rese | erved hit  | To prov    | ide      |
| 0.            | -       |                                                                           | cocived  |         | no       |         | Ū       |         |           | with future |          |                |           |            | •          |          |
|               |         |                                                                           |          |         |          |         |         | preser  | ved ac    | ross a rea  | id-modi  | fy-write o     | operatio  | n.         |            |          |
| 1             |         | F                                                                         | BORMIS   |         | R/W1C    |         | 0       | The B   | ORMIS     | is simply t | he BORI  | RTS <b>ANF</b> | )ed with  | the mas    | sk value   | BORTM    |
| •             |         | -                                                                         |          |         |          |         | U U     |         | 010120    |             |          |                |           |            | , ruide,   | 20112111 |
| 0             |         | r                                                                         | reserved |         | RO       |         | 0       |         |           | uld not re  |          |                |           |            | •          |          |
|               |         |                                                                           |          |         |          |         |         | •       |           | with future | •        |                |           |            | ed bit sh  | ould be  |
|               |         |                                                                           |          |         |          |         |         | p. 0001 |           |             |          | .,             |           |            |            |          |

# Register 7: Reset Cause (RESC), offset 0x05C

This register is set with the reset cause after reset. The bits in this register are sticky and maintain their state across multiple reset sequences, except when an external reset is the cause, and then all the other bits in the **RESC** register are cleared.

| Offset 0x4<br>Type R/W | 05C     |         |          |         |         |         |         |         |                      |                                       |           |            |            |            |           |          |
|------------------------|---------|---------|----------|---------|---------|---------|---------|---------|----------------------|---------------------------------------|-----------|------------|------------|------------|-----------|----------|
|                        | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24      | 23                   | 22                                    | 21        | 20         | 19         | 18         | 17        | 16       |
|                        |         | 1       | I        |         |         |         | 1       | rese    | rved                 | 1                                     |           |            | 1          | r          | 1         | ,        |
| Type<br>Reset          | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0              | RO<br>0                               | RO<br>0   | RO<br>0    | RO<br>0    | RO<br>0    | RO<br>0   | RO<br>0  |
|                        | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8       | 7                    | 6                                     | 5         | 4          | 3          | 2          | 1         | 0        |
|                        |         | •       |          |         | reser   | ved     | •       | 1       |                      | •                                     | LDO       | SW         | WDT        | BOR        | POR       | EXT      |
| Type<br>Reset          | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0              | RO<br>0                               | R/W<br>-  | R/W<br>-   | R/W<br>-   | R/W<br>-   | R/W<br>-  | R/W<br>- |
| Bit/F                  | ield    |         | Name     |         | Туре    |         | Reset   | Descr   | iption               |                                       |           |            |            |            |           |          |
| 31                     | :6      |         | reserved |         | RO      |         | 0       | compa   | atibility v          | uld not re<br>vith futur<br>oss a rea | e produ   | cts, the   | value of   | a reserv   | •         |          |
| 5                      | i       |         | LDO      |         | R/W     |         | -       |         | -                    | icates th<br>eset eve                 |           | circuit ha | as lost re | gulation   | and has   | 3        |
| 4                      | ·       |         | SW       |         | R/W     |         | -       | When    | set, ind             | icates a                              | software  | e reset is | s the cau  | ise of th  | e reset e | event.   |
| 3                      | 5       |         | WDT      |         | R/W     |         | -       | When    | set, ind             | icates a                              | watchdo   | og reset   | is the ca  | use of t   | he reset  | event.   |
| 2                      | 2       |         | BOR      |         | R/W     |         | -       | When    | set, ind             | icates a                              | brown-c   | out reset  | is the ca  | ause of t  | he reset  | event.   |
| 1                      |         |         | POR      |         | R/W     |         | -       | When    | set, ind             | icates a                              | power-c   | n reset    | is the ca  | use of th  | ne reset  | event.   |
| 0                      | )       |         | EXT      |         | R/W     |         | -       |         | set, ind<br>set ever | icates ar<br>nt.                      | n externa | al reset   | (RST ass   | sertion) i | s the ca  | use of   |

#### Reset Cause (RESC) Base 0x400F.E000

# Register 8: Run-Mode Clock Configuration (RCC), offset 0x060

This register is defined to provide source control and frequency speed.

| Run-Mode Clock Configuration (RCC) |
|------------------------------------|
| Base 0x400F.E000<br>Offset 0x060   |
| Type R/W, reset 0x07AE.3AD1        |

|       | 31   | 30               | 29    | 28       | 27     | 26       | 25    | 24        | 23          | 22         | 21       | 20                                    | 19      | 18         | 17      | 16       |
|-------|------|------------------|-------|----------|--------|----------|-------|-----------|-------------|------------|----------|---------------------------------------|---------|------------|---------|----------|
|       |      | rese             | erved | ſ        | ACG    |          | SYS   | I<br>SDIV | 1           | USESYSDIV  | reserved | USEPWINDIV                            |         | PWMDIV     | ſ       | reserved |
| Туре  | RO   | RO               | RO    | RO       | R/W    | R/W      | R/W   | R/W       | R/W         | R/W        | RO       | R/W                                   | R/W     | R/W        | R/W     | RO       |
| Reset | 0    | 0                | 0     | 0        | 0      | 1        | 1     | 1         | 1           | 0          | 1        | 0                                     | 1       | 1          | 1       | 0        |
|       | 15   | 14               | 13    | 12       | 11     | 10       | 9     | 8         | 7           | 6          | 5        | 4                                     | 3       | 2          | 1       | 0        |
|       | rese | rved             | PWRDN | reserved | BYPASS | reserved |       | Т         | I<br>TAL    | 1          | OSC      | SRC                                   | rese    | l<br>erved | IOSCDIS | MOSCDIS  |
| Туре  | RO   | RO               | R/W   | RO       | R/W    | RO       | R/W   | R/W       | R/W         | R/W        | R/W      | R/W                                   | RO      | RO         | R/W     | R/W      |
| Reset | 0    | 0                | 1     | 1        | 1      | 0        | 1     | 0         | 1           | 1          | 0        | 1                                     | 0       | 0          | 0       | 1        |
| Bit/F | ield |                  | Name  |          | Туре   | F        | Reset | Descr     | iption      |            |          |                                       |         |            |         |          |
| 31:   | 28   | Name<br>reserved |       |          | RO     |          | 0x0   | compa     | atibility v | with futur | e produo | e value o<br>cts, the v<br>fy-write o | alue of | a reserve  | •       |          |
| 27    | 7    |                  | ACG   |          | R/W    |          | 0     | Auto (    | Clock Ga    | ating      |          |                                       |         |            |         |          |
|       |      |                  |       |          |        |          |       |           | •           |            |          | system u                              |         | •          |         |          |

Gating Control (SCGCn) registers and Deep-Sleep-Mode Clock Gating Control (DCGCn) registers and Deep-Sleep-Mode Clock Gating Control (DCGCn) registers if the controller enters a Sleep or Deep-Sleep mode (respectively). If set, the SCGCn or DCGCn registers are used to control the clocks distributed to the peripherals when the controller is in a sleep mode. Otherwise, the Run-Mode Clock Gating Control (RCGCn) registers are used when the controller enters a sleep mode.

The  $\ensuremath{\textbf{RCGCn}}$  registers are always used to control the clocks in Run mode.

This allows peripherals to consume less power when the controller is in a sleep mode and the peripheral is unused.

| Bit/Field | Name      | Туре | Reset | Description                   |                                                  |                                                                                                              |
|-----------|-----------|------|-------|-------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| 26:23     | SYSDIV    | R/W  | 0xF   | System Clock                  | Divisor                                          |                                                                                                              |
|           |           |      |       | Specifies whic<br>PLL output. | h divisor is used to gen                         | erate the system clock from the                                                                              |
|           |           |      |       | The PLL VCO                   | frequency is 400 MHz.                            |                                                                                                              |
|           |           |      |       | Binary Value                  | Divisor (BYPASS=1)                               | Frequency (BYPASS=0)                                                                                         |
|           |           |      |       | 0000-0010                     | reserved                                         | reserved                                                                                                     |
|           |           |      |       | 0011                          | /8                                               | 50 MHz                                                                                                       |
|           |           |      |       | 0100                          | /10                                              | 40 MHz                                                                                                       |
|           |           |      |       | 0101                          | /12                                              | 33.33 MHz                                                                                                    |
|           |           |      |       | 0110                          | /14                                              | 28.57 MHz                                                                                                    |
|           |           |      |       | 0111                          | /16                                              | 25 MHz                                                                                                       |
|           |           |      |       | 1000                          | /18                                              | 22.22 MHz                                                                                                    |
|           |           |      |       | 1001                          | /20                                              | 20 MHz                                                                                                       |
|           |           |      |       | 1010                          | /22                                              | 18.18 MHz                                                                                                    |
|           |           |      |       | 1011                          | /24                                              | 16.67 MHz                                                                                                    |
|           |           |      |       | 1100                          | /26                                              | 15.38 MHz                                                                                                    |
|           |           |      |       | 1101                          | /28                                              | 14.29 MHz                                                                                                    |
|           |           |      |       | 1110                          | /30                                              | 13.33 MHz                                                                                                    |
|           |           |      |       | 1111                          | /32                                              | 12.5 MHz (default)                                                                                           |
|           |           |      |       | page 74), the                 | SYSDIV value is MINSY<br>I the PLL is being used | <b>Configuration (RCC)</b> register (see<br>XSDIV if a lower divider was<br>. This lower value is allowed to |
| 22        | USESYSDIV | R/W  | 0     |                               |                                                  | ource for the system clock. The sed when the PLL is selected as                                              |
| 21        | reserved  | RO   | 1     | compatibility w               |                                                  | of a reserved bit. To provide<br>value of a reserved bit should be<br>operation.                             |
| 20        | USEPWMDIV | R/W  | 0     | Use the PWM                   | clock divider as the so                          | urce for the PWM clock.                                                                                      |

| Bit/Field | Name     | Туре | Reset | Description                                                                                                                                                                                                                                                |
|-----------|----------|------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19:17     | PWMDIV   | R/W  | 0x7   | PWM Unit Clock Divisor                                                                                                                                                                                                                                     |
|           |          |      |       | This field specifies the binary divisor used to predivide the system clock<br>down for use as the timing reference for the PWM module. This clock<br>is only power 2 divide and rising edge is synchronous without phase<br>shift from the system clock.   |
|           |          |      |       | Binary Value Divisor                                                                                                                                                                                                                                       |
|           |          |      |       | 000 /2                                                                                                                                                                                                                                                     |
|           |          |      |       | 001 /4                                                                                                                                                                                                                                                     |
|           |          |      |       | 010 /8                                                                                                                                                                                                                                                     |
|           |          |      |       | 011 /16                                                                                                                                                                                                                                                    |
|           |          |      |       | 100 /32                                                                                                                                                                                                                                                    |
|           |          |      |       | 101 /64                                                                                                                                                                                                                                                    |
|           |          |      |       | 110 /64                                                                                                                                                                                                                                                    |
|           |          |      |       | 111 /64 (default)                                                                                                                                                                                                                                          |
| 16:14     | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                              |
| 13        | PWRDN    | R/W  | 1     | PLL Power Down                                                                                                                                                                                                                                             |
|           |          |      |       | This bit connects to the PLL PWRDN input. The reset value of 1 powers down the PLL.                                                                                                                                                                        |
| 12        | reserved | RO   | 1     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                              |
| 11        | BYPASS   | R/W  | 1     | PLL Bypass                                                                                                                                                                                                                                                 |
|           |          |      |       | Chooses whether the system clock is derived from the PLL output or<br>the OSC source. If set, the clock that drives the system is the OSC<br>source. Otherwise, the clock that drives the system is the PLL output<br>clock divided by the system divider. |
|           |          |      |       | Note: The ADC must be clocked from the PLL or directly from a 14-MHz to 18-MHz clock source to operate properly. While the ADC works in a 14-18 MHz range, to maintain a 1 M sample/second rate, the ADC must be provided a 16-MHz clock source.           |
| 10        | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                              |
| 9:6       | XTAL     | R/W  | 0xB   | This field specifies the crystal value attached to the main oscillator. The encoding for this field is provided in Table 6-3 on page 77.                                                                                                                   |

| Bit/Field | Name     | Туре | Reset | Description                                                                                                                                                                                   |
|-----------|----------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5:4       | OSCSRC   | R/W  | 0x1   | Picks among the four input sources for the OSC. The values are:                                                                                                                               |
|           |          |      |       | ValueInput Source00Main oscillator (default)01Internal oscillator (default)10Internal oscillator / 4 (this is necessary if used as input to PLL)11reserved                                    |
| 3:2       | reserved | RO   | 0x0   | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |
| 1         | IOSCDIS  | R/W  | 0     | Internal Oscillator (IOSC) Disable<br>0: Internal oscillator is enabled.<br>1: Internal oscillator is disabled.                                                                               |
| 0         | MOSCDIS  | R/W  | 1     | Main Oscillator Disable<br>0: Main oscillator is enabled.<br>1: Main oscillator is disabled (default).                                                                                        |

#### Table 6-3. Default Crystal Field Values and PLL Programming

| Crystal Number (XTAL Binary Value) | Crystal Frequency (MHz) Not Using the PLL | Crystal Frequency (MHz) Using the PLL |
|------------------------------------|-------------------------------------------|---------------------------------------|
| 0000                               | 1.000                                     | reserved                              |
| 0001                               | 1.8432                                    | reserved                              |
| 0010                               | 2.000                                     | reserved                              |
| 0011                               | 2.4576                                    | reserved                              |
| 0100                               | 3.5795                                    | 45 MHz                                |
| 0101                               | 3.686                                     | 64 MHz                                |
| 0110                               | 4                                         | MHz                                   |
| 0111                               | 4.09                                      | 6 MHz                                 |
| 1000                               | 4.915                                     | 52 MHz                                |
| 1001                               | 51                                        | MHz                                   |
| 1010                               | 5.12                                      | 2 MHz                                 |
| 1011                               | 6 MHz (r                                  | eset value)                           |
| 1100                               | 6.14                                      | 4 MHz                                 |
| 1101                               | 7.372                                     | 28 MHz                                |
| 1110                               | 81                                        | MHz                                   |
| 1111                               | 8.19                                      | 2 MHz                                 |

## Register 9: XTAL to PLL Translation (PLLCFG), offset 0x064

This register provides a means of translating external crystal frequencies into the appropriate PLL settings. This register is initialized during the reset sequence and updated anytime that the XTAL field changes in the **Run-Mode Clock Configuration (RCC)** register (see page 74).

The PLL frequency is calculated using the PLLCFG field values, as follows:

PLLFreq = OSCFreq \* F / (R + 1)

XTAL to PLL Translation (PLLCFG)

R

RO

\_

Base 0x400F.E000

Offset 0x064 Type RO, reset -

4:0

|               | 31      | 30             | 29      | 28      | 27         | 26      | 25        | 24        | 23          | 22         | 21                               | 20         | 19        | 18       | 17      | 16      |
|---------------|---------|----------------|---------|---------|------------|---------|-----------|-----------|-------------|------------|----------------------------------|------------|-----------|----------|---------|---------|
|               |         | 1              |         |         |            |         | I         | rese      | rved        |            | I                                |            |           |          | 1       |         |
| Type<br>Reset | RO<br>0 | RO<br>0        | RO<br>0 | RO<br>0 | RO<br>0    | RO<br>0 | RO<br>0   | RO<br>0   | RO<br>0     | RO<br>0    | RO<br>0                          | RO<br>0    | RO<br>0   | RO<br>0  | RO<br>0 | RO<br>0 |
|               | 15      | 14             | 13      | 12      | 11         | 10      | 9         | 8         | 7           | 6          | 5                                | 4          | 3         | 2        | 1       | 0       |
|               | С       | <b>I</b><br>DD |         |         | г <u>г</u> |         | F         | I         | ı<br>ı      |            | 1                                |            |           | R        | 1       |         |
| Type<br>Reset | RO<br>- | RO<br>-        | RO<br>- | RO<br>- | RO<br>-    | RO<br>- | RO<br>-   | RO<br>-   | RO<br>-     | RO<br>-    | RO<br>-                          | RO<br>-    | RO<br>-   | RO<br>-  | RO<br>- | RO<br>- |
| Bit/F         | ield    |                | Name    |         | Туре       | F       | Reset     | Descr     | iption      |            |                                  |            |           |          |         |         |
| 31:           | 16      | Name           |         |         | RO         |         | 0         | compa     | atibility v | vith futur | ely on th<br>re produ<br>ad-modi | cts, the v | alue of   | a reserv | •       |         |
| 15:           | 14      | OD             |         |         | RO         |         | -         | This fi   | ield spec   | ifies the  | e value s                        | upplied 1  | to the Pl | L's OD   | input.  |         |
| 13            | 3:5 F   |                | RO      |         | -          | This fi | ield spec | ifies the | e value s   | upplied 1  | to the Pl                        | _L's F in  | put.      |          |         |         |

This field specifies the value supplied to the PLL's R input.

### Register 10: Run-Mode Clock Configuration 2 (RCC2), offset 0x070

This register overrides the RCC equivalent register fields when the USERCC2 bit is set. This allows RCC2 to be used to extend the capabilities, while also providing a means to be backward-compatible to previous parts. The fields within the RCC2 register occupy the same bit positions as they do within the RCC register as LSB-justified.

The SYSDIV2 field is wider so that additional larger divisors are possible. This allows a lower system clock frequency for improved Deep Sleep power consumption.

|             | 31      | 30      | 29       | 28       | 27       | 26      | 25      | 24                                | 23                                 | 22                                 | 21                                                       | 20                            | 19                                | 18                               | 17                  | 16              |
|-------------|---------|---------|----------|----------|----------|---------|---------|-----------------------------------|------------------------------------|------------------------------------|----------------------------------------------------------|-------------------------------|-----------------------------------|----------------------------------|---------------------|-----------------|
|             | USERCC2 | res     | erved    |          | г г      | SYS     | SDIV2   | 1                                 | 1                                  |                                    | •                                                        |                               | reserved                          |                                  |                     | 1               |
| уре         | R/W     | RO      | RO       | R/W      | R/W      | R/W     | R/W     | R/W                               | R/W                                | RO                                 | RO                                                       | RO                            | RO                                | RO                               | RO                  | RO              |
| eset        | 0       | 0       | 0        | 0        | 0        | 1       | 1       | 1                                 | 1                                  | 0                                  | 0                                                        | 0                             | 0                                 | 0                                | 0                   | 0               |
|             | 15      | 14      | 13       | 12       | 11       | 10      | 9       | 8                                 | 7                                  | 6                                  | 5                                                        | 4                             | 3                                 | 2                                | 1                   | 0               |
|             | reserv  |         | PWRDN2   | reserved | BYPASS2  |         |         | erved                             |                                    |                                    | OSCSRC2                                                  |                               |                                   |                                  | rved                |                 |
| ype<br>eset | RO<br>0 | RO<br>0 | R/W<br>1 | RO<br>0  | R/W<br>1 | RO<br>0 | RO<br>0 | RO<br>0                           | RO<br>0                            | R/W<br>0                           | R/W<br>0                                                 | R/W<br>0                      | RO<br>0                           | RO<br>0                          | RO<br>0             | RC<br>0         |
| 3it/F       | ield    |         | Name     |          | Туре     |         | Reset   | Descr                             | iption                             |                                    |                                                          |                               |                                   |                                  |                     |                 |
| 3           | 1       | ι       | JSERCC   | 2        | R/W      |         | 0       | When                              | set, ove                           | errides th                         | ne RCC                                                   | register                      | fields.                           |                                  |                     |                 |
| 30:         | 29      |         | reserved |          | RO       |         | 0       | compa                             | atibility v                        | vith futur                         | ely on the<br>e produc<br>ad-modi                        | cts, the v                    | alue of                           | a reserv                         | •                   |                 |
| 28:         | 23      | :       | SYSDIV2  | 2        | R/W      |         | 0x0F    | Syste                             | m Clock                            | Divisor                            | (6-bit)                                                  |                               |                                   |                                  |                     |                 |
|             |         |         |          |          |          |         |         | Speci <sup>:</sup><br>PLL o       |                                    | ch diviso                          | r is usec                                                | I to gene                     | erate the                         | system                           | clock fro           | om th           |
|             |         |         |          |          |          |         |         | The P                             | LL VCO                             | frequer                            | ncy is 40                                                | 0 MHz.                        |                                   |                                  |                     |                 |
|             |         |         |          |          |          |         |         | additio<br>much<br>the <b>R</b> ( | onal divi<br>lower fre<br>CC regis | sor value<br>equencie<br>ster syst | the RCC<br>es. This<br>es during<br>DIV ence<br>oding of | permits<br>Deep S<br>oding of | the syste<br>Sleep mo<br>111 prov | em clock<br>de. For<br>vides /16 | to be re<br>example | un at<br>e, whe |
| 22:         | 14      |         | reserved |          | RO       |         | 0       | compa                             | atibility v                        | vith futur                         | ely on the<br>re produe<br>ad-modi                       | cts, the v                    | alue of                           | a reserv                         | •                   |                 |
| 1;          | 3       | I       | PWRDN2   | 2        | R/W      |         | 1       | When                              | set, pov                           | wers dov                           | vn the P                                                 | LL.                           |                                   |                                  |                     |                 |
| 1:          | 2       |         | reserved |          | RO       |         | 0       | compa                             | atibility v                        | vith futur                         | ely on the<br>re produc<br>ad-modi                       | cts, the v                    | alue of                           | a reserv                         | •                   |                 |
|             |         | F       | BYPASS2  | 2        | R/W      |         | 1       | When                              | set, by                            | basses t                           | he PLL f                                                 | or the cl                     | ock sour                          | ce.                              |                     |                 |
| 1           | 1       |         |          |          |          |         |         |                                   |                                    |                                    |                                                          |                               |                                   |                                  |                     |                 |

Run-Mode Clock Configuration 2 (RCC2)

#### Base 0x400F.E000

| Bit/Field | Name     | Туре | Reset | Descript | ion       |                                                                                                                                                         |
|-----------|----------|------|-------|----------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6:4       | OSCSRC2  | R/W  | 0     | System   | Clock S   | Source                                                                                                                                                  |
|           |          |      |       | Name     | Value     | Description                                                                                                                                             |
|           |          |      |       | MOSC     | 0         | Main oscillator                                                                                                                                         |
|           |          |      |       | IOSC     | 1         | Internal oscillator                                                                                                                                     |
|           |          |      |       | IOSC/4   | 2         | Internal oscillator / 4                                                                                                                                 |
|           |          |      |       | 30kHz    | 3         | 30 kHz internal oscillator                                                                                                                              |
|           |          |      |       | 32kHz    | 7         | 32 kHz external oscillator                                                                                                                              |
| 3:0       | reserved | RO   | 0     | compatit | oility wi | d not rely on the value of a reserved bit. To provide<br>th future products, the value of a reserved bit should be<br>ss a read-modify-write operation. |

# Register 11: Deep Sleep Clock Configuration (DSLPCLKCFG), offset 0x144

This register provides configuration information for the hardware control of Deep Sleep Mode.

Deep Sleep Clock Configuration (DSLPCLKCFG) Base 0x400F.E000 Offset 0x144 Type R/W, reset 0x0780.0000

|               | 31      | 30       | 29      | 28      | 27       | 26      | 25      | 24                | 23       | 22       | 21                      | 20        | 19          | 18       | 17        | 16       |
|---------------|---------|----------|---------|---------|----------|---------|---------|-------------------|----------|----------|-------------------------|-----------|-------------|----------|-----------|----------|
|               |         | reserved |         |         | , ,      | DSDI    | /ORIDE  |                   |          |          | 1                       | 1         | reserved    |          | 1         |          |
| Туре          | RO      | RO       | RO      | R/W     | R/W      | R/W     | R/W     | R/W               | R/W      | RO       |                         | RO        | RO          | RO       | RO        | RO       |
| Reset         | 0       | 0        | 0       | 0       | 0        | 1       | 1       | 1                 | 1        | 0        | 0                       | 0         | 0           | 0        | 0         | 0        |
|               | 15      | 14       | 13      | 12      | 11       | 10      | 9       | 8                 | 7        | 6        | 5                       | 4         | 3           | 2        | 1         | 0        |
|               |         |          |         |         | reserved |         |         |                   |          |          | DSOSCSF                 | RC        |             | rese     | erved     |          |
| Type<br>Reset | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0           | RO<br>0  | R/W<br>0 |                         | R/W<br>0  | RO<br>0     | RO<br>0  | RO<br>0   | RO<br>0  |
| Reset         | 0       | 0        | 0       | 0       | 0        | 0       | 0       | 0                 | 0        | 0        | 0                       | 0         | 0           | 0        | 0         | 0        |
| Bit/F         | ield    |          | Name    |         | Туре     |         | Reset   | Descri            | intion   |          |                         |           |             |          |           |          |
| DIUI          |         |          | Name    |         | турс     | '       |         | Deser             | puon     |          |                         |           |             |          |           |          |
| 31:           | 29      | r        | eserved | l       | RO       |         | 0       |                   |          |          | ot rely on th           |           |             |          | •         |          |
|               |         |          |         |         |          |         |         |                   |          |          | iture produ<br>read-mod |           |             |          | ed bit sr | iould be |
|               |         |          |         |         |          |         |         | •                 |          |          |                         | 5         | •           |          |           |          |
| 28:           | 23      | DS       | DIVORI  | DE      | R/W      |         | 0x0F    | 6-bit s<br>runnin |          | ivider   | field to ov             | erride w  | hen Deep    | -Sleep   | occurs v  | vith PLL |
|               |         |          |         |         |          |         |         | Turinin           | y.       |          |                         |           |             |          |           |          |
| 22:           | 7       | r        | eserved | l       | RO       |         | 0       |                   |          |          | t rely on th            |           |             |          |           |          |
|               |         |          |         |         |          |         |         | •                 | •        |          | iture produ<br>read-mod |           |             |          | ed bit sr | iould be |
|               |         |          |         |         |          |         |         | •                 |          |          |                         |           | •           |          |           |          |
| 6:4           | 4       | DS       | OSCSF   | SC      | R/W      |         | 0       | When              | set, for | ces IC   | OSC to be               | clock so  | urce durir  | ng Deep  | o Sleep   | mode.    |
|               |         |          |         |         |          |         |         | Name              | e v      | alue     | Descripti               | on        |             |          |           |          |
|               |         |          |         |         |          |         |         | NOOI              | RIDE 0   |          | No overrio              | le to the | oscillator  | clock s  | source is | done     |
|               |         |          |         |         |          |         |         | IOSC              | 1        |          | Use interr              | al 12 M   | Hz oscilla  | tor as s | ource     |          |
|               |         |          |         |         |          |         |         | 30kH              | z 3      |          | Use 30 kH               | Iz intern | al oscillat | or       |           |          |
|               |         |          |         |         |          |         |         | 32kH              | z 7      |          | Use 32 kH               | Iz exterr | nal oscilla | tor      |           |          |
|               |         |          |         |         |          |         |         |                   |          |          |                         |           |             |          |           |          |
| 3:0           | C       | r        | eserved | l       | RO       |         | 0       |                   |          |          | t rely on th            |           |             |          | •         |          |
|               |         |          |         |         |          |         |         |                   |          |          | iture produ<br>read-mod |           |             |          | ed bit sh | nould be |
|               |         |          |         |         |          |         |         | piesei            | veu aci  | 035 d    | neau-mou                | my-write  | operation   | ı.       |           |          |

## Register 12: Device Identification 1 (DID1), offset 0x004

This register identifies the device family, part number, temperature range, pin count, and package type.

| be RO         | 004     | 0       |         |         |         |         |         |         |           |                          |            |          |          |                                     |          |         |
|---------------|---------|---------|---------|---------|---------|---------|---------|---------|-----------|--------------------------|------------|----------|----------|-------------------------------------|----------|---------|
| I             | 31      | 30      | 29      | 28      | 27      | 26      | 25      | 24      | 23        | 22                       | 21         | 20       | 19<br>I  | 18                                  | 17       | 16      |
|               |         | VE      | ĒR      |         | -       | l       | FAM     | -       |           | -                        | -          | PAR      | TNO      |                                     |          | -       |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>1 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0   | RO<br>1                  | RO<br>1    | RO<br>1  | RO<br>0  | RO<br>0                             | RO<br>1  | RO<br>1 |
| _             | 15      | 14      | 13      | 12      | 11      | 10      | 9       | 8       | 7         | 6                        | 5          | 4        | 3        | 2                                   | 1        | 0       |
|               |         | PINCOUN | L<br>L  |         |         | reserve | d L     | 1       |           | TEMP                     | 1          | Pł       | l<br>(G  | ROHS                                | QL       | JAL     |
| Type<br>Reset | RO<br>0 | RO<br>1 | RO<br>0   | RO<br>0                  | RO<br>1    | RO<br>0  | RO<br>1  | RO<br>1                             | RO<br>-  | RO<br>- |
| Bit/F         | ield    |         | Name    |         | Туре    |         | Reset   | Descri  | ption     |                          |            |          |          |                                     |          |         |
| 31:           | 28      |         | VER     |         | RO      |         | 0x1     | is num  | neric. Th |                          | of the v   |          |          | ion. The <sup>s</sup><br>led as fol |          |         |
|               |         |         |         |         |         |         |         | Value   | Desc      | ription                  |            |          |          |                                     |          |         |
|               |         |         |         |         |         |         |         | 0x1     |           | evision o<br>nnnn de     |            | D1 regis | ter form | at, indica                          | ting a S | tellari |
| 27:           | 24      |         | FAM     |         | RO      |         | 0x0     | Family  | ,         |                          |            |          |          |                                     |          |         |
|               |         |         |         |         |         |         |         | Lumin   | ary Mic   |                          | ct portfo  | lio. The |          | he device<br>encoded                |          |         |
|               |         |         |         |         |         |         |         | Value   | Desc      | ription                  |            |          |          |                                     |          |         |
|               |         |         |         |         |         |         |         | 0x0     |           | ris family<br>nal part n |            |          |          | is, all de <sup>.</sup><br>I3S.     | vices wi | th      |
| 23:           | 16      | F       | PARTNO  | 1       | RO      |         | 0x73    | Part N  | umber     |                          |            |          |          |                                     |          |         |
|               |         |         |         |         |         |         |         |         |           |                          |            |          |          | ce within<br>gs are res             |          |         |
|               |         |         |         |         |         |         |         | Value   | Desc      | ription                  |            |          |          |                                     |          |         |
|               |         |         |         |         |         |         |         |         | LM3S      |                          |            |          |          |                                     |          |         |
| 15:           | 13      | PI      | NCOUN   | т       | RO      |         | 0x2     | Packa   | ge Pin    | Count                    |            |          |          |                                     |          |         |
|               |         |         |         |         |         |         |         |         | •         |                          |            | •        |          | evice pacl<br>reserved              | -        | ne valu |
|               |         |         |         |         |         |         |         | Value   | Desc      | ription                  |            |          |          |                                     |          |         |
|               |         |         |         |         |         |         |         | 0x2     | 100-n     | in packa                 | <b>a</b> 0 |          |          |                                     |          |         |

| Bit/Field | Name     | Туре | Reset | Description                                                                                                                                                                                   |
|-----------|----------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12:8      | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |
| 7:5       | TEMP     | RO   | 0x1   | Temperature Range                                                                                                                                                                             |
|           |          |      |       | This field specifies the temperature rating of the device. The value is encoded as follows (all other encodings are reserved):                                                                |
|           |          |      |       | Value Description                                                                                                                                                                             |
|           |          |      |       | 0x1 Industrial temperature range (-40C to 85C)                                                                                                                                                |
| 4:3       | PKG      | RO   | 0x1   | Package Type                                                                                                                                                                                  |
|           |          |      |       | This field specifies the package type. The value is encoded as follows (all other encodings are reserved):                                                                                    |
|           |          |      |       | Value Description                                                                                                                                                                             |
|           |          |      |       | 0x1 LQFP package                                                                                                                                                                              |
| 2         | ROHS     | RO   | 1     | RoHS-Compliance                                                                                                                                                                               |
|           |          |      |       | This bit specifies whether the device is RoHS-compliant. A 1 indicates the part is RoHS-compliant.                                                                                            |
| 1:0       | QUAL     | RO   | -     | Qualification Status                                                                                                                                                                          |
|           |          |      |       | This field specifies the qualification status of the device. The value is encoded as follows (all other encodings are reserved):                                                              |
|           |          |      |       | Value Description                                                                                                                                                                             |
|           |          |      |       | 0x0 Engineering Sample (unqualified)                                                                                                                                                          |
|           |          |      |       | 0x1 Pilot Production (unqualified)                                                                                                                                                            |
|           |          |      |       | 0x2 Fully Qualified                                                                                                                                                                           |

0x2 Fully Qualified

# Register 13: Device Capabilities 0 (DC0), offset 0x008

This register is predefined by the part and can be used to verify features.

| Device<br>Base 0x4<br>Offset 0x0<br>Type RO | 00F.E00 |         | 0 (DC0) |         |         |         |         |         |           |            |           |            |         |         |         |         |  |
|---------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|-----------|------------|-----------|------------|---------|---------|---------|---------|--|
|                                             | 31      | 30      | 29      | 28      | 27      | 26      | 25      | 24      | 23        | 22         | 21        | 20         | 19      | 18      | 17      | 16      |  |
|                                             |         | 1       |         |         |         |         | 1       | SRA     | MSZ       |            |           |            |         | 1       | 1       |         |  |
| Type<br>Reset                               | RO<br>0 | RO<br>1   | RO<br>1    | RO<br>1   | RO<br>1    | RO<br>1 | RO<br>1 | RO<br>1 | RO<br>1 |  |
| Reset                                       |         |         |         |         |         |         |         |         |           |            |           |            |         |         |         |         |  |
|                                             | 15      | 14      | 13      | 12      | 11      | 10      | 9       | 8       | 7         | 6          | 5         | 4          | 3       | 2       | 1       | 0       |  |
|                                             |         |         |         |         |         |         | •       | FLAS    | SHSZ      |            | •         |            |         | •       |         |         |  |
| Type<br>Reset                               | RO<br>0   | RO<br>1    | RO        | RO<br>1    | RO<br>1 | RO<br>1 | RO<br>1 | RO<br>1 |  |
| Resei                                       | 0       | 0       | U       | 0       | U       | 0       | U       | U       | 0         | I          | 1         | I          | I       | 1       | I       | I       |  |
| Bit/F                                       | ield    |         | Name    |         | Туре    | F       | Reset   | Descr   | iption    |            |           |            |         |         |         |         |  |
| 31:                                         | 16      |         | SRAMSZ  | -       | RO      | 0       | x00FF   | SRAM    | 1 Size    |            |           |            |         |         |         |         |  |
|                                             |         |         |         |         |         |         |         | Indica  | tes the s | size of th | ne on-ch  | ip SRAN    | /I memo | ry.     |         |         |  |
|                                             |         |         |         |         |         |         |         | Value   | e Desc    | cription   |           |            |         |         |         |         |  |
|                                             |         |         |         |         |         |         |         | 0x00I   | FF 64 K   | B of SR    | AM        |            |         |         |         |         |  |
|                                             |         |         |         |         |         |         |         |         |           |            |           |            |         |         |         |         |  |
| 15                                          | :0      | F       | FLASHSZ | Z       | RO      | 0       | x007F   | Flash   | Size      |            |           |            |         |         |         |         |  |
|                                             |         |         |         |         |         |         |         | Indica  | tes the s | size of th | ne on-chi | ip flash i | memory  |         |         |         |  |
|                                             |         |         |         |         |         |         |         | Value   | e Desc    | ription    |           |            |         |         |         |         |  |
|                                             |         |         |         |         |         |         |         |         | 7F 256 I  | -          | ash       |            |         |         |         |         |  |
|                                             |         |         |         |         |         |         |         | 0,001   | 2001      |            |           |            |         |         |         |         |  |

## Register 14: Device Capabilities 1 (DC1), offset 0x010

This register is predefined by the part and can be used to verify features. The PWM, SARADCO, MAXADCSPD, WDT, SWO, SWD, and JTAG bits mask the **RCGCO**, **SCGCO**, and **DCGCO** registers. Other bits are passed as 0. MAXADCSPD is clipped to the maximum value specified in **DC1**.

| Base 0x4<br>Offset 0x<br>Type RO    |                            | )                                                                         |          |         |         |          |         |                                                                                                                                                                                   |             |                                   |            |            |          |                               |           |            |  |  |  |
|-------------------------------------|----------------------------|---------------------------------------------------------------------------|----------|---------|---------|----------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------|------------|------------|----------|-------------------------------|-----------|------------|--|--|--|
|                                     | 31                         | 30                                                                        | 29       | 28      | 27      | 26       | 25      | 24                                                                                                                                                                                | 23          | 22                                | 21         | 20         | 19       | 18                            | 17        | 16         |  |  |  |
|                                     |                            |                                                                           | •        |         |         | reserved |         | •                                                                                                                                                                                 |             |                                   |            | PWM        |          | reserved                      |           | SARADC0    |  |  |  |
| Type<br>Reset                       | RO<br>0                    | RO<br>0                                                                   | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0                                                                                                                                                                           | RO<br>0     | RO<br>0                           | RO<br>0    | RO<br>1    | RO<br>0  | RO<br>0                       | RO<br>0   | RO<br>1    |  |  |  |
|                                     | 15                         | 14                                                                        | 13       | 12      | 11      | 10       | 9       | 8                                                                                                                                                                                 | 7           | 6                                 | 5          | 4          | 3        | 2                             | 1         | 0          |  |  |  |
|                                     |                            | SYS                                                                       | SDIV     |         | I       | MAXAI    | DCSPD   | 1                                                                                                                                                                                 | MPU         | HIB                               | TEMPSNS    | PLL        | WDT      | SWO                           | SWD       | JTAG       |  |  |  |
| Type<br>Reset                       | RO<br>0                    | RO<br>0                                                                   | RO<br>1  | RO<br>1 | RO<br>0 | RO<br>0  | RO<br>1 | RO<br>1                                                                                                                                                                           | RO<br>1     | RO<br>1                           | RO<br>1    | RO<br>1    | RO<br>1  | RO<br>1                       | RO<br>1   | RO<br>1    |  |  |  |
| Bit/F                               | ield                       |                                                                           | Name     |         | Туре    | F        | Reset   | Descr                                                                                                                                                                             | iption      |                                   |            |            |          |                               |           |            |  |  |  |
| 31:                                 | 21                         | I                                                                         | reserved |         | RO      |          | 0       | compa                                                                                                                                                                             | atibility v | vith futu                         |            | cts, the v | alue of  | erved bit.<br>a reserve<br>n. |           |            |  |  |  |
| 20 PWM RO 1 When set, indicates the |                            |                                                                           |          |         |         |          |         |                                                                                                                                                                                   |             | s that the PWM module is present. |            |            |          |                               |           |            |  |  |  |
| 19:                                 | 17                         | reserved RO 0 Software should r<br>compatibility with<br>preserved across |          |         |         |          |         | vith futu                                                                                                                                                                         | re produc   | cts, the v                        | alue of    | a reserve  |          |                               |           |            |  |  |  |
| 16                                  | 6                          | S                                                                         | ARADC    | 0       | RO      |          | 1       | When                                                                                                                                                                              | set, ind    | icates th                         | nat gener  | al SAR     | ADC 0 i  | s presen                      | t.        |            |  |  |  |
| 15:                                 | 16 SARADC0<br>15:12 SYSDIV |                                                                           |          |         | RO      |          | 0x3     | Minimum 4-bit divider value for system clock. The reset value is hardware-dependent. See the <b>RCC</b> register for how to change the system clock divisor using the SYSDIV bit. |             |                                   |            |            |          |                               |           |            |  |  |  |
|                                     |                            |                                                                           |          |         |         |          |         | Value                                                                                                                                                                             | Descr       | iption                            |            |            |          |                               |           |            |  |  |  |
|                                     |                            |                                                                           |          |         |         |          |         | 0x3                                                                                                                                                                               | Specif      | ies a 50                          | -MHz CF    | PU clock   | with a   | PLL divic                     | ler of 4. |            |  |  |  |
| 11                                  | :8                         | MA                                                                        | XADCS    | PD      | RO      |          | 0x3     | This fi                                                                                                                                                                           | eld indic   | ates the                          | e maximı   | um rate a  | at which | the ADC                       | C sampl   | es data.   |  |  |  |
|                                     |                            |                                                                           |          |         |         |          |         | Value                                                                                                                                                                             | Descr       | iption                            |            |            |          |                               |           |            |  |  |  |
|                                     |                            |                                                                           |          |         |         |          |         | 0x3                                                                                                                                                                               | 1M sa       |                                   |            |            |          |                               |           |            |  |  |  |
| 7                                   |                            |                                                                           | MPU      |         | RO      |          | 1       | When set, indicates that the Cortex-M3 Memory Protection<br>module is present. See the ARM Cortex-M3 Technical Refer<br>for details on the MPU.                                   |             |                                   |            |            |          |                               |           |            |  |  |  |
| 6                                   | i                          |                                                                           | HIB      |         | RO      |          | 1       | When                                                                                                                                                                              | set, ind    | icates th                         | nat the H  | ibernatio  | on modu  | le is pre                     | sent.     |            |  |  |  |
| 5                                   | i                          | Т                                                                         | EMPSN    | S       | RO      |          | 1       | When                                                                                                                                                                              | set, ind    | icates th                         | nat the or | n-chip te  | mperati  | ure sense                     | or is pre | esent.     |  |  |  |
| 4                                   |                            |                                                                           | PLL      |         | RO      |          | 1       | When set, indicates that the on-chip Phase Locked L present.                                                                                                                      |             |                                   |            |            |          | cked Loo                      | op (PLL   | p (PLL) is |  |  |  |

#### Device Capabilities 1 (DC1) Base 0x400F.E000

| Bit/Field | Name | Туре | Reset | Description                                                                  |
|-----------|------|------|-------|------------------------------------------------------------------------------|
| 3         | WDT  | RO   | 1     | When set, indicates that a watchdog timer is present.                        |
| 2         | SWO  | RO   | 1     | When set, indicates that the Serial Wire Output (SWO) trace port is present. |
| 1         | SWD  | RO   | 1     | When set, indicates that the Serial Wire Debugger (SWD) is present.          |
| 0         | JTAG | RO   | 1     | When set, indicates that the JTAG debugger interface is present.             |

# Register 15: Device Capabilities 2 (DC2), offset 0x014

This register is predefined by the part and can be used to verify features.

|               | Capabil<br>00F.E000<br>014                                                                                                                                                                                                                                                                                                                       | lities 2 | (DC2)    |         |         |         |         |                                                                                                                                                                                               |             |                                        |          |                     |            |           |           |         |  |  |  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|---------|---------|---------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------|----------|---------------------|------------|-----------|-----------|---------|--|--|--|
|               | 31                                                                                                                                                                                                                                                                                                                                               | 30       | 29       | 28      | 27      | 26      | 25      | 24                                                                                                                                                                                            | 23          | 22                                     | 21       | 20                  | 19         | 18        | 17        | 16      |  |  |  |
|               |                                                                                                                                                                                                                                                                                                                                                  |          | reser    | ved     |         |         | COMP1   | COMP0                                                                                                                                                                                         |             | reser                                  | ved      |                     | TIMER3     | TIMER2    | TIMER1    | TIMER0  |  |  |  |
| Type<br>Reset | RO<br>0                                                                                                                                                                                                                                                                                                                                          | RO<br>0  | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>1 | RO<br>1                                                                                                                                                                                       | RO<br>0     | RO<br>0                                | RO<br>0  | RO<br>0             | RO<br>1    | RO<br>1   | RO<br>1   | RO<br>1 |  |  |  |
|               | 15                                                                                                                                                                                                                                                                                                                                               | 14       | 13       | 12      | 11      | 10      | 9       | 8                                                                                                                                                                                             | 7           | 6                                      | 5        | 4                   | 3          | 2         | 1         | 0       |  |  |  |
|               | reserved                                                                                                                                                                                                                                                                                                                                         | I2C1     | reserved | I2C0    | reser   | ved     | QEI1    | QEI0                                                                                                                                                                                          |             | reserved                               |          | SSI0                | reserved   | UART2     | UART1     | UART0   |  |  |  |
| Type<br>Reset | RO<br>0                                                                                                                                                                                                                                                                                                                                          | RO<br>1  | RO<br>0  | RO<br>1 | RO<br>0 | RO<br>0 | RO<br>1 | RO<br>1                                                                                                                                                                                       | RO<br>0     | RO<br>0                                | RO<br>0  | RO<br>1             | RO<br>0    | RO<br>1   | RO<br>1   | RO<br>1 |  |  |  |
| Bit/F         | ield                                                                                                                                                                                                                                                                                                                                             |          | Name     |         | Туре    | F       | Reset   | Descri                                                                                                                                                                                        | ption       |                                        |          |                     |            |           |           |         |  |  |  |
| 31:           | 31:26       reserved       RO       0       Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.         25       COMP1       RO       1       When set, indicates that analog comparator 1 is present. |          |          |         |         |         |         |                                                                                                                                                                                               |             |                                        |          |                     |            |           |           |         |  |  |  |
| 25            | 25 COMP1 RO 1 When set, indicates that analog comparator 1 is present.                                                                                                                                                                                                                                                                           |          |          |         |         |         |         |                                                                                                                                                                                               |             |                                        |          |                     |            |           |           |         |  |  |  |
| 24            | 4                                                                                                                                                                                                                                                                                                                                                |          | COMP0    |         | RO      |         | 1       | When set, indicates that analog comparator 0 is present.                                                                                                                                      |             |                                        |          |                     |            |           |           |         |  |  |  |
| 23:           | 20                                                                                                                                                                                                                                                                                                                                               | I        | reserved |         | RO      |         | 0       | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |             |                                        |          |                     |            |           |           |         |  |  |  |
| 19            | Э                                                                                                                                                                                                                                                                                                                                                |          | TIMER3   |         | RO      |         | 1       | When                                                                                                                                                                                          | set, ind    | licates that                           | at Gene  | ral-Purp            | oose Tim   | er modu   | le 3 is p | resent. |  |  |  |
| 18            | 3                                                                                                                                                                                                                                                                                                                                                |          | TIMER2   |         | RO      |         | 1       | When                                                                                                                                                                                          | set, inc    | licates that                           | at Gene  | ral-Purp            | oose Tim   | er modu   | le 2 is p | resent. |  |  |  |
| 17            | 7                                                                                                                                                                                                                                                                                                                                                |          | TIMER1   |         | RO      |         | 1       | When                                                                                                                                                                                          | set, ind    | licates that                           | at Gene  | ral-Purp            | oose Tim   | er modu   | le 1 is p | resent. |  |  |  |
| 16            | 6                                                                                                                                                                                                                                                                                                                                                |          | TIMER0   |         | RO      |         | 1       | When                                                                                                                                                                                          | set, inc    | licates that                           | at Gene  | ral-Purp            | oose Tim   | er modu   | le 0 is p | resent. |  |  |  |
| 15            | 5                                                                                                                                                                                                                                                                                                                                                | l        | reserved |         | RO      |         | 0       | compa                                                                                                                                                                                         | atibility v | uld not re<br>with future<br>oss a rea | e produc | cts, the            | value of a | a reserve |           |         |  |  |  |
| 14            | 4                                                                                                                                                                                                                                                                                                                                                |          | I2C1     |         | RO      |         | 1       | When                                                                                                                                                                                          | set, inc    | licates that                           | at I2C m | odule 1             | is prese   | nt.       |           |         |  |  |  |
| 13            | 3                                                                                                                                                                                                                                                                                                                                                | I        | reserved |         | RO      |         | 0       | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |             |                                        |          |                     |            |           |           |         |  |  |  |
| 12            | 2                                                                                                                                                                                                                                                                                                                                                |          | I2C0     |         | RO      |         | 1       | When set, indicates that I2C module 0 is present.                                                                                                                                             |             |                                        |          |                     |            |           |           |         |  |  |  |
| 11:           | 10                                                                                                                                                                                                                                                                                                                                               | I        | reserved |         | RO      |         | 0       | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |             |                                        |          |                     |            |           |           |         |  |  |  |
| 9             |                                                                                                                                                                                                                                                                                                                                                  |          | QEI1     |         | RO      |         | 1       | When                                                                                                                                                                                          | set, ind    | licates that                           | at QEI n | nodule <sup>-</sup> | 1 is prese | ent.      |           |         |  |  |  |
| 8             |                                                                                                                                                                                                                                                                                                                                                  |          | QEI0     |         | RO      |         | 1       | When                                                                                                                                                                                          | set, ind    | licates that                           | at QEI n | nodule (            | ) is prese | ent.      |           |         |  |  |  |

| Bit/Field | Name     | Туре | Reset | Description                                                                                                                                                                                   |
|-----------|----------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:5       | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |
| 4         | SSI0     | RO   | 1     | When set, indicates that SSI module 0 is present.                                                                                                                                             |
| 3         | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |
| 2         | UART2    | RO   | 1     | When set, indicates that UART module 2 is present.                                                                                                                                            |
| 1         | UART1    | RO   | 1     | When set, indicates that UART module 1 is present.                                                                                                                                            |
| 0         | UART0    | RO   | 1     | When set, indicates that UART module 0 is present.                                                                                                                                            |

# Register 16: Device Capabilities 3 (DC3), offset 0x018

This register is predefined by the part and can be used to verify features.

|               | 00F.E000<br>018 | lites 3 | (DC3)    |         |         |         |         |                                                                                                                                                                                               |                                      |            |            |                       |            |           |             |          |  |  |  |
|---------------|-----------------|---------|----------|---------|---------|---------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------|------------|-----------------------|------------|-----------|-------------|----------|--|--|--|
| Jporto        | 31              | 30      | 29       | 28      | 27      | 26      | 25      | 24                                                                                                                                                                                            | 23                                   | 22         | 21         | 20                    | 19         | 18        | 17          | 16       |  |  |  |
|               |                 | rese    | erved    |         | CCP3    | CCP2    | CCP1    | CCP0                                                                                                                                                                                          |                                      | rese       | rved       |                       | ADC3       | ADC2      | ADC1        | ADC0     |  |  |  |
| Type<br>Reset | RO<br>0         | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>1 | RO<br>1 | RO<br>1 | RO<br>1                                                                                                                                                                                       | RO<br>0                              | RO<br>0    | RO<br>0    | RO<br>0               | RO<br>1    | RO<br>1   | RO<br>1     | RO<br>1  |  |  |  |
|               | 15              | 14      | 13       | 12      | 11      | 10      | 9       | 8                                                                                                                                                                                             | 7                                    | 6          | 5          | 4                     | 3          | 2         | 1           | 0        |  |  |  |
|               | PWMFAULT        |         | reserv   |         | 1       |         | C1MINUS | C00                                                                                                                                                                                           |                                      | COMINUS    | PWM5       | PWM4                  | PWM3       | PWM2      | PWM1        | PWM0     |  |  |  |
| Type<br>Reset | RO<br>1         | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>1 | RO<br>1 | RO<br>1                                                                                                                                                                                       | RO<br>1                              | RO<br>1    | RO<br>1    | RO<br>1               | RO<br>1    | RO<br>1   | RO<br>1     | RO<br>1  |  |  |  |
| Bit/F         | ield            |         | Name     |         | Туре    | F       | Reset   | Descr                                                                                                                                                                                         | ription                              |            |            |                       |            |           |             |          |  |  |  |
| 31::          | 28              | r       | reserved |         | RO      |         | 0       | comp                                                                                                                                                                                          | are shou<br>atibility w<br>rved acro | vith futur | e produo   | cts, the v            | alue of    | a reserv  |             |          |  |  |  |
| 27            | 7               |         | CCP3     |         | RO      |         | 1       | When                                                                                                                                                                                          | i set, indi                          | icates th  | at Captu   | ure/Com               | pare/PV    | /M pin 3  | is prese    | ent.     |  |  |  |
| 26            | 3               |         | CCP2     |         | RO      |         | 1       | When set, indicates that Capture/Compare/PWM pin 2 is present.                                                                                                                                |                                      |            |            |                       |            |           |             |          |  |  |  |
| 25            | 5               |         | CCP1     |         | RO      |         | 1       | When set, indicates that Capture/Compare/PWM pin 1 is present.                                                                                                                                |                                      |            |            |                       |            |           |             |          |  |  |  |
| 24            | 4               |         | CCP0     |         | RO      |         | 1       | When set, indicates that Capture/Compare/PWM pin 0 is present.                                                                                                                                |                                      |            |            |                       |            |           |             |          |  |  |  |
| 23::          | 20              | r       | reserved |         | RO      |         | 0       | comp                                                                                                                                                                                          | are shou<br>atibility w<br>rved acro | vith futur | e produo   | cts, the v            | alue of    | a reserv  |             |          |  |  |  |
| 19            | 9               |         | ADC3     |         | RO      |         | 1       | When                                                                                                                                                                                          | ı set, indi                          | icates th  | at ADC     | pin 3 is <sub>l</sub> | present.   |           |             |          |  |  |  |
| 18            | 8               |         | ADC2     |         | RO      |         | 1       | When                                                                                                                                                                                          | ı set, indi                          | icates th  | at ADC     | pin 2 is j            | present.   |           |             |          |  |  |  |
| 17            | 7               |         | ADC1     |         | RO      |         | 1       | When                                                                                                                                                                                          | i set, indi                          | icates th  | at ADC     | pin 1 is <sub>l</sub> | present.   |           |             |          |  |  |  |
| 16            | 6               |         | ADC0     |         | RO      |         | 1       | When                                                                                                                                                                                          | i set, indi                          | icates th  | at ADC     | pin 0 is <sub>l</sub> | present.   |           |             |          |  |  |  |
| 18            | 5               | P١      | WMFAUL   | Г       | RO      |         | 1       | When                                                                                                                                                                                          | ı set, indi                          | icates th  | at the P   | WM Fau                | ılt pin is | present.  |             |          |  |  |  |
| 14:           | 11              | r       | reserved |         | RO      |         | 0       | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |                                      |            |            |                       |            |           |             |          |  |  |  |
| 1(            | 0               | (       | C1PLUS   |         | RO      |         | 1       | When set, indicates that the analog comparator 1 (+) input pin is present.                                                                                                                    |                                      |            |            |                       |            |           |             |          |  |  |  |
| 9             | 9 C             |         | 1MINUS   |         | RO      |         | 1       | When                                                                                                                                                                                          | set, indi                            | cates tha  | at the an  | alog con              | nparator   | 1 (-) inp | ut pin is p | present. |  |  |  |
| 8             |                 |         | C0O      |         | RO      |         | 1       | When                                                                                                                                                                                          | ı set, indi                          | cates th   | at the ar  | alog co               | mparato    | r 0 outpı | ıt pin is p | present. |  |  |  |
| 7             |                 | (       | COPLUS   |         | RO      |         | 1       | When                                                                                                                                                                                          | set, indi                            | cates tha  | at the ana | alog corr             | nparator   | 0 (+) inp | ut pin is j | oresent. |  |  |  |
| 6             | i               | C       | OMINUS   |         | RO      |         | 1       | When                                                                                                                                                                                          | set, indi                            | cates tha  | at the an  | alog con              | nparator   | 0 (-) inp | ut pin is p | present. |  |  |  |
| 5             | i               |         | PWM5     |         | RO      |         | 1       | When                                                                                                                                                                                          | i set, indi                          | icates th  | at the P   | WM pin                | 5 is pres  | sent.     |             |          |  |  |  |

Device Capabilities 3 (DC3)

| Bit/Field | Name | Туре | Reset | Description                                        |
|-----------|------|------|-------|----------------------------------------------------|
| 4         | PWM4 | RO   | 1     | When set, indicates that the PWM pin 4 is present. |
| 3         | PWM3 | RO   | 1     | When set, indicates that the PWM pin 3 is present. |
| 2         | PWM2 | RO   | 1     | When set, indicates that the PWM pin 2 is present. |
| 1         | PWM1 | RO   | 1     | When set, indicates that the PWM pin 1 is present. |
| 0         | PWM0 | RO   | 1     | When set, indicates that the PWM pin 0 is present. |

# Register 17: Device Capabilities 4 (DC4), offset 0x01C

This register is predefined by the part and can be used to verify features.

| Device<br>Base 0x4<br>Offset 0x<br>Type RO                                                                                                                                                                                                                                        | 00F.E000 |                                                                                         | (DC4)    |       |          |        |       |                                                                                                                                                                                               |             |             |             |             |             |             |                        |         |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------|----------|-------|----------|--------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|------------------------|---------|--|--|
|                                                                                                                                                                                                                                                                                   | 31       | 30                                                                                      | 29       | 28    | 27       | 26     | 25    | 24                                                                                                                                                                                            | 23          | 22          | 21          | 20          | 19          | 18          | 17                     | 16      |  |  |
|                                                                                                                                                                                                                                                                                   | reserved | EPHY0                                                                                   | reserved | EMAC0 |          |        | т т   |                                                                                                                                                                                               |             | rese        | rved        |             |             |             | 1                      | •       |  |  |
| Туре                                                                                                                                                                                                                                                                              | RO       | RO                                                                                      | RO       | RO    | RO       | RO     | RO    | RO                                                                                                                                                                                            | RO          | RO          | RO          | RO          | RO          | RO          | RO                     | RO      |  |  |
| Reset                                                                                                                                                                                                                                                                             | 0        | 1                                                                                       | 0        | 1     | 0        | 0      | 0     | 0                                                                                                                                                                                             | 0           | 0           | 0           | 0           | 0           | 0           | 0                      | 0       |  |  |
|                                                                                                                                                                                                                                                                                   | 15       | 14                                                                                      | 13       | 12    | 11       | 10     | 9     | 8                                                                                                                                                                                             | 7           | 6           | 5           | 4           | 3           | 2           | 1                      | 0       |  |  |
| Turne                                                                                                                                                                                                                                                                             | RO       | RO                                                                                      | RO       | RO    | reserved | RO     | RO    | RO                                                                                                                                                                                            | RO          | GPIOG<br>RO | GPIOF<br>RO | GPIOE<br>RO | GPIOD<br>RO | GPIOC<br>RO | GPIOB<br>RO            | GPIOA   |  |  |
| Type<br>Reset                                                                                                                                                                                                                                                                     | 0        | 0                                                                                       | 0        | 0     | RO<br>0  | 0<br>0 | 0     | 0                                                                                                                                                                                             | 0           | 1           | RU<br>1     | 1           | 1           | RU<br>1     | RU<br>1                | RO<br>1 |  |  |
|                                                                                                                                                                                                                                                                                   |          |                                                                                         |          |       |          |        |       |                                                                                                                                                                                               |             |             |             |             |             |             |                        |         |  |  |
| Bit/F                                                                                                                                                                                                                                                                             | ield     |                                                                                         | Name     |       | Туре     |        | Reset | Descr                                                                                                                                                                                         | iption      |             |             |             |             |             |                        |         |  |  |
| 31reservedRO0Software should not rely on the value of a reserved bit. To provide<br>compatibility with future products, the value of a reserved bit should<br>preserved across a read-modify-write operation.30EPHY0RO1When set, indicates that Ethernet PHY module 0 is present. |          |                                                                                         |          |       |          |        |       |                                                                                                                                                                                               |             |             |             |             |             |             |                        |         |  |  |
| 30                                                                                                                                                                                                                                                                                | D        | EPHY0       RO       1       When set, indicates that Ethernet PHY module 0 is present. |          |       |          |        |       |                                                                                                                                                                                               |             |             |             |             |             |             |                        |         |  |  |
| 29                                                                                                                                                                                                                                                                                | 9        | I                                                                                       | reserved |       | RO       |        | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |             |             |             |             |             |             |                        |         |  |  |
| 28                                                                                                                                                                                                                                                                                | 8        |                                                                                         | EMAC0    |       | RO       |        | 1     | When                                                                                                                                                                                          | set, ind    | icates th   | at Ether    | net MAC     | c module    | e 0 is pre  | esent.                 |         |  |  |
| 27                                                                                                                                                                                                                                                                                | :7       | I                                                                                       | reserved |       | RO       |        | 0     | compa                                                                                                                                                                                         | atibility v |             | e produo    | cts, the v  | alue of     | a reserv    | . To prov<br>ed bit sh |         |  |  |
| 6                                                                                                                                                                                                                                                                                 | i        |                                                                                         | GPIOG    |       | RO       |        | 1     | When                                                                                                                                                                                          | set, ind    | icates th   | at GPIO     | Port G      | is prese    | nt.         |                        |         |  |  |
| 5                                                                                                                                                                                                                                                                                 | ;        |                                                                                         | GPIOF    |       | RO       |        | 1     | When                                                                                                                                                                                          | set, ind    | icates th   | at GPIO     | Port F i    | s preser    | nt.         |                        |         |  |  |
| 4                                                                                                                                                                                                                                                                                 | ļ        |                                                                                         | GPIOE    |       | RO       |        | 1     | When set, indicates that GPIO Port E is present.                                                                                                                                              |             |             |             |             |             |             |                        |         |  |  |
| 3                                                                                                                                                                                                                                                                                 | 5        |                                                                                         | GPIOD    |       | RO       |        | 1     | When set, indicates that GPIO Port D is present.                                                                                                                                              |             |             |             |             |             |             |                        |         |  |  |
| 2                                                                                                                                                                                                                                                                                 | 2        |                                                                                         | GPIOC    |       | RO       |        | 1     | When                                                                                                                                                                                          | set, ind    | icates th   | at GPIO     | Port C      | is presei   | nt.         |                        |         |  |  |
| 1                                                                                                                                                                                                                                                                                 |          |                                                                                         | GPIOB    |       | RO       |        | 1     | 1 When set, indicates that GPIO Port B is present.                                                                                                                                            |             |             |             |             |             |             |                        |         |  |  |
| 0                                                                                                                                                                                                                                                                                 | )        |                                                                                         | GPIOA    |       | RO       |        | 1     | When                                                                                                                                                                                          | set, ind    | icates th   | at GPIO     | Port A i    | s preser    | nt.         |                        |         |  |  |

### Register 18: Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x100

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC0** is the clock configuration register for running operation, **SCGC0** for Sleep operation, and **DCGC0** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

| Offset 0x4<br>Offset 0x2<br>Type R/W | 100     |                                           | 40                                                                                                                   |         |          |          |                                                                                                                                                                                                     |                                                                                                                                                                                                                                       |          |            |          |           |           |          |          |          |
|--------------------------------------|---------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------|----------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|----------|-----------|-----------|----------|----------|----------|
|                                      | 31      | 30                                        | 29                                                                                                                   | 28      | 27       | 26       | 25                                                                                                                                                                                                  | 24                                                                                                                                                                                                                                    | 23       | 22         | 21       | 20        | 19        | 18       | 17       | 16       |
|                                      |         | 1                                         | 1                                                                                                                    | 1       | · ·      | reserved | 1                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                     | · ·      |            |          | PWM       |           | reserved |          | SARADC0  |
| Type<br>Reset                        | RO<br>0 | RO<br>0                                   | RO<br>0                                                                                                              | RO<br>0 | RO<br>0  | RO<br>0  | RO<br>0                                                                                                                                                                                             | RO<br>0                                                                                                                                                                                                                               | RO<br>0  | RO<br>0    | RO<br>0  | R/W<br>0  | RO<br>0   | RO<br>0  | RO<br>0  | R/W<br>0 |
|                                      | 15      | 14                                        | 13                                                                                                                   | 12      | 11       | 10       | 9                                                                                                                                                                                                   | 8                                                                                                                                                                                                                                     | 7        | 6          | 5        | 4         | 3         | 2        | 1        | 0        |
|                                      |         | rese                                      | erved                                                                                                                | 1       |          | MAXA     | DCSPD                                                                                                                                                                                               | 1                                                                                                                                                                                                                                     | reserved | HIB        | rese     | rved      | WDT       |          | reserved |          |
| Type<br>Reset                        | RO<br>0 | RO<br>0                                   | RO<br>0                                                                                                              | RO<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0                                                                                                                                                                                            | R/W<br>0                                                                                                                                                                                                                              | RO<br>0  | R/W<br>0   | RO<br>0  | RO<br>0   | R/W<br>0  | RO<br>0  | RO<br>0  | RO<br>0  |
| Bit/Fi                               | ield    |                                           | Name                                                                                                                 |         | Туре     | F        | Reset                                                                                                                                                                                               | Descr                                                                                                                                                                                                                                 | ription  |            |          |           |           |          |          |          |
| 31:2                                 | 21      | reserved RO 0 Softwork<br>com<br>pres     |                                                                                                                      |         |          | comp     | Software should not rely on the value of a reserved bit. To provide<br>compatibility with future products, the value of a reserved bit should be<br>preserved across a read-modify-write operation. |                                                                                                                                                                                                                                       |          |            |          |           |           |          |          |          |
| 20                                   | D       | presi<br>PWM R/W 0 This<br>recei<br>disat |                                                                                                                      |         |          |          | receiv<br>disab                                                                                                                                                                                     | bit control<br>ves a cloc<br>led. If the<br>fault.                                                                                                                                                                                    | k and f  | unctions   | . Otherw | ise, the  | unit is u | nclocke  | d and    |          |
| 19: <sup>-</sup>                     | 17      | ı                                         | a bus fault.<br>reserved RO 0 Software should not rely o<br>compatibility with future p<br>preserved across a read-r |         |          |          |                                                                                                                                                                                                     |                                                                                                                                                                                                                                       | e produo | cts, the v | alue of  | a reserve | •         |          |          |          |
| 16                                   | 6       | S                                         | ARADC                                                                                                                | 0       | R/W      |          | 0                                                                                                                                                                                                   | This bit controls the clock gating for SAR ADC module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, a read or write to the unit generates a bus fault. |          |            |          |           |           |          |          |          |
| 15:'                                 | 12      | ı                                         | reserved                                                                                                             | I       | RO       |          | 0 Software should not rely on the value of a reserved bit. To provi<br>compatibility with future products, the value of a reserved bit sho<br>preserved across a read-modify-write operation.       |                                                                                                                                                                                                                                       |          |            |          |           |           |          |          |          |

Run Mode Clock Gating Control Register 0 (RCGC0)

| Bit/Field | Name      | Туре      | Reset | Description                                                                                                                                                                                                                                                                 |
|-----------|-----------|-----------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11:8      | MAXADCSPD | R/W       | 0     | This field sets the rate at which the ADC samples data. You cannot set the rate higher than the maximum rate. You can set the sample rate by setting the MAXADCSPD bit as follows:                                                                                          |
|           |           |           |       | Value Description                                                                                                                                                                                                                                                           |
|           |           |           |       | 0x3 1M samples/second                                                                                                                                                                                                                                                       |
|           |           |           |       | 0x2 500K samples/second                                                                                                                                                                                                                                                     |
|           |           |           |       | 0x1 250K samples/second                                                                                                                                                                                                                                                     |
|           |           |           |       | 0x0 125K samples/second                                                                                                                                                                                                                                                     |
| 7         | reserved  | RO<br>R/W | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.<br>This bit controls the clock gating for the Hibernation module. If set, the |
| Ū         | 1115      |           | Ũ     | unit receives a clock and functions. Otherwise, the unit is unclocked and disabled.                                                                                                                                                                                         |
| 5:4       | reserved  | RO        | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                                               |
| 3         | WDT       | R/W       | 0     | This bit controls the clock gating for the WDT module. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, a read or write to the unit generates a bus fault.                                         |
| 2:0       | reserved  | RO        | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                                               |

Base 0x400F.E000 Offset 0x110

# Register 19: Sleep Mode Clock Gating Control Register 0 (SCGC0), offset 0x110

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC0** is the clock configuration register for running operation, **SCGC0** for Sleep operation, and **DCGC0** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes. bit was changed to

| Offset 0x<br>Type R/W                                |         | 0x0(                                                                   | 000004                                                         | 0             |           |                           |                                                                                                                                                                                                                                               |                                                                                                                                                                                |           |                                      |            |         |            |          |           |          |         |
|------------------------------------------------------|---------|------------------------------------------------------------------------|----------------------------------------------------------------|---------------|-----------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------|------------|---------|------------|----------|-----------|----------|---------|
|                                                      | 31      |                                                                        | 30                                                             | 29            | 28        | 27                        | 26                                                                                                                                                                                                                                            | 25                                                                                                                                                                             | 24        | 23                                   | 22         | 21      | 20         | 19       | 18        | 17       | 16      |
|                                                      |         |                                                                        | 1                                                              |               |           | <b> </b>                  | reserved                                                                                                                                                                                                                                      | 1                                                                                                                                                                              | T         | , ,<br>,                             |            | 1       | PWM        |          | reserved  |          | SARADC0 |
| Туре                                                 | RO      |                                                                        | RO                                                             | RO            | RO        | RO                        | RO                                                                                                                                                                                                                                            | RO                                                                                                                                                                             | RO<br>0   | RO                                   | RO         | RO      | R/W        | RO       | RO        | RO<br>0  | R/W     |
| Reset                                                | 0       |                                                                        | 0                                                              | 0             | 0         | 0                         | 0                                                                                                                                                                                                                                             | 0                                                                                                                                                                              | 0         | 0                                    | 0          | 0       | 0          | 0        | 0         | 0        | 0       |
|                                                      | 15      |                                                                        | 14                                                             | 13            | 12        | 11                        | 10                                                                                                                                                                                                                                            | 9                                                                                                                                                                              | 8         | 7                                    | 6          | 5       | 4          | 3        | 2         | 1        | 0       |
|                                                      |         |                                                                        | rese                                                           |               |           | •                         |                                                                                                                                                                                                                                               | DCSPD                                                                                                                                                                          | •         | reserved                             | HIB        |         | rved       | WDT      |           | reserved |         |
| Type<br>Reset                                        | RO<br>0 |                                                                        | RO<br>0                                                        | RO<br>0       | RO<br>0   | R/W<br>0                  | R/W<br>0                                                                                                                                                                                                                                      | R/W<br>0                                                                                                                                                                       | R/W<br>0  | RO<br>0                              | R/W<br>0   | RO<br>0 | RO<br>0    | R/W<br>0 | RO<br>0   | RO<br>0  | RO<br>0 |
| Reset                                                | 0       |                                                                        | 0                                                              | 0             | 0         | 0                         | 0                                                                                                                                                                                                                                             | 0                                                                                                                                                                              | 0         | 0                                    | 0          | 0       | 0          | 0        | 0         | 0        | 0       |
| Bit/F                                                | ield    |                                                                        |                                                                | Name          |           | Туре                      | F                                                                                                                                                                                                                                             | Reset                                                                                                                                                                          | Desci     | ription                              |            |         |            |          |           |          |         |
| 31:21 reserved RO 0 Software<br>compatib<br>preserve |         |                                                                        |                                                                | atibility w   | ith futur | e produ                   | cts, the v                                                                                                                                                                                                                                    | alue of                                                                                                                                                                        | a reserve |                                      |            |         |            |          |           |          |         |
| 20                                                   | 0       | PWM R/W 0 This bit con<br>receives a d<br>disabled. If<br>a bus fault. |                                                                |               |           | /es a cloo<br>led. If the | ck and f                                                                                                                                                                                                                                      | unctions                                                                                                                                                                       | . Otherw  | ise, the                             | unit is u  | nclocke | d and      |          |           |          |         |
| 19:                                                  | 17      |                                                                        | a bus fault.<br>reserved RO 0 Software shou<br>compatibility w |               |           |                           |                                                                                                                                                                                                                                               | e should not rely on the value of a reserved bit. To provide<br>pility with future products, the value of a reserved bit should be<br>ad across a read-modify-write operation. |           |                                      |            |         |            |          |           |          |         |
| 16                                                   | 6       |                                                                        | Si                                                             | SARADC0 R/W 0 |           | 0                         | This bit controls the clock gating for general SAR ADC module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, a read or write to the unit generates a bus fault. |                                                                                                                                                                                |           |                                      |            |         |            |          |           |          |         |
| 15:                                                  | 12      |                                                                        | r                                                              | eserved       |           | RO                        |                                                                                                                                                                                                                                               | 0                                                                                                                                                                              | comp      | are shou<br>atibility w<br>rved acro | rith futur | e produ | cts, the v | alue of  | a reserve | •        |         |

Sleep Mode Clock Gating Control Register 0 (SCGC0)

| Bit/Field | Name      | Туре | Reset | Description                                                                                                                                                                                                                         |
|-----------|-----------|------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11:8      | MAXADCSPD | R/W  | 0     | This field sets the rate at which the ADC samples data. You cannot set the rate higher than the maximum rate.You can set the sample rate by setting the MAXADCSPD bit as follows:                                                   |
|           |           |      |       | Value Description                                                                                                                                                                                                                   |
|           |           |      |       | 0x3 1M samples/second                                                                                                                                                                                                               |
|           |           |      |       | 0x2 500K samples/second                                                                                                                                                                                                             |
|           |           |      |       | 0x1 250K samples/second                                                                                                                                                                                                             |
|           |           |      |       | 0x0 125K samples/second                                                                                                                                                                                                             |
| 7         | reserved  | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                       |
| 6         | HIB       | R/W  | 0     | This bit controls the clock gating for the Hibernation module. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled.                                                                      |
| 5:4       | reserved  | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                       |
| 3         | WDT       | R/W  | 0     | This bit controls the clock gating for the WDT module. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, a read or write to the unit generates a bus fault. |
| 2:0       | reserved  | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                       |

#### Register 20: Deep Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x120

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. RCGC0 is the clock configuration register for running operation, SCGC0 for Sleep operation, and DCGC0 for Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register specifies that the system uses sleep modes. bit was changed to

| Base 0x4<br>Offset 0x2<br>Type R/W | 120     |         | 10       |         |              |           |          |          |                         |           |           |            |          |                                        |           |          |
|------------------------------------|---------|---------|----------|---------|--------------|-----------|----------|----------|-------------------------|-----------|-----------|------------|----------|----------------------------------------|-----------|----------|
|                                    | 31      | 30      | 29       | 28      | 27           | 26        | 25       | 24       | 23                      | 22        | 21        | 20         | 19       | 18                                     | 17        | 16       |
|                                    |         | 1       | 1        | 1       | г <u>г</u> г | reserved  | 1        |          | ı ı                     |           | 1         | PWM        |          | reserved                               |           | SARADC0  |
| Type<br>Reset                      | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0      | RO<br>0   | RO<br>0  | RO<br>0  | RO<br>0                 | RO<br>0   | RO<br>0   | R/W<br>0   | RO<br>0  | RO<br>0                                | RO<br>0   | R/W<br>0 |
|                                    | 15      | 14      | 13       | 12      | - 11         | 10        | 9        | 8        | 7                       | 6         | 5         | 4          | 3        | 2                                      | 1         | 0        |
| [                                  |         | 1       | rved     | 1       | · ا          | MAXADCSPD |          |          | reserved                | HIB       |           |            | WDT      | 1                                      | reserved  | '        |
| Type<br>Reset                      | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | R/W<br>0     | R/W<br>0  | R/W<br>0 | R/W<br>0 | RO<br>0                 | R/W<br>0  | RO<br>0   | RO<br>0    | R/W<br>0 | RO<br>0                                | RO<br>0   | RO<br>0  |
| Bit/F                              | ield    |         | Name     |         | Туре         | F         | Reset    | Descr    | iption                  |           |           |            |          |                                        |           |          |
| 31:2                               | 21      | r       | reserved | I       | RO           |           | 0        | compa    |                         | ith futur | e produ   | cts, the v | alue of  | erved bit.<br>a reserve<br>n.          | •         |          |
| 20                                 | )       |         | PWM      |         | R/W          |           | 0        | receiv   | es a cloo<br>ed. If the | ck and f  | unctions  | . Otherw   | ise, the | module.<br>unit is un<br>te to the     | nclocke   | d and    |
| 19:'                               | 17      | r       | reserved | I       | RO           |           | 0        | compa    |                         | ith futur | e produ   | cts, the v | alue of  | erved bit.<br>a reserve<br>n.          |           |          |
| 16                                 | 6       | S       | ARADC    | 0       | R/W          |           | 0        | the ur   | it receive<br>sabled. I | es a cloo | ck and fu | nctions.   | Otherw   | AR ADC r<br>ise, the u<br>vrite to the | nit is ur | nclocked |
| 15:'                               | 12      | r       | reserved | l       | RO           |           | 0        | compa    |                         | ith futur | e produ   | cts, the v | alue of  | erved bit.<br>a reserve<br>n.          |           |          |

Deep Sleep Mode Clock Gating Control Register 0 (DCGC0)

| Bit/Field | Name      | Туре | Reset | Description                                                                                                                                                                                                                         |
|-----------|-----------|------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11:8      | MAXADCSPD | R/W  | 0     | This field sets the rate at which the ADC samples data. You cannot set the rate higher than the maximum rate. You can set the sample rate by setting the MAXADCSPD bit as follows:                                                  |
|           |           |      |       | Value Description                                                                                                                                                                                                                   |
|           |           |      |       | 0x3 1M samples/second                                                                                                                                                                                                               |
|           |           |      |       | 0x2 500K samples/second                                                                                                                                                                                                             |
|           |           |      |       | 0x1 250K samples/second                                                                                                                                                                                                             |
|           |           |      |       | 0x0 125K samples/second                                                                                                                                                                                                             |
| 7         | reserved  | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                       |
| 6         | HIB       | R/W  | 0     | This bit controls the clock gating for the Hibernation module. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled.                                                                      |
| 5:4       | reserved  | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                       |
| 3         | WDT       | R/W  | 0     | This bit controls the clock gating for the WDT module. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, a read or write to the unit generates a bus fault. |
| 2:0       | reserved  | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                       |

## Register 21: Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x104

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC1** is the clock configuration register for running operation, **SCGC1** for Sleep operation, and **DCGC1** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

| offset 0x<br>ype R/W | 104<br>V, reset 0x( | 000000   | 00       |          |         |         |          |                   |                       |                                                      |                      |            |           |           |          |          |
|----------------------|---------------------|----------|----------|----------|---------|---------|----------|-------------------|-----------------------|------------------------------------------------------|----------------------|------------|-----------|-----------|----------|----------|
|                      | 31                  | 30       | 29       | 28       | 27      | 26      | 25       | 24                | 23                    | 22                                                   | 21                   | 20         | 19        | 18        | 17       | 16       |
|                      |                     |          | rese     | rved     |         |         | COMP1    | COMP0             |                       | reser                                                | ved                  |            | TIMER3    | TIMER2    | TIMER1   | TIMER0   |
| Type<br>Reset        | RO<br>0             | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0 | RO<br>0 | R/W<br>0 | R/W<br>0          | RO<br>0               | RO<br>0                                              | RO<br>0              | RO<br>0    | R/W<br>0  | R/W<br>0  | R/W<br>0 | R/W<br>0 |
|                      | 15                  | 14       | 13       | 12       | 11      | 10      | 9        | 8                 | 7                     | 6                                                    | 5                    | 4          | 3         | 2         | 1        | 0        |
|                      | reserved            | I2C1     | reserved | I2C0     | reser   | ved     | QEI1     | QEI0              |                       | reserved                                             |                      | SSI0       | reserved  | UART2     | UART1    | UART0    |
| Type<br>Reset        | RO<br>0             | R/W<br>0 | RO<br>0  | R/W<br>0 | RO<br>0 | RO<br>0 | R/W<br>0 | R/W<br>0          | RO<br>0               | RO<br>0                                              | RO<br>0              | R/W<br>0   | RO<br>0   | R/W<br>0  | R/W<br>0 | R/W<br>0 |
| Bit/F                | ield                |          | Name     |          | Туре    |         | Reset    | Descr             | iption                |                                                      |                      |            |           |           |          |          |
| 31:                  | 26                  |          | reserved |          | RO      |         | 0        | compa             | atibility             | uld not re<br>with future<br>ross a rea              | e produ              | cts, the v | alue of   | a reserv  | •        |          |
| 2!                   | 5                   |          | COMP1    |          | R/W     |         | 0        | receiv            | es a clo<br>ed. If th | ols the clo<br>ock and fu<br>e unit is u             | inctions             | Otherw     | ise, the  | unit is u | nclocke  | d and    |
| 24                   | 4                   |          | COMP0    |          | R/W     |         | 0        | receiv            | es a clo<br>ed. If th | ols the clo<br>ock and fu<br>e unit is u             | inctions             | Otherw     | ise, the  | unit is u | nclocke  | d and    |
| 23:                  | 20                  |          | reserved |          | RO      |         | 0        | compa             | atibility             | uld not re<br>with future<br>ross a rea              | e produ              | cts, the v | alue of   | a reserv  |          |          |
| 19                   | 9                   |          | TIMER3   |          | R/W     |         | 0        | lf set,<br>uncloo | the uniticked an      | ols the clo<br>t receives<br>d disable<br>rate a bus | a clock<br>d. If the | and fun    | ctions. C | Dtherwis  | e, the u | nit is   |
| 18                   | 8                   |          | TIMER2   |          | R/W     |         | 0        | lf set,<br>uncloo | the unit              | ols the clo<br>t receives<br>d disable<br>rate a bus | a clock<br>d. If the | and fun    | ctions. C | Otherwis  | e, the u | nit is   |

Run Mode Clock Gating Control Register 1 (RCGC1)

| Bit/Field | Name     | Туре | Reset | Description                                                                                                                                                                                                                                                      |
|-----------|----------|------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 17        | TIMER1   | R/W  | 0     | This bit controls the clock gating for General-Purpose Timer module 1.<br>If set, the unit receives a clock and functions. Otherwise, the unit is<br>unclocked and disabled. If the unit is unclocked, reads or writes to the<br>unit will generate a bus fault. |
| 16        | TIMER0   | R/W  | 0     | This bit controls the clock gating for General-Purpose Timer module 0.<br>If set, the unit receives a clock and functions. Otherwise, the unit is<br>unclocked and disabled. If the unit is unclocked, reads or writes to the<br>unit will generate a bus fault. |
| 15        | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                                    |
| 14        | I2C1     | R/W  | 0     | This bit controls the clock gating for I2C module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.                            |
| 13        | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                                    |
| 12        | I2C0     | R/W  | 0     | This bit controls the clock gating for I2C module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.                            |
| 11:10     | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                                    |
| 9         | QEI1     | R/W  | 0     | This bit controls the clock gating for QEI module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.                            |
| 8         | QE10     | R/W  | 0     | This bit controls the clock gating for QEI module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.                            |
| 7:5       | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                                    |
| 4         | SSI0     | R/W  | 0     | This bit controls the clock gating for SSI module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.                            |
| 3         | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                                    |
| 2         | UART2    | R/W  | 0     | This bit controls the clock gating for UART module 2. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.                           |

| Bit/Field | Name  | Туре | Reset | Description                                                                                                                                                                                                                            |
|-----------|-------|------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1         | UART1 | R/W  | 0     | This bit controls the clock gating for UART module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault. |
| 0         | UART0 | R/W  | 0     | This bit controls the clock gating for UART module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault. |

# Register 22: Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x114

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC1** is the clock configuration register for running operation, **SCGC1** for Sleep operation, and **DCGC1** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

| Offset 0x<br>Type R/W | 114<br>/, reset 0x( | 0000000  | 0        |          |         |         |          |                   |                       |                                                       |                      |            |            |           |           |          |
|-----------------------|---------------------|----------|----------|----------|---------|---------|----------|-------------------|-----------------------|-------------------------------------------------------|----------------------|------------|------------|-----------|-----------|----------|
|                       | 31                  | 30       | 29       | 28       | 27      | 26      | 25       | 24                | 23                    | 22                                                    | 21                   | 20         | 19         | 18        | 17        | 16       |
|                       |                     |          | reser    | ved      |         |         | COMP1    | COMP0             |                       | reser                                                 | ved                  | •          | TIMER3     | TIMER2    | TIMER1    | TIMER0   |
| Туре                  | RO                  | RO       | RO       | RO       | RO      | RO      | R/W      | R/W               | RO                    | RO                                                    | RO                   | RO         | R/W        | R/W       | R/W       | R/W      |
| Reset                 | 0                   | 0        | 0        | 0        | 0       | 0       | 0        | 0                 | 0                     | 0                                                     | 0                    | 0          | 0          | 0         | 0         | 0        |
|                       | 15                  | 14       | 13       | 12       | 11      | 10      | 9        | 8                 | 7                     | 6                                                     | 5                    | 4          | 3          | 2         | 1         | 0        |
|                       | reserved            | I2C1     | reserved | I2C0     | reser   |         | QEI1     | QEI0              |                       | reserved                                              |                      | SSI0       | reserved   | UART2     | UART1     | UART0    |
| Type<br>Reset         | RO<br>0             | R/W<br>0 | RO<br>0  | R/W<br>0 | RO<br>0 | RO<br>0 | R/W<br>0 | R/W<br>0          | RO<br>0               | RO<br>0                                               | RO<br>0              | R/W<br>0   | RO<br>0    | R/W<br>0  | R/W<br>0  | R/W<br>0 |
| Report                | Ū                   | Ū        | Ŭ        | Ū        | 0       | 0       | Ŭ        | 0                 | Ũ                     | 0                                                     | Ū                    | Ũ          | Ŭ          | 0         | 0         | 0        |
| Bit/F                 | ield                |          | Name     |          | Туре    | F       | Reset    | Descri            | ption                 |                                                       |                      |            |            |           |           |          |
| 31:                   | 26                  | r        | reserved |          | RO      |         | 0        | compa             | atibility             | uld not rel<br>with future<br>ross a rea              | produ                | cts, the v | value of a | a reserv  |           |          |
| 25                    | 5                   | (        | COMP1    |          | R/W     |         | 0        | receiv            | es a clo<br>ed. If th | ols the cloo<br>ock and fu<br>e unit is ur            | nctions              | . Otherw   | vise, the  | unit is u | nclocked  | d and    |
| 24                    | 1                   |          | COMP0    |          | R/W     |         | 0        | receiv            | es a clo<br>ed. If th | ols the clo<br>ock and fu<br>e unit is ur             | nctions              | . Otherw   | vise, the  | unit is u | nclocked  | d and    |
| 23:                   | 20                  | r        | reserved |          | RO      |         | 0        | compa             | atibility             | uld not rel<br>with future<br>ross a rea              | produ                | cts, the v | value of a | a reserv  |           |          |
| 19                    | 9                   | -        | TIMER3   |          | R/W     |         | 0        | lf set,<br>uncloc | the unit<br>ked an    | ols the clo<br>t receives<br>d disableo<br>rate a bus | a clock<br>d. If the | and fur    | nctions. C | Otherwis  | e, the ur | nit is   |
| 18                    | 3                   | -        | TIMER2   |          | R/W     |         | 0        | If set,<br>uncloc | the unit<br>ked an    | ols the clo<br>t receives<br>d disableo<br>rate a bus | a clock<br>d. If the | and fur    | nctions. C | Otherwis  | e, the ur | nit is   |

Sleep Mode Clock Gating Control Register 1 (SCGC1)

Base 0x400F.E000 Offset 0x114

| Bit/Field | Name     | Туре | Reset | Description                                                                                                                                                                                                                                                      |
|-----------|----------|------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 17        | TIMER1   | R/W  | 0     | This bit controls the clock gating for General-Purpose Timer module 1.<br>If set, the unit receives a clock and functions. Otherwise, the unit is<br>unclocked and disabled. If the unit is unclocked, reads or writes to the<br>unit will generate a bus fault. |
| 16        | TIMER0   | R/W  | 0     | This bit controls the clock gating for General-Purpose Timer module 0.<br>If set, the unit receives a clock and functions. Otherwise, the unit is<br>unclocked and disabled. If the unit is unclocked, reads or writes to the<br>unit will generate a bus fault. |
| 15        | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                                    |
| 14        | I2C1     | R/W  | 0     | This bit controls the clock gating for I2C module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.                            |
| 13        | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                                    |
| 12        | I2C0     | R/W  | 0     | This bit controls the clock gating for I2C module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.                            |
| 11:10     | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                                    |
| 9         | QEI1     | R/W  | 0     | This bit controls the clock gating for QEI module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.                            |
| 8         | QE10     | R/W  | 0     | This bit controls the clock gating for QEI module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.                            |
| 7:5       | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                                    |
| 4         | SSI0     | R/W  | 0     | This bit controls the clock gating for SSI module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.                            |
| 3         | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                                    |
| 2         | UART2    | R/W  | 0     | This bit controls the clock gating for UART module 2. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.                           |

| Bit/Field | Name  | Туре | Reset | Description                                                                                                                                                                                                                            |
|-----------|-------|------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1         | UART1 | R/W  | 0     | This bit controls the clock gating for UART module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault. |
| 0         | UART0 | R/W  | 0     | This bit controls the clock gating for UART module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault. |

# Register 23: Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC1** is the clock configuration register for running operation, **SCGC1** for Sleep operation, and **DCGC1** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

| Offset 0x     | 124<br>124 V, reset 0x | 000000   | 00       |          |         |         |          |                   |                       |                                                      |                      |          |            |           |          |          |
|---------------|------------------------|----------|----------|----------|---------|---------|----------|-------------------|-----------------------|------------------------------------------------------|----------------------|----------|------------|-----------|----------|----------|
|               | 31                     | 30       | 29       | 28       | 27      | 26      | 25       | 24                | 23                    | 22                                                   | 21                   | 20       | 19         | 18        | 17       | 16       |
|               |                        |          | rese     | rved     |         |         | COMP1    | COMP0             |                       | rese                                                 | rved                 | 1        | TIMER3     | TIMER2    | TIMER1   | TIMER0   |
| Type<br>Reset | RO<br>0                | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0 | RO<br>0 | R/W<br>0 | R/W<br>0          | RO<br>0               | RO<br>0                                              | RO<br>0              | RO<br>0  | R/W<br>0   | R/W<br>0  | R/W<br>0 | R/W<br>0 |
|               | 15                     | 14       | 13       | 12       | 11      | 10      | 9        | 8                 | 7                     | 6                                                    | 5                    | 4        | 3          | 2         | 1        | 0        |
|               | reserved               | I2C1     | reserved | 12C0     | reser   | ved     | QEI1     | QEI0              |                       | reserved                                             |                      | SSI0     | reserved   | UART2     | UART1    | UART0    |
| Type<br>Reset | RO<br>0                | R/W<br>0 | RO<br>0  | R/W<br>0 | RO<br>0 | RO<br>0 | R/W<br>0 | R/W<br>0          | RO<br>0               | RO<br>0                                              | RO<br>0              | R/W<br>0 | RO<br>0    | R/W<br>0  | R/W<br>0 | R/W<br>0 |
| Bit/F         | ield                   |          | Name     |          | Туре    |         | Reset    | Descr             | iption                |                                                      |                      |          |            |           |          |          |
| 31:           | 26                     |          | reserved |          | RO      |         | 0        | compa             | atibility             | uld not re<br>with futur<br>ross a rea               | e produ              | cts, the | value of   | a reserv  | •        |          |
| 2             | 5                      |          | COMP1    |          | R/W     |         | 0        | receiv            | es a clo<br>ed. If th | ols the clo<br>ock and fu<br>e unit is u             | unctions             | . Otherw | vise, the  | unit is u | nclocke  | d and    |
| 24            | 4                      |          | COMP0    |          | R/W     |         | 0        | receiv            | es a clo<br>ed. If th | ols the clo<br>ock and fu<br>e unit is u             | unctions             | . Otherw | vise, the  | unit is u | nclocke  | d and    |
| 23:           | 20                     |          | reserved |          | RO      |         | 0        | compa             | atibility             | uld not re<br>with futur<br>ross a rea               | e produ              | cts, the | value of   | a reserv  | •        |          |
| 1             | 9                      |          | TIMER3   |          | R/W     |         | 0        | lf set,<br>uncloo | the uni               | ols the clo<br>t receives<br>d disable<br>rate a bus | a clock<br>d. If the | and fur  | octions. C | Otherwis  | e, the u | nit is   |
| 1             | 8                      |          | TIMER2   |          | R/W     |         | 0        | lf set,<br>uncloc | the uni<br>cked an    | ols the clo<br>t receives<br>d disable<br>rate a bus | a clock<br>d. If the | and fur  | octions. C | Otherwis  | e, the u | nit is   |

Deep Sleep Mode Clock Gating Control Register 1 (DCGC1)

| Bit/Field | Name     | Туре | Reset | Description                                                                                                                                                                                                                                                      |
|-----------|----------|------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 17        | TIMER1   | R/W  | 0     | This bit controls the clock gating for General-Purpose Timer module 1.<br>If set, the unit receives a clock and functions. Otherwise, the unit is<br>unclocked and disabled. If the unit is unclocked, reads or writes to the<br>unit will generate a bus fault. |
| 16        | TIMER0   | R/W  | 0     | This bit controls the clock gating for General-Purpose Timer module 0.<br>If set, the unit receives a clock and functions. Otherwise, the unit is<br>unclocked and disabled. If the unit is unclocked, reads or writes to the<br>unit will generate a bus fault. |
| 15        | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                                    |
| 14        | I2C1     | R/W  | 0     | This bit controls the clock gating for I2C module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.                            |
| 13        | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                                    |
| 12        | I2C0     | R/W  | 0     | This bit controls the clock gating for I2C module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.                            |
| 11:10     | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                                    |
| 9         | QEI1     | R/W  | 0     | This bit controls the clock gating for QEI module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.                            |
| 8         | QEI0     | R/W  | 0     | This bit controls the clock gating for QEI module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.                            |
| 7:5       | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                                    |
| 4         | SSI0     | R/W  | 0     | This bit controls the clock gating for SSI module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.                            |
| 3         | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                                    |
| 2         | UART2    | R/W  | 0     | This bit controls the clock gating for UART module 2. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.                           |

| Bit/Field | Name  | Туре | Reset | Description                                                                                                                                                                                                                            |
|-----------|-------|------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1         | UART1 | R/W  | 0     | This bit controls the clock gating for UART module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault. |
| 0         | UART0 | R/W  | 0     | This bit controls the clock gating for UART module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault. |

#### Register 24: Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC2** is the clock configuration register for running operation, **SCGC2** for Sleep operation, and **DCGC2** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

| Base 0x400F.E000<br>Offset 0x108<br>Type R/W, reset 0x00000000 |          |          |                      |          |          |         |         |                 |                                                                                                                                                                                                                                              |          |          |          |          |          |          |          |  |
|----------------------------------------------------------------|----------|----------|----------------------|----------|----------|---------|---------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|--|
|                                                                | 31       | 30       | 29                   | 28       | 27       | 26      | 25      | 24              | 23                                                                                                                                                                                                                                           | 22       | 21       | 20       | 19       | 18       | 17       | 16       |  |
|                                                                | reserved |          | EPHY0 reserved EMAC0 |          |          |         | 1       | 1               | reserved                                                                                                                                                                                                                                     |          |          |          |          |          |          |          |  |
| Туре                                                           | RO<br>0  | R/W<br>0 | RO<br>0              | R/W<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0         | RO<br>0                                                                                                                                                                                                                                      | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0  |  |
| Reset                                                          |          |          |                      |          |          |         |         |                 |                                                                                                                                                                                                                                              |          |          |          |          |          |          |          |  |
| I                                                              | 15       | 14       | 13                   | 12       | 11       | 10      | 9       | 8               | 7                                                                                                                                                                                                                                            | 6        | 5        | 4        | 3        | 2        | 1        | 0        |  |
|                                                                |          |          |                      |          | reserved |         |         |                 | 1                                                                                                                                                                                                                                            | GPIOG    | GPIOF    | GPIOE    | GPIOD    | GPIOC    | GPIOB    | GPIOA    |  |
| Type<br>Reset                                                  | RO<br>0  | RO<br>0  | RO<br>0              | RO<br>0  | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0         | RO<br>0                                                                                                                                                                                                                                      | R/W<br>0 |  |
| Bit/Field                                                      |          | Name     |                      |          | Туре     |         | Reset   | Desc            | Description                                                                                                                                                                                                                                  |          |          |          |          |          |          |          |  |
| 31                                                             |          | reserved |                      |          | RO       |         | 0       | comp            | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                |          |          |          |          |          |          |          |  |
| 30                                                             |          | EPHY0    |                      |          | R/W      |         | 0       | receiv<br>disab | This bit controls the clock gating for Ethernet PHY unit 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault. |          |          |          |          |          |          |          |  |
| 29                                                             |          | reserved |                      |          | RO       |         | 0       | comp            | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                |          |          |          |          |          |          |          |  |
| 28                                                             |          | EMAC0    |                      |          | R/W      |         | 0       | receiv<br>disab | This bit controls the clock gating for Ethernet MAC unit 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault. |          |          |          |          |          |          | d and    |  |
| 27:7                                                           |          | reserved |                      |          | RO       |         | 0       | comp            | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                |          |          |          |          |          |          |          |  |
| 6                                                              |          | GPIOG    |                      |          | R/W      |         | 0       | clock           | This bit controls the clock gating for Port G. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.              |          |          |          |          |          |          |          |  |
| 5                                                              |          | GPIOF    |                      |          | R/W      |         | 0       | clock           | This bit controls the clock gating for Port F. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.              |          |          |          |          |          |          |          |  |

Run Mode Clock Gating Control Register 2 (RCGC2)

| Bit/Field | Name  | Туре | Reset | Description                                                                                                                                                                                                                     |
|-----------|-------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4         | GPIOE | R/W  | 0     | This bit controls the clock gating for Port E. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault. |
| 3         | GPIOD | R/W  | 0     | This bit controls the clock gating for Port D. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault. |
| 2         | GPIOC | R/W  | 0     | This bit controls the clock gating for Port C. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault. |
| 1         | GPIOB | R/W  | 0     | This bit controls the clock gating for Port B. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault. |
| 0         | GPIOA | R/W  | 0     | This bit controls the clock gating for Port A. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault. |

# Register 25: Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC2** is the clock configuration register for running operation, **SCGC2** for Sleep operation, and **DCGC2** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

| Type R/V                                                                                                                                                                                                                                |          | <0000000 | 00       |       |          |                                                                                                                                                                                                                                                                                                                                |    |                                                                                                                                                                                                    |                        |                                          |          |            |            |           |          |         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|-------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------|----------|------------|------------|-----------|----------|---------|
|                                                                                                                                                                                                                                         | 31       | 30       | 29       | 28    | 27       | 26                                                                                                                                                                                                                                                                                                                             | 25 | 24                                                                                                                                                                                                 | 23                     | 22                                       | 21       | 20         | 19         | 18        | 17       | 16      |
|                                                                                                                                                                                                                                         | reserved | EPHY0    | reserved | EMAC0 | -        |                                                                                                                                                                                                                                                                                                                                | 1  | · ·                                                                                                                                                                                                |                        |                                          | rved     | ſ          | 1          |           |          |         |
| Туре                                                                                                                                                                                                                                    | RO       | R/W      | RO       | R/W   | RO       | RO                                                                                                                                                                                                                                                                                                                             | RO | RO                                                                                                                                                                                                 | RO                     | RO                                       | RO       | RO         | RO         | RO        | RO       | RO      |
| Reset                                                                                                                                                                                                                                   | 0        | 0        | 0        | 0     | 0        | 0                                                                                                                                                                                                                                                                                                                              | 0  | 0                                                                                                                                                                                                  | 0                      | 0                                        | 0        | 0          | 0          | 0         | 0        | 0       |
|                                                                                                                                                                                                                                         | 15       | 14       | 13       | 12    | 11       | 10                                                                                                                                                                                                                                                                                                                             | 9  | 8                                                                                                                                                                                                  | 7                      | 6                                        | 5        | 4          | 3          | 2         | 1        | 0       |
|                                                                                                                                                                                                                                         |          |          |          |       | reserved |                                                                                                                                                                                                                                                                                                                                |    | · ·                                                                                                                                                                                                |                        | GPIOG                                    | GPIOF    | GPIOE      | GPIOD      | GPIOC     | GPIOB    | GPIOA   |
| Туре                                                                                                                                                                                                                                    | RO       | RO       | RO       | RO    | RO       | RO                                                                                                                                                                                                                                                                                                                             | RO | RO                                                                                                                                                                                                 | RO                     | R/W                                      | R/W      | R/W        | R/W        | R/W       | R/W      | R/W     |
| Reset                                                                                                                                                                                                                                   | 0        | 0        | 0        | 0     | 0        | 0                                                                                                                                                                                                                                                                                                                              | 0  | 0                                                                                                                                                                                                  | 0                      | 0                                        | 0        | 0          | 0          | 0         | 0        | 0       |
| Bit/Field     Name     Type     Reset     Description       31     reserved     RO     0     Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should |          |          |          |       |          |                                                                                                                                                                                                                                                                                                                                |    |                                                                                                                                                                                                    |                        |                                          |          |            |            |           |          |         |
| 3                                                                                                                                                                                                                                       | 1        | I        | reserved |       | RO       |                                                                                                                                                                                                                                                                                                                                | 0  | compa                                                                                                                                                                                              | atibility v            | with futur                               | e produ  | cts, the v | value of   | a reserv  |          |         |
| 30                                                                                                                                                                                                                                      | D        |          | EPHY0    |       | R/W      | <ul> <li>preserved across a read-modify-write operation.</li> <li>7W 0 This bit controls the clock gating for Ethernet PHY unit 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.</li> </ul> |    |                                                                                                                                                                                                    |                        |                                          |          |            |            |           |          | d and   |
| 29                                                                                                                                                                                                                                      | 9        | I        | reserved |       | RO       |                                                                                                                                                                                                                                                                                                                                | 0  | compa                                                                                                                                                                                              | tibility v             | uld not re<br>with futur<br>oss a re     | e produ  | cts, the v | value of   | a reserv  |          |         |
| 28                                                                                                                                                                                                                                      | 8        |          | EMAC0    |       | R/W      |                                                                                                                                                                                                                                                                                                                                | 0  | receive                                                                                                                                                                                            | es a clo<br>ed. If the | ols the clo<br>ock and fi<br>e unit is u | unctions | . Otherv   | vise, the  | unit is u | nclocke  | d and   |
| 27                                                                                                                                                                                                                                      | :7       | I        | reserved |       | RO       |                                                                                                                                                                                                                                                                                                                                | 0  | Software should not rely on the value of a reserved bit. To provide<br>compatibility with future products, the value of a reserved bit should b<br>preserved across a read-modify-write operation. |                        |                                          |          |            |            |           |          |         |
| 6                                                                                                                                                                                                                                       | ;        |          | GPIOG    |       | R/W      |                                                                                                                                                                                                                                                                                                                                | 0  | clock a                                                                                                                                                                                            | and fun                | ols the cl<br>ctions. O<br>locked, r     | therwise | e, the un  | it is uncl | ocked a   | nd disab | led. If |

Sleep Mode Clock Gating Control Register 2 (SCGC2)

Base 0x400F.E000 Offset 0x118

| Bit/Field | Name  | Туре | Reset | Description                                                                                                                                                                                                                           |
|-----------|-------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5         | GPIOF | R/W  | 0     | This bit controls the clock gating for Port F. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.       |
| 4         | GPIOE | R/W  | 0     | This bit controls the clock gating for Port E. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.       |
| 3         | GPIOD | R/W  | 0     | This bit controls the clock gating for Port D. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.       |
| 2         | GPIOC | R/W  | 0     | This bit controls the clock gating for Port C. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.       |
| 1         | GPIOB | R/W  | 0     | This bit controls the clock gating for Port B. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.       |
| 0         | GPIOA | R/W  | 0     | This bit controls the clock gating for Port A. If set, the unit receives a<br>clock and functions. Otherwise, the unit is unclocked and disabled. If<br>the unit is unclocked, reads or writes to the unit will generate a bus fault. |

### Register 26: Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. RCGC2 is the clock configuration register for running operation, SCGC2 for Sleep operation, and DCGC2 for Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register specifies that the system uses sleep modes.

| Offset 0x<br>Type R/V | 128<br>V, reset 0 | <0000000 | 00       |          |                                                                                                                                                                                                                                                                                                                                                                                                             |         |         |                                                                                                                                                                                               |                        |                                          |          |            |            |           |          |          |  |
|-----------------------|-------------------|----------|----------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------|----------|------------|------------|-----------|----------|----------|--|
|                       | 31                | 30       | 29       | 28       | 27                                                                                                                                                                                                                                                                                                                                                                                                          | 26      | 25      | 24                                                                                                                                                                                            | 23                     | 22                                       | 21       | 20         | 19         | 18        | 17       | 16       |  |
|                       | reserved          | EPHY0    | reserved | EMAC0    | · ·                                                                                                                                                                                                                                                                                                                                                                                                         |         | 1       | •                                                                                                                                                                                             | r<br>1                 | rese                                     | rved     |            |            | 1         |          |          |  |
| Type<br>Reset         | RO<br>0           | R/W<br>0 | RO<br>0  | R/W<br>0 | RO<br>0                                                                                                                                                                                                                                                                                                                                                                                                     | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                       | RO<br>0                | RO<br>0                                  | RO<br>0  | RO<br>0    | RO<br>0    | RO<br>0   | RO<br>0  | RO<br>0  |  |
|                       | 15                | 14       | 13       | 12       | 11                                                                                                                                                                                                                                                                                                                                                                                                          | 10      | 9       | 8                                                                                                                                                                                             | 7                      | 6                                        | 5        | 4          | 3          | 2         | 1        | 0        |  |
|                       |                   |          |          | l        | reserved                                                                                                                                                                                                                                                                                                                                                                                                    |         | 1       | •                                                                                                                                                                                             | 1                      | GPIOG                                    | GPIOF    | GPIOE      | GPIOD      | GPIOC     | GPIOB    | GPIOA    |  |
| Type<br>Reset         | RO<br>0           | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0                                                                                                                                                                                                                                                                                                                                                                                                     | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                       | RO<br>0                | R/W<br>0                                 | R/W<br>0 | R/W<br>0   | R/W<br>0   | R/W<br>0  | R/W<br>0 | R/W<br>0 |  |
| Bit/F                 | ield              |          | Name     |          | Туре                                                                                                                                                                                                                                                                                                                                                                                                        |         | Reset   | Descr                                                                                                                                                                                         | iption                 |                                          |          |            |            |           |          |          |  |
| 3                     | 1                 | I        | reserved |          | RO                                                                                                                                                                                                                                                                                                                                                                                                          |         | 0       | compa                                                                                                                                                                                         | atibility v            |                                          | e produ  | cts, the v | alue of    | a reserv  | •        |          |  |
| 3                     | 0                 |          | EPHY0    |          | <ul> <li>compatibility with future products, the value of a reserved bit should b preserved across a read-modify-write operation.</li> <li>R/W</li> <li>This bit controls the clock gating for Ethernet PHY unit 0. If set, the ur receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will genera a bus fault.</li> </ul> |         |         |                                                                                                                                                                                               |                        |                                          |          |            |            |           | d and    |          |  |
| 2                     | 9                 | ļ        | reserved |          | RO                                                                                                                                                                                                                                                                                                                                                                                                          |         | 0       | compa                                                                                                                                                                                         | atibility v            | uld not re<br>with futur<br>ross a rea   | e produ  | cts, the v | alue of    | a reserv  |          |          |  |
| 2                     | 8                 |          | EMAC0    |          | R/W                                                                                                                                                                                                                                                                                                                                                                                                         |         | 0       | receiv                                                                                                                                                                                        | es a clo<br>ed. If the | ols the clo<br>ock and fi<br>e unit is u | unctions | Otherw     | ise, the   | unit is u | nclocke  | d and    |  |
| 27                    | :7                | I        | reserved |          | RO                                                                                                                                                                                                                                                                                                                                                                                                          |         | 0       | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |                        |                                          |          |            |            |           |          |          |  |
| 6                     | 3                 |          | GPIOG    |          | R/W                                                                                                                                                                                                                                                                                                                                                                                                         |         | 0       | clock                                                                                                                                                                                         | and fun                | ols the cl<br>ctions. O<br>locked, r     | therwise | e, the un  | it is uncl | ocked a   | nd disab | led. If  |  |

Deep Sleep Mode Clock Gating Control Register 2 (DCGC2) Base 0x400F.E000

Offset 0x128

| Bit/Field | Name  | Туре | Reset | Description                                                                                                                                                                                                                     |
|-----------|-------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5         | GPIOF | R/W  | 0     | This bit controls the clock gating for Port F. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault. |
| 4         | GPIOE | R/W  | 0     | This bit controls the clock gating for Port E. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault. |
| 3         | GPIOD | R/W  | 0     | This bit controls the clock gating for Port D. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault. |
| 2         | GPIOC | R/W  | 0     | This bit controls the clock gating for Port C. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault. |
| 1         | GPIOB | R/W  | 0     | This bit controls the clock gating for Port B. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault. |
| 0         | GPIOA | R/W  | 0     | This bit controls the clock gating for Port A. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault. |

### Register 27: Software Reset Control 0 (SRCR0), offset 0x040

Writes to this register are masked by the bits in the **Device Capabilities 1 (DC1)** register.

Software Reset Control 0 (SRCR0) Base 0x400F.E000 Offset 0x040 Type R/W, reset 0x00000000

|                                                 | ,       |         |          |         |          |                                   |         |         |          |            |           |             |           |                         |          |          |  |  |
|-------------------------------------------------|---------|---------|----------|---------|----------|-----------------------------------|---------|---------|----------|------------|-----------|-------------|-----------|-------------------------|----------|----------|--|--|
| _                                               | 31      | 30      | 29       | 28      | 27       | 26                                | 25      | 24      | 23       | 22         | 21        | 20          | 19        | 18                      | 17       | 16       |  |  |
|                                                 |         | 1       | 1 1      |         | т т<br>т | reserved                          | 1       | 1       |          |            |           | PWM         |           | reserved                |          | SARADC0  |  |  |
| Туре                                            | RO      | RO      | RO       | RO      | RO       | RO                                | RO      | RO      | RO       | RO         | RO        | R/W         | RO        | RO                      | RO       | R/W      |  |  |
| Reset                                           | 0       | 0       | 0        | 0       | 0        | 0                                 | 0       | 0       | 0        | 0          | 0         | 0           | 0         | 0                       | 0        | 0        |  |  |
|                                                 | 15      | 14      | 13       | 12      | 11       | 10                                | 9       | 8       | 7        | 6          | 5         | 4           | 3         | 2                       | 1        | 0        |  |  |
|                                                 |         |         |          |         | reserved |                                   |         |         |          | HIB        | rese      | erved       | WDT       |                         | reserved |          |  |  |
| Type<br>Reset                                   | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0  | RO<br>0                           | RO<br>0 | RO<br>0 | RO<br>0  | R/W<br>0   | RO<br>0   | RO<br>0     | R/W<br>0  | RO<br>0                 | RO<br>0  | RO<br>0  |  |  |
|                                                 | Ū       | Ū       | Ū        | 0       | Ũ        | Ū                                 | Ū       | °,      | Ū        | 0          | Ū         | Ū           | Ū         | Ū                       | 0        | Ū        |  |  |
| Bit/F                                           | ield    |         | Name     |         | Туре     |                                   | Reset   | Descr   | iption   |            |           |             |           |                         |          |          |  |  |
| 31:                                             | 04      |         | racariad |         | RO       |                                   | 0       | Coffu   | ara ahai | ld not ro  | lu on th  |             | of a raa  | anuad hit               | To nro   | vido     |  |  |
| 31.4                                            | 21      |         | reserved |         | RU       |                                   | 0       |         |          |            |           |             |           | erved bit.<br>a reserve |          |          |  |  |
| preserved across a read-modify-write operation. |         |         |          |         |          |                                   |         |         |          |            |           | on.         |           |                         |          |          |  |  |
| 20                                              | )       |         | PWM      |         | R/W      | W 0 Reset control for PWM module. |         |         |          |            |           |             |           |                         |          |          |  |  |
| -                                               |         |         |          |         |          |                                   | Ũ       | 10000   | Control  |            | modul     | 0.          |           |                         |          |          |  |  |
| 19:                                             | 17      |         | reserved |         | RO       |                                   | 0       |         |          |            |           |             |           | erved bit.              |          |          |  |  |
|                                                 |         |         |          |         |          |                                   |         |         |          |            |           | ify-write   |           | a reserve               | eu dit s |          |  |  |
|                                                 |         |         |          |         |          |                                   |         |         |          |            |           | ,           |           |                         |          |          |  |  |
| 16                                              | 6       | :       | SARADC   | D       | R/W      |                                   | 0       | Reset   | control  | for SAR    | ADC m     | odule 0.    |           |                         |          |          |  |  |
| 15:                                             | :7      |         | reserved |         | RO       |                                   | 0       | Softw   | are shou | ıld not re | ly on th  | e value o   | of a res  | erved bit.              | To pro   | vide     |  |  |
|                                                 |         |         |          |         |          |                                   |         | •       | ,        |            | •         |             |           | a reserve               | ed bit s | hould be |  |  |
|                                                 |         |         |          |         |          |                                   |         | prese   | rved acr | oss a rea  | ad-mod    | fy-write    | operatio  | on.                     |          |          |  |  |
| 6                                               |         |         | HIB      |         | R/W      |                                   | 0       | Reset   | control  | for the H  | libernati | ion modu    | ıle.      |                         |          |          |  |  |
| <b>-</b> .                                      |         |         |          |         |          |                                   | 0       | 0 - 4   |          |            | L 41-     |             |           |                         | <b>T</b> | . data   |  |  |
| 5:4                                             | 4       |         | reserved |         | RO       |                                   | 0       |         |          |            |           |             |           | erved bit.<br>a reserve |          |          |  |  |
|                                                 |         |         |          |         |          |                                   |         |         |          |            |           | fy-write    |           |                         |          |          |  |  |
| 3                                               |         |         | WDT      |         | R/W      |                                   | 0       | Posst   | oontrol  | for Mata   | hdog      | <b>.</b> ;+ |           |                         |          |          |  |  |
| 3                                               |         |         |          |         | K/W      |                                   | 0       | Reset   | CONTROL  | for Watc   | nuog ur   | III.        |           |                         |          |          |  |  |
| 2:0                                             | 0       |         | reserved |         | RO       |                                   | 0       |         |          |            |           |             |           | erved bit.              |          |          |  |  |
|                                                 |         |         |          |         |          |                                   |         |         |          |            |           | cts, the v  |           | a reserve               | ed bit s | hould be |  |  |
|                                                 |         |         |          |         |          |                                   |         | piese   |          | 035 0 180  |           | iy-write (  | operation | <i>л</i> п.             |          |          |  |  |

### Register 28: Software Reset Control 1 (SRCR1), offset 0x044

Writes to this register are masked by the bits in the Device Capabilities 2 (DC2) register.

Software Reset Control 1 (SRCR1) Base 0x400F.E000 Offset 0x044 Type R/W, reset 0x00000000

| ,             | 31       | 30       | 29       | 28       | 27      | 26      | 25       | 24                                                                                                                                                                                                  | 23          | 22                                       | 21       | 20         | 19       | 18       | 17       | 16       |  |  |  |
|---------------|----------|----------|----------|----------|---------|---------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------|----------|------------|----------|----------|----------|----------|--|--|--|
|               | ľ        |          | rese     | rved     | · · ·   |         | COMP1    | COMP0                                                                                                                                                                                               |             | reser                                    | ved      |            | TIMER3   | TIMER2   | TIMER1   | TIMER0   |  |  |  |
| Type<br>Reset | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0 | RO<br>0 | R/W<br>0 | R/W<br>0                                                                                                                                                                                            | RO<br>0     | RO<br>0                                  | RO<br>0  | RO<br>0    | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 |  |  |  |
|               | 15       | 14       | 13       | 12       | 11      | 10      | 9        | 8                                                                                                                                                                                                   | 7           | 6                                        | 5        | 4          | 3        | 2        | 1        | 0        |  |  |  |
|               | reserved | I2C1     | reserved | I2C0     | reser   |         | QEI1     | QEI0                                                                                                                                                                                                |             | reserved                                 |          | SSI0       | reserved | UART2    | UART1    | UART0    |  |  |  |
| Type<br>Reset | RO<br>0  | R/W<br>0 | RO<br>0  | R/W<br>0 | RO<br>0 | RO<br>0 | R/W<br>0 | R/W<br>0                                                                                                                                                                                            | RO<br>0     | RO<br>0                                  | RO<br>0  | R/W<br>0   | RO<br>0  | R/W<br>0 | R/W<br>0 | R/W<br>0 |  |  |  |
| Bit/F         | ield     |          | Name     |          | Туре    | F       | Reset    | Descri                                                                                                                                                                                              | iption      |                                          |          |            |          |          |          |          |  |  |  |
| 31::          | 26       | r        | reserved |          | RO      |         | 0        | compa                                                                                                                                                                                               | atibility v | uld not rel<br>vith future<br>ross a rea | produc   | cts, the v | alue of  | a reserv | •        |          |  |  |  |
| 25            | 5        |          | COMP1    |          | R/W     |         | 0        |                                                                                                                                                                                                     |             |                                          |          |            |          |          |          |          |  |  |  |
| 24            | 1        |          | COMP0    |          | R/W     |         | 0        | ) Software should not rely on the value of a reserved bit. To provide                                                                                                                               |             |                                          |          |            |          |          |          |          |  |  |  |
| 23::          | 20       | r        | reserved |          | RO      |         | 0        | compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                                           |             |                                          |          |            |          |          |          |          |  |  |  |
| 19            | 9        |          | TIMER3   |          | R/W     |         | 0        | Reset                                                                                                                                                                                               | control     | for Gene                                 | ral-Purp | ose Tirr   | ner modu | ıle 3.   |          |          |  |  |  |
| 18            | 3        |          | TIMER2   |          | R/W     |         | 0        | Reset                                                                                                                                                                                               | control     | for Gene                                 | ral-Purp | ose Tirr   | ner modu | ıle 2.   |          |          |  |  |  |
| 17            | 7        |          | TIMER1   |          | R/W     |         | 0        | Reset                                                                                                                                                                                               | control     | for Gene                                 | ral-Purp | ose Tirr   | ner modu | ule 1.   |          |          |  |  |  |
| 16            | 6        |          | TIMER0   |          | R/W     |         | 0        | Reset                                                                                                                                                                                               | control     | for Gene                                 | ral-Purp | ose Tim    | ner modu | ule 0.   |          |          |  |  |  |
| 15            | 5        | r        | reserved |          | RO      |         | 0        | compa                                                                                                                                                                                               | atibility v | uld not rel<br>vith future<br>oss a rea  | produc   | cts, the v | alue of  | a reserv |          |          |  |  |  |
| 14            | 1        |          | I2C1     |          | R/W     |         | 0        | Reset                                                                                                                                                                                               | control     | for I2C u                                | nit 1.   |            |          |          |          |          |  |  |  |
| 13            | 3        | r        | reserved |          | RO      |         | 0        | Software should not rely on the value of a reserved bit. To provide<br>compatibility with future products, the value of a reserved bit should be<br>preserved across a read-modify-write operation. |             |                                          |          |            |          |          |          |          |  |  |  |
| 12            | 2        |          | I2C0     |          | R/W     |         | 0        | Reset                                                                                                                                                                                               | control     | for I2C u                                | nit 0.   |            |          |          |          |          |  |  |  |
| 11:           | 10       | r        | reserved |          | RO      |         | 0        | compa                                                                                                                                                                                               | atibility v | uld not rel<br>vith future<br>oss a rea  | produc   | cts, the v | alue of  | a reserv |          |          |  |  |  |
| 9             |          |          | QEI1     |          | R/W     |         | 0        | Reset                                                                                                                                                                                               | control     | for QEI u                                | nit 1.   |            |          |          |          |          |  |  |  |
| 8             |          |          | QEI0     |          | R/W     |         | 0        | Reset                                                                                                                                                                                               | control     | for QEI u                                | nit 0.   |            |          |          |          |          |  |  |  |

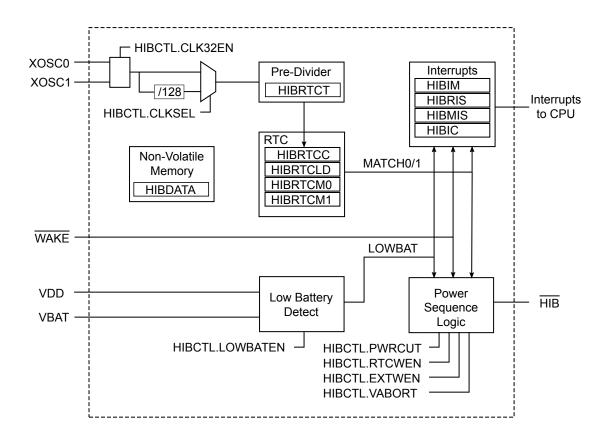
| Bit/Field | Name     | Туре | Reset | Description                                                                                                                                                                                   |
|-----------|----------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:5       | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |
| 4         | SSI0     | R/W  | 0     | Reset control for SSI unit 0.                                                                                                                                                                 |
| 3         | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |
| 2         | UART2    | R/W  | 0     | Reset control for UART unit 2.                                                                                                                                                                |
| 1         | UART1    | R/W  | 0     | Reset control for UART unit 1.                                                                                                                                                                |
| 0         | UART0    | R/W  | 0     | Reset control for UART unit 0.                                                                                                                                                                |

### Register 29: Software Reset Control 2 (SRCR2), offset 0x048

Writes to this register are masked by the bits in the Device Capabilities 4 (DC4) register.

Software Reset Control 2 (SRCR2) Base 0x400F.E000 Offset 0x048 Type R/W, reset 0x00000000

|               | 31       | 30       | 29       | 28       | 27       | 26      | 25      | 24                                                                                                                                                                                            | 23      | 22                       | 21        | 20        | 19       | 18                                                       | 17        | 16       |  |  |  |  |  |  |
|---------------|----------|----------|----------|----------|----------|---------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------|-----------|-----------|----------|----------------------------------------------------------|-----------|----------|--|--|--|--|--|--|
|               | reserved | EPHY0    | reserved | EMAC0    |          |         | 1       | 1                                                                                                                                                                                             |         | rese                     | rved      |           | 1        | 1                                                        |           |          |  |  |  |  |  |  |
| Type<br>Reset | RO<br>0  | R/W<br>0 | RO<br>0  | R/W<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                       | RO<br>0 | RO<br>0                  | RO<br>0   | RO<br>0   | RO<br>0  | RO<br>0                                                  | RO<br>0   | RO<br>0  |  |  |  |  |  |  |
|               | 15       | 14       | 13       | 12       | 11       | 10      | 9       | 8                                                                                                                                                                                             | 7       | 6                        | 5         | 4         | 3        | 2                                                        | 1         | 0        |  |  |  |  |  |  |
|               |          |          | 1 1      |          | reserved |         | 1       | 1                                                                                                                                                                                             | 1       | GPIOG                    | GPIOF     | GPIOE     | GPIOD    | GPIOC                                                    | GPIOB     | GPIOA    |  |  |  |  |  |  |
| Type<br>Reset | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                       | RO<br>0 | R/W<br>0                 | R/W<br>0  | R/W<br>0  | R/W<br>0 | R/W<br>0                                                 | R/W<br>0  | R/W<br>0 |  |  |  |  |  |  |
| Reset         | 0        | 0        | 0        | 0        | 0        | 0       | 0       | 0                                                                                                                                                                                             | 0       | 0                        | 0         | 0         | 0        | 0                                                        | 0         | 0        |  |  |  |  |  |  |
| Bit/F         | ield     |          | Name     |          | Туре     | I       | Reset   | Descr                                                                                                                                                                                         | iption  |                          |           |           |          |                                                          |           |          |  |  |  |  |  |  |
| 3′            | 1        | r        | reserved |          | RO       |         | 0       |                                                                                                                                                                                               |         | uld not re<br>vith futur |           |           |          |                                                          |           |          |  |  |  |  |  |  |
|               |          |          |          |          |          |         |         | <ul> <li>compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.</li> <li>Reset control for Ethernet PHY unit 0.</li> </ul> |         |                          |           |           |          |                                                          |           |          |  |  |  |  |  |  |
| 30            | )        |          | EPHY0    |          | R/W      |         | 0       | Reset                                                                                                                                                                                         | control | for Ethei                | met PH    | Y unit 0. |          |                                                          |           |          |  |  |  |  |  |  |
| 29            | Ð        | r        | reserved |          | RO       |         | 0       |                                                                                                                                                                                               |         |                          |           |           |          | reserved bit. To provide<br>e of a reserved bit should b |           |          |  |  |  |  |  |  |
|               |          |          |          |          |          |         |         |                                                                                                                                                                                               |         | vith futur<br>oss a rea  |           |           |          |                                                          | ed bit sh | ould be  |  |  |  |  |  |  |
| 28            | 3        |          | EMAC0    |          | R/W      |         | 0       | Reset                                                                                                                                                                                         | control | for Ether                | rnet MA   | C unit 0. |          |                                                          |           |          |  |  |  |  |  |  |
| 27            | :7       | r        | reserved |          | RO       |         | 0       |                                                                                                                                                                                               |         | uld not re<br>vith futur |           |           |          |                                                          |           |          |  |  |  |  |  |  |
|               |          |          |          |          |          |         |         |                                                                                                                                                                                               |         | oss a rea                |           |           |          |                                                          |           |          |  |  |  |  |  |  |
| 6             |          |          | GPIOG    |          | R/W      |         | 0       | Reset                                                                                                                                                                                         | control | for GPIC                 | ) Port G  |           |          |                                                          |           |          |  |  |  |  |  |  |
| 5             |          |          | GPIOF    |          | R/W      |         | 0       | Reset                                                                                                                                                                                         | control | for GPIC                 | ) Port F. |           |          |                                                          |           |          |  |  |  |  |  |  |
| 4             |          |          | GPIOE    |          | R/W      |         | 0       | Reset                                                                                                                                                                                         | control | for GPIC                 | ) Port E  |           |          |                                                          |           |          |  |  |  |  |  |  |
| 3             |          |          | GPIOD    |          | R/W      |         | 0       | Reset                                                                                                                                                                                         | control | for GPIC                 | ) Port D  | •         |          |                                                          |           |          |  |  |  |  |  |  |
| 2             |          |          | GPIOC    |          | R/W      |         | 0       | Reset control for GPIO Port C.                                                                                                                                                                |         |                          |           |           |          |                                                          |           |          |  |  |  |  |  |  |
| 1             |          |          | GPIOB    |          | R/W      |         | 0       | Reset                                                                                                                                                                                         | control | for GPIC                 | ) Port B. |           |          |                                                          |           |          |  |  |  |  |  |  |
| 0             |          |          | GPIOA    |          | R/W      |         | 0       | Reset                                                                                                                                                                                         | control | for GPIC                 | ) Port A  |           |          |                                                          |           |          |  |  |  |  |  |  |


## 7 Hibernation Module

The Hibernation Module manages removal and restoration of power to the rest of the microcontroller to provide a means for reducing power consumption. When the processor and peripherals are idle, power can be completely removed with only the Hibernation Module remaining powered. Power can be restored based on an external signal, or at a certain time using the built-in real-time clock (RTC). The Hibernation module can be independently supplied from a battery or an auxillary power supply.

The Hibernation module has the following features:

- Power-switching logic to discrete external regulator
- Dedicated pin for waking from an external signal
- Low-battery detection, signalling, and interrupt generation
- 32-bit real-time counter (RTC)
- Two 32-bit RTC match registers for timed wake-up and interrupt generation
- Clock source from a 32.768-kHz external oscillator or a 4.194304-MHz crystal
- RTC trim predivider for making fine adjustments to the clock rate
- 64 32-bit words of non-volatile memory
- Programmable interrupts for RTC match, external wake, and low battery events

## 7.1 Block Diagram



#### Figure 7-1. Hibernation Module Block Diagram

### 7.2 Functional Description

The Hibernation module controls the power to the processor with an enable signal (HIB) that signals an external voltage regulator to turn off. The Hibernation module itself is powered from a separate supply such as a battery or auxillary supply. It also has a separate clock source to maintain a real-time clock (RTC). Once in hibernation, the module signals an external voltage regulator to turn back on the power when an external pin (WAKE) is asserted, or when the internal RTC reaches a certain value. The Hibernation module can also detect when the battery voltage is low, and optionally prevent hibernation when this occurs.

Power-up from a power cut to code execution is defined as the regulator turn-on time (specifed at 250 µs maximum) plus the normal chip POR (see Figure 23-12 on page 533).

### 7.2.1 Register Access Timing

Because the Hibernation module has an independent clocking domain, certain registers must be written only with a timing gap between accesses. The delay time is  $t_{\text{HIB}\_\text{REG}\_\text{WRITE}}$ , therefore software must guarantee that a delay of  $t_{\text{HIB}\_\text{REG}\_\text{WRITE}}$  is inserted between back-to-back writes to certain Hibernation registers, or between a write followed by a read to those same registers. There is no restriction on timing for back-to-back reads from the Hibernation module. Refer to "Register Descriptions" on page 122 for details about which registers are subject to this timing restriction.

### 7.2.2 Clock Source

The Hibernation module must be clocked by an external source, even if the RTC feature will not be used. An external oscillator or crystal can be used for this purpose. To use a crystal, a 4.194304-MHz crystal is connected to the xosc0 and xosc1 pins. This clock signal will be divided by 128 internally to produce the 32.768-kHz clock reference. To use a more precise clock source, a 32.768-kHz oscillator can be connected to the xosc0 pin.

The clock source is enabled by setting the CLK32EN bit of the **HIBCTL** register. The type of clock source is selected by setting the CLKSEL bit to 0 for a 4.194304-MHz clock source, and to 1 for a 32.768-kHz clock source. If the bit is set to 0, the input clock is divided by 128, resulting in a 32.768-kHz clock source. If a crystal is used for the clock source, the software must leave a delay of  $t_{XOSC\_SETTLE}$  after setting the CLK32EN bit and before any other accesses to the Hibernation module registers. The delay allows the crystal to power up and stabilize. If an oscillator is used for the clock source, no delay is needed.

### 7.2.3 Battery Management

The Hibernation module can be independently powered by a battery or an auxiliary power source. The module can monitor the voltage level of the battery and detect when the voltage becomes too low. When this happens, an interrupt can be generated. The module can also be configured so that it will not go into Hibernate mode if the battery voltage is too low.

Note that the Hibernation module draws power from whichever source (VBAT or VDD) has the higher voltage. Therefore, it is important to design the circuit to ensure that VDD is higher that VBAT under nominal conditions or else the Hibernation module draws power from the battery even when VDD is available.

The Hibernation module can be configured to detect a low battery condition by setting the LOWBATEN bit of the **HIBCTL** register. In this configuration, the LOWBAT bit of the **HIBRIS** register will be set when the battery level is low. If the VABORT bit is also set, then the module is prevented from entering Hibernation mode when a low battery is detected. The module can also be configured to generate an interrupt for the low-battery condition (see "Interrupts and Status" on page 120).

### 7.2.4 Real-Time Clock

The Hibernation module includes a 32-bit counter that increments once per second with a proper clock source and configuration (see "Clock Source" on page 119). The 32.768-kHz clock signal is fed into a trim predivider which counts down from a nominal value of 0x7FFF to achieve a once per second clock rate for the RTC. The trim predivider register can be adjusted up or down to compensate for inaccuracies in the clock source. The trim predivider should be adjusted up from 0x7FFF in order to slow down the RTC rate, and down from 0x7FFF in order to speed up the RTC rate.

The Hibernation module includes two 32-bit match registers that are compared to the value of the RTC counter. The match registers can be used to wake the processor from hibernation mode, or to generate an interrupt to the processor if it is not in hibernation.

The RTC must be enabled with the RTCEN bit of the **HIBCTL** register. The value of the RTC can be set at any time by writing to the **HIBRTCLD** register. The trim predivider can be adjusted by reading and writing the **HIBRTCT** register. The predivider is updated once every 64 seconds from this register. The two match registers can be set by writing to the **HIBRTCM0** and **HIBRTCM1** registers. The RTC can be configured to generate interrupts by using the interrupt registers (see "Interrupts and Status" on page 120).

### 7.2.5 Non-Volatile Memory

The Hibernation module contains 64 32-bit words of memory which are retained during hibernation. This memory is powered from the battery or auxillary power supply during hibernation. The processor software can save state information in this memory prior to hibernation, and can then recover the state upon waking. The non-volatile memory can be accessed through the **HIBDATA** registers.

### 7.2.6 Power Control

The Hibernation module controls power to the processor through the use of the HIB pin, which is intended to be connected to the enable signal of the external regulator(s) providing 3.3 V and/or 2.5 V to the microcontroller. When the HIB signal is asserted by the Hibernation module, the external regulator is turned off and no longer powers the microcontroller. The Hibernation module remains powered from the VBAT supply, which could be a battery or an auxillary power source. Hibernation mode is initiated by the microcontroller setting the HIBREQ bit of the **HIBCTL** register. Prior to doing this, a wake-up condition must be configured, either from the external WAKE pin, or by using an RTC match.

The Hibernation module is configured to wake from the external WAKE pin by setting the PINWEN bit of the **HIBCTL** register. It is configured to wake from RTC match by setting the RTCWEN bit. Either one or both of these bits can be set prior to going into hibernation.

When the Hibernation module wakes, the microcontroller will see a normal power-on reset. It can detect that the power-on was due to a wake from hibernation by examining the raw interrupt status register (see "Interrupts and Status" on page 120) and by looking for state data in the non-volatile memory (see "Non-Volatile Memory" on page 120).

### 7.2.7 Interrupts and Status

The Hibernation module can generate interrupts when the following conditions occur:

- Assertion of WAKE pin
- RTC match
- Low battery detected

All of the interrupts are ORed together before being sent to the interrupt controller, so the Hibernate module can only generate a single interrupt request to the controller at any given time. The software interrupt handler can service multiple interrupt events by reading the **HIBMIS** register. Software can also read the status of the Hibernation module at any time by reading the **HIBRIS** register which shows all of the pending events. This register can be used at power-on to see if a wake condition is pending, which indicates to the software that a hibernation wake occurred.

The events that can trigger an interrupt are configured by setting the appropriate bits in the **HIBIM** register. Pending interrupts can be cleared by writing the corresponding bit in the **HIBIC** register.

### 7.3 Initialization and Configuration

The Hibernation module can be configured in several different combinations. The following sections show the recommended programming sequence for various scenarios. The examples below assume that a 32.768-kHz oscillator is used, and thus always show bit 2 (CLKSEL) of the **HIBCTL** register set to 1. If a 4.194304-MHz crystal is used instead, then the CLKSEL bit remains cleared. Because the Hibernation module runs at 32 kHz and is asynchronous to the rest of the system, software must allow a delay of  $t_{\text{HIB}\_\text{REG}\_\text{WRITE}}$  after writes to certain registers (see "Register Access")

Timing" on page 118). The registers that require a delay are denoted with a footnote in "Register Map" on page 122.

#### 7.3.1 Initialization

The clock source must be enabled first, even if the RTC will not be used. If a 4.194304-MHz crystal is used, perform the following steps:

- 1. Write 0x40 to the **HIBCTL** register at offset 0x10 to enable the crystal and select the divide-by-128 input path.
- 2. Wait for a time of  $t_{xOSC\_SETTLE}$  for the crystal to power up and stabilize before performing any other operations with the Hibernation module.

If a 32.678-kHz oscillator is used, then perform the following steps:

- 1. Write 0x44 to the **HIBCTL** register at offset 0x10 to enable the oscillator input.
- 2. No delay is necessary.

The above is only necessary when the entire system is initialized for the first time. If the processor is powered due to a wake from hibernation, then the Hibernation module has already been powered up and the above steps are not necessary. The software can detect that the Hibernation module and clock are already powered by examining the CLK32EN bit of the **HIBCTL** register.

### 7.3.2 RTC Match Functionality (No Hibernation)

The following steps are needed to use the RTC match functionality of the Hibernation module:

- 1. Write the required RTC match value to one of the **HIBRTCMn** registers at offset 0x004 or 0x008.
- 2. Write the required RTC load value to the **HIBRTCLD** register at offset 0x00C.
- 3. Set the required RTC match interrupt mask in the RTCALT0 and RTCALT1 bits (bits 1:0) in the HIBIM register at offset 0x014.
- 4. Write 0x0000.0041 to the **HIBCTL** register at offset 0x010 to enable the RTC to begin counting.

#### 7.3.3 RTC Match/Wake-Up from Hibernation

The following steps are needed to use the RTC match and wake-up functionality of the Hibernation module:

- 1. Write the required RTC match value to the **RTCMn** registers at offset 0x004 or 0x008.
- 2. Write the required RTC load value to the **HIBRTCLD** register at offset 0x00C.
- 3. Write any data to be retained during power cut to the **HIBDATA** register at offsets 0x030-0x130.
- 4. Set the RTC Match Wake-Up and start the hibernation sequence by writing 0x0000.004F to the **HIBCTL** register at offset 0x010.

### 7.3.4 External Wake-Up from Hibernation

The following steps are needed to use the Hibernation module with the external WAKE pin as the wake-up source for the microcontroller:

- 1. Write any data to be retained during power cut to the **HIBDATA** register at offsets 0x030-0x130.
- 2. Enable the external wake and start the hibernation sequence by writing 0x0000.0056 to the **HIBCTL** register at offset 0x010.

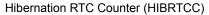
### 7.3.5 RTC/External Wake-Up from Hibernation

- 1. Write the required RTC match value to the **RTCMn** registers at offset 0x004 or 0x008.
- 2. Write the required RTC load value to the **HIBRTCLD** register at offset 0x00C.
- 3. Write any data to be retained during power cut to the **HIBDATA** register at offsets 0x030-0x130.
- 4. Set the RTC Match/External Wake-Up and start the hibernation sequence by writing 0x0000.005F to the **HIBCTL** register at offset 0x010.

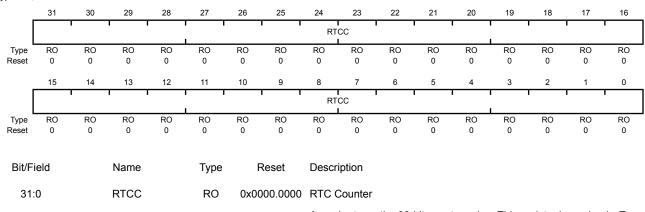
### 7.4 Register Map

**Note: HIBRTCC**, **HIBRTCM0**, **HIBRTCM1**, **HIBRTCLD**, **HIBRTCT**, and **HIBDATA** are internal BAPI module registers on the VBAPI voltage domain and the 32-kHz clock domain.

| Offset          | Name     | Туре | Reset       | Description                         | See<br>page |
|-----------------|----------|------|-------------|-------------------------------------|-------------|
| 0x000           | HIBRTCC  | RO   | 0x0000.0000 | Hibernation RTC Counter             | 123         |
| 0x004           | HIBRTCM0 | R/W  | 0xFFFF.FFFF | Hibernation RTC Match 0             | 124         |
| 0x008           | HIBRTCM1 | R/W  | 0xFFFF.FFFF | Hibernation RTC Match 1             | 125         |
| 0x00C           | HIBRTCLD | R/W  | 0xFFFF.FFFF | Hibernation RTC Load                | 126         |
| 0x010           | HIBCTL   | R/W  | 0x0000.0000 | Hibernation Control                 | 127         |
| 0x014           | НІВІМ    | R/W  | 0x0000.0000 | Hibernation Interrupt Mask          | 129         |
| 0x018           | HIBRIS   | RO   | 0x0000.0000 | Hibernation Raw Interrupt Status    | 130         |
| 0x01C           | HIBMIS   | RO   | 0x0000.0000 | Hibernation Masked Interrupt Status | 131         |
| 0x020           | HIBIC    | W1C  | 0x0000.0000 | Hibernation Interrupt Clear         | 132         |
| 0x024           | HIBRTCT  | R/W  | 0x0000.0000 | Hibernation RTC Trim                | 133         |
| 0x030-<br>0x12C | HIBDATA  | R/W  | 0x0000.0000 | Hibernation Data                    | 134         |


#### Table 7-1. Hibernation Module Register Map

### 7.5 Register Descriptions


All addresses given are relative to the Hibernation module Base Address at 0x400F.C000.

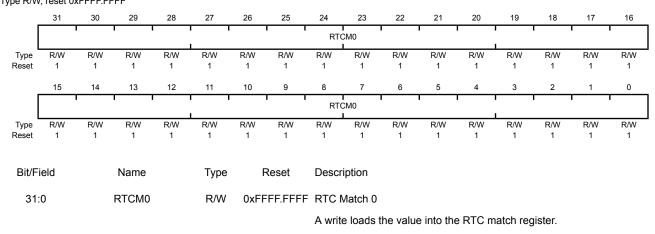
### Register 1: Hibernation RTC Counter (HIBRTCC), offset 0x000

This register is the current 32-bit value of the RTC counter.



Offset 0x000 Type RO, reset 0x0000.0000




A read returns the 32-bit counter value. This register is read-only. To change the value, use the **HIBRTCLD** register.

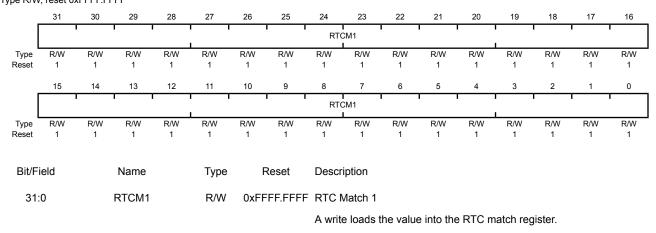
### Register 2: Hibernation RTC Match 0 (HIBRTCM0), offset 0x004

This register is the 32-bit match 0 register for the RTC counter.

#### Hibernation RTC Match 0 (HIBRTCM0)

Offset 0x004 Type R/W, reset 0xFFFF.FFF




A read returns the current match value.

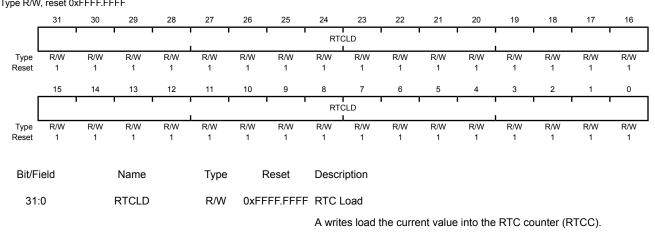
### Register 3: Hibernation RTC Match 1 (HIBRTCM1), offset 0x008

This register is the 32-bit match 1 register for the RTC counter.

#### Hibernation RTC Match 1 (HIBRTCM1)

Offset 0x008 Type R/W, reset 0xFFFF.FFF




A read returns the current match value.

### Register 4: Hibernation RTC Load (HIBRTCLD), offset 0x00C

This register is the 32-bit value loaded into the RTC counter.

#### Hibernation RTC Load (HIBRTCLD)

Offset 0x00C Type R/W, reset 0xFFF.FFF



A read returns the 32-bit load value.

### Register 5: Hibernation Control (HIBCTL), offset 0x010

This register is the control register for the Hibernation module.

#### Hibernation Control (HIBCTL)

Offset 0x010 Type R/W, reset 0x0000.0000

| Type R/W      | /, reset C | x0000.00 | 000      |         |         |         |         |         |             |                                      |          |           |                 |            |          |          |
|---------------|------------|----------|----------|---------|---------|---------|---------|---------|-------------|--------------------------------------|----------|-----------|-----------------|------------|----------|----------|
|               | 31         | 30       | 29       | 28      | 27      | 26      | 25      | 24      | 23          | 22                                   | 21       | 20        | 19              | 18         | 17       | 16       |
|               |            | 1        |          |         | · ·     |         | 1       | res     | erved       | 1                                    | 1        | 1         |                 | 1          | •        | •        |
| Type<br>Reset | RO<br>0    | RO<br>0  | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0                              | RO<br>0  | RO<br>0   | RO<br>0         | RO<br>0    | RO<br>0  | RO<br>0  |
|               | 15         | 14       | 13       | 12      | 11      | 10      | 9       | 8       | 7           | 6                                    | 5        | 4         | 3               | 2          | 1        | 0        |
|               |            |          |          | rese    | erved   |         |         |         | VABORT      | CLK32EN                              | LOWBATEN | PINWEN    | RTCWEN          | CLKSEL     | HIBREQ   | RTCEN    |
| Type<br>Reset | RO<br>0    | RO<br>0  | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | R/W<br>0    | R/W<br>0                             | R/W<br>0 | R/W<br>0  | R/W<br>0        | R/W<br>0   | R/W<br>0 | R/W<br>0 |
| Bit/F         | ield       |          | Name     |         | Туре    |         | Reset   | Desc    | ription     |                                      |          |           |                 |            |          |          |
| 31:           | :8         |          | reserved |         | RO      |         | 0x00    | comp    | atibility v | uld not re<br>vith futur<br>oss a re | e produ  | cts, the  | value of        | a reserv   |          |          |
| 7             |            |          | VABORT   |         | R/W     |         | 0       | Powe    | r Cut Ab    | ort Enat                             | ole      |           |                 |            |          |          |
|               |            |          |          |         |         |         |         | 0: Po   | wer Cut     | occurs d                             | luring a | low-batt  | ery alert       |            |          |          |
|               |            |          |          |         |         |         |         | 1: Po   | wer Cut     | is aborte                            | ed       |           |                 |            |          |          |
| 6             |            | (        | CLK32EN  | 1       | R/W     |         | 0       | 32-k⊦   | Iz Oscilla  | ator Ena                             | ble      |           |                 |            |          |          |
|               |            |          |          |         |         |         |         | 0: Dis  | abled       |                                      |          |           |                 |            |          |          |
|               |            |          |          |         |         |         |         | 1: En   | abled       |                                      |          |           |                 |            |          |          |
|               |            |          |          |         |         |         |         | used,   | then so     | be enabl<br>ftware sl<br>er up an    | nould wa | ait 20 ms |                 |            |          |          |
| 5             |            | L        | OWBATE   | N       | R/W     |         | 0       | LOW     | BAT Mo      | nitoring                             | Enable   |           |                 |            |          |          |
|               |            |          |          |         |         |         |         | 0: Dis  | abled       |                                      |          |           |                 |            |          |          |
|               |            |          |          |         |         |         |         | 1: En   | abled       |                                      |          |           |                 |            |          |          |
|               |            |          |          |         |         |         |         | Wher    | n set, low  | / battery                            | voltage  | detectio  | on is ena       | bled.      |          |          |
| 4             |            |          | PINWEN   |         | R/W     |         | 0       | Exter   | nal WAKE    | E Pin En                             | able     |           |                 |            |          |          |
|               |            |          |          |         |         |         |         | 0: Dis  | abled       |                                      |          |           |                 |            |          |          |
|               |            |          |          |         |         |         |         | 1: En   | abled       |                                      |          |           |                 |            |          |          |
|               |            |          |          |         |         |         |         | Wher    | n set, an   | external                             | event o  | n the WA  | <u>KE</u> pin v | vill re-po | wer the  | device.  |
| 3             |            | I        | RTCWEN   | 1       | R/W     |         | 0       | RTC     | Wake-up     | Enable                               |          |           |                 |            |          |          |
|               |            |          |          |         |         |         |         | 0: Dis  | abled       |                                      |          |           |                 |            |          |          |
|               |            |          |          |         |         |         |         | 1: En   | abled       |                                      |          |           |                 |            |          |          |
|               |            |          |          |         |         |         |         | based   |             | RTC mat<br>RTC cou                   |          |           |                 |            |          |          |

| Bit/Field | Name   | Туре | Reset | Description                                                      |
|-----------|--------|------|-------|------------------------------------------------------------------|
| 2         | CLKSEL | R/W  | 0     | Hibernation Module Clock Select                                  |
|           |        |      |       | 0: Use Divide by 128 output. Use this value for a 4-MHz crystal. |
|           |        |      |       | 1: Use raw output. Use this value for a 32-kHz oscillator.       |
| 1         | HIBREQ | R/W  | 0     | Hibernation Request                                              |
|           |        |      |       | 0: Disabled                                                      |
|           |        |      |       | 1: Hibernation initiated                                         |
|           |        |      |       | After a wake-up event, this bit is cleared by hardware.          |
| 0         | RTCEN  | R/W  | 0     | RTC Timer Enable                                                 |
|           |        |      |       | 0: Disabled                                                      |
|           |        |      |       | 1: Enabled                                                       |

### Register 6: Hibernation Interrupt Mask (HIBIM), offset 0x014

This register is the interrupt mask register for the Hibernation module interrupt sources.

#### Hibernation Interrupt Mask (HIBIM)

Offset 0x014 Type R/W, reset 0x0000.0000

| Type R/M      | /, reset 0 | x0000.000 | 00       |         |         |         |         |         |             |            |          |         |          |                              |          |          |
|---------------|------------|-----------|----------|---------|---------|---------|---------|---------|-------------|------------|----------|---------|----------|------------------------------|----------|----------|
|               | 31         | 30        | 29       | 28      | 27      | 26      | 25      | 24      | 23          | 22         | 21       | 20      | 19       | 18                           | 17       | 16       |
|               |            |           |          |         |         |         |         | rese    | rved        |            |          | •       | 1        |                              |          | •        |
| Type<br>Reset | RO<br>0    | RO<br>0   | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0    | RO<br>0  | RO<br>0 | RO<br>0  | RO<br>0                      | RO<br>0  | RO<br>0  |
| Resei         |            |           |          |         |         |         |         |         |             |            |          |         |          |                              |          |          |
| i             | 15         | 14        | 13       | 12      | 11      | 10      | 9       | 8       | 7           | 6          | 5        | 4       | 3        | 2                            | 1        |          |
|               |            |           |          |         |         |         | erved   |         |             |            |          |         | EXTW     |                              |          | RTCALT0  |
| Type<br>Reset | RO<br>0    | RO<br>0   | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0    | RO<br>0  | RO<br>0 | R/W<br>0 | R/W<br>0                     | R/W<br>0 | R/W<br>0 |
|               |            |           |          |         |         |         |         |         |             |            |          |         |          |                              |          |          |
| Bit/F         | ield       |           | Name     |         | Туре    | I       | Reset   | Descri  | ption       |            |          |         |          |                              |          |          |
| 31            | :4         | r         | reserved |         | RO      | 0x0     | 000.000 | compa   | atibility w | ith futur/ | e produ  |         | alue of  | erved bit.<br>a reserv<br>n. |          |          |
| 3             |            |           | EXTW     |         | R/W     |         | 0       | Extern  | al Wake     | e-Up Inte  | errupt M | ask     |          |                              |          |          |
|               |            |           |          |         |         |         |         | 0: Mas  |             |            |          |         |          |                              |          |          |
|               |            |           |          |         |         |         |         |         | nasked      |            |          |         |          |                              |          |          |
|               |            |           |          |         |         |         |         | I. UIII | llaskeu     |            |          |         |          |                              |          |          |
| 2             |            | L         | .OWBAT   |         | R/W     |         | 0       | Low B   | attery V    | oltage Ir  | nterrupt | Mask    |          |                              |          |          |
|               |            |           |          |         |         |         |         | 0: Mas  | sked        |            |          |         |          |                              |          |          |
|               |            |           |          |         |         |         |         | 1: Unn  | nasked      |            |          |         |          |                              |          |          |
|               |            | _         |          |         |         |         | -       |         |             |            |          |         |          |                              |          |          |
| 1             |            | R         | RTCALT1  |         | R/W     |         | 0       |         |             | errupt N   | lask     |         |          |                              |          |          |
|               |            |           |          |         |         |         |         | 0: Mas  | sked        |            |          |         |          |                              |          |          |
|               |            |           |          |         |         |         |         | 1: Unn  | nasked      |            |          |         |          |                              |          |          |
| 0             |            | R         | TCALTO   | )       | R/W     |         | 0       | RTC A   | lert0 Int   | errupt N   | lask     |         |          |                              |          |          |
|               |            |           |          |         |         |         |         | 0: Mas  | sked        |            |          |         |          |                              |          |          |
|               |            |           |          |         |         |         |         | 1: Unn  | nasked      |            |          |         |          |                              |          |          |
|               |            |           |          |         |         |         |         |         |             |            |          |         |          |                              |          |          |

### Register 7: Hibernation Raw Interrupt Status (HIBRIS), offset 0x018

This register is the raw interrupt status for the Hibernation module interrupt sources.

#### Hibernation Raw Interrupt Status (HIBRIS)

Offset 0x018 Type RO, reset 0x0000.0000

| Type ICO,     |                                 |         |         |         |            |         |                  |                                       |                         |           |          |           |          |                               |         |         |
|---------------|---------------------------------|---------|---------|---------|------------|---------|------------------|---------------------------------------|-------------------------|-----------|----------|-----------|----------|-------------------------------|---------|---------|
| _             | 31                              | 30      | 29      | 28      | 27         | 26      | 25               | 24                                    | 23                      | 22        | 21       | 20        | 19       | 18                            | 17      | 16      |
|               |                                 | 1       | т т     |         | · ·        |         |                  | rese                                  | rved                    |           |          | 1         | 1<br>1   |                               |         |         |
| Type<br>Reset | RO<br>0                         | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0    | RO<br>0 | RO<br>0          | RO<br>0                               | RO<br>0                 | RO<br>0   | RO<br>0  | RO<br>0   | RO<br>0  | RO<br>0                       | RO<br>0 | RO<br>0 |
| Resel         |                                 |         |         |         |            |         |                  |                                       |                         |           |          |           |          | -                             | 0       |         |
|               | 15                              | 14      | 13      | 12      | 11         | 10      | 9                | 8                                     | 7                       | 6         | 5        | 4         | 3        | 2                             | 1       | 0       |
|               |                                 | 1       |         |         | · ·        | rese    | rved             |                                       |                         |           |          | •         | EXTW     | LOWBAT                        | RTCALT1 | RTCALT0 |
| Туре          | RO                              | RO      | RO      | RO      | RO         | RO      | RO               | RO                                    | RO                      | RO        | RO       | RO        | RO       | RO                            | RO      | RO      |
| Reset         | 0                               | 0       | 0       | 0       | 0          | 0       | 0                | 0                                     | 0                       | 0         | 0        | 0         | 0        | 0                             | 0       | 0       |
|               | Bit/Field Name<br>31:4 reserved |         |         |         | Type<br>RO |         | Reset<br>00.0000 | compa                                 | are shou<br>atibility w |           | e produ  | cts, the  | value of | erved bit.<br>a reserv<br>on. | •       |         |
| 3             |                                 |         | EXTW    |         | RO         |         | 0                | External Wake-Up Raw Interrupt Status |                         |           |          |           |          |                               |         |         |
| 2             |                                 |         | LOWBAT  |         | RO         |         | 0                | Low B                                 | attery V                | oltage R  | aw Inter | rrupt Sta | atus     |                               |         |         |
| 1             |                                 | F       | RTCALT1 |         | RO         |         | 0                | RTC A                                 | Alert1 Ra               | aw Interr | upt Stat | us        |          |                               |         |         |
| 0             |                                 | F       | RTCALT0 |         | RO         |         | 0                | RTC A                                 | Alert0 Ra               | aw Interr | upt Stat | us        |          |                               |         |         |

### Register 8: Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C

This register is the masked interrupt status for the Hibernation module interrupt sources.

#### Hibernation Masked Interrupt Status (HIBMIS)

RTCALT0

RO

0

Ofi Ty

0

| Offset 0x0<br>Type RO, |                           | x0000.000 | 00              |         |         |           |          |                                                                                                                                                                                                       |                                       |         |         |         |         |         |         |         |
|------------------------|---------------------------|-----------|-----------------|---------|---------|-----------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------|---------|---------|---------|---------|---------|---------|
|                        | 31                        | 30        | 29              | 28      | 27      | 26        | 25       | 24                                                                                                                                                                                                    | 23                                    | 22      | 21      | 20      | 19      | 18      | 17      | 16      |
|                        |                           | 1         |                 |         |         |           |          | rese                                                                                                                                                                                                  | erved                                 |         |         |         |         | 1       | 1       |         |
| Type<br>Reset          | RO<br>0                   | RO<br>0   | RO<br>0         | RO<br>0 | RO<br>0 | RO<br>0   | RO<br>0  | RO<br>0                                                                                                                                                                                               | RO<br>0                               | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 |
|                        | 15                        | 14        | 13              | 12      | 11      | 10        | 9        | 8                                                                                                                                                                                                     | 7                                     | 6       | 5       | 4       | 3       | 2       | 1       | 0       |
|                        |                           | 1         |                 |         |         | rese      | erved    |                                                                                                                                                                                                       | , , , , , , , , , , , , , , , , , , , |         |         |         | EXTW    | LOWBAT  | RTCALT1 | RTCALT0 |
| Type<br>Reset          | RO<br>0                   | RO<br>0   | RO<br>0         | RO<br>0 | RO<br>0 | RO<br>0   | RO<br>0  | RO<br>0                                                                                                                                                                                               | RO<br>0                               | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 |
| Bit/F                  | Bit/Field Name Type Reset |           |                 |         |         |           | Reset    | Descr                                                                                                                                                                                                 | ription                               |         |         |         |         |         |         |         |
| 31:                    | 4                         |           | Name Type Reset |         |         |           |          | O Software should not rely on the value of a reserved bit. To provide<br>compatibility with future products, the value of a reserved bit should be<br>preserved across a read-modify-write operation. |                                       |         |         |         |         |         |         |         |
| 3                      |                           |           | EXTW            |         | RO      |           | 0        | External Wake-Up Masked Interrupt Status                                                                                                                                                              |                                       |         |         |         |         |         |         |         |
| 2                      |                           | I         | LOWBAT          |         | RO      | 0 L       |          | Low Battery Voltage Masked Interrupt Status                                                                                                                                                           |                                       |         |         |         |         |         |         |         |
| 1                      | RTCALT1 RO 0              |           |                 | 0       | RTC /   | Alert1 Ma | asked In | terrupt S                                                                                                                                                                                             | Status                                |         |         |         |         |         |         |         |
|                        |                           |           |                 |         |         |           |          |                                                                                                                                                                                                       |                                       |         |         |         |         |         |         |         |

RTC Alert0 Masked Interrupt Status

### Register 9: Hibernation Interrupt Clear (HIBIC), offset 0x020

This register is the interrupt write-one-to-clear register for the Hibernation module interrupt sources.

#### Hibernation Interrupt Clear (HIBIC)

Offset 0x020 Type W1C, reset 0x0000.0000

| Type with          |         |         |                |                                  |          |               |         |                                         |                                                                                                                                                                                               |           |           |          |            |            |            |            |  |  |  |  |
|--------------------|---------|---------|----------------|----------------------------------|----------|---------------|---------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|----------|------------|------------|------------|------------|--|--|--|--|
|                    | 31      | 30      | 29             | 28                               | 27       | 26            | 25      | 24                                      | 23                                                                                                                                                                                            | 22        | 21        | 20       | 19         | 18         | 17         | 16         |  |  |  |  |
|                    |         | 1       | <del>т т</del> |                                  | · ·      |               | · · ·   | rese                                    | rved                                                                                                                                                                                          |           |           |          | 1          | 1          |            |            |  |  |  |  |
| Type<br>Reset      | RO<br>0 | RO<br>0 | RO<br>0        | RO<br>0                          | RO<br>0  | RO<br>0       | RO<br>0 | RO<br>0                                 | RO<br>0                                                                                                                                                                                       | RO<br>0   | RO<br>0   | RO<br>0  | RO<br>0    | RO<br>0    | RO<br>0    | RO<br>0    |  |  |  |  |
|                    | 15      | 14      | 13             | 12                               | 11       | 10            | 9       | 8                                       | 7                                                                                                                                                                                             | 6         | 5         | 4        | 3          | 2          | 1          | 0          |  |  |  |  |
|                    |         | 1       | r r            |                                  | r r<br>1 | rese          | erved   |                                         |                                                                                                                                                                                               |           |           |          | EXTW       | LOWBAT     | RTCALT1    | RTCALT0    |  |  |  |  |
| Type<br>Reset      | RO<br>0 | RO<br>0 | RO<br>0        | RO<br>0                          | RO<br>0  | RO<br>0       | RO<br>0 | RO<br>0                                 | RO<br>0                                                                                                                                                                                       | RO<br>0   | RO<br>0   | RO<br>0  | R/W1C<br>0 | R/W1C<br>0 | R/W1C<br>0 | R/W1C<br>0 |  |  |  |  |
| Bit/F              | ield    |         | Name           |                                  | Туре     | F             | Reset   | Descr                                   | iption                                                                                                                                                                                        |           |           |          |            |            |            |            |  |  |  |  |
| 31                 | :4      |         | reserved       |                                  | RO       | RO 0x000.0000 |         |                                         | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |           |           |          |            |            |            |            |  |  |  |  |
| 3                  |         |         | EXTW           |                                  | R/W1C    |               | 0       | External Wake-Up Masked Interrupt Clear |                                                                                                                                                                                               |           |           |          |            |            |            |            |  |  |  |  |
|                    |         |         |                |                                  |          |               |         | Reads                                   | return a                                                                                                                                                                                      | an indete | erminate  | value.   |            |            |            |            |  |  |  |  |
| 2                  |         | I       | LOWBAT         |                                  | R/W1C    |               | 0       | Low B                                   | attery V                                                                                                                                                                                      | oltage M  | asked li  | nterrupt | Clear      |            |            |            |  |  |  |  |
|                    |         |         |                |                                  |          |               |         | Reads return an indeterminate value.    |                                                                                                                                                                                               |           |           |          |            |            |            |            |  |  |  |  |
| 1                  |         | F       | RTCALT1        |                                  | R/W1C    |               | 0       | RTC A                                   | Nert1 Ma                                                                                                                                                                                      | asked In  | terrupt C | Clear    |            |            |            |            |  |  |  |  |
| Reads return an ir |         |         |                | s return an indeterminate value. |          |               |         |                                         |                                                                                                                                                                                               |           |           |          |            |            |            |            |  |  |  |  |
| 0                  |         | F       | RTCALTO        |                                  | R/W1C    |               | 0       | RTC A                                   | Alert0 Ma                                                                                                                                                                                     | asked In  | terrupt C | Clear    |            |            |            |            |  |  |  |  |
|                    |         |         |                |                                  |          |               |         | Reads                                   | s, return                                                                                                                                                                                     | an indet  | erminate  | e value. |            |            |            |            |  |  |  |  |

### Register 10: Hibernation RTC Trim (HIBRTCT), offset 0x024

This register contains the value that is used to trim the RTC clock predivider. It represents the computed underflow value that is used during the trim cycle. It is represented as 0x7FFF ± N clock cycles.

#### Hibernation RTC Trim (HIBRTCT)

Offset 0x024 Type R/W, reset 0x0000.0000

| 11            | ,                         |          |          |          |          |                                                                                                                                                                                                     |          |          |           |          |           |                         |            |          |           |          |
|---------------|---------------------------|----------|----------|----------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|-----------|----------|-----------|-------------------------|------------|----------|-----------|----------|
|               | 31                        | 30       | 29       | 28       | 27       | 26                                                                                                                                                                                                  | 25       | 24       | 23        | 22       | 21        | 20                      | 19         | 18       | 17        | 16       |
|               |                           |          | 1        | 1        | , ,<br>, |                                                                                                                                                                                                     | 1        | rese     | rved      | 1        | 1         | 1                       |            | 1        |           | 1        |
| Type<br>Reset | RO<br>0                   | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0                                                                                                                                                                                             | RO<br>0  | RO<br>0  | RO<br>0   | RO<br>0  | RO<br>0   | RO<br>0                 | RO<br>0    | RO<br>0  | RO<br>0   | RO<br>0  |
|               | 15                        | 14       | 13       | 12       | 11       | 10                                                                                                                                                                                                  | 9        | 8        | 7         | 6        | 5         | 4                       | 3          | 2        | 1         | 0        |
|               |                           |          | I        | 1        | , ,      |                                                                                                                                                                                                     | I        | TF       | I<br>RIM  | 1        | I         | I                       | 1          | I        | 1         | 1        |
| Type<br>Reset | R/W<br>0                  | R/W<br>1 | R/W<br>1 | R/W<br>1 | R/W<br>1 | R/W<br>1                                                                                                                                                                                            | R/W<br>1 | R/W<br>1 | R/W<br>1  | R/W<br>1 | R/W<br>1  | R/W<br>1                | R/W<br>1   | R/W<br>1 | R/W<br>1  | R/W<br>1 |
| Bit/F         | Bit/Field Name Type Reset |          |          |          |          | Reset                                                                                                                                                                                               | Descr    | iption   |           |          |           |                         |            |          |           |          |
| 31:           | :16 reserved RO 0x0000    |          |          |          | x0000    | Software should not rely on the value of a reserved bit. To provide<br>compatibility with future products, the value of a reserved bit should be<br>preserved across a read-modify-write operation. |          |          |           |          |           |                         |            |          |           |          |
| 15            | :0                        |          | TRIM     |          | R/W      | 0:                                                                                                                                                                                                  | x7FFF    | RTC      | Trim Val  | ue       |           |                         |            |          |           |          |
|               |                           |          |          |          |          |                                                                                                                                                                                                     |          | to adj   | ust the F | RTC rate | e to acco | FC prediv<br>ount for d | rift and i | naccura  | cy in the | e clock  |

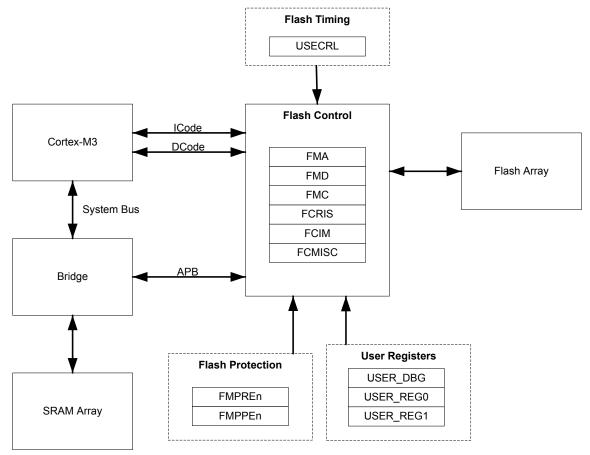
source. The compensation is made by software by adjusting the default value of 0x7FFF up or down.

### Register 11: Hibernation Data (HIBDATA), offset 0x030-0x12C

This address space is implemented as a 64x32-bit memory (256 bytes). It can be loaded by the system processor in order to store any non-volatile state data and will not lose power during a power cut operation.

#### Hibernation Data (HIBDATA)

Offset 0x030-0x12C Type R/W, reset 0x0000.0000


|       | 31   | 30  | 29   | 28  | 27      | 26  | 25       | 24     | 23       | 22      | 21       | 20        | 19  | 18  | 17  | 16  |
|-------|------|-----|------|-----|---------|-----|----------|--------|----------|---------|----------|-----------|-----|-----|-----|-----|
|       |      | 1 I | 1    | 1   | r r     |     | 1 1      | _      | 1 1      |         |          | 1         |     |     | r 1 |     |
|       |      |     |      |     |         |     |          | R      | TD       |         |          |           |     |     |     |     |
| I     | DAA/ | DAA | DAA  | DAA | <b></b> | R/W | DAA      | DAA    |          | R/W     | DAA      | DAA       | DAA | DAA | DAA |     |
| Туре  | R/W  | R/W | R/W  | R/W | R/W     |     | R/W      | R/W    | R/W      |         | R/W      | R/W       | R/W | R/W | R/W | R/W |
| Reset | 0    | 0   | 0    | 0   | 0       | 0   | 0        | 0      | 0        | 0       | 0        | 0         | 0   | 0   | 0   | 0   |
|       |      |     |      |     |         |     |          |        |          |         |          |           |     |     |     |     |
|       | 15   | 14  | 13   | 12  | 11      | 10  | 9        | 8      | 7        | 6       | 5        | 4         | 3   | 2   | 1   | 0   |
| 1     |      | 1   | 1    | 1   | r r     |     | 1 I      |        | 1 1      |         |          | 1         |     |     | 1 1 |     |
|       |      |     |      |     |         |     |          | R      | TD       |         |          |           |     |     |     |     |
| _ I   |      |     |      |     | L       |     |          |        | L        |         |          |           |     |     |     |     |
| Туре  | R/W  | R/W | R/W  | R/W | R/W     | R/W | R/W      | R/W    | R/W      | R/W     | R/W      | R/W       | R/W | R/W | R/W | R/W |
| Reset | 0    | 0   | 0    | 0   | 0       | 0   | 0        | 0      | 0        | 0       | 0        | 0         | 0   | 0   | 0   | 0   |
|       |      |     |      |     |         |     |          |        |          |         |          |           |     |     |     |     |
| D://E |      |     |      |     | -       |     |          | -      |          |         |          |           |     |     |     |     |
| Bit/F | ield |     | Name |     | Туре    |     | Reset    | Descr  | ription  |         |          |           |     |     |     |     |
|       |      |     |      |     |         |     |          |        |          |         |          |           | _   |     |     |     |
| 31:   | 0    |     | RTD  |     | R/W     | 0x0 | 0000.000 | Hiberi | nation M | odule N | V Regist | ters[63:0 | ]   |     |     |     |
|       |      |     |      |     |         |     |          |        |          |         |          |           |     |     |     |     |

## 8 Internal Memory

The LM3S6965 microcontroller comes with 64 KB of bit-banded SRAM and 256 KB of flash memory. The flash controller provides a user-friendly interface, making flash programming a simple task. Flash protection can be applied to the flash memory on a 2-KB block basis.

### 8.1 Block Diagram

### Figure 8-1. Flash Block Diagram



## 8.2 Functional Description

This section describes the functionality of both the flash and SRAM memories.

### 8.2.1 SRAM Memory

The internal SRAM of the Stellaris<sup>®</sup> devices is located at address 0x2000.0000 of the device memory map. To reduce the number of time consuming read-modify-write (RMW) operations, ARM has introduced *bit-banding* technology in the Cortex-M3 processor. With a bit-band-enabled processor, certain regions in the memory map (SRAM and peripheral space) can use address aliases to access individual bits in a single, atomic operation.

The bit-band alias is calculated by using the formula:

bit-band alias = bit-band base + (byte offset \* 32) + (bit number \* 4)

For example, if bit 3 at address 0x2000.1000 is to be modified, the bit-band alias is calculated as:

0x2200.0000 + (0x1000 \* 32) + (3 \* 4) = 0x2202.000C

With the alias address calculated, an instruction performing a read/write to address 0x2202.000C allows direct access to only bit 3 of the byte at address 0x2000.1000.

For details about bit-banding, please refer to Chapter 4, "Memory Map" in the *ARM*® *Cortex*™-*M*3 *Technical Reference Manual.* 

### 8.2.2 Flash Memory

The flash is organized as a set of 1-KB blocks that can be individually erased. Erasing a block causes the entire contents of the block to be reset to all 1s. An individual 32-bit word can be programmed to change bits that are currently 1 to a 0. These blocks are paired into a set of 2-KB blocks that can be individually protected. The protection allows blocks to be marked as read-only or execute-only, providing different levels of code protection. Read-only blocks cannot be erased or programmed, protecting the contents of those blocks from being modified. Execute-only blocks cannot be erased or programmed, and can only be read by the controller instruction fetch mechanism, protecting the contents of those blocks from being read by either the controller or by a debugger.

### 8.2.2.1 Flash Memory Timing

The timing for the flash is automatically handled by the flash controller. However, in order to do so, it must know the clock rate of the system in order to time its internal signals properly. The number of clock cycles per microsecond must be provided to the flash controller for it to accomplish this timing. It is software's responsibility to keep the flash controller updated with this information via the **USec Reload (USECRL)** register.

On reset, the **USECRL** register is loaded with a value that configures the flash timing so that it works with the maximum clock rate of the part. If software changes the system operating frequency, the new operating frequency minus 1 (in MHz) must be loaded into **USECRL** before any flash modifications are attempted. For example, if the device is operating at a speed of 20 MHz, a value of 0x13 (20-1) must be written to the **USECRL** register.

#### 8.2.2.2 Flash Memory Protection

The user is provided two forms of flash protection per 2-KB flash blocks infour pairs of 32-bit wide registers. The protection policy for each form is controlled by individual bits (per policy per block) in the **FMPPEn** and **FMPREn** registers.

- Flash Memory Protection Program Enable (FMPPEn): If set, the block may be programmed (written) or erased. If cleared, the block may not be changed.
- Flash Memory Protection Read Enable (FMPREn): If set, the block may be executed or read by software or debuggers. If cleared, the block may only be executed. The contents of the memory block are prohibited from being accessed as data and traversing the DCode bus.

The policies may be combined as shown in Table 8-1 on page 137.

| FMPPEn | FMPREn | Protection                                                                                                                                                                                         |
|--------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0      |        | Execute-only protection. The block may only be executed and may not be written or erased. This mode is used to protect code.                                                                       |
| 1      | 0      | The block may be written, erased or executed, but not read. This combination is unlikely to be used.                                                                                               |
| 0      |        | Read-only protection. The block may be read or executed but may not be written or erased. This mode is used to lock the block from further modification while allowing any read or execute access. |
| 1      | 1      | No protection. The block may be written, erased, executed or read.                                                                                                                                 |

#### Table 8-1. Flash Protection Policy Combinations

An access that attempts to program or erase a PE-protected block is prohibited. A controller interrupt may be optionally generated (by setting the AMASK bit in the **FIM** register) to alert software developers of poorly behaving software during the development and debug phases.

An access that attempts to read an RE-protected block is prohibited. Such accesses return data filled with all 0s. A controller interrupt may be optionally generated to alert software developers of poorly behaving software during the development and debug phases.

The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This implements a policy of open access and programmability. The register bits may be changed by writing the specific register bit. The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. Details on programming these bits are discussed in "Nonvolatile Register Programming" on page 138.

### 8.3 Flash Memory Initialization and Configuration

### 8.3.1 Flash Programming

The Stellaris<sup>®</sup> devices provide a user-friendly interface for flash programming. All erase/program operations are handled via three registers: **FMA**, **FMD**, and **FMC**.

#### 8.3.1.1 To program a 32-bit word:

- 1. Write source data to the **FMD** register.
- 2. Write the target address to the FMA register.
- 3. Write the flash write key and the WRITE bit (a value of 0xA442.0001) to the FMC register.
- 4. Poll the **FMC** register until the WRITE bit is cleared.

#### 8.3.1.2 To perform an erase of a 1-KB page:

- 1. Write the page address to the FMA register.
- 2. Write the flash write key and the ERASE bit (a value of 0xA442.0002) to the **FMC** register.
- 3. Poll the **FMC** register until the **ERASE** bit is cleared.

### 8.3.1.3 To perform a mass erase of the flash:

- 1. Write the flash write key and the MERASE bit (a value of 0xA442.0004) to the **FMC** register.
- 2. Poll the FMC register until the MERASE bit is cleared.

### 8.3.2 Nonvolatile Register Programming

This section discusses how to update registers that are resident within the flash memory itself. These registers exist in a separate space from the main flash array and are not affected by an ERASE or MASS ERASE operation. These nonvolatile registers are updated by using the COMT bit in the **FMC** register to activate a write operation. For the **USER\_DBG** register, the data to be written must be loaded into the **FMD** register before it is "committed". All other registers are R/W and can have their operation tried before committing them to nonvolatile memory.

**Important:** These register can only have bits changed from 1 to 0 by the user and there is no mechanism for the user to erase them back to a 1 value.

In addition, the **USER\_REG0**, **USER\_REG1**, and **USER\_DBG** use bit 31 (NOTWRITTEN) of their respective registers to indicate that they are available for user write. These three registers can only be written once whereas the flash protection registers may be written multiple times. Table 8-2 on page 138 provides the FMA address required for commitment of each of the registers and the source of the data to be written when the COMT bit of the **FMC** register is written with a value of 0xA442.0008. After writing the COMT bit, the user may poll the **FMC** register to wait for the commit operation to complete.

| Register to be Committed | FMA Value   | Data Source |
|--------------------------|-------------|-------------|
| FMPRE0                   | 0x0000.0000 | FMPRE0      |
| FMPRE1                   | 0x0000.0002 | FMPRE1      |
| FMPRE2                   | 0x0000.0004 | FMPRE2      |
| FMPRE3                   | 0x0000.0008 | FMPRE3      |
| FMPPE0                   | 0x0000.0001 | FMPPE0      |
| FMPPE1                   | 0x0000.0003 | FMPPE1      |
| FMPPE2                   | 0x0000.0005 | FMPPE2      |
| FMPPE3                   | 0x0000.0007 | FMPPE3      |
| USER_REG0                | 0x8000.0000 | USER_REG0   |
| USER_REG1                | 0x8000.0001 | USER_REG1   |
| USER_DBG                 | 0x7510.0000 | FMD         |

#### Table 8-2. Flash Resident Registers<sup>a</sup>

a. Which **FMPREn** and **FMPPEn** registers are available depend on the flash size of your particular Stellaris<sup>®</sup> device.

### 8.4 Register Map

"Register Map" on page 138 lists the Flash memory and control registers. The offset listed is a hexadecimal increment to the register's address. The **FMA**, **FMD**, **FMC**, **FCRIS**, **FCIM**, and **FCMISC** registers are relative to the Flash control base address of 0x400F.D000. The **FMPREn**, **FMPPEn**, **USECRL**, **USER\_DBG**, and **USER\_REGn** registers are relative to the System Control base address of 0x400F.E000.

**Note:** A BV in the Reset column indicates the reset is a Build Value and part-specific. See the page number referenced for the reset value description.

Table 8-3. Internal Memory Register Map

| Offset | Name | Туре | Reset       | Description          | See<br>page |
|--------|------|------|-------------|----------------------|-------------|
| 0x000  | FMA  | R/W  | 0x0000.0000 | Flash Memory Address | 140         |

| Offset | Name      | Туре  | Reset       | Description                                        | See<br>page |
|--------|-----------|-------|-------------|----------------------------------------------------|-------------|
| 0x004  | FMD       | R/W   | 0x0000.0000 | Flash Memory Data                                  | 141         |
| 0x008  | FMC       | R/W   | 0x0000.0000 | Flash Memory Control                               | 142         |
| 0x00C  | FCRIS     | RO    | 0x0000.0000 | Flash Controller Raw Interrupt Status              | 144         |
| 0x010  | FCIM      | R/W   | 0x0000.0000 | Flash Controller Interrupt Mask                    | 145         |
| 0x014  | FCMISC    | R/W1C | 0x0000.0000 | Flash Controller Masked Interrupt Status and Clear | 146         |
| 0x130  | FMPRE0    | R/W   | BV          | Flash Memory Protection Read Enable 0              | 148         |
| 0x200  | FMPRE0    | R/W   | BV          | Flash Memory Protection Read Enable 0              | 148         |
| 0x134  | FMPPE0    | R/W   | BV          | Flash Memory Protection Program Enable 0           | 149         |
| 0x400  | FMPPE0    | R/W   | BV          | Flash Memory Protection Program Enable 0           | 149         |
| 0x140  | USECRL    | R/W   | 0x31        | USec Reload                                        | 147         |
| 0x1D0  | USER_DBG  | R/W   | BV          | User Debug                                         | 150         |
| 0x1E0  | USER_REG0 | R/W   | BV          | User Register 0                                    | 151         |
| 0x1E4  | USER_REG1 | R/W   | BV          | User Register 1                                    | 152         |
| 0x204  | FMPRE1    | R/W   | BV          | Flash Memory Protection Read Enable 1              | 153         |
| 0x208  | FMPRE2    | R/W   | BV          | Flash Memory Protection Read Enable 2              | 154         |
| 0x20C  | FMPRE3    | R/W   | BV          | Flash Memory Protection Read Enable 3              | 155         |
| 0x404  | FMPPE1    | R/W   | BV          | Flash Memory Protection Program Enable 1           | 156         |
| 0x408  | FMPPE2    | R/W   | BV          | Flash Memory Protection Program Enable 2           | 157         |
| 0x40C  | FMPPE3    | R/W   | BV          | Flash Memory Protection Program Enable 3           | 158         |

## 8.5 Flash Register Descriptions

The remainder of this section lists and describes the Flash Memory registers, in numerical order by address offset.

Flash Memory Address (FMA)

### Register 1: Flash Memory Address (FMA), offset 0x000

During a write operation, this register contains a 4-byte-aligned address and specifies where the data is written. During erase operations, this register contains a 1 KB-aligned address and specifies which page is erased. Note that the alignment requirements must be met by software or the results of the operation are unpredictable.

#### Base 0x400F.D000 Offset 0x000 Type R/W, reset 0x0000.0000 25 16 31 30 29 28 27 26 24 23 22 21 20 18 17 19 OFFSET Туре R/W Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 10 9 8 7 6 5 3 2 0 11 4 1 OFFSET Туре R/W Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **Bit/Field** Name Туре Reset Description 31:0 OFFSET R/W Address offset in flash where operation is performed, except for 0x0 nonvolatile registers (see "Nonvolatile Register Programming" on page

nonvolatile registers (see "Nonvolatile Register Programming" on pag 138 for details on values for this field).

### Register 2: Flash Memory Data (FMD), offset 0x004

This register contains the data to be written during the programming cycle or read during the read cycle. Note that the contents of this register are undefined for a read access of an execute-only block. This register is not used during the erase cycles.

| Flash M<br>Base 0x4<br>Offset 0x0<br>Type R/M | 00F.D00 | 0   |      |     |          |     |       |         |          |          |           |     |     |     |     |     |
|-----------------------------------------------|---------|-----|------|-----|----------|-----|-------|---------|----------|----------|-----------|-----|-----|-----|-----|-----|
|                                               | 31      | 30  | 29   | 28  | 27       | 26  | 25    | 24      | 23       | 22       | 21        | 20  | 19  | 18  | 17  | 16  |
|                                               |         | 1   | 1    | 1   | r r<br>1 |     | ľ     | Т<br>DA | I<br>ATA | I        |           |     |     |     | I   |     |
| Туре                                          | R/W     | R/W | R/W  | R/W | R/W      | R/W | R/W   | R/W     | R/W      | R/W      | R/W       | R/W | R/W | R/W | R/W | R/W |
| Reset                                         | 0       | 0   | 0    | 0   | 0        | 0   | 0     | 0       | 0        | 0        | 0         | 0   | 0   | 0   | 0   | 0   |
|                                               | 15      | 14  | 13   | 12  | 11       | 10  | 9     | 8       | 7        | 6        | 5         | 4   | 3   | 2   | 1   | 0   |
|                                               |         | T   | 1    | 1   | г т<br>1 |     | 1     | DA      | TA       | I        |           |     |     | ſ   | I   |     |
| Туре                                          | R/W     | R/W | R/W  | R/W | R/W      | R/W | R/W   | R/W     | R/W      | R/W      | R/W       | R/W | R/W | R/W | R/W | R/W |
| Reset                                         | 0       | 0   | 0    | 0   | 0        | 0   | 0     | 0       | 0        | 0        | 0         | 0   | 0   | 0   | 0   | 0   |
| Bit/F                                         | ield    |     | Name |     | Туре     | I   | Reset | Descr   | iption   |          |           |     |     |     |     |     |
| 31                                            | :0      |     | DATA |     | R/W      |     | 0x0   | Data    | alue for | write op | peration. |     |     |     |     |     |

### Register 3: Flash Memory Control (FMC), offset 0x008

When this register is written, the flash controller initiates the appropriate access cycle for the location specified by the **Flash Memory Address (FMA)** register (see page 140). If the access is a write access, the data contained in the **Flash Memory Data (FMD)** register (see page 141) is written.

This is the final register written and initiates the memory operation. There are four control bits in the lower byte of this register that, when set, initiate the memory operation. The most used of these register bits are the ERASE and WRITE bits.

It is a programming error to write multiple control bits and the results of such an operation are unpredictable.

| Base 0x4<br>Offset 0x0                                                                                                                                                                                               | 00F.D00<br>008 | / Contro<br>0<br>0x0000.00 |         | )       |         |                     |                      |                             |                           |                         |                         |          |            |                                       |           |          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------|---------|---------|---------|---------------------|----------------------|-----------------------------|---------------------------|-------------------------|-------------------------|----------|------------|---------------------------------------|-----------|----------|
|                                                                                                                                                                                                                      | 31             | 30                         | 29      | 28      | 27      | 26                  | 25                   | 24                          | 23                        | 22                      | 21                      | 20       | 19         | 18                                    | 17        | 16       |
|                                                                                                                                                                                                                      |                | 1                          |         |         |         |                     | 1                    | WR                          | KEY                       |                         |                         |          |            |                                       | I         |          |
| Type<br>Reset                                                                                                                                                                                                        | WO<br>0        | WO<br>0                    | WO<br>0 | WO<br>0 | WO<br>0 | WO<br>0             | WO<br>0              | WO<br>0                     | WO<br>0                   | WO<br>0                 | WO<br>0                 | WO<br>0  | WO<br>0    | WO<br>0                               | WO<br>0   | WO<br>0  |
|                                                                                                                                                                                                                      | 15             | 14                         | 13      | 12      | 11      | 10                  | 9                    | 8                           | 7                         | 6                       | 5                       | 4        | 3          | 2                                     | 1         | 0        |
|                                                                                                                                                                                                                      |                | •                          |         |         |         | rese                | erved                | •                           |                           |                         |                         | •        | СОМТ       | MERASE                                | ERASE     | WRITE    |
| Type<br>Reset                                                                                                                                                                                                        | RO<br>0        | RO<br>0                    | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0             | RO<br>0              | RO<br>0                     | RO<br>0                   | RO<br>0                 | RO<br>0                 | RO<br>0  | R/W<br>0   | R/W<br>0                              | R/W<br>0  | R/W<br>0 |
| Bit/Field Name Type Reset Description                                                                                                                                                                                |                |                            |         |         |         |                     |                      |                             |                           |                         |                         |          |            |                                       |           |          |
|                                                                                                                                                                                                                      |                |                            |         |         |         | ash writ<br>to occu | es. The<br>r. Writes | value 0><br>to the <b>F</b> | xA442 m<br><b>MC</b> regi | nust be w<br>ster witho | ritten in<br>out this V | to this  |            |                                       |           |          |
| 15:4       reserved       RO       0       Software should not rely on the value of a reserved bit. To compatibility with future products, the value of a reserved b preserved across a read-modify-write operation. |                |                            |         |         |         |                     |                      |                             |                           |                         |                         |          |            |                                       |           |          |
| 3                                                                                                                                                                                                                    |                |                            | COMT    |         | R/W     |                     | 0                    |                             | . ,                       | -                       |                         |          | volatile   | storage.                              | A write o | of 0 has |
| no effect on the state of this bit.<br>If read, the state of the previous commit access is provided<br>previous commit access is complete, a 0 is returned; othen<br>commit access is not complete, a 1 is returned. |                |                            |         |         |         |                     |                      |                             |                           |                         |                         |          |            |                                       |           |          |
| This can take up to 50 µs.                                                                                                                                                                                           |                |                            |         |         |         |                     |                      |                             |                           |                         |                         |          |            |                                       |           |          |
| 2 MERASE R/W 0 Mass erase flash memory.                                                                                                                                                                              |                |                            |         |         |         |                     |                      |                             |                           |                         |                         |          |            |                                       |           |          |
|                                                                                                                                                                                                                      |                |                            |         |         |         |                     |                      |                             | bit is set<br>of 0 has    |                         |                         |          |            | device is                             | all erase | ed. A    |
|                                                                                                                                                                                                                      |                |                            |         |         |         |                     |                      | previc                      | ous mass                  | s erase a               | access is               | s comple | ete, a 0 i | ccess is<br>is returne<br>ete, a 1 is | d; other  | wise, if |
|                                                                                                                                                                                                                      |                |                            |         |         |         |                     |                      | This c                      | an take                   | up to 25                | 0 ms.                   |          |            |                                       |           |          |

| Bit/Field | Name  | Туре | Reset | Description                                                                                                                                                                                       |
|-----------|-------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1         | ERASE | R/W  | 0     | Erase a page of flash memory.                                                                                                                                                                     |
|           |       |      |       | If this bit is set, the page of flash main memory as specified by the contents of <b>FMA</b> is erased. A write of 0 has no effect on the state of this bit.                                      |
|           |       |      |       | If read, the state of the previous erase access is provided. If the previous erase access is complete, a 0 is returned; otherwise, if the previous erase access is not complete, a 1 is returned. |
|           |       |      |       | This can take up to 25 ms.                                                                                                                                                                        |
| 0         | WRITE | R/W  | 0     | Write a word into flash memory.                                                                                                                                                                   |
|           |       |      |       | If this bit is set, the data stored in <b>FMD</b> is written into the location as specified by the contents of <b>FMA</b> . A write of 0 has no effect on the state of this bit.                  |
|           |       |      |       | If read, the state of the previous write update is provided. If the previous write access is complete, a 0 is returned; otherwise, if the write access is not complete, a 1 is returned.          |
|           |       |      |       | This can take up to 50 μs.                                                                                                                                                                        |

June 04, 2007

### Register 4: Flash Controller Raw Interrupt Status (FCRIS), offset 0x00C

This register indicates that the flash controller has an interrupt condition. An interrupt is only signaled if the corresponding **FCIM** register bit is set.

Flash Controller Raw Interrupt Status (FCRIS)

Base 0x400F.D000 Offset 0x00C Type RO, reset 0x0000.0000

|           | 31 | 30       | 29   | 28 | 27    | 26         | 25 | 24                         | 23                                                                                                                                                                                                                                                                                                                                  | 22 | 21 | 20 | 19 | 18 | 17   | 16   |  |
|-----------|----|----------|------|----|-------|------------|----|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|----|----|----|------|------|--|
|           |    |          |      |    |       |            |    |                            |                                                                                                                                                                                                                                                                                                                                     |    |    |    |    |    |      |      |  |
| Туре      | RO | RO       | RO   | RO | RO    | RO         | RO | RO                         | RO                                                                                                                                                                                                                                                                                                                                  | RO | RO | RO | RO | RO | RO   | RO   |  |
| Reset     | 0  | 0        | 0    | 0  | 0     | 0          | 0  | 0                          | 0                                                                                                                                                                                                                                                                                                                                   | 0  | 0  | 0  | 0  | 0  | 0    | 0    |  |
|           | 15 | 14       | 13   | 12 | 11    | 10         | 9  | 8                          | 7                                                                                                                                                                                                                                                                                                                                   | 6  | 5  | 4  | 3  | 2  | 1    | 0    |  |
|           |    | •        |      |    | reser |            |    | erved                      | ved                                                                                                                                                                                                                                                                                                                                 |    |    |    |    | 1  | PRIS | ARIS |  |
| Туре      | RO | RO       | RO   | RO | RO    | RO         | RO | RO                         | RO                                                                                                                                                                                                                                                                                                                                  | RO | RO | RO | RO | RO | RO   | RO   |  |
| Reset     | 0  | 0        | 0    | 0  | 0     | 0          | 0  | 0                          | 0                                                                                                                                                                                                                                                                                                                                   | 0  | 0  | 0  | 0  | 0  | 0    | 0    |  |
| Bit/Field |    |          | Name |    | Туре  | Type Reset |    | Descri                     | iption                                                                                                                                                                                                                                                                                                                              |    |    |    |    |    |      |      |  |
| 31:2      |    | reserved |      |    | RO    |            | 0  | compa                      | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                                                                                                       |    |    |    |    |    |      |      |  |
| 1         |    |          | PRIS |    |       | RO 0       |    |                            | Programming Raw Interrupt Status                                                                                                                                                                                                                                                                                                    |    |    |    |    |    |      |      |  |
|           |    |          |      |    |       |            |    |                            | This bit indicates the current state of the programming cycle. If set, the programming cycle completed; if cleared, the programming cycle has not completed. Programming cycles are either write or erase actions generated through the <b>Flash Memory Control (FMC)</b> register bits (see page 142).                             |    |    |    |    |    |      |      |  |
| 0         |    | ARIS     |      |    | RO    | 0          |    | Acces                      | Access Raw Interrupt Status                                                                                                                                                                                                                                                                                                         |    |    |    |    |    |      |      |  |
|           |    |          |      |    |       |            |    | tried to<br>Prote<br>Progr | This bit indicates if the flash was improperly accessed. If set, the program tried to access the flash counter to the policy as set in the <b>Flash Memory Protection Read Enable (FMPREn)</b> and <b>Flash Memory Protection Program Enable (FMPPEn)</b> registers. Otherwise, no access has tried to improperly access the flash. |    |    |    |    |    |      |      |  |

## Register 5: Flash Controller Interrupt Mask (FCIM), offset 0x010

This register controls whether the flash controller generates interrupts to the controller.

| Flash Controller Interrupt Mask (FCIM)                          |  |
|-----------------------------------------------------------------|--|
| Base 0x400F.D000<br>Offset 0x010<br>Type R/W, reset 0x0000.0000 |  |

|                    | 31 | 30 | 29                        | 28 | 27                | 26 | 25              | 24               | 23           | 22                     | 21                 | 20                                  | 19                                        | 18                                    | 17                                    | 16               |
|--------------------|----|----|---------------------------|----|-------------------|----|-----------------|------------------|--------------|------------------------|--------------------|-------------------------------------|-------------------------------------------|---------------------------------------|---------------------------------------|------------------|
|                    |    | 1  | r r                       |    | r r<br>1          |    | •               | rese             | rved         |                        |                    | 1                                   |                                           | r                                     | 1                                     |                  |
| Туре               | RO | RO | RO                        | RO | RO                | RO | RO              | RO               | RO           | RO                     | RO                 | RO                                  | RO                                        | RO                                    | RO                                    | RO               |
| Reset              | 0  | 0  | 0                         | 0  | 0                 | 0  | 0               | 0                | 0            | 0                      | 0                  | 0                                   | 0                                         | 0                                     | 0                                     | 0                |
|                    |    |    |                           |    |                   |    |                 |                  |              |                        |                    |                                     |                                           |                                       |                                       |                  |
|                    | 15 | 14 | 13                        | 12 | 11                | 10 | 9               | 8                | 7            | 6                      | 5                  | 4                                   | 3                                         | 2                                     | 1                                     | 0                |
|                    |    | T  | r r                       |    | r r<br>1          |    | rese            | erved            |              |                        |                    | 1                                   |                                           | r                                     | PMASK                                 | AMASK            |
| Туре               | RO | RO | RO                        | RO | RO                | RO | RO              | RO               | RO           | RO                     | RO                 | RO                                  | RO                                        | RO                                    | R/W                                   | R/W              |
| Reset              | 0  | 0  | 0                         | 0  | 0                 | 0  | 0               | 0                | 0            | 0                      | 0                  | 0                                   | 0                                         | 0                                     | 0                                     | 0                |
| Bit/Fi<br>31:<br>1 | 2  |    | Name<br>reserved<br>PMASK |    | Type<br>RO<br>R/W |    | Reset<br>0<br>0 |                  |              |                        |                    |                                     | value of<br>operatio<br>ogramm<br>generat | a reserv<br>n.<br>ing raw<br>ed inter | red bit sh<br>interrupt<br>rupt is pr | status<br>omoted |
| 0                  |    |    | AMASK                     |    | R/W               |    | 0               | This b<br>contro | oller. If se | Is the re<br>et, an ac | porting<br>cess-ge | of the ac<br>enerated<br>ts are rec | interrup                                  | t is pron                             | noted to                              | the              |

# Register 6: Flash Controller Masked Interrupt Status and Clear (FCMISC), offset 0x014

This register provides two functions. First, it reports the cause of an interrupt by indicating which interrupt source or sources are signalling the interrupt. Second, it serves as the method to clear the interrupt reporting.

Flash Controller Masked Interrupt Status and Clear (FCMISC) Base 0x400F.D000

Offset 0x014 Type R/W1C, reset 0x0000.0000

|                                                                  | 31   | 30 | 29       | 28 | 27    | 26          | 25         | 24      | 23        | 22                   | 21        | 20        | 19        | 18       | 17         | 16      |
|------------------------------------------------------------------|------|----|----------|----|-------|-------------|------------|---------|-----------|----------------------|-----------|-----------|-----------|----------|------------|---------|
|                                                                  |      | 1  | 1 1      |    | 1 1   |             | 1          | rese    | rved      | 1                    |           | 1         | I         | i i      | 1          |         |
| Туре                                                             | RO   | RO | RO       | RO | RO    | RO          | RO         | RO      | RO        | RO                   | RO        | RO        | RO        | RO       | RO         | RO      |
| Reset                                                            | 0    | 0  | 0        | 0  | 0     | 0           | 0          | 0       | 0         | 0                    | 0         | 0         | 0         | 0        | 0          | 0       |
|                                                                  |      |    |          |    |       |             |            |         |           |                      |           |           |           |          |            |         |
|                                                                  | 15   | 14 | 13       | 12 | 11    | 10          | 9          | 8       | 7         | 6                    | 5         | 4         | 3         | 2        | 1          | 0       |
|                                                                  |      |    | • •      |    |       |             | • rese     | erved   |           | •                    |           |           |           |          | PMISC      | AMISC   |
| Туре                                                             | RO   | RO | RO       | RO | RO    | RO          | RO         | RO      | RO        | RO                   | RO        | RO        | RO        | RO       | R/W1C      | R/W1C   |
| Reset                                                            | 0    | 0  | 0        | 0  | 0     | 0           | 0          | 0       | 0         | 0                    | 0         | 0         | 0         | 0        | 0          | 0       |
|                                                                  |      |    |          |    |       |             |            |         |           |                      |           |           |           |          |            |         |
| Bit/F                                                            | ield |    | Name     |    | Туре  |             | Reset      | Descr   | iption    |                      |           |           |           |          |            |         |
| 31                                                               | 2    |    | recorved |    | PO    |             | 0          | Softw   | aro choi  | uld not re           | ly on th  |           | of a rose | word hi  |            | vido    |
| 31:2 reserved RO 0 Software sho<br>compatibility<br>preserved ac |      |    |          |    |       | atibility v | with futur | e produ | cts, the  | value of             | a reserv  | •         |           |          |            |         |
|                                                                  |      |    |          |    |       |             |            | p       |           |                      |           | .,        |           |          |            |         |
| 1                                                                |      |    | PMISC    |    | R/W1C |             | 0          | Progra  | amming    | Masked               | Interru   | ot Status | and Cle   | ear      |            |         |
|                                                                  |      |    |          |    |       |             |            | This h  | it indica | ites whet            | her an i  | nterrunt  | was sini  | haled be | ecause a   |         |
|                                                                  |      |    |          |    |       |             |            |         |           |                      |           |           |           |          | his bit is |         |
|                                                                  |      |    |          |    |       |             |            |         | •         |                      | •         |           |           |          | bage 144   |         |
|                                                                  |      |    |          |    |       |             |            | cleare  | d when    | the PMI              | sc bit is | cleared   |           |          | U U        | ,       |
| 0                                                                |      |    | AMISC    |    | R/W1C |             | 0          | A       | o Mook    | od Intorr            | unt Stat  | up and (  | loor      |          |            |         |
| 0                                                                |      |    | AMISC    |    | R/WIC |             | 0          | Acces   | 5 11/1051 | ed Interro           | upi Siai  | us anu c  | leal      |          |            |         |
|                                                                  |      |    |          |    |       |             |            |         |           | tes wheth<br>tempted |           | •         | -         |          | ause an ir | nproper |

bit is cleared.

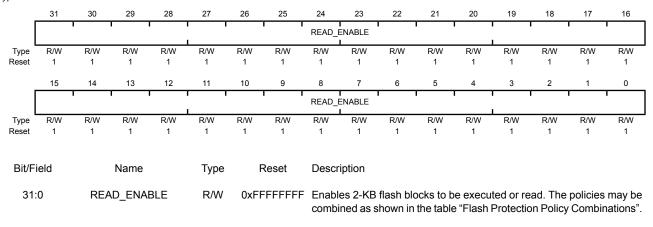
## Register 7: USec Reload (USECRL), offset 0x140

**Note:** Offset is relative to System Control base address of 0x400F.E000

This register is provided as a means of creating a 1-µs tick divider reload value for the flash controller. The internal flash has specific minimum and maximum requirements on the length of time the high voltage write pulse can be applied. It is required that this register contain the operating frequency (in MHz -1) whenever the flash is being erased or programmed. The user is required to change this value if the clocking conditions are changed for a flash erase/program operation.

| USec R<br>Base 0x4<br>Offset 0x7<br>Type R/W | 00F.E00 | 00 | RL)      |      |      |    |       |       |                    |            |          |          |                                    |           |            |         |
|----------------------------------------------|---------|----|----------|------|------|----|-------|-------|--------------------|------------|----------|----------|------------------------------------|-----------|------------|---------|
|                                              | 31      | 30 | 29       | 28   | 27   | 26 | 25    | 24    | 23                 | 22         | 21       | 20       | 19                                 | 18        | 17         | 16      |
|                                              |         | 1  | 1        |      |      |    | 1     | rese  | rved<br>I          | 1          | 1        | ſ        | 1                                  | 1         | 1          | 1       |
| Туре                                         | RO      | RO | RO       | RO   | RO   | RO | RO    | RO    | RO                 | RO         | RO       | RO       | RO                                 | RO        | RO         | RO      |
| Reset                                        | 0       | 0  | 0        | 0    | 0    | 0  | 0     | 0     | 0                  | 0          | 0        | 0        | 0                                  | 0         | 0          | 0       |
|                                              | 15      | 14 | 13       | 12   | 11   | 10 | 9     | 8     | 7                  | 6          | 5        | 4        | 3                                  | 2         | 1          | 0       |
|                                              |         | T  | 1 1      | rese | rved |    | 1     | 1     |                    | 1          | I        | US       | I<br>SEC                           | I         | I          |         |
| Туре                                         | RO      | RO | RO       | RO   | RO   | RO | RO    | RO    | R/W                | R/W        | R/W      | R/W      | R/W                                | R/W       | R/W        | R/W     |
| Reset                                        | 0       | 0  | 0        | 0    | 0    | 0  | 0     | 0     | 0                  | 0          | 1        | 1        | 0                                  | 0         | 0          | 1       |
| Bit/F                                        | ield    |    | Name     |      | Туре |    | Reset | Descr | iption             |            |          |          |                                    |           |            |         |
| Bit/Field<br>31:8                            |         |    | reserved |      | RO   |    | 0     | compa | atibility v        | vith futur | e produ  | cts, the | of a rese<br>value of<br>operation | a reserv  | •          |         |
| 7:(                                          | 0       |    | USEC     |      | R/W  |    | 0x31  |       | 1 of the ammed.    | controlle  | er clock | when the | e flash is                         | s being e | erased o   | r       |
|                                              |         |    |          |      |      |    |       |       | should b<br>gramme |            | 0x31 (50 | ) MHz) w | henever                            | the flash | n is being | gerased |

## Register 8: Flash Memory Protection Read Enable 0 (FMPRE0), offset 0x130 and 0x200


**Note:** This register is aliased for backwards compatability.

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the read-only protection bits for each 2-KB flash block (**FMPPEn** stores the execute-only bits). This register is loaded during the power-on reset sequence. The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.

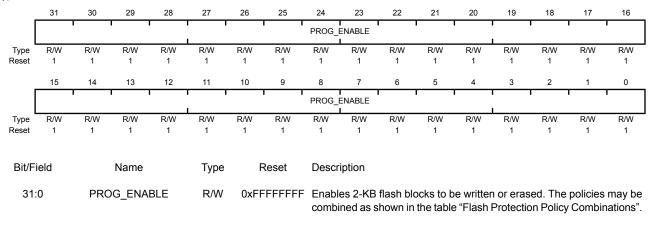
Flash Memory Protection Read Enable 0 (FMPRE0)

Base 0x400F.D000 Offset 0x130 and 0x200 Type R/W



#### Value Description

## Register 9: Flash Memory Protection Program Enable 0 (FMPPE0), offset 0x134 and 0x400


**Note:** This register is aliased for backwards compatability.

**Note:** Offset is relative to System Control base address of 0x400FE000.

This register stores the execute-only protection bits for each 2-KB flash block (**FMPREn** stores the execute-only bits). This register is loaded during the power-on reset sequence. The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.

#### Flash Memory Protection Program Enable 0 (FMPPE0)

Base 0x400F.D000 Offset 0x134 and 0x400 Type R/W



#### Value Description

## Register 10: User Debug (USER\_DBG), offset 0x1D0

Note: Offset is relative to System Control base address of 0x400FE000.

This register provides a write-once mechanism to disable external debugger access to the device in addition to 27 additional bits of user-defined data. The DBG0 bit (bit 0) is set to 0 from the factory and the DBG1 bit (bit 1) is set to 1, which enables external debuggers. Changing the DBG1 bit to 0 disables any external debugger access to the device permanently, starting with the next power-up cycle of the device. The NOTWRITTEN bit (bit 31) indicates that the register is available to be written and is controlled through hardware to ensure that the register is only written once.

|                                                                                                 |            | _        | DBG)     |          |          |          |          |          |                     |           |           |            |             |          |           |           |
|-------------------------------------------------------------------------------------------------|------------|----------|----------|----------|----------|----------|----------|----------|---------------------|-----------|-----------|------------|-------------|----------|-----------|-----------|
|                                                                                                 | 31         | 30       | 29       | 28       | 27       | 26       | 25       | 24       | 23                  | 22        | 21        | 20         | 19          | 18       | 17        | 16        |
|                                                                                                 | NOTWRITTEN |          |          | 1        |          |          |          |          | DATA                |           |           |            |             | I        |           |           |
| Type<br>Reset                                                                                   | R/W<br>1   | R/W<br>1 | R/W<br>1 | R/W<br>1 | R/W<br>1 | R/W<br>1 | R/W<br>1 | R/W<br>1 | R/W<br>1            | R/W<br>1  | R/W<br>1  | R/W<br>1   | R/W<br>1    | R/W<br>1 | R/W<br>1  | R/W<br>1  |
|                                                                                                 | 15         | 14       | 13       | 12       | 11       | 10       | 9        | 8        | 7                   | 6         | 5         | 4          | 3           | 2        | 1         | 0         |
|                                                                                                 |            |          | 1        | 1        | r r      |          | DATA     |          |                     |           | I         |            |             | INIT1    | DBG1      | DBG0      |
| Type<br>Reset                                                                                   | R/W<br>1   | R/W<br>1 | R/W<br>1 | R/W<br>1 | R/W<br>1 | R/W<br>1 | R/W<br>1 | R/W<br>1 | R/W<br>1            | R/W<br>1  | R/W<br>1  | R/W<br>1   | R/W<br>1    | R/W<br>1 | R/W<br>1  | R/W<br>0  |
| Bit/F                                                                                           | ield       |          | Name     |          | Туре     | F        | Reset    | Descr    | iption              |           |           |            |             |          |           |           |
| 3                                                                                               | 1          | NO       | TWRITT   | EN       | R/W      |          | 1        | Speci    | fies that           | this 32-I | oit dword | d has no   | t been w    | ritten.  |           |           |
| 30                                                                                              | :3         |          | DATA     |          | R/W      | 0xF      | FFFFF    |          | ins the use writter |           | a value.  | This field | d is initia | lized to | all 1s an | id can    |
| 2                                                                                               | 2          |          | INIT1    |          | R/W      |          | 1        | User of  | data initia         | alized to | 1.        |            |             |          |           |           |
| 1                                                                                               |            |          | DBG1     |          | R/W      |          | 1        | The ⊃    | BG1 bit r           | nust be   | 1 and D   | BG0 mus    | st be 0 fc  | or debug | to be av  | /ailable. |
| 1     DBG1     R/W     1     The DBG1 bit mu       0     DBG0     R/W     0     The DBG1 bit mu |            |          |          |          |          | nust be  | 1 and D  | BG0 mus  | st be 0 fo          | or debug  | to be av  | ailable.   |             |          |           |           |

### Register 11: User Register 0 (USER\_REG0), offset 0x1E0

**Note:** Offset is relative to System Control base address of 0x400FE000.

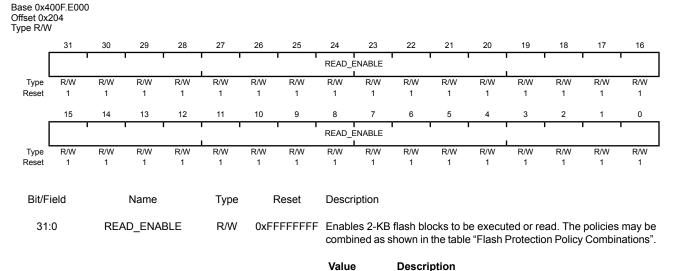
This register provides 31 bits of user-defined data that is non-volatile and can only be written once. Bit 31 indicates that the register is available to be written and is controlled through hardware to ensure that the register is only written once. The write-once characteristics of this register are useful for keeping static information like communication addresses that need to be unique per part and would otherwise require an external EEPROM or other non-volatile device.

#### Base 0x400F.E000 Offset 0x1E0 Type R/W 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 DIMRITE DATA R/W Туре 0 0 0 Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 15 14 13 12 11 10 9 8 7 6 5 2 1 0 4 3 DATA Туре R/W Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Bit/Field Name Reset Description Туре 31 NOTWRITTEN R/W Specifies that this 32-bit dword has not been written. 1 0xFFFFFFF Contains the user data value. This field is initialized to all 1s and can 30:0 DATA R/W only be written once.

User Register 0 (USER\_REG0)

## Register 12: User Register 1 (USER\_REG1), offset 0x1E4

**Note:** Offset is relative to System Control base address of 0x400FE000.


This register provides 31 bits of user-defined data that is non-volatile and can only be written once. Bit 31 indicates that the register is available to be written and is controlled through hardware to ensure that the register is only written once. The write-once characteristics of this register are useful for keeping static information like communication addresses that need to be unique per part and would otherwise require an external EEPROM or other non-volatile device.

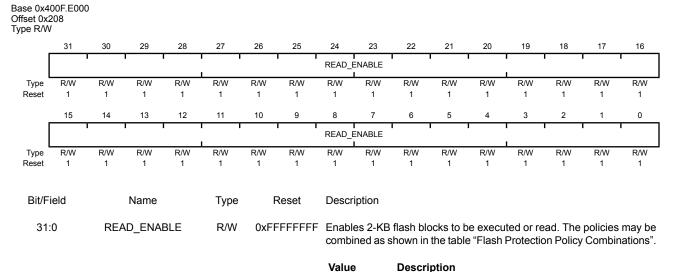
|       |            | -   | R_RE   | G1) |          |     |        |       |                          |          |           |            |             |          |           |        |
|-------|------------|-----|--------|-----|----------|-----|--------|-------|--------------------------|----------|-----------|------------|-------------|----------|-----------|--------|
|       | 31         | 30  | 29     | 28  | 27       | 26  | 25     | 24    | 23                       | 22       | 21        | 20         | 19          | 18       | 17        | 16     |
|       | NOTWRITTEN |     | I      | 1   | r r      |     | 1 I    |       | DATA                     | I        | 1         | I          | 1           | I        | 1         |        |
| Туре  | R/W        | R/W | R/W    | R/W | R/W      | R/W | R/W    | R/W   | R/W                      | R/W      | R/W       | R/W        | R/W         | R/W      | R/W       | R/W    |
| Reset | 1          | 0   | 0      | 0   | 1        | 1   | 1      | 1     | 1                        | 1        | 1         | 1          | 1           | 1        | 1         | 1      |
|       | 15         | 14  | 13     | 12  | 11       | 10  | 9      | 8     | 7                        | 6        | 5         | 4          | 3           | 2        | 1         | 0      |
|       | •          |     | •      | 1   | , ,<br>, |     |        | DA    | ATA                      | 1        | •         | •          | I           | 1        | 1         | '      |
| Туре  | R/W        | R/W | R/W    | R/W | R/W      | R/W | R/W    | R/W   | R/W                      | R/W      | R/W       | R/W        | R/W         | R/W      | R/W       | R/W    |
| Reset | 1          | 1   | 1      | 1   | 1        | 1   | 1      | 1     | 1                        | 1        | 1         | 1          | 1           | 1        | 1         | 1      |
| Bit/F | ïeld       |     | Name   |     | Туре     | ſ   | Reset  | Descr | iption                   |          |           |            |             |          |           |        |
| 3     | 1          | NO  | TWRITT | EN  | R/W      |     | 1      | Speci | fies that                | this 32- | bit dword | d has no   | t been w    | ritten.  |           |        |
| 30    | :0         |     | DATA   |     | R/W      | 0xF | FFFFFF |       | ains the u<br>be writter |          | a value.  | This field | d is initia | lized to | all 1s ar | nd can |

### Register 13: Flash Memory Protection Read Enable 1 (FMPRE1), offset 0x204

**Note:** Offset is relative to System Control base address of 0x400FE000.

This register stores the read-only protection bits for each 2-KB flash block (**FMPPEn** stores the execute-only bits). This register is loaded during the power-on reset sequence. The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.




0xFFFFFFF Enables 256 KB of flash.

Flash Memory Protection Read Enable 1 (FMPRE1)

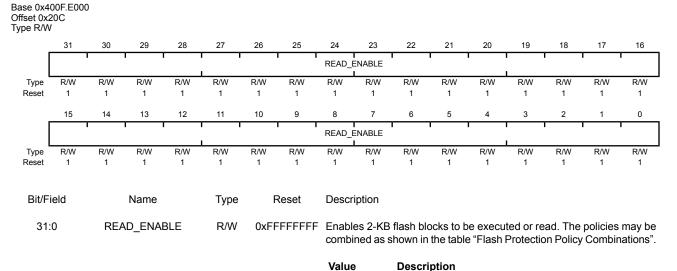
#### Register 14: Flash Memory Protection Read Enable 2 (FMPRE2), offset 0x208

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the read-only protection bits for each 2-KB flash block (**FMPPEn** stores the execute-only bits). This register is loaded during the power-on reset sequence. The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.



0xFFFFFFF Enables 256 KB of flash.


Flash Memory Protection Read Enable 2 (FMPRE2)

June 04, 2007

#### Register 15: Flash Memory Protection Read Enable 3 (FMPRE3), offset 0x20C

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the read-only protection bits for each 2-KB flash block (**FMPPEn** stores the execute-only bits). This register is loaded during the power-on reset sequence. The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.



0xFFFFFFF Enables 256 KB of flash.

Flash Memory Protection Read Enable 3 (FMPRE3)

# Register 16: Flash Memory Protection Program Enable 1 (FMPPE1), offset 0x404

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the execute-only protection bits for each 2-KB flash block (**FMPREn** stores the execute-only bits). This register is loaded during the power-on reset sequence. The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.

| Offset 0x4<br>Type R/W |          | -        |          |          |          |          |          |          |                     |          |          |          |          |          |          |                     |
|------------------------|----------|----------|----------|----------|----------|----------|----------|----------|---------------------|----------|----------|----------|----------|----------|----------|---------------------|
|                        | 31       | 30       | 29       | 28       | 27       | 26       | 25       | 24       | 23                  | 22       | 21       | 20       | 19       | 18       | 17       | 16                  |
|                        |          | I        | I        | I        | ı ı      |          | r r      | PROG_I   | ENABLE              |          |          |          |          | I        | I        |                     |
| Type<br>Reset          | R/W<br>1            | R/W<br>1 | R/W<br>1 | R/W<br>1 | R/W<br>1 | R/W<br>1 | R/W<br>1 | R/W<br>1            |
|                        | 15       | 14       | 13       | 12       | 11       | 10       | 9        | 8        | 7                   | 6        | 5        | 4        | 3        | 2        | 1        | 0                   |
|                        |          | I        | I        | 1        | , ,      |          | 1 1      | PROG_I   | ENABLE              |          |          |          |          | 1        | I        | 1                   |
| Туре                   | R/W                 | R/W      | R/W      | R/W      | R/W      | R/W      | R/W      | R/W                 |
| Reset                  | 1        | 1        | 1        | 1        | 1        | 1        | 1        | 1        | 1                   | 1        | 1        | 1        | 1        | 1        | 1        | 1                   |
| Bit/F                  | ield     |          | Name     |          | Туре     | F        | Reset    | Descr    | iption              |          |          |          |          |          |          |                     |
| 31                     | :0       | PRC      | OG_ENA   | BLE      | R/W      | 0xFI     | FFFFFF   |          | es 2-KB<br>ned as s |          |          |          |          |          | •        | may be<br>nations". |
|                        |          |          |          |          |          |          |          | Value    | )                   | Descri   | ption    |          |          |          |          |                     |

Flash Memory Protection Program Enable 1 (FMPPE1)

#### Register 17: Flash Memory Protection Program Enable 2 (FMPPE2), offset 0x408

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the execute-only protection bits for each 2-KB flash block (FMPREn stores the execute-only bits). This register is loaded during the power-on reset sequence. The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.

| Offset 0x4<br>Type R/W |          |          |          |          |          |          |          |          |                      |          |          |          |          |          |          |          |
|------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------------------|----------|----------|----------|----------|----------|----------|----------|
|                        | 31       | 30       | 29       | 28       | 27       | 26       | 25       | 24       | 23                   | 22       | 21       | 20       | 19       | 18       | 17       | 16       |
|                        |          | 1        | 1        | I        |          |          | 1 1      | PROG_    | I I<br>ENABLE        |          | 1        | I        |          |          | 1        | ·        |
| Type<br>Reset          | R/W<br>1             | R/W<br>1 | R/W<br>1 | R/W<br>1 | R/W<br>1 | R/W<br>1 | R/W<br>1 | R/W<br>1 |
|                        | 15       | 14       | 13       | 12       | 11       | 10       | 9        | 8        | 7                    | 6        | 5        | 4        | 3        | 2        | 1        | 0        |
|                        |          | I        | I        |          | , ,<br>, |          | 1 1      | PROG_    | I I<br>ENABLE        |          | 1        |          |          |          | I        | 1        |
| Type<br>Reset          | R/W<br>1             | R/W<br>1 | R/W<br>1 | R/W<br>1 | R/W<br>1 | R/W<br>1 | R/W<br>1 | R/W<br>1 |
|                        |          |          |          |          |          |          |          |          |                      |          |          |          |          |          |          |          |
| Bit/F                  | ield     |          | Name     |          | Туре     | F        | Reset    | Descr    | ription              |          |          |          |          |          |          |          |
| 31                     | :0       | PRC      | G_ENA    | BLE      | R/W      | 0xFI     | FFFFFF   |          | es 2-KB<br>ined as s |          |          |          |          |          | •        |          |
|                        |          |          |          |          |          |          |          | Value    | 9                    | Descri   | ption    |          |          |          |          |          |

Flash Memory Protection Program Enable 2 (FMPPE2)

Base 0x400F.E000

#### Register 18: Flash Memory Protection Program Enable 3 (FMPPE3), offset 0x40C

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the execute-only protection bits for each 2-KB flash block (FMPREn stores the execute-only bits). This register is loaded during the power-on reset sequence. The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.

| Offset 0x4<br>Type R/W | 40C      | J        |          |          |          |          |          |          |          |          |          |          |          |          |          |                       |
|------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------------------|
|                        | 31       | 30       | 29       | 28       | 27       | 26       | 25       | 24       | 23       | 22       | 21       | 20       | 19       | 18       | 17       | 16                    |
|                        |          | 1        | T        | 1        | т т      |          | 1 1      | PROG_    | ENABLE   | ſ        | I        | 1        | г<br>1   | I        | 1        | 1                     |
| Type<br>Reset          | R/W<br>1              |
|                        | 15       | 14       | 13       | 12       | 11       | 10       | 9        | 8        | 7        | 6        | 5        | 4        | 3        | 2        | 1        | 0                     |
|                        |          | 8        | 1        | 1        | · ·      |          |          | PROG_    | ENABLE   |          | 1        | 1        | 1        |          | •        | '                     |
| Туре                   | R/W                   |
| Reset                  | 1        | 1        | 1        | 1        | 1        | 1        | 1        | 1        | 1        | 1        | 1        | 1        | 1        | 1        | 1        | 1                     |
| Bit/F                  | ield     |          | Name     |          | Туре     |          | Reset    | Descr    | iption   |          |          |          |          |          |          |                       |
| 31                     | :0       | PRC      | G_ENA    | BLE      | R/W      | 0xF      | FFFFFF   |          |          |          |          |          |          |          | •        | s may be<br>nations". |
|                        |          |          |          |          |          |          |          | Value    | •        | Descri   | ption    |          |          |          |          |                       |

Flash Memory Protection Program Enable 3 (FMPPE3) Base 0x400F E000

## 9 General-Purpose Input/Outputs (GPIOs)

The GPIO module is composed of seven physical GPIO blocks, each corresponding to an individual GPIO port (Port A, Port B, Port C, Port D, Port E, Port F, and Port G, ). The GPIO module is FiRM-compliant and supports 0-42 programmable input/output pins, depending on the peripherals being used.

The GPIO module has the following features:

- Programmable control for GPIO interrupts
  - Interrupt generation masking
  - Edge-triggered on rising, falling, or both
  - Level-sensitive on High or Low values
- 5-V-tolerant input/outputs
- Bit masking in both read and write operations through address lines
- Programmable control for GPIO pad configuration
  - Weak pull-up or pull-down resistors
  - 2-mA, 4-mA, and 8-mA pad drive
  - Slew rate control for the 8-mA drive
  - Open drain enables
  - Digital input enables

#### 9.1 Function Description

Important: All GPIO pins are tri-stated by default (GPIOAFSEL=0, GPIODEN=0, GPIOPDR=0, and GPIOPUR=0), with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). The JTAG/SWD pins default to their JTAG/SWD functionality (GPIOAFSEL=1, GPIODEN=1 and GPIOPUR=1). A Power-On-Reset (POR) or asserting RST puts both groups of pins back to their default state.

Each GPIO port is a separate hardware instantiation of the same physical block. The LM3S6965 microcontroller contains seven ports and thus seven of these physical GPIO blocks.

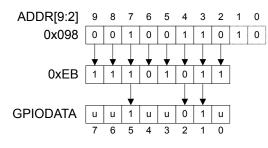
#### 9.1.1 Data Control

The data control registers allow software to configure the operational modes of the GPIOs. The data direction register configures the GPIO as an input or an output while the data register either captures incoming data or drives it out to the pads.

#### 9.1.1.1 Data Direction Operation

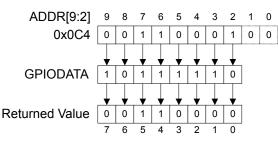
The **GPIO Direction (GPIODIR)** register (see page 167) is used to configure each individual pin as an input or output. When the data direction bit is set to 0, the GPIO is configured as an input and the corresponding data register bit will capture and store the value on the GPIO port. When the data

direction bit is set to 1, the GPIO is configured as an output and the corresponding data register bit will be driven out on the GPIO port.


#### 9.1.1.2 Data Register Operation

To aid in the efficiency of software, the GPIO ports allow for the modification of individual bits in the **GPIO Data (GPIODATA)** register (see page 166) by using bits [9:2] of the address bus as a mask. This allows software drivers to modify individual GPIO pins in a single instruction, without affecting the state of the other pins. This is in contrast to the "typical" method of doing a read-modify-write operation to set or clear an individual GPIO pin. To accommodate this feature, the **GPIODATA** register covers 256 locations in the memory map.

During a write, if the address bit associated with that data bit is set to 1, the value of the **GPIODATA** register is altered. If it is cleared to 0, it is left unchanged.


For example, writing a value of 0xEB to the address GPIODATA + 0x098 would yield as shown in Figure 9-1 on page 160, where u is data unchanged by the write.

#### Figure 9-1. GPIODATA Write Example



During a read, if the address bit associated with the data bit is set to 1, the value is read. If the address bit associated with the data bit is set to 0, it is read as a zero, regardless of its actual value. For example, reading address GPIODATA + 0x0C4 yields as shown in Figure 9-2 on page 160.

#### Figure 9-2. GPIODATA Read Example



#### 9.1.2 Interrupt Control

The interrupt capabilities of each GPIO port are controlled by a set of seven registers. With these registers, it is possible to select the source of the interrupt, its polarity, and the edge properties. When one or more GPIO inputs cause an interrupt, a single interrupt output is sent to the interrupt controller for the entire GPIO port. For edge-triggered interrupts, software must clear the interrupt to enable any further interrupts. For a level-sensitive interrupt, it is assumed that the external source holds the level constant for the interrupt to be recognized by the controller.

Three registers are required to define the edge or sense that causes interrupts:

- **GPIO Interrupt Sense (GPIOIS)** register (see page 168)
- GPIO Interrupt Both Edges (GPIOIBE) register (see page 169)
- **GPIO Interrupt Event (GPIOIEV)** register (see page 170)

Interrupts are enabled/disabled via the GPIO Interrupt Mask (GPIOIM) register (see page 171).

When an interrupt condition occurs, the state of the interrupt signal can be viewed in two locations: the **GPIO Raw Interrupt Status (GPIORIS)** and **GPIO Masked Interrupt Status (GPIOMIS)** registers (see page 172 and page 173). As the name implies, the **GPIOMIS** register only shows interrupt conditions that are allowed to be passed to the controller. The **GPIORIS** register indicates that a GPIO pin meets the conditions for an interrupt, but has not necessarily been sent to the controller.

In addition to providing GPIO functionality, PB4 can also be used as an external trigger for the ADC. If PB4 is configured as a non-masked interrupt pin (GPIOIM is set to 1), not only is an interrupt for PortB generated, but an external trigger signal is sent to the ADC. If the **ADC Event Multiplexer Select (ADCEMUX)** register is configured to use the external trigger, an ADC conversion is initiated.

If no other PortB pins are being used to generate interrupts, the ARM Integrated Nested Vectored Interrupt Controller (NVIC) Interrupt Set Enable (SETNA) register can disable the PortB interrupts and the ADC interrupt can be used to read back the converted data. Otherwise, the PortB interrupt handler needs to ignore and clear interrupts on B4, and wait for the ADC interrupt or the ADC interrupt needs to be disabled in the SETNA register and the PortB interrupt handler polls the ADC registers until the conversion is completed.

Interrupts are cleared by writing a 1 to the GPIO Interrupt Clear (GPIOICR) register (see page 174).

When programming the following interrupt control registers, the interrupts should be masked (**GPIOIM** set to 0). Writing any value to an interrupt control register (**GPIOIS**, **GPIOIBE**, or **GPIOIEV**) can generate a spurious interrupt if the corresponding bits are enabled.

#### 9.1.3 Mode Control

The GPIO pins can be controlled by either hardware or software. When hardware control is enabled via the **GPIO Alternate Function Select (GPIOAFSEL)** register (see page 175), the pin state is controlled by its alternate function (that is, the peripheral). Software control corresponds to GPIO mode, where the **GPIODATA** register is used to read/write the corresponding pins.

#### 9.1.4 Commit Control

The commit control registers provide a layer of protection against accidental programming of critical hardware peripherals. Writes to protected bits of the **GPIO Alternate Function Select (GPIOAFSEL)** register (see page 175) are not committed to storage unless the **GPIO Lock (GPIOLOCK)** register (see page 185) has been unlocked and the appropriate bits of the **GPIO Commit (GPIOCR)** register (see page 186) have been set to 1.

#### 9.1.5 Pad Control

The pad control registers allow for GPIO pad configuration by software based on the application requirements. The pad control registers include the **GPIODR2R**, **GPIODR4R**, **GPIODR8R**, **GPIOODR**, **GPIOPUR**, **GPIOPDR**, **GPIOSLR**, and **GPIODEN** registers.

#### 9.1.6 Identification

The identification registers configured at reset allow software to detect and identify the module as a GPIO block. The identification registers include the **GPIOPeriphID0-GPIOPeriphID7** registers as well as the **GPIOPCeIIID0-GPIOPCeIIID3** registers.

## 9.2 Initialization and Configuration

To use the GPIO, the peripheral clock must be enabled by setting the appropriate GPIO Port bit field (GPIOn) in the **RCGC2** register.

On reset, all GPIO pins (except for the five JTAG pins) are configured out of reset to be undriven (tristate): **GPIOAFSEL**=0, **GPIODEN**=0, **GPIOPDR**=0, and **GPIOPUR**=0. Table 9-1 on page 162 shows all possible configurations of the GPIO pads and the control register settings required to achieve them. Table 9-2 on page 163 shows how a rising edge interrupt would be configured for pin 2 of a GPIO port.

| Configuration                                 | GPIO Reg | gister Bit V | alue <sup>a</sup> |     |     |     |      |      |      |     |
|-----------------------------------------------|----------|--------------|-------------------|-----|-----|-----|------|------|------|-----|
|                                               | AFSEL    | DIR          | ODR               | DEN | PUR | PDR | DR2R | DR4R | DR8R | SLR |
| Digital Input (GPIO)                          | 0        | 0            | 0                 | 1   | ?   | ?   | X    | Х    | Х    | X   |
| Digital Output (GPIO)                         | 0        | 1            | 0                 | 1   | ?   | ?   | ?    | ?    | ?    | ?   |
| Open Drain Input<br>(GPIO)                    | 0        | 0            | 1                 | 1   | X   | X   | X    | X    | X    | X   |
| Open Drain Output<br>(GPIO)                   | 0        | 1            | 1                 | 1   | X   | X   | ?    | ?    | ?    | ?   |
| Open Drain<br>Input/Output (I <sup>2</sup> C) | 1        | X            | 1                 | 1   | X   | X   | ?    | ?    | ?    | ?   |
| Digital Input (Timer<br>CCP)                  | 1        | Х            | 0                 | 1   | ?   | ?   | X    | X    | X    | X   |
| Digital Input (QEI)                           | 1        | Х            | 0                 | 1   | ?   | ?   | X    | Х    | Х    | X   |
| Digital Output (PWM)                          | 1        | Х            | 0                 | 1   | ?   | ?   | ?    | ?    | ?    | ?   |
| Digital Output (Timer<br>PWM)                 | 1        | X            | 0                 | 1   | ?   | ?   | ?    | ?    | ?    | ?   |
| Digital Input/Output<br>(SSI)                 | 1        | X            | 0                 | 1   | ?   | ?   | ?    | ?    | ?    | ?   |
| Digital Input/Output<br>(UART)                | 1        | Х            | 0                 | 1   | ?   | ?   | ?    | ?    | ?    | ?   |
| Analog Input<br>(Comparator)                  | 0        | 0            | 0                 | 0   | 0   | 0   | X    | X    | X    | X   |
| Digital Output<br>(Comparator)                | 1        | Х            | 0                 | 1   | ?   | ?   | ?    | ?    | ?    | ?   |

#### **Table 9-1. GPIO Pad Configuration Examples**

a. X=Ignored (don't care bit)

?=Can be either 0 or 1, depending on the configuration

| Register | Desired                                                                     | Pin 2 Bit Va | lue <sup>a</sup> |   |   |   |   |   |   |
|----------|-----------------------------------------------------------------------------|--------------|------------------|---|---|---|---|---|---|
|          | Interrupt<br>Event<br>Trigger                                               | 7            | 6                | 5 | 4 | 3 | 2 | 1 | 0 |
| GPIOIS   | 0=edge<br>1=level                                                           | X            | X                | X | X | X | 0 | X | X |
| GPIOIBE  | 0=single<br>edge<br>1=both<br>edges                                         | X            | x                | x | x | X | 0 | X | x |
| GPIOIEV  | 0=Low level,<br>or negative<br>edge<br>1=High level,<br>or positive<br>edge |              | X                | X | X | X | 1 | X | X |
| GPIOIM   | 0=masked<br>1=not<br>masked                                                 | 0            | 0                | 0 | 0 | 0 | 1 | 0 | 0 |

 Table 9-2. GPIO Interrupt Configuration Example

a. X=Ignored (don't care bit)

## 9.3 Register Map

"Register Map" on page 164 lists the GPIO registers. The offset listed is a hexadecimal increment to the register's address, relative to that GPIO port's base address:

- GPIO Port A: 0x4000.4000
- GPIO Port B: 0x4000.5000
- GPIO Port C: 0x4000.6000
- GPIO Port D: 0x4000.7000
- GPIO Port E: 0x4002.4000
- GPIO Port F: 0x4002.5000
- GPIO Port G: 0x4002.6000

Important: The GPIO registers in this chapter are duplicated in each GPIO block, however, depending on the block, all eight bits may not be connected to a GPIO pad. In those cases, writing to those unconnected bits has no effect and reading those unconnected bits returns no meaningful data.

Note: The default reset value for the **GPIOAFSEL**, **GPIOPUR**, and **GPIODEN** registers are 0x0000.0000 for all GPIO pins, with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). These five pins default to JTAG/SWD functionality. Because of this, the default reset value of these registers for GPIO Port B is 0x0000.0080 while the default reset value for Port C is 0x0000.000F.

The default register type for the **GPIOCR** register is RO for all GPIO pins, with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). These five pins are currently the only GPIOs that are protected by the **GPIOCR** register. Because of this, the register type for GPIO Port B7 and GPIO Port C[3:0] is R/W.

The default reset value for the **GPIOCR** register is 0x0000.00FF for all GPIO pins, with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). To ensure that the JTAG port is not accidentally programmed as a GPIO, these five pins default to non-commitable. Because of this, the default reset value of **GPIOCR** for GPIO Port B is 0x0000.007F while the default reset value of **GPIOCR** for Port C is 0x0000.00F0.

| Table 9 | -3. GPIO | Register | Мар |
|---------|----------|----------|-----|
|---------|----------|----------|-----|

| Offset | Name          | Туре | Reset         | Description                      | See<br>page |
|--------|---------------|------|---------------|----------------------------------|-------------|
| 0x000  | GPIODATA      | R/W  | 0x0000.0000   | GPIO Data                        | 166         |
| 0x400  | GPIODIR       | R/W  | 0x0000.0000   | GPIO Direction                   | 167         |
| 0x404  | GPIOIS        | R/W  | 0x0000.0000   | GPIO Interrupt Sense             | 168         |
| 0x408  | GPIOIBE       | R/W  | 0x0000.0000   | GPIO Interrupt Both Edges        | 169         |
| 0x40C  | GPIOIEV       | R/W  | 0x0000.0000   | GPIO Interrupt Event             | 170         |
| 0x410  | GPIOIM        | R/W  | 0x0000.0000   | GPIO Interrupt Mask              | 171         |
| 0x414  | GPIORIS       | RO   | 0x0000.0000   | GPIO Raw Interrupt Status        | 172         |
| 0x418  | GPIOMIS       | RO   | 0x0000.0000   | GPIO Masked Interrupt Status     | 173         |
| 0x41C  | GPIOICR       | W1C  | 0x0000.0000   | GPIO Interrupt Clear             | 174         |
| 0x420  | GPIOAFSEL     | R/W  | -             | GPIO Alternate Function Select   | 175         |
| 0x500  | GPIODR2R      | R/W  | 0x0000.00FF   | GPIO 2-mA Drive Select           | 177         |
| 0x504  | GPIODR4R      | R/W  | 0x0000.0000   | GPIO 4-mA Drive Select           | 178         |
| 0x508  | GPIODR8R      | R/W  | 0x0000.0000   | GPIO 8-mA Drive Select           | 179         |
| 0x50C  | GPIOODR       | R/W  | 0x0000.0000   | GPIO Open Drain Select           | 180         |
| 0x510  | GPIOPUR       | R/W  | -             | GPIO Pull-Up Select              | 181         |
| 0x514  | GPIOPDR       | R/W  | 0x0000.0000   | GPIO Pull-Down Select            | 182         |
| 0x518  | GPIOSLR       | R/W  | 0x0000.0000   | GPIO Slew Rate Control Select    | 183         |
| 0x51C  | GPIODEN       | R/W  | -             | GPIO Digital Enable              | 184         |
| 0x520  | GPIOLOCK      | R/W  | 0x0000.0001   | GPIO Lock                        | 185         |
| 0x524  | GPIOCR        | -    | -             | GPIO Commit                      | 186         |
| 0xFD0  | GPIOPeriphID4 | RO   | 0x0x0000.0000 | GPIO Peripheral Identification 4 | 188         |
| 0xFD4  | GPIOPeriphID5 | RO   | 0x0x0000.0000 | GPIO Peripheral Identification 5 | 189         |
| 0xFD8  | GPIOPeriphID6 | RO   | 0x0x0000.0000 | GPIO Peripheral Identification 6 | 190         |
| 0xFDC  | GPIOPeriphID7 | RO   | 0x0x0000.0000 | GPIO Peripheral Identification 7 | 191         |
| 0xFE0  | GPIOPeriphID0 | RO   | 0x0x0000.0061 | GPIO Peripheral Identification 0 | 192         |

| Offset | Name          | Туре | Reset         | Description                      | See<br>page |
|--------|---------------|------|---------------|----------------------------------|-------------|
| 0xFE4  | GPIOPeriphID1 | RO   | 0x0x0000.0000 | GPIO Peripheral Identification 1 | 193         |
| 0xFE8  | GPIOPeriphID2 | RO   | 0x0x0000.0018 | GPIO Peripheral Identification 2 | 194         |
| 0xFEC  | GPIOPeriphID3 | RO   | 0x0x0000.0001 | GPIO Peripheral Identification 3 | 195         |
| 0xFF0  | GPIOPCellID0  | RO   | 0x0x0000.000D | GPIO PrimeCell Identification 0  | 196         |
| 0xFF4  | GPIOPCellID1  | RO   | 0x0x0000.00F0 | GPIO PrimeCell Identification 1  | 197         |
| 0xFF8  | GPIOPCellID2  | RO   | 0x0x0000.0005 | GPIO PrimeCell Identification 2  | 198         |
| 0xFFC  | GPIOPCellID3  | RO   | 0x0x0000.00B1 | GPIO PrimeCell Identification 3  | 199         |

## 9.4 Register Descriptions

The remainder of this section lists and describes the GPIO registers, in numerical order by address offset.

## Register 1: GPIO Data (GPIODATA), offset 0x000

The **GPIODATA** register is the data register. In software control mode, values written in the **GPIODATA** register are transferred onto the GPIO port pins if the respective pins have been configured as outputs through the **GPIO Direction (GPIODIR)** register (see page 167).

In order to write to **GPIODATA**, the corresponding bits in the mask, resulting from the address bus bits [9:2], must be High. Otherwise, the bit values remain unchanged by the write.

Similarly, the values read from this register are determined for each bit by the mask bit derived from the address used to access the data register, bits [9:2]. Bits that are 1 in the address mask cause the corresponding bits in **GPIODATA** to be read, and bits that are 0 in the address mask cause the corresponding bits in **GPIODATA** to be read as 0, regardless of their value.

A read from **GPIODATA** returns the last bit value written if the respective pins are configured as outputs, or it returns the value on the corresponding input pin when these are configured as inputs. All bits are cleared by a reset.

#### GPIO Data (GPIODATA)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0x000 Type R/W, reset 0x0000.0000

| -             | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24      | 23                                  | 22          | 21      | 20         | 19         | 18        | 17      | 16      |
|---------------|---------|---------|----------|---------|---------|---------|---------|---------|-------------------------------------|-------------|---------|------------|------------|-----------|---------|---------|
|               |         |         |          |         |         |         | •       | rese    | erved                               |             |         | •          |            |           | •       |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                             | RO<br>0     | RO<br>0 | RO<br>0    | RO<br>0    | RO<br>0   | RO<br>0 | RO<br>0 |
| Reset         |         |         |          |         |         |         |         |         |                                     |             |         |            |            |           | 0       |         |
|               | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8       | 7                                   | 6           | 5       | 4          | 3          | 2         | 1       | 0       |
|               |         |         |          | rese    | erved   |         | •       | •       |                                     | I           | 1       | DA         | TA         | 1         | 1       | 1       |
| Туре          | RO      | RO      | RO       | RO      | RO      | RO      | RO      | RO      | R/W                                 | R/W         | R/W     | R/W        | R/W        | R/W       | R/W     | R/W     |
| Reset         | 0       | 0       | 0        | 0       | 0       | 0       | 0       | 0       | 0                                   | 0           | 0       | 0          | 0          | 0         | 0       | 0       |
| Bit/F         | ield    |         | Name     |         | Туре    | l       | Reset   | Descr   | iption                              |             |         |            |            |           |         |         |
| 31:           | :8      |         | reserved |         | RO      |         | 0       | comp    | are shou<br>atibility v<br>rved acr | vith futur  | e produ | cts, the v | alue of    | a reserv  | •       |         |
| 7:0           | 0       |         | DATA     |         | R/W     |         | 0       | GPIO    |                                     |             |         |            |            |           |         |         |
|               |         |         |          |         |         |         |         | Thie r  | anietar i                           | e virtually | v manne | nd to 256  | S location | ne in tha | addraed | enaca : |

This register is virtually mapped to 256 locations in the address space. To facilitate the reading and writing of data to these registers by independent drivers, the data read from and the data written to the registers are masked by the eight address lines *ipaddr*[9:2]. Reads from this register return its current state. Writes to this register only affect bits that are not masked by *ipaddr*[9:2] and are configured as outputs. See "Data Register Operation" on page 160 for examples of reads and writes.

## Register 2: GPIO Direction (GPIODIR), offset 0x400

The GPIODIR register is the data direction register. Bits set to 1 in the GPIODIR register configure the corresponding pin to be an output, while bits set to 0 configure the pins to be inputs. All bits are cleared by a reset, meaning all GPIO pins are inputs by default.

#### GPIO Direction (GPIODIR)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0x400 Type R/W, reset 0x0000.0000

|               | 31      | 30              | 29       | 28      | 27                                    | 26      | 25      | 24      | 23          | 22         | 21       | 20                                     | 19       | 18       | 17       | 16       |
|---------------|---------|-----------------|----------|---------|---------------------------------------|---------|---------|---------|-------------|------------|----------|----------------------------------------|----------|----------|----------|----------|
|               |         | 1               | 1        |         | , , , , , , , , , , , , , , , , , , , |         | 1       | rese    | rved        |            |          |                                        |          | 1        | 1        |          |
| Type<br>Reset | RO<br>0 | RO<br>0         | RO<br>0  | RO<br>0 | RO<br>0                               | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0    | RO<br>0  | RO<br>0                                | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0  |
|               | 15      | 14              | 13       | 12      | 11                                    | 10      | 9       | 8       | 7           | 6          | 5        | 4                                      | 3        | 2        | 1        | 0        |
|               |         | 1               | 1        | rese    | rved                                  |         | 1       | 1       |             |            | 1        | D                                      | IR       | 1        | 1        |          |
| Type<br>Reset | RO<br>0 | RO<br>0         | RO<br>0  | RO<br>0 | RO<br>0                               | RO<br>0 | RO<br>0 | RO<br>0 | R/W<br>0    | R/W<br>0   | R/W<br>0 | R/W<br>0                               | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 |
| Bit/F         | ield    | Name Type Reset |          |         |                                       | Descr   | iption  |         |             |            |          |                                        |          |          |          |          |
| 31            | :8      |                 | reserved | 1       | RO                                    |         | 0       | compa   | atibility v | vith futur | re produ | e value o<br>cts, the v<br>ify-write o | alue of  | a reserv | •        |          |
| 7:            | 0       |                 | DIR      |         | R/W                                   |         | 0x00    | GPIO    | Data Di     | rection    |          |                                        |          |          |          |          |
|               |         |                 |          |         |                                       |         |         | 0: Pin  | s are inp   | outs.      |          |                                        |          |          |          |          |
|               |         |                 |          |         |                                       |         |         |         |             |            |          |                                        |          |          |          |          |

1: Pins are outputs.

## Register 3: GPIO Interrupt Sense (GPIOIS), offset 0x404

The GPIOIS register is the interrupt sense register. Bits set to 1 in GPIOIS configure the corresponding pins to detect levels, while bits set to 0 configure the pins to detect edges. All bits are cleared by a reset.

GPIO Interrupt Sense (GPIOIS)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0x404 Type R/W, reset 0x0000.0000

|               | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24      | 23          | 22         | 21       | 20                                    | 19       | 18       | 17       | 16               |
|---------------|---------|---------|----------|---------|---------|---------|---------|---------|-------------|------------|----------|---------------------------------------|----------|----------|----------|------------------|
|               |         | 1       | ,        | •       | · · ·   |         |         | rese    | rved        |            |          |                                       |          |          |          | ,                |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0    | RO<br>0  | RO<br>0                               | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0          |
|               | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8       | 7           | 6          | 5        | 4                                     | 3        | 2        | 1        | 0                |
|               |         | 1       | 1        | rese    | rved    |         | 1       | 1       |             | <b></b>    | r        | IS<br>IS                              | 5<br>1   | r        | 1        |                  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | R/W<br>0    | R/W<br>0   | R/W<br>0 | R/W<br>0                              | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0         |
| Bit/F         | ield    |         | Name     |         | Туре    | I       | Reset   | Descri  | iption      |            |          |                                       |          |          |          |                  |
| 31            | :8      |         | reserved | I       | RO      |         | 0       | compa   | atibility w | vith futur | e produ  | e value o<br>cts, the v<br>fy-write o | alue of  | a reserv | •        | vide<br>nould be |
| 7:            | 0       |         | IS       |         | R/W     |         | 0x00    | GPIO    | Interrup    | t Sense    |          | is detect                             |          |          | ive).    |                  |

1: Level on corresponding pin is detected (level-sensitive).

## Register 4: GPIO Interrupt Both Edges (GPIOIBE), offset 0x408

The **GPIOIBE** register is the interrupt both-edges register. When the corresponding bit in the **GPIO Interrupt Sense (GPIOIS)** register (see page 168) is set to detect edges, bits set to High in **GPIOIBE** configure the corresponding pin to detect both rising and falling edges, regardless of the corresponding bit in the **GPIO Interrupt Event (GPIOIEV)** register (see page 170). Clearing a bit configures the pin to be controlled by **GPIOIEV**. All bits are cleared by a reset.

#### GPIO Interrupt Both Edges (GPIOIBE)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0x408 Type R/W, reset 0x0000.0000

| _             | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24      | 23          | 22         | 21       | 20         | 19              | 18                          | 17      | 16      |
|---------------|---------|---------|----------|---------|---------|---------|---------|---------|-------------|------------|----------|------------|-----------------|-----------------------------|---------|---------|
|               |         |         |          |         |         |         | •       | rese    | rved        |            |          |            | 1               | •                           |         |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0    | RO<br>0  | RO<br>0    | RO<br>0         | RO<br>0                     | RO<br>0 | RO<br>0 |
| Reser         |         |         |          |         |         |         |         |         |             |            |          |            |                 |                             | 4       |         |
|               | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8       | 7           | 6          | 5        | 4          | 3               | 2                           | 1       | 0       |
|               |         | •       |          | rese    | erved   |         |         |         |             |            |          | IE         | BE              |                             |         |         |
| Туре          | RO      | RO      | RO       | RO      | RO      | RO      | RO      | RO      | R/W         | R/W        | R/W      | R/W        | R/W             | R/W                         | R/W     | R/W     |
| Reset         | 0       | 0       | 0        | 0       | 0       | 0       | 0       | 0       | 0           | 0          | 0        | 0          | 0               | 0                           | 0       | 0       |
| Bit/F         | ield    |         |          |         |         |         |         | Descr   | iption      |            |          |            |                 |                             |         |         |
| 31:           | :8      |         | reserved |         | RO      |         | 0       | compa   | atibility v | vith futur |          | cts, the v | alue of         | erved bit<br>a reserv<br>n. | •       |         |
| 7:0           | 0       |         | IBE      |         | R/W     |         | 0x00    | GPIO    | Interrup    | t Both E   | dges     |            |                 |                             |         |         |
|               |         |         |          |         |         |         |         | 0: Inte | errupt ge   | neration   | is contr | olled by   | the <b>GP</b> I | O Interr                    | upt Eve | nt      |

(GPIOIEV)register (see page 142).1: Both edges on the corresponding pin trigger an interrupt.

Note: Single edge is determined by the corresponding bit in **GPIOIEV**.

## Register 5: GPIO Interrupt Event (GPIOIEV), offset 0x40C

The **GPIOIEV** register is the interrupt event register. Bits set to High in **GPIOIEV** configure the corresponding pin to detect rising edges or high levels, depending on the corresponding bit value in the **GPIO Interrupt Sense (GPIOIS)** register (see page 168). Clearing a bit configures the pin to detect falling edges or low levels, depending on the corresponding bit value in **GPIOIS**. All bits are cleared by a reset.

#### GPIO Interrupt Event (GPIOIEV)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port C base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0x40C Type R/W, reset 0x0000.0000

| -             | 31      | 30            | 29      | 28      | 27      | 26      | 25      | 24      | 23        | 22         | 21       | 20         | 19       | 18                          | 17        | 16       |
|---------------|---------|---------------|---------|---------|---------|---------|---------|---------|-----------|------------|----------|------------|----------|-----------------------------|-----------|----------|
|               |         | 1             |         |         |         |         | 1       | rese    | rved      |            |          |            |          | 1                           | 1         | '        |
| Type<br>Reset | RO<br>0 | RO<br>0       | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0   | RO<br>0    | RO<br>0  | RO<br>0    | RO<br>0  | RO<br>0                     | RO<br>0   | RO<br>0  |
|               | 15      | 14            | 13      | 12      | 11      | 10      | 9       | 8       | 7         | 6          | 5        | 4          | 3        | 2                           | 1         | 0        |
|               |         | r             | · · · · | rese    | rved    |         | 1       | I       |           |            |          | I          | V        | 1                           | 1         |          |
| Type<br>Reset | RO<br>0 | RO<br>0       | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | R/W<br>0  | R/W<br>0   | R/W<br>0 | R/W<br>0   | R/W<br>0 | R/W<br>0                    | R/W<br>0  | R/W<br>0 |
| Reset         | 0       | Ū             | Ŭ       | 0       | 0       | Ū       | Ū       | Ū       | Ū         | 0          | 0        | Ŭ          | Ũ        | Ũ                           | Ū         | Ū        |
| Bit/F         | ield    | Name Type Res |         |         |         |         |         | Descr   | iption    |            |          |            |          |                             |           |          |
| 31:           | :8      |               |         |         | RO      |         | 0       | compa   |           | ith futur/ | e produo | cts, the v | alue of  | erved bit<br>a reserv<br>n. |           |          |
| 7:0           | D       |               | IEV     |         | R/W     | (       | 0x00    | GPIO    | Interrup  | t Event    |          |            |          |                             |           |          |
|               |         |               |         |         |         |         |         | 0: Fall | ling edge | e or Low   | levels c | on corres  | ponding  | g pins tri                  | gger inte | errupts. |

1: Rising edge or High levels on corresponding pins trigger interrupts.

## Register 6: GPIO Interrupt Mask (GPIOIM), offset 0x410

The GPIOIM register is the interrupt mask register. Bits set to High in GPIOIM allow the corresponding pins to trigger their individual interrupts and the combined GPIOINTR line. Clearing a bit disables interrupt triggering on that pin. All bits are cleared by a reset.

#### GPIO Interrupt Mask (GPIOIM)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0x410 Type R/W, reset 0x0000.0000

|               | 31      | 30      | 29       | 28      | 27                                    | 26      | 25      | 24      | 23          | 22        | 21       | 20                                    | 19       | 18       | 17       | 16       |
|---------------|---------|---------|----------|---------|---------------------------------------|---------|---------|---------|-------------|-----------|----------|---------------------------------------|----------|----------|----------|----------|
|               |         |         | 1        | 1       | , , , , , , , , , , , , , , , , , , , |         | 1       | rese    | rved        |           |          |                                       |          |          |          |          |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0                               | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0   | RO<br>0  | RO<br>0                               | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0  |
|               | 15      | 14      | 13       | 12      | 11                                    | 10      | 9       | 8       | 7           | 6         | 5        | 4                                     | 3        | 2        | 1        | 0        |
|               |         |         | •        | rese    | rved                                  |         | •       | '       |             |           | I        | IM                                    | E        |          | I        |          |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0                               | RO<br>0 | RO<br>0 | RO<br>0 | R/W<br>0    | R/W<br>0  | R/W<br>0 | R/W<br>0                              | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 |
| Bit/F         | ield    |         | Name     |         | Туре                                  | F       | Reset   | Descr   | iption      |           |          |                                       |          |          |          |          |
| 31            | :8      |         | reserved |         | RO                                    |         | 0       | compa   | atibility w | ith futur | e produ  | e value o<br>cts, the v<br>fy-write o | alue of  | a reserv | •        |          |
| 7:            | 0       |         | IME      |         | R/W                                   |         | 0x00    |         | Interrup    |           |          | is mask                               | ed.      |          |          |          |

1: Corresponding pin interrupt is not masked.

### Register 7: GPIO Raw Interrupt Status (GPIORIS), offset 0x414

The **GPIORIS** register is the raw interrupt status register. Bits read High in **GPIORIS** reflect the status of interrupt trigger conditions detected (raw, prior to masking), indicating that all the requirements have been met, before they are finally allowed to trigger by the **GPIO Interrupt Mask** (**GPIOIM**) register (see page 171). Bits read as zero indicate that corresponding input pins have not initiated an interrupt. All bits are cleared by a reset.

#### GPIO Raw Interrupt Status (GPIORIS)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0x414 Type RO, reset 0x0000.0000

|        | 31            | 30 | 29  | 28   | 27   | 26    | 25    | 24     | 23          | 22         | 21      | 20                                     | 19         | 18       | 17 | 16               |
|--------|---------------|----|-----|------|------|-------|-------|--------|-------------|------------|---------|----------------------------------------|------------|----------|----|------------------|
|        |               |    | 1   |      |      |       | 1     | rese   | rved<br>I   | 1          | 1       | 1                                      | 1          | 1        |    | 1                |
| Туре   | RO            | RO | RO  | RO   | RO   | RO    | RO    | RO     | RO          | RO         | RO      | RO                                     | RO         | RO       | RO | RO               |
| Reset  | 0             | 0  | 0   | 0    | 0    | 0     | 0     | 0      | 0           | 0          | 0       | 0                                      | 0          | 0        | 0  | 0                |
| _      | 15            | 14 | 13  | 12   | 11   | 10    | 9     | 8      | 7           | 6          | 5       | 4                                      | 3          | 2        | 1  | 0                |
|        |               | 1  | 1   | rese | rved |       | 1     | 1      |             | 1          | 1       | R                                      | <br> S<br> | 1        | 1  | '                |
| Туре   | RO            | RO | RO  | RO   | RO   | RO    | RO    | RO     | RO          | RO         | RO      | RO                                     | RO         | RO       | RO | RO               |
| Reset  | 0             | 0  | 0   | 0    | 0    | 0     | 0     | 0      | 0           | 0          | 0       | 0                                      | 0          | 0        | 0  | 0                |
| Bit/Fi |               |    |     | Туре |      | Reset | Descr | iption |             |            |         |                                        |            |          |    |                  |
| 31:    | 31:8 reserved |    |     |      | RO   |       | 0     | compa  | atibility v | vith futur | e produ | e value o<br>cts, the v<br>ify-write o | value of   | a reserv |    | vide<br>hould be |
| 7:0    | C             |    | RIS |      | RO   |       | 0x00  | GPIO   | Interrup    | t Raw S    | tatus   |                                        |            |          |    |                  |

Reflect the status of interrupt trigger condition detection on pins (raw, prior to masking).

0: Corresponding pin interrupt requirements not met.

1: Corresponding pin interrupt has met requirements.

### Register 8: GPIO Masked Interrupt Status (GPIOMIS), offset 0x418

The **GPIOMIS** register is the masked interrupt status register. Bits read High in **GPIOMIS** reflect the status of input lines triggering an interrupt. Bits read as Low indicate that either no interrupt has been generated, or the interrupt is masked.

In addition to providing GPIO functionality, PB4 can also be used as an external trigger for the ADC. If PB4 is configured as a non-masked interrupt pin (GPIOIM is set to 1), not only is an interrupt for PortB generated, but an external trigger signal is sent to the ADC. If the **ADC Event Multiplexer Select (ADCEMUX)** register is configured to use the external trigger, an ADC conversion is initiated.

If no other PortB pins are being used to generate interrupts, the ARM Integrated Nested Vectored Interrupt Controller (NVIC) Interrupt Set Enable (SETNA) register can disable the PortB interrupts and the ADC interrupt can be used to read back the converted data. Otherwise, the PortB interrupt handler needs to ignore and clear interrupts on B4, and wait for the ADC interrupt or the ADC interrupt needs to be disabled in the SETNA register and the PortB interrupt handler polls the ADC registers until the conversion is completed.

**GPIOMIS** is the state of the interrupt after masking.

GPIO Masked Interrupt Status (GPIOMIS)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0x418 Type RO, reset 0x0000.0000

31 30 29 28 27 26 25 23 22 18 16 24 21 20 19 17 reserved RO Туре 0 0 0 Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 1 MIS reserved Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **Bit/Field** Description Name Type Reset 31:8 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 7:0 MIS RO 0x00 **GPIO Masked Interrupt Status** Masked value of interrupt due to corresponding pin. 0: Corresponding GPIO line interrupt not active.

1: Corresponding GPIO line asserting interrupt.

## Register 9: GPIO Interrupt Clear (GPIOICR), offset 0x41C

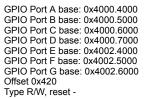
The **GPIOICR** register is the interrupt clear register. Writing a 1 to a bit in this register clears the corresponding interrupt edge detection logic register. Writing a 0 has no effect.

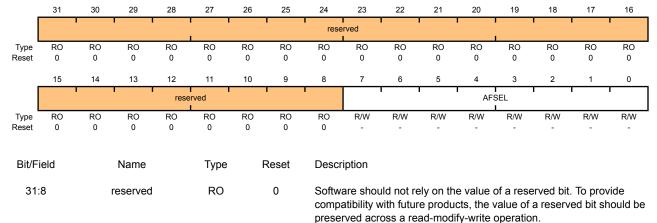
#### GPIO Interrupt Clear (GPIOICR) GPIO Port A base: 0x4000.4000

| GPIO Por<br>GPIO Por<br>GPIO Por<br>GPIO Por<br>GPIO Por<br>GPIO Por<br>Offset 0x4<br>Type W10 | t B base<br>t C base<br>t D base<br>t E base<br>t F base<br>t G base<br>1C | :: 0x4000.<br>:: 0x4000.<br>: 0x4002.<br>: 0x4002.<br>:: 0x4002. | 5000<br>6000<br>7000<br>4000<br>5000<br>.6000 |       |      |    |       |        |             |            |             |            |             |          |                        |     |
|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------|-------|------|----|-------|--------|-------------|------------|-------------|------------|-------------|----------|------------------------|-----|
|                                                                                                | 31                                                                         | 30                                                               | 29                                            | 28    | 27   | 26 | 25    | 24     | 23          | 22         | 21          | 20         | 19          | 18       | 17                     | 16  |
|                                                                                                |                                                                            | 1                                                                |                                               |       | r    |    | 1     | rese   | rved        |            |             |            |             | r        | 1                      |     |
| Туре                                                                                           | RO                                                                         | RO                                                               | RO                                            | RO    | RO   | RO | RO    | RO     | RO          | RO         | RO          | RO         | RO          | RO       | RO                     | RO  |
| Reset                                                                                          | 0                                                                          | 0                                                                | 0                                             | 0     | 0    | 0  | 0     | 0      | 0           | 0          | 0           | 0          | 0           | 0        | 0                      | 0   |
|                                                                                                | 15                                                                         | 14                                                               | 13                                            | 12    | 11   | 10 | 9     | 8      | 7           | 6          | 5           | 4          | 3           | 2        | 1                      | 0   |
|                                                                                                |                                                                            | 1                                                                | 1 1                                           | resei | ved  |    | Î     | 1      |             |            |             | l<br>I     | 1<br>C<br>I | Î        | 1                      |     |
| Туре                                                                                           | RO                                                                         | RO                                                               | RO                                            | RO    | RO   | RO | RO    | RO     | W1C         | W1C        | W1C         | W1C        | W1C         | W1C      | W1C                    | W1C |
| Reset                                                                                          | 0                                                                          | 0                                                                | 0                                             | 0     | 0    | 0  | 0     | 0      | 0           | 0          | 0           | 0          | 0           | 0        | 0                      | 0   |
| Bit/F                                                                                          | ield                                                                       |                                                                  | Name                                          |       | Туре |    | Reset | Descr  | iption      |            |             |            |             |          |                        |     |
| 31:                                                                                            | 8                                                                          | I                                                                | reserved                                      |       | RO   |    | 0     | compa  | atibility v | vith futur |             | cts, the v | alue of     | a reserv | . To prov<br>ed bit sh |     |
| 7:0                                                                                            | C                                                                          |                                                                  | IC                                            |       | W1C  |    | 0x00  | GPIO   | Interrup    | t Clear    |             |            |             |          |                        |     |
|                                                                                                |                                                                            |                                                                  |                                               |       |      |    |       | 0: Cor | respond     | ling inter | rupt is u   | naffecte   | ed.         |          |                        |     |
|                                                                                                |                                                                            |                                                                  |                                               |       |      |    |       | 1. Cor | respond     | lina inter | rupt is c   | leared     |             |          |                        |     |
|                                                                                                |                                                                            |                                                                  |                                               |       |      |    |       |        | - coporto   | in g inter | 1 4 9 1 0 0 | iou.ou.    |             |          |                        |     |

#### Register 10: GPIO Alternate Function Select (GPIOAFSEL), offset 0x420

The **GPIOAFSEL** register is the mode control select register. Writing a 1 to any bit in this register selects the hardware control for the corresponding GPIO line. All bits are cleared by a reset, therefore no GPIO line is set to hardware control by default.


The commit control registers provide a layer of protection against accidental programming of critical hardware peripherals. Writes to protected bits of the **GPIO Alternate Function Select (GPIOAFSEL)** register (see page 175) are not committed to storage unless the **GPIO Lock (GPIOLOCK)** register (see page 185) has been unlocked and the appropriate bits of the **GPIO Commit (GPIOCR)** register (see page 186) have been set to 1.


Important: All GPIO pins are tri-stated by default (GPIOAFSEL=0, GPIODEN=0, GPIOPDR=0, and GPIOPUR=0), with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). The JTAG/SWD pins default to their JTAG/SWD functionality (GPIOAFSEL=1, GPIODEN=1 and GPIOPUR=1). A Power-On-Reset (POR) or asserting RST puts both groups of pins back to their default state.

Caution – If the JTAG pins are used as GPIOs in a design, PB7 and PC2 cannot have external pull-down resistors connected to both of them at the same time. If both pins are pulled Low during reset, the controller has unpredictable behavior. If this happens, remove one or both of the pull-down resistors, and apply RST or power-cycle the part.

In addition, it is possible to create a software sequence that prevents the debugger from connecting to the Stellaris<sup>®</sup> microcontroller. If the program code loaded into flash immediately changes the JTAG pins to their GPIO functionality, the debugger may not have enough time to connect and halt the controller before the JTAG pin functionality switches. This may lock the debugger out of the part. This can be avoided with a software routine that restores JTAG functionality based on an external or software trigger.

GPIO Alternate Function Select (GPIOAFSEL)





| Bit/Field | Name  | Туре | Reset | Description                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------|-------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0       | AFSEL | R/W  | -     | GPIO Alternate Function Select                                                                                                                                                                                                                                                                                                                                                                      |
|           |       |      |       | 0: Software control of corresponding GPIO line (GPIO mode).                                                                                                                                                                                                                                                                                                                                         |
|           |       |      |       | 1: Hardware control of corresponding GPIO line (alternate hardware function).                                                                                                                                                                                                                                                                                                                       |
|           |       |      |       | Note: The default reset value for the <b>GPIOAFSEL</b> , <b>GPIOPUR</b> , and <b>GPIODEN</b> registers are 0x0000.0000 for all GPIO pins, with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). These five pins default to JTAG/SWD functionality. Because of this, the default reset value of these registers for GPIO Port B is 0x0000.0080 while the default reset value for Port C is |

0x0000.000F.

## Register 11: GPIO 2-mA Drive Select (GPIODR2R), offset 0x500

The **GPIODR2R** register is the 2-mA drive control register. It allows for each GPIO signal in the port to be individually configured without affecting the other pads. When writing a DRV2 bit for a GPIO signal, the corresponding DRV4 bit in the **GPIODR4R** register and the DRV8 bit in the **GPIODR8R** register are automatically cleared by hardware.

GPIO 2-mA Drive Select (GPIODR2R)

| GPIO Poi<br>GPIO Poi<br>GPIO Poi<br>GPIO Poi<br>GPIO Poi<br>GPIO Poi<br>Offset 0x9<br>Type R/W | rt B base<br>rt C base<br>rt D base<br>rt E base<br>rt F base<br>rt G base<br>500 | e: 0x4000.<br>e: 0x4000.<br>e: 0x4000.<br>e: 0x4002.<br>e: 0x4002.<br>e: 0x4002. | 5000<br>6000<br>7000<br>4000<br>5000<br>6000 |      |              |    |       |       |             |            |          |                                       |         |          |     |                  |
|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------|------|--------------|----|-------|-------|-------------|------------|----------|---------------------------------------|---------|----------|-----|------------------|
|                                                                                                | 31                                                                                | 30                                                                               | 29                                           | 28   | 27           | 26 | 25    | 24    | 23          | 22         | 21       | 20                                    | 19      | 18       | 17  | 16               |
|                                                                                                |                                                                                   | T                                                                                |                                              |      | , ,          |    | 1     | rese  | rved        |            |          |                                       |         | I        | 1   | 1                |
| Туре                                                                                           | RO                                                                                | RO                                                                               | RO                                           | RO   | RO           | RO | RO    | RO    | RO          | RO         | RO       | RO                                    | RO      | RO       | RO  | RO               |
| Reset                                                                                          | 0                                                                                 | 0                                                                                | 0                                            | 0    | 0            | 0  | 0     | 0     | 0           | 0          | 0        | 0                                     | 0       | 0        | 0   | 0                |
|                                                                                                | 15                                                                                | 14                                                                               | 13                                           | 12   | 11           | 10 | 9     | 8     | 7           | 6          | 5        | 4                                     | 3       | 2        | 1   | 0                |
|                                                                                                |                                                                                   | 1                                                                                | 1 1                                          | rese | i i<br>erved |    | 1     | r     |             |            |          | DR                                    | V2      | Î        | i   |                  |
| Туре                                                                                           | RO                                                                                | RO                                                                               | RO                                           | RO   | RO           | RO | RO    | RO    | R/W         | R/W        | R/W      | R/W                                   | R/W     | R/W      | R/W | R/W              |
| Reset                                                                                          | 0                                                                                 | 0                                                                                | 0                                            | 0    | 0            | 0  | 0     | 0     | 1           | 1          | 1        | 1                                     | 1       | 1        | 1   | 1                |
| Bit/F                                                                                          | ïeld                                                                              |                                                                                  | Name                                         |      | Туре         |    | Reset | Descr | iption      |            |          |                                       |         |          |     |                  |
| 31:                                                                                            | :8                                                                                | ı                                                                                | reserved                                     |      | RO           |    | 0     | compa | atibility w | vith futur | e produ  | e value o<br>cts, the v<br>fy-write o | alue of | a reserv | •   | vide<br>nould be |
| 7:                                                                                             | 0                                                                                 |                                                                                  | DRV2                                         |      | R/W          |    | 0xFF  | Outpu | t Pad 2-    | mA Driv    | e Enable | е                                     |         |          |     |                  |
|                                                                                                |                                                                                   |                                                                                  |                                              |      |              |    |       |       |             |            |          | <b>4[n]</b> or <b>G</b><br>t. The ch  |         |          |     | second           |

clock cycle after the write.

## Register 12: GPIO 4-mA Drive Select (GPIODR4R), offset 0x504

The **GPIODR4R** register is the 4-mA drive control register. It allows for each GPIO signal in the port to be individually configured without affecting the other pads. When writing the DRV4 bit for a GPIO signal, the corresponding DRV2 bit in the **GPIODR2R** register and the DRV8 bit in the **GPIODR8R** register are automatically cleared by hardware.

GPIO 4-mA Drive Select (GPIODR4R)

| GPIO Por<br>GPIO Por<br>GPIO Por<br>GPIO Por<br>GPIO Por<br>GPIO Por<br>Offset 0x5<br>Type R/W | rt B base:<br>rt C base:<br>rt D base:<br>rt E base:<br>rt F base:<br>rt G base<br>504 | 0x4000.<br>0x4000.<br>0x4000.<br>0x4002.<br>0x4002.<br>0x4002. | 5000<br>6000<br>7000<br>4000<br>5000<br>6000 |      |       |    |       |                                                                                                                                                                                               |                                                                                                                                               |     |     |     |          |     |     |     |  |  |
|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------|------|-------|----|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|----------|-----|-----|-----|--|--|
|                                                                                                | 31                                                                                     | 30                                                             | 29                                           | 28   | 27    | 26 | 25    | 24                                                                                                                                                                                            | 23                                                                                                                                            | 22  | 21  | 20  | 19       | 18  | 17  | 16  |  |  |
|                                                                                                |                                                                                        | reserved                                                       |                                              |      |       |    |       |                                                                                                                                                                                               |                                                                                                                                               |     |     |     |          | 1   |     |     |  |  |
| Туре                                                                                           | RO                                                                                     | RO                                                             | RO                                           | RO   | RO    | RO | RO    | RO                                                                                                                                                                                            | RO                                                                                                                                            | RO  | RO  | RO  | RO       | RO  | RO  | RO  |  |  |
| Reset                                                                                          | 0                                                                                      | 0                                                              | 0                                            | 0    | 0     | 0  | 0     | 0                                                                                                                                                                                             | 0                                                                                                                                             | 0   | 0   | 0   | 0        | 0   | 0   | 0   |  |  |
|                                                                                                | 15                                                                                     | 14                                                             | 13                                           | 12   | 11    | 10 | 9     | 8                                                                                                                                                                                             | 7                                                                                                                                             | 6   | 5   | 4   | 3        | 2   | 1   | 0   |  |  |
|                                                                                                |                                                                                        |                                                                | r r                                          | rese | rved  |    | 1     | 1                                                                                                                                                                                             |                                                                                                                                               |     | 1   | DF  | 1<br>RV4 | Ĩ   | I   |     |  |  |
| Туре                                                                                           | RO                                                                                     | RO                                                             | RO                                           | RO   | RO    | RO | RO    | RO                                                                                                                                                                                            | R/W                                                                                                                                           | R/W | R/W | R/W | R/W      | R/W | R/W | R/W |  |  |
| Reset                                                                                          | 0                                                                                      | 0                                                              | 0                                            | 0    | 0     | 0  | 0     | 0                                                                                                                                                                                             | 0                                                                                                                                             | 0   | 0   | 0   | 0        | 0   | 0   | 0   |  |  |
|                                                                                                | :                                                                                      |                                                                | Nama                                         |      | Turne |    | Decet | Deeer                                                                                                                                                                                         | in ti a n                                                                                                                                     |     |     |     |          |     |     |     |  |  |
| Bit/F                                                                                          | leid                                                                                   | Name                                                           |                                              |      | Туре  |    | Reset | Descr                                                                                                                                                                                         | iption                                                                                                                                        |     |     |     |          |     |     |     |  |  |
| 31:8                                                                                           |                                                                                        | reserved                                                       |                                              | RO   | RO 0  |    | compa | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |                                                                                                                                               |     |     |     |          |     |     |     |  |  |
| 7:0                                                                                            |                                                                                        | DRV4                                                           |                                              | R/W  | 0x00  |    | Outpu | Output Pad 4-mA Drive Enable                                                                                                                                                                  |                                                                                                                                               |     |     |     |          |     |     |     |  |  |
|                                                                                                |                                                                                        |                                                                |                                              |      |       |    |       |                                                                                                                                                                                               | A write of 1 to either <b>GPIODR2[n]</b> or <b>GPIODR8[n]</b> clears the corresponding 4-mA enable bit. The change is effective on the second |     |     |     |          |     |     |     |  |  |

clock cycle after the write.

## Register 13: GPIO 8-mA Drive Select (GPIODR8R), offset 0x508

The **GPIODR8R** register is the 8-mA drive control register. It allows for each GPIO signal in the port to be individually configured without affecting the other pads. When writing the DRV8 bit for a GPIO signal, the corresponding DRV2 bit in the **GPIODR2R** register and the DRV4 bit in the **GPIODR4R** register are automatically cleared by hardware.

GPIO 8-mA Drive Select (GPIODR8R)

| GPIO Pol<br>GPIO Pol<br>GPIO Pol<br>GPIO Pol<br>GPIO Pol<br>GPIO Pol<br>Offset 0x9<br>Type R/W | rt B base<br>rt C base<br>rt D base<br>rt E base<br>rt F base<br>rt G base<br>508 | e: 0x4000.<br>e: 0x4000.<br>e: 0x4000.<br>e: 0x4002.<br>e: 0x4002.<br>e: 0x4002.<br>e: 0x4002. | 5000<br>.6000<br>.7000<br>.4000<br>5000<br>.6000 |      |     |       |                                                                                                                                                                                               |                                                                                                                                               |      |     |     |     |     |     |     |     |  |
|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------|------|-----|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------|-----|-----|-----|-----|-----|-----|-----|--|
|                                                                                                | 31                                                                                | 30                                                                                             | 29                                               | 28   | 27  | 26    | 25                                                                                                                                                                                            | 24                                                                                                                                            | 23   | 22  | 21  | 20  | 19  | 18  | 17  | 16  |  |
|                                                                                                |                                                                                   | reserved                                                                                       |                                                  |      |     |       |                                                                                                                                                                                               |                                                                                                                                               |      |     |     |     |     |     |     |     |  |
| Туре                                                                                           | RO                                                                                | RO                                                                                             | RO                                               | RO   | RO  | RO    | RO                                                                                                                                                                                            | RO                                                                                                                                            | RO   | RO  | RO  | RO  | RO  | RO  | RO  | RO  |  |
| Reset                                                                                          | 0                                                                                 | 0                                                                                              | 0                                                | 0    | 0   | 0     | 0                                                                                                                                                                                             | 0                                                                                                                                             | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   |  |
|                                                                                                | 15                                                                                | 14                                                                                             | 13                                               | 12   | 11  | 10    | 9                                                                                                                                                                                             | 8                                                                                                                                             | 7    | 6   | 5   | 4   | 3   | 2   | 1   | 0   |  |
|                                                                                                |                                                                                   | i i i rese                                                                                     |                                                  |      |     |       | 1                                                                                                                                                                                             | 1                                                                                                                                             | DRV8 |     |     |     |     |     |     |     |  |
| Туре                                                                                           | RO                                                                                | RO                                                                                             | RO                                               | RO   | RO  | RO    | RO                                                                                                                                                                                            | RO                                                                                                                                            | R/W  | R/W | R/W | R/W | R/W | R/W | R/W | R/W |  |
| Reset                                                                                          | 0                                                                                 | 0                                                                                              | 0                                                | 0    | 0   | 0     | 0                                                                                                                                                                                             | 0                                                                                                                                             | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   |  |
| Bit/Field                                                                                      |                                                                                   | Name                                                                                           |                                                  | Туре |     | Reset |                                                                                                                                                                                               | Description                                                                                                                                   |      |     |     |     |     |     |     |     |  |
| 31:8                                                                                           |                                                                                   | reserved                                                                                       |                                                  | RO   | 0   |       | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |                                                                                                                                               |      |     |     |     |     |     |     |     |  |
| 7:0                                                                                            |                                                                                   | DRV8                                                                                           |                                                  |      | R/W |       | 0x00                                                                                                                                                                                          | Output Pad 8-mA Drive Enable                                                                                                                  |      |     |     |     |     |     |     |     |  |
|                                                                                                |                                                                                   |                                                                                                |                                                  |      |     |       |                                                                                                                                                                                               | A write of 1 to either <b>GPIODR2[n]</b> or <b>GPIODR4[n]</b> clears the corresponding 8-mA enable bit. The change is effective on the second |      |     |     |     |     |     |     |     |  |

clock cycle after the write.

### Register 14: GPIO Open Drain Select (GPIOODR), offset 0x50C

The **GPIOODR** register is the open drain control register. Setting a bit in this register enables the open drain configuration of the corresponding GPIO pad. When open drain mode is enabled, the corresponding bit should also be set in the **GPIO Digital Input Enable (GPIODEN)** register (see page 184). Corresponding bits in the drive strength registers (**GPIODR2R**, **GPIODR4R**, **GPIODR8R**, and **GPIOSLR**) can be set to achieve the desired rise and fall times. The GPIO acts as an open drain input if the corresponding bit in the **GPIODIR** register is set to 0; and as an open drain output when set to 1.

When using the I<sup>2</sup>C module, the **GPIO Alternate Function Select (GPIOAFSEL)** register bit for PB2 and PB3 should be set to 1 (see examples in "Initialization and Configuration" on page 162).

#### GPIO Open Drain Select (GPIOODR)

| GPIO Port A base: 0x4000.4000 |
|-------------------------------|
| GPIO Port B base: 0x4000.5000 |
| GPIO Port C base: 0x4000.6000 |
| GPIO Port D base: 0x4000.7000 |
| GPIO Port E base: 0x4002.4000 |
| GPIO Port F base: 0x4002.5000 |
| GPIO Port G base: 0x4002.6000 |
| Offset 0x50C                  |
| Type R/W. reset 0x0000.0000   |

|               | 31      | 30                    | 29      | 28      | 27         | 26      | 25      | 24                                                                                                                                                                                         | 23                                       | 22      | 21      | 20      | 19      | 18      | 17      | 16      |  |  |
|---------------|---------|-----------------------|---------|---------|------------|---------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------|---------|---------|---------|---------|---------|---------|--|--|
|               |         | 1                     |         |         |            |         | erved   |                                                                                                                                                                                            |                                          |         |         | 1       | •       |         |         |         |  |  |
| Type<br>Reset | RO<br>0 | RO<br>0               | RO<br>0 | RO<br>0 | RO<br>0    | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                    | RO<br>0                                  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 |  |  |
|               | 15      | 14                    | 13      | 12      | 11         | 10      | 9       | 8                                                                                                                                                                                          | 7                                        | 6       | 5       | 4       | 3       | 2       | 1       | 0       |  |  |
|               |         | I I I I I I I I I I I |         |         |            |         |         |                                                                                                                                                                                            |                                          | ODE     |         |         |         |         |         |         |  |  |
| Туре          | RO      | RO                    | RO      | RO      | RO         | RO      | RO      | RO                                                                                                                                                                                         | R/W                                      | R/W     | R/W     | R/W     | R/W     | R/W     | R/W     | R/W     |  |  |
| Reset         | 0       | 0                     | 0       | 0       | 0          | 0       | 0       | 0                                                                                                                                                                                          | 0                                        | 0       | 0       | 0       | 0       | 0       | 0       | 0       |  |  |
| Bit/Field     |         | Name                  |         |         | Type Reset |         | Descr   | Description                                                                                                                                                                                |                                          |         |         |         |         |         |         |         |  |  |
| 31:8          |         | reserved              |         | RO      | RO 0       |         | compa   | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation. |                                          |         |         |         |         |         |         |         |  |  |
| 7:0           |         | ODE                   |         |         | R/W 0x00   |         | 0x00    | Outpu                                                                                                                                                                                      | it Pad Open Drain Enable                 |         |         |         |         |         |         |         |  |  |
|               |         |                       |         |         |            |         |         | 0: Op                                                                                                                                                                                      | 0: Open drain configuration is disabled. |         |         |         |         |         |         |         |  |  |

1: Open drain configuration is enabled.

# Register 15: GPIO Pull-Up Select (GPIOPUR), offset 0x510

The **GPIOPUR** register is the pull-up control register. When a bit is set to 1, it enables a weak pull-up resistor on the corresponding GPIO signal. Setting a bit in **GPIOPUR** automatically clears the corresponding bit in the **GPIO Pull-Down Select (GPIOPDR)** register (see page 182).

#### GPIO Pull-Up Select (GPIOPUR)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0x510 Type R/W, reset -

|               | 31        | 30      | 29       | 28      | 27                | 26      | 25      | 24      | 23          | 22         | 21       | 20                                    | 19           | 18       | 17       | 16       |
|---------------|-----------|---------|----------|---------|-------------------|---------|---------|---------|-------------|------------|----------|---------------------------------------|--------------|----------|----------|----------|
|               |           | 1       | 1        | 1       | г <u>г</u> г<br>1 |         | 1       | rese    | rved        | r          | 1        | 1                                     |              | 1        | 1        | ,        |
| Type<br>Reset | RO<br>0   | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0           | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0    | RO<br>0  | RO<br>0                               | RO<br>0      | RO<br>0  | RO<br>0  | RO<br>0  |
|               | 15        | 14      | 13       | 12      | 11                | 10      | 9       | 8       | 7           | 6          | 5        | 4                                     | 3            | 2        | 1        | 0        |
|               |           | •       | •        | rese    | rved              |         |         | •       |             | 1          | 1        | PL                                    | I<br>JE<br>I | 1        | 1        | •        |
| Type<br>Reset | RO<br>0   | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0           | RO<br>0 | RO<br>0 | RO<br>0 | R/W<br>-    | R/W<br>-   | R/W<br>- | R/W<br>-                              | R/W<br>-     | R/W<br>- | R/W<br>- | R/W<br>- |
| Bit/F         | Bit/Field |         | Name     |         | Туре              | I       | Reset   | Descr   | iption      |            |          |                                       |              |          |          |          |
| 31            | :8        |         | reserved | ł       | RO                |         | 0       | compa   | atibility v | vith futur | e produ  | e value o<br>cts, the v<br>fy-write o | alue of      | a reserv | •        |          |
| 7:            | 0         |         | PUE      |         | R/W               |         | -       | Pad V   | Veak Pu     | II-Up En   | able     |                                       |              |          |          |          |
|               |           |         |          |         |                   |         |         |         |             |            |          | ears the                              | •            | •        | cond clo | ck cycle |

**GPIOPUR[n]**enables. The change is effective on the second clock cycle after the write.

Note: The default reset value for the **GPIOAFSEL**, **GPIOPUR**, and **GPIODEN** registers are 0x0000.0000 for all GPIO pins, with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). These five pins default to JTAG/SWD functionality. Because of this, the default reset value of these registers for GPIO Port B is 0x0000.0080 while the default reset value for Port C is 0x0000.000F.

## Register 16: GPIO Pull-Down Select (GPIOPDR), offset 0x514

The **GPIOPDR** register is the pull-down control register. When a bit is set to 1, it enables a weak pull-down resistor on the corresponding GPIO signal. Setting a bit in **GPIOPDR** automatically clears the corresponding bit in the **GPIO Pull-Up Select (GPIOPUR)** register (see page 181).

GPIO Pull-Down Select (GPIOPDR)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0x514 Type R/W, reset 0x0000.0000

|               | 31                   | 30      | 29      | 28      | 27       | 26      | 25      | 24      | 23          | 22         | 21      | 20                                     | 19      | 18       | 17        | 16       |
|---------------|----------------------|---------|---------|---------|----------|---------|---------|---------|-------------|------------|---------|----------------------------------------|---------|----------|-----------|----------|
|               |                      | 1       | 1       |         | <b> </b> |         | 1       | rese    | rved        | 1          |         |                                        |         | 1        | 1         |          |
| Type<br>Reset | RO<br>0              | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0    | RO<br>0 | RO<br>0                                | RO<br>0 | RO<br>0  | RO<br>0   | RO<br>0  |
|               | 15                   | 14      | 13      | 12      | 11       | 10      | 9       | 8       | 7           | 6          | 5       | 4                                      | 3       | 2        | 1         | 0        |
|               |                      | 1       | 1       | rese    | rved     |         | 1       | 1       |             | 1          | r       | P                                      | DE      | 1        | 1         |          |
| Туре          | RO                   | RO      | RO      | RO      | RO       | RO      | RO      | RO      | R/W         | R/W        | R/W     | R/W                                    | R/W     | R/W      | R/W       | R/W      |
| Reset         | 0                    | 0       | 0       | 0       | 0        | 0       | 0       | 0       | 0           | 0          | 0       | 0                                      | 0       | 0        | 0         | 0        |
| Bit/F         | it/Field Name Type I |         |         |         |          |         | Reset   | Descr   | iption      |            |         |                                        |         |          |           |          |
| 31            | :8                   | 51      |         |         |          |         |         | compa   | atibility v | vith futur | e produ | e value o<br>cts, the v<br>ify-write o | alue of | a reserv | •         |          |
| 7:            | 0                    |         | PDE     |         | R/W      |         | 0x00    | Pad V   | Veak Pu     | ll-Down    | Enable  |                                        |         |          |           |          |
|               |                      |         |         |         |          |         |         |         |             |            |         | ears the<br>ange is ef                 | •       | •        | econd clo | ck cycle |

after the write.

## Register 17: GPIO Slew Rate Control Select (GPIOSLR), offset 0x518

The **GPIOSLR** register is the slew rate control register. Slew rate control is only available when using the 8-mA drive strength option via the **GPIO 8-mA Drive Select (GPIODR8R)** register (see page 179).

#### GPIO Slew Rate Control Select (GPIOSLR)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0x518 Type R/W, reset 0x0000.0000

|       | 31            | 30 | 29   | 28   | 27    | 26 | 25    | 24     | 23          | 22         | 21      | 20                                     | 19      | 18       | 17  | 16  |
|-------|---------------|----|------|------|-------|----|-------|--------|-------------|------------|---------|----------------------------------------|---------|----------|-----|-----|
|       |               | 1  | 1    | 1    | · · · |    | 1     | rese   | rved        | r          |         |                                        |         | 1        | 1   | ,   |
| Туре  | RO            | RO | RO   | RO   | RO    | RO | RO    | RO     | RO          | RO         | RO      | RO                                     | RO      | RO       | RO  | RO  |
| Reset | 0             | 0  | 0    | 0    | 0     | 0  | 0     | 0      | 0           | 0          | 0       | 0                                      | 0       | 0        | 0   | 0   |
|       | 15            | 14 | 13   | 12   | 11    | 10 | 9     | 8      | 7           | 6          | 5       | 4                                      | 3       | 2        | 1   | 0   |
|       |               | 1  | 1    | rese | rved  |    | 1     | 1      |             | 1          | 1       | SF                                     | R<br>RL | 1        | T   |     |
| Туре  | RO            | RO | RO   | RO   | RO    | RO | RO    | RO     | R/W         | R/W        | R/W     | R/W                                    | R/W     | R/W      | R/W | R/W |
| Reset | 0             | 0  | 0    | 0    | 0     | 0  | 0     | 0      | 0           | 0          | 0       | 0                                      | 0       | 0        | 0   | 0   |
| Bit/F | ield          |    | Name |      | Туре  | I  | Reset | Descr  | iption      |            |         |                                        |         |          |     |     |
| 31    | 31:8 reserved |    |      |      | RO    |    | 0     | compa  | atibility v | vith futur | e produ | e value o<br>cts, the v<br>ify-write o | alue of | a reserv |     |     |
| 7:    | 0             |    | SRL  |      | R/W   |    | 0     | Slew I | Rate Lin    | nit Enabl  | e (8-mA | drive on                               | nly)    |          |     |     |
|       |               |    |      |      |       |    |       | 0: Sle | w rate c    | ontrol di  | sabled. |                                        |         |          |     |     |

1: Slew rate control enabled.

## Register 18: GPIO Digital Enable (GPIODEN), offset 0x51C

The **GPIODEN** register is the digital enable register. By default, with the exception of the GPIO signals used for JTAG/SWD function, all other GPIO signals are configured out of reset to be undriven (tristate). Their digital function is disabled; they do not drive a logic value on the pin and they do not allow the pin voltage into the GPIO receiver. To use the pin in a digital function (either GPIO or alternate function), the corresponding GPIODEN bit must be set.

#### GPIO Digital Enable (GPIODEN)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port G base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0x51C Type R/W, reset -

|               | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24      | 23         | 22                      | 21      | 20      | 19      | 18      | 17        | 16      |
|---------------|---------|---------|----------|---------|---------|---------|---------|---------|------------|-------------------------|---------|---------|---------|---------|-----------|---------|
|               |         | •       |          |         |         |         |         | rese    | rved       |                         |         |         |         | •       |           |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0    | RO<br>0                 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0   | RO<br>0 |
| Reber         | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8       | 7          | 6                       | 5       | 4       | 3       | 2       | 1         | 0       |
| [             | 15      | 14      | 1        | rese    | r i     | 10      | 1       | 1       | ,          |                         |         |         |         | 1       | ,<br>     |         |
|               |         |         |          | 1636    | l       |         |         |         |            |                         |         |         |         |         |           |         |
| Туре          | RO      | RO      | RO       | RO      | RO      | RO      | RO      | RO      | R/W        | R/W                     | R/W     | R/W     | R/W     | R/W     | R/W       | R/W     |
| Reset         | 0       | 0       | 0        | 0       | 0       | 0       | 0       | 0       | -          | -                       | -       | -       | -       | -       | -         | -       |
|               |         |         |          |         |         |         |         |         |            |                         |         |         |         |         |           |         |
| Bit/F         | ield    |         | Name     |         | Туре    | F       | Reset   | Descr   | iption     |                         |         |         |         |         |           |         |
| 31:           | :8      |         | reserved |         | RO      |         | 0       |         |            | uld not re              |         |         |         |         | •         |         |
|               |         |         |          |         |         |         |         | •       |            | vith futur<br>oss a rea | •       | -       |         |         | ed bit sh | ould be |
| 7:0           | 0       |         | DEN      |         | R/W     |         | -       | Digital | l Enable   |                         |         |         |         |         |           |         |
|               |         |         |          |         |         |         |         | 0: Dig  | ital funct | tions dis               | abled.  |         |         |         |           |         |

1: Digital functions enabled.

Note: The default reset value for the **GPIOAFSEL**, **GPIOPUR**, and **GPIODEN** registers are 0x0000.0000 for all GPIO pins, with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). These five pins default to JTAG/SWD functionality. Because of this, the default reset value of these registers for GPIO Port B is 0x0000.0080 while the default reset value for Port C is 0x0000.000F.

## Register 19: GPIO Lock (GPIOLOCK), offset 0x520

The **GPIOLOCK** register enables write access to the **GPIOCR** register (see page 186). Writing 0x1ACCE551 to the **GPIOLOCK** register will unlock the **GPIOCR** register. Writing any other value to the **GPIOLOCK** register re-enables the locked state. Reading the **GPIOLOCK** register returns the lock status rather than the 32-bit value that was previously written. Therefore, when write accesses are disabled, or locked, reading the **GPIOLOCK** register returns 0x00000001. When write accesses are enabled, or unlocked, reading the **GPIOLOCK** register returns 0x00000000.

#### GPIO Lock (GPIOLOCK)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port G base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0x520 Type R/W, reset 0x0000.0001

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 LOCK Туре R/W Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 1 LOCK R/W Туре Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 **Bit/Field** Name Reset Description Type 31:0 LOCK R/W 0x00000001 GPIO Lock

A write of the value 0x1ACCE551 unlocks the GPIO Commit register for write access. A write of any other value reapplies the lock, preventing any register updates. A read of this register returns the following values:

locked: 0x0000001

unlocked: 0x00000000

## Register 20: GPIO Commit (GPIOCR), offset 0x524

The **GPIOCR** register is the commit register. The value of the **GPIOCR** register determines which bits of the **GPIOAFSEL** register will be committed when a write to the **GPIOAFSEL** register is performed. If a bit in the **GPIOCR** register is a zero, the data being written to the corresponding bit in the **GPIOAFSEL** register will not be committed and will retain its previous value. If a bit in the **GPIOCR** register is a one, the data being written to the corresponding bit of the **GPIOAFSEL** register will be committed to the register and will reflect the new value.

The contents of the **GPIOCR** register can only be modified if the **GPIOLOCK** register is unlocked. Writes to the GPIOCR register will be ignored if the **GPIOLOCK** register is locked.

Important: This register is designed to prevent accidental programming of the **GPIOAFSEL** registers that control connectivity to the JTAG/SWD debug hardware. By initializing the bits of the **GPIOCR** register to 0 for PB7 and PC[3:0], the JTAG/SWD debug port can only be converted to GPIOs through a deliberate set of writes to the **GPIOLOCK**, **GPIOCR**, and **GPIOAFSEL** registers.

Because this protection is currently only implemented on the JTAG/SWD pins on PB7 and PC[3:0], all of the other bits in the **GPIOCR** registers cannot be written with 0x0. These bits are hardwired to 0x1, ensuring that it is always possible to commit new values to the **GPIOAFSEL** register bits of these other pins.

preserved across a read-modify-write operation.

#### GPIO Commit (GPIOCR)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port G base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0x524 Type -, reset -

|       | 31                | 30 | 29      | 28   | 27   | 26 | 25    | 24       | 23          | 22          | 21      | 20         | 19         | 18       | 17         | 16      |
|-------|-------------------|----|---------|------|------|----|-------|----------|-------------|-------------|---------|------------|------------|----------|------------|---------|
|       |                   |    | 1       |      |      |    |       | rese     | rved        | · · ·       |         | 1          |            |          | 1          |         |
| _ I   |                   |    |         |      |      |    |       |          |             |             |         |            |            |          |            |         |
| Туре  | RO                | RO | RO      | RO   | RO   | RO | RO    | RO       | RO          | RO          | RO      | RO         | RO         | RO       | RO         | RO      |
| Reset | 0                 | 0  | 0       | 0    | 0    | 0  | 0     | 0        | 0           | 0           | 0       | 0          | 0          | 0        | 0          | 0       |
|       |                   |    |         |      |      |    |       |          |             |             |         |            |            |          |            |         |
|       | 15                | 14 | 13      | 12   | 11   | 10 | 9     | 8        | 7           | 6           | 5       | 4          | 3          | 2        | 1          | 0       |
| l l   |                   | 1  | 1       | 1 1  | 1    |    |       | 1        |             | r r         |         | <b>1</b>   |            |          | <b>i</b> 1 |         |
|       |                   |    |         | rese | rved |    |       |          |             |             |         | С          | R          |          |            |         |
| l     |                   |    |         |      |      |    |       |          |             |             |         |            | L          |          |            |         |
| Туре  | RO                | RO | RO      | RO   | RO   | RO | RO    | RO       | -           | -           | -       | -          | -          | -        | -          | -       |
| Reset | 0                 | 0  | 0       | 0    | 0    | 0  | 0     | 0        | -           | -           | -       | -          | -          | -        | -          | -       |
|       |                   |    |         |      |      |    |       |          |             |             |         |            |            |          |            |         |
|       |                   |    |         |      |      |    |       |          |             |             |         |            |            |          |            |         |
|       |                   |    |         |      | _    | _  |       | _        |             |             |         |            |            |          |            |         |
| Bit/F | ield              |    | Name    |      | Туре | F  | Reset | Descr    | iption      |             |         |            |            |          |            |         |
|       |                   |    |         |      |      |    |       |          |             |             |         |            |            |          |            |         |
| 21    | 1:8 reserved RO 0 |    |         |      |      | 0  | Softw | ara ahau | ld not rel  | ly on th    |         | of a raca  | rund hit   | To prov  | ido        |         |
| 51.   | .0                |    | eserved | 1    | RU   |    | 0     |          |             |             |         |            |            |          | •          |         |
|       |                   |    |         |      |      |    |       | compa    | atibility w | ith future/ | e produ | cts, the v | /alue of a | a reserv | ed bit sh  | ould be |

| Bit/Field | Name | Туре | Reset | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------|------|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0       | CR   | -    | -     | GPIO Commit                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           |      |      |       | On a bit-wise basis, any bit set allows the corresponding GPIOAFSEL bit to be set to its alternate function.                                                                                                                                                                                                                                                                                                                                                             |
|           |      |      |       | Note: The default register type for the <b>GPIOCR</b> register is RO for<br>all GPIO pins, with the exception of the five JTAG/SWD pins<br>(PB7 and PC[3:0]). These five pins are currently the only<br>GPIOs that are protected by the <b>GPIOCR</b> register. Because<br>of this, the register type for GPIO Port B7 and GPIO Port<br>C[3:0] is R/W.                                                                                                                   |
|           |      |      |       | The default reset value for the <b>GPIOCR</b> register is<br>0x0000.00FF for all GPIO pins, with the exception of the five<br>JTAG/SWD pins ( $PB7$ and $PC[3:0]$ ). To ensure that the<br>JTAG port is not accidentally programmed as a GPIO, these<br>five pins default to non-commitable. Because of this, the<br>default reset value of <b>GPIOCR</b> for GPIO Port B is<br>0x0000.007F while the default reset value of <b>GPIOCR</b> for Port<br>C is 0x0000.00F0. |

## Register 21: GPIO Peripheral Identification 4 (GPIOPeriphID4), offset 0xFD0

The **GPIOPeriphID4**, **GPIOPeriphID5**, **GPIOPeriphID6**, and **GPIOPeriphID7** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 4 (GPIOPeriphID4)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0xFD0 Type RO, reset 0x0x0000.0000

|               | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24                               | 23          | 22                                     | 21      | 20          | 19      | 18       | 17      | 16      |
|---------------|---------|---------|----------|---------|---------|---------|---------|----------------------------------|-------------|----------------------------------------|---------|-------------|---------|----------|---------|---------|
|               |         | 1       |          |         | · · ·   |         |         | rese                             | rved        | , ,                                    |         | ,           | 1       | 1        | 1       |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                          | RO<br>0     | RO<br>0                                | RO<br>0 | RO<br>0     | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 |
|               | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8                                | 7           | 6                                      | 5       | 4           | 3       | 2        | 1       | 0       |
| [             |         | 1       | 1 1      |         | rved    |         | 1       | 1                                |             | 1 1                                    | -       | PI          | 1       | 1        | 1       |         |
| Туре          | RO      | RO      | RO       | RO      | RO      | RO      | RO      | RO                               | RO          | RO                                     | RO      | RO          | RO      | RO       | RO      | RO      |
| Reset         | 0       | 0       | 0        | 0       | 0       | 0       | 0       | 0                                | 0           | 0                                      | 0       | 0           | 0       | 0        | 0       | 0       |
| Bit/Fi        |         |         |          |         |         |         | Descr   | iption                           |             |                                        |         |             |         |          |         |         |
| 31:           | 8       |         | reserved |         | RO      |         | 0       | compa                            | atibility v | uld not re<br>with futur<br>ross a rea | e produ | icts, the v | alue of | a reserv |         |         |
| 7:0           | C       |         | PID4     |         | RO      |         | 0x00    | GPIO Peripheral ID Register[7:0] |             |                                        |         |             |         |          |         |         |

# Register 22: GPIO Peripheral Identification 5 (GPIOPeriphID5), offset 0xFD4

The **GPIOPeriphID4**, **GPIOPeriphID5**, **GPIOPeriphID6**, and **GPIOPeriphID7** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 5 (GPIOPeriphID5)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0xFD4 Type RO, reset 0x0x0000.0000

| _     | 31                      | 30 | 29   | 28   | 27       | 26    | 25     | 24    | 23          | 22                                    | 21        | 20         | 19      | 18       | 17 | 16               |
|-------|-------------------------|----|------|------|----------|-------|--------|-------|-------------|---------------------------------------|-----------|------------|---------|----------|----|------------------|
|       |                         | 1  | 1 1  |      | ı ı<br>1 |       | 1      | rese  | rved        |                                       |           | 1          |         | I        | 1  | 1                |
| Туре  | RO                      | RO | RO   | RO   | RO       | RO    | RO     | RO    | RO          | RO                                    | RO        | RO         | RO      | RO       | RO | RO               |
| Reset | 0                       | 0  | 0    | 0    | 0        | 0     | 0      | 0     | 0           | 0                                     | 0         | 0          | 0       | 0        | 0  | 0                |
| _     | 15                      | 14 | 13   | 12   | 11       | 10    | 9      | 8     | 7           | 6                                     | 5         | 4          | 3       | 2        | 1  | 0                |
|       |                         | 1  | 1 1  | rese | erved    |       | 1      | 1     |             | 1 1                                   |           | I<br>Pl    | D5      | I        | 1  |                  |
| Туре  | RO                      | RO | RO   | RO   | RO       | RO    | RO     | RO    | RO          | RO                                    | RO        | RO         | RO      | RO       | RO | RO               |
| Reset | 0                       | 0  | 0    | 0    | 0        | 0     | 0      | 0     | 0           | 0                                     | 0         | 0          | 0       | 0        | 0  | 0                |
| Bit/F | t/Field Name Type Reset |    |      |      |          | Descr | iption |       |             |                                       |           |            |         |          |    |                  |
| 31:   | cc                      |    |      |      |          |       |        | compa | atibility v | uld not re<br>vith futur<br>oss a rea | e produ   | cts, the v | alue of | a reserv |    | vide<br>nould be |
| 7:0   | 0                       |    | PID5 |      | RO       |       | 0x00   | GPIO  | Periphe     | ral ID Re                             | egister[1 | 5:8]       |         |          |    |                  |

## Register 23: GPIO Peripheral Identification 6 (GPIOPeriphID6), offset 0xFD8

The **GPIOPeriphID4**, **GPIOPeriphID5**, **GPIOPeriphID6**, and **GPIOPeriphID7** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 6 (GPIOPeriphID6)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0xFD8 Type RO, reset 0x0x0000.0000

|               | 31      | 30      | 29       | 28      | 27          | 26      | 25      | 24                                 | 23                                            | 22                                     | 21      | 20         | 19      | 18       | 17                                            | 16       |
|---------------|---------|---------|----------|---------|-------------|---------|---------|------------------------------------|-----------------------------------------------|----------------------------------------|---------|------------|---------|----------|-----------------------------------------------|----------|
|               |         | 1       |          |         | г г<br>1    |         | 1       | rese                               | rved                                          | , ,                                    |         | 1          | 1       | 1        |                                               |          |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0     | RO<br>0 | RO<br>0 | RO<br>0                            | RO<br>0                                       | RO<br>0                                | RO<br>0 | RO<br>0    | RO<br>0 | RO<br>0  | RO<br>0                                       | RO<br>0  |
|               | 15      | 14      | 13       | 12      | 11          | 10      | 9       | 8                                  | 7                                             | 6                                      | 5       | 4          | 3       | 2        | 1                                             | 0        |
| l l           | 15      | 14      | 1        | 12      | , <u>''</u> | 10      | 1       | 1                                  | <u>,                                     </u> | <b>1</b>                               | 5       | 1          | 1       | 1        | <u>,                                     </u> | <b>1</b> |
|               |         |         |          | rese    | rved        |         |         |                                    |                                               |                                        |         | PI         | D6      |          |                                               |          |
| Туре          | RO      | RO      | RO       | RO      | RO          | RO      | RO      | RO                                 | RO                                            | RO                                     | RO      | RO         | RO      | RO       | RO                                            | RO       |
| Reset         | 0       | 0       | 0        | 0       | 0           | 0       | 0       | 0                                  | 0                                             | 0                                      | 0       | 0          | 0       | 0        | 0                                             | 0        |
| Bit/Fi        |         |         |          |         |             | Descr   | iption  |                                    |                                               |                                        |         |            |         |          |                                               |          |
| 31:           | 8       |         | reserved |         | RO          |         | 0       | compa                              | atibility                                     | uld not re<br>with futur<br>ross a rea | e produ | cts, the v | alue of | a reserv | •                                             |          |
| 7:0           | C       |         | PID6     |         | RO          |         | 0x00    | GPIO Peripheral ID Register[23:16] |                                               |                                        |         |            |         |          |                                               |          |

# Register 24: GPIO Peripheral Identification 7 (GPIOPeriphID7), offset 0xFDC

The **GPIOPeriphID4**, **GPIOPeriphID5**, **GPIOPeriphID6**, and **GPIOPeriphID7** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 7 (GPIOPeriphID7)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0xFDC Type RO, reset 0x0x0000.0000

|       | 31                      | 30 | 29   | 28   | 27    | 26     | 25   | 24    | 23                                   | 22         | 21        | 20         | 19      | 18       | 17 | 16 |
|-------|-------------------------|----|------|------|-------|--------|------|-------|--------------------------------------|------------|-----------|------------|---------|----------|----|----|
|       |                         | 1  | 1 1  |      | · · · |        | 1    | rese  | erved                                |            |           | 1          |         | 1        | 1  |    |
| Туре  | RO                      | RO | RO   | RO   | RO    | RO     | RO   | RO    | RO                                   | RO         | RO        | RO         | RO      | RO       | RO | RO |
| Reset | 0                       | 0  | 0    | 0    | 0     | 0      | 0    | 0     | 0                                    | 0          | 0         | 0          | 0       | 0        | 0  | 0  |
|       | 15                      | 14 | 13   | 12   | 11    | 10     | 9    | 8     | 7                                    | 6          | 5         | 4          | 3       | 2        | 1  | 0  |
|       |                         | 1  |      | rese | erved |        | 1    | •     |                                      |            |           | PI         | D7      | I        | 1  | •  |
| Туре  | RO                      | RO | RO   | RO   | RO    | RO     | RO   | RO    | RO                                   | RO         | RO        | RO         | RO      | RO       | RO | RO |
| Reset | 0                       | 0  | 0    | 0    | 0     | 0      | 0    | 0     | 0                                    | 0          | 0         | 0          | 0       | 0        | 0  | 0  |
| Bit/F | t/Field Name Type Reset |    |      |      | Descr | iption |      |       |                                      |            |           |            |         |          |    |    |
| 31:   | c                       |    |      |      |       |        |      | compa | are shou<br>atibility w<br>rved acro | /ith futur | e produ   | cts, the v | alue of | a reserv | •  |    |
| 7:0   | 0                       |    | PID7 |      | RO    |        | 0x00 | GPIO  | Periphe                              | ral ID Re  | egister[3 | 81:24]     |         |          |    |    |

# Register 25: GPIO Peripheral Identification 0 (GPIOPeriphID0), offset 0xFE0

The **GPIOPeriphID0**, **GPIOPeriphID1**, **GPIOPeriphID2**, and **GPIOPeriphID3** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 0 (GPIOPeriphID0)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0xFE0 Type RO, reset 0x0x0000.0061

|       | 31             | 30 | 29   | 28   | 27   | 26 | 25    | 24    | 23        | 22                                     | 21        | 20          | 19       | 18        | 17        | 16     |
|-------|----------------|----|------|------|------|----|-------|-------|-----------|----------------------------------------|-----------|-------------|----------|-----------|-----------|--------|
|       |                | 1  | 1    | 1    |      |    | 1     | rese  | rved      | 1                                      |           |             | 1        | 1         | 1         | ,      |
| Туре  | RO             | RO | RO   | RO   | RO   | RO | RO    | RO    | RO        | RO                                     | RO        | RO          | RO       | RO        | RO        | RO     |
| Reset | 0              | 0  | 0    | 0    | 0    | 0  | 0     | 0     | 0         | 0                                      | 0         | 0           | 0        | 0         | 0         | 0      |
|       | 15             | 14 | 13   | 12   | 11   | 10 | 9     | 8     | 7         | 6                                      | 5         | 4           | 3        | 2         | 1         | 0      |
|       |                | 1  | 1    | rese | rved |    | 1     | 1     |           | Î                                      |           | Pli         | D0       | 1         | 1         |        |
| Туре  | RO             | RO | RO   | RO   | RO   | RO | RO    | RO    | RO        | RO                                     | RO        | RO          | RO       | RO        | RO        | RO     |
| Reset | 0              | 0  | 0    | 0    | 0    | 0  | 0     | 0     | 0         | 1                                      | 1         | 0           | 0        | 0         | 0         | 1      |
| Bit/F | eset 0 0 0 0 0 |    |      |      | Туре |    | Reset | Descr | iption    |                                        |           |             |          |           |           |        |
| 31    | 31:8 reserved  |    |      |      | RO   |    | 0     | compa | atibility | uld not re<br>with futur<br>ross a rea | e produ   | icts, the v | alue of  | a reserv  | •         |        |
| 7:    | 0              |    | PID0 |      | RO   |    | 0x61  | GPIO  | Periphe   | eral ID Re                             | egister[  | 7:0]        |          |           |           |        |
|       |                |    |      |      |      |    |       | Can b | e used    | by softwa                              | are to io | lentify the | e presei | nce of th | is peripl | heral. |

# Register 26: GPIO Peripheral Identification 1(GPIOPeriphID1), offset 0xFE4

The **GPIOPeriphID0**, **GPIOPeriphID1**, **GPIOPeriphID2**, and **GPIOPeriphID3** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 1 (GPIOPeriphID1)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0xFE4 Type RO, reset 0x0x0000.0000

|       | 31            | 30 | 29   | 28   | 27   | 26 | 25    | 24    | 23          | 22         | 21        | 20                                       | 19       | 18        | 17         | 16     |
|-------|---------------|----|------|------|------|----|-------|-------|-------------|------------|-----------|------------------------------------------|----------|-----------|------------|--------|
|       |               | 1  | 1    | 1    |      |    | 1     | rese  | rved        |            |           | , , , ,                                  |          | ï         | 1          | 1      |
| Туре  | RO            | RO | RO   | RO   | RO   | RO | RO    | RO    | RO          | RO         | RO        | RO                                       | RO       | RO        | RO         | RO     |
| Reset | 0             | 0  | 0    | 0    | 0    | 0  | 0     | 0     | 0           | 0          | 0         | 0                                        | 0        | 0         | 0          | 0      |
|       | 15            | 14 | 13   | 12   | 11   | 10 | 9     | 8     | 7           | 6          | 5         | 4                                        | 3        | 2         | 1          | 0      |
|       |               | 1  | 1    | rese | rved |    | 1     | 1     |             |            | ſ         | PI                                       | D1       | 1         | T          |        |
| Туре  | RO            | RO | RO   | RO   | RO   | RO | RO    | RO    | RO          | RO         | RO        | RO                                       | RO       | RO        | RO         | RO     |
| Reset | 0             | 0  | 0    | 0    | 0    | 0  | 0     | 0     | 0           | 0          | 0         | 0                                        | 0        | 0         | 0          | 0      |
| Bit/F | ield          |    | Name |      | Туре |    | Reset | Descr | iption      |            |           |                                          |          |           |            |        |
| 31    | 31:8 reserved |    |      |      | RO   |    | 0     | compa | atibility w | ith futur/ | e produ   | ne value o<br>icts, the v<br>ify-write o | alue of  | a reserv  | •          |        |
| 7:    | 0             |    | PID1 |      | RO   |    | 0x00  | GPIO  | Periphe     | ral ID Re  | egister[  | 15:8]                                    |          |           |            |        |
|       |               |    |      |      |      |    |       | Can b | e used b    | by softwa  | are to id | lentify the                              | e preser | ice of th | nis peripl | neral. |

## Register 27: GPIO Peripheral Identification 2 (GPIOPeriphID2), offset 0xFE8

The **GPIOPeriphID0**, **GPIOPeriphID1**, **GPIOPeriphID2**, and **GPIOPeriphID3** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 2 (GPIOPeriphID2)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0xFE8 Type RO, reset 0x0x0000.0018

|       | 31                                       | 30 | 29   | 28                     | 27    | 26 | 25   | 24     | 23          | 22         | 21      | 20                                        | 19       | 18       | 17        | 16 |
|-------|------------------------------------------|----|------|------------------------|-------|----|------|--------|-------------|------------|---------|-------------------------------------------|----------|----------|-----------|----|
|       |                                          | 1  | 1    | I                      | · · · |    | 1    | rese   | rved        | 1 1        |         | 1                                         |          |          |           |    |
| Туре  | RO                                       | RO | RO   | RO                     | RO    | RO | RO   | RO     | RO          | RO         | RO      | RO                                        | RO       | RO       | RO        | RO |
| Reset | 0                                        | 0  | 0    | 0                      | 0     | 0  | 0    | 0      | 0           | 0          | 0       | 0                                         | 0        | 0        | 0         | 0  |
|       | 15                                       | 14 | 13   | 12                     | 11    | 10 | 9    | 8      | 7           | 6          | 5       | 4                                         | 3        | 2        | 1         | 0  |
|       | Type RO |    |      |                        |       |    |      |        |             |            |         |                                           |          |          | т         |    |
|       |                                          |    |      |                        |       |    |      |        |             |            |         | RO                                        | RO       | RO       | RO        | RO |
| Reset | 0                                        | 0  | 0    | 0                      | 0     | 0  | 0    | 0      | 0           | 0          | 0       | 1                                         | 1        | 0        | 0         | 0  |
| Bit/F | ield                                     |    | Name | Type Reset Description |       |    |      |        |             |            |         |                                           |          |          |           |    |
| 31:   | 31:8 reserved RO                         |    |      |                        |       |    | 0    | compa  | atibility v | with futur | e produ | ne value o<br>ucts, the v<br>lify-write o | alue of  | a reserv | •         |    |
| 7:    | 0                                        |    | PID2 |                        | RO    |    | 0x18 |        |             |            |         |                                           |          |          |           |    |
|       |                                          |    |      |                        |       |    |      | Gall D | e useu      |            |         |                                           | - preser |          | is heithi |    |

# Register 28: GPIO Peripheral Identification 3 (GPIOPeriphID3), offset 0xFEC

The **GPIOPeriphID0**, **GPIOPeriphID1**, **GPIOPeriphID2**, and **GPIOPeriphID3** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 3 (GPIOPeriphID3)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0xFEC Type RO, reset 0x0x0000.0001

|       | 31                                   | 30 | 29       | 28   | 27    | 26 | 25   | 24    | 23          | 22        | 21        | 20                                     | 19       | 18       | 17        | 16     |
|-------|--------------------------------------|----|----------|------|-------|----|------|-------|-------------|-----------|-----------|----------------------------------------|----------|----------|-----------|--------|
|       |                                      | ,  | 1        |      | · · · |    | 1    | rese  | rved        |           |           |                                        |          |          |           |        |
| Туре  | RO                                   | RO | RO       | RO   | RO    | RO | RO   | RO    | RO          | RO        | RO        | RO                                     | RO       | RO       | RO        | RO     |
| Reset | 0                                    | 0  | 0        | 0    | 0     | 0  | 0    | 0     | 0           | 0         | 0         | 0                                      | 0        | 0        | 0         | 0      |
|       | 15                                   | 14 | 13       | 12   | 11    | 10 | 9    | 8     | 7           | 6         | 5         | 4                                      | 3        | 2        | 1         | 0      |
|       |                                      | 1  | 1        | rese | rved  |    | 1    | -     |             |           |           | PI                                     | D3       |          | 1         |        |
| Туре  | RO                                   | RO | RO       | RO   | RO    | RO | RO   | RO    | RO          | RO        | RO        | RO                                     | RO       | RO       | RO        | RO     |
| Reset | 0                                    | 0  | 0        | 0    | 0     | 0  | 0    | 0     | 0           | 0         | 0         | 0                                      | 0        | 0        | 0         | 1      |
| Bit/F | it/Field Name Type Reset Description |    |          |      |       |    |      |       |             |           |           |                                        |          |          |           |        |
| 31    | 8                                    |    | reserved |      | RO    |    | 0    | compa | atibility w | ith futur | e produ   | e value o<br>cts, the v<br>ify-write o | alue of  | a reserv | •         |        |
| 7:    | C                                    |    | PID3     |      | RO    |    | 0x01 | GPIO  | Periphe     | ral ID Re | egister[3 | 31:24]                                 |          |          |           |        |
|       |                                      |    |          |      |       |    |      | Can b | e used b    | oy softwa | are to id | entify the                             | e presen | ce of th | is peripl | neral. |

## **Register 29: GPIO PrimeCell Identification 0 (GPIOPCellID0), offset 0xFF0**

The **GPIOPCeIIID0**, **GPIOPCeIIID1**, **GPIOPCeIIID2**, and **GPIOPCeIIID3** registers are four 8-bit wide registers, that can conceptually be treated as one 32-bit register. The register is used as a standard cross-peripheral identification system.

GPIO PrimeCell Identification 0 (GPIOPCellID0)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0xFF0 Type RO, reset 0x0x0000.000D

|       | 31   | 30 | 29       | 28   | 27                     | 26 | 25   | 24                                                                                                                                                                        | 23        | 22        | 21       | 20           | 19       | 18       | 17        | 16     |
|-------|------|----|----------|------|------------------------|----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|----------|--------------|----------|----------|-----------|--------|
|       |      | 1  | 1        | 1    | · · ·                  |    | 1    | rese                                                                                                                                                                      | rved      |           |          | · · · ·      |          |          | 1         |        |
| Туре  | RO   | RO | RO       | RO   | RO                     | RO | RO   | RO                                                                                                                                                                        | RO        | RO        | RO       | RO           | RO       | RO       | RO        | RO     |
| Reset | 0    | 0  | 0        | 0    | 0                      | 0  | 0    | 0                                                                                                                                                                         | 0         | 0         | 0        | 0            | 0        | 0        | 0         | 0      |
|       | 15   | 14 | 13       | 12   | 11                     | 10 | 9    | 8                                                                                                                                                                         | 7         | 6         | 5        | 4            | 3        | 2        | 1         | 0      |
|       |      | 1  | 1        | rese | rved                   |    | 1    | -                                                                                                                                                                         |           |           |          |              | 20       |          | T         |        |
| Туре  | RO   | RO | RO       | RO   | RO                     | RO | RO   | RO                                                                                                                                                                        | RO        | RO        | RO       | RO           | RO       | RO       | RO        | RO     |
| Reset | 0    | 0  | 0        | 0    | 0                      | 0  | 0    | 0                                                                                                                                                                         | 0         | 0         | 0        | 0            | 1        | 1        | 0         | 1      |
| Bit/F | ield |    | Name     |      | Type Reset Description |    |      |                                                                                                                                                                           |           |           |          |              |          |          |           |        |
| 31:   | :8   |    | reserved | I    | RO                     |    | 0    | Software should not rely on the value of a reserved bit.<br>compatibility with future products, the value of a reserve<br>preserved across a read-modify-write operation. |           |           |          |              |          |          | •         |        |
| 7:    | 0    |    | CID0     |      | RO                     |    | 0x0D | GPIO                                                                                                                                                                      | PrimeC    | ell ID Re | gister[7 | <b>'</b> :0] |          |          |           |        |
|       |      |    |          |      |                        |    |      | Provid                                                                                                                                                                    | les softv | vare a st | andard   | cross-pe     | ripheral | identifi | cation sy | /stem. |

# Register 30: GPIO PrimeCell Identification 1 (GPIOPCellID1), offset 0xFF4

The **GPIOPCeIIID0**, **GPIOPCeIIID1**, **GPIOPCeIIID2**, and **GPIOPCeIIID3** registers are four 8-bit wide registers, that can conceptually be treated as one 32-bit register. The register is used as a standard cross-peripheral identification system.

GPIO PrimeCell Identification 1 (GPIOPCellID1)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0xFF4 Type RO, reset 0x0x0000.00F0

|       | 31   | 30                                                                                             | 29   | 28   | 27   | 26 | 25   | 24     | 23        | 22         | 21       | 20       | 19       | 18        | 17        | 16     |
|-------|------|------------------------------------------------------------------------------------------------|------|------|------|----|------|--------|-----------|------------|----------|----------|----------|-----------|-----------|--------|
|       |      | 1                                                                                              | 1    | 1    |      |    | 1    | rese   | rved      |            |          | · · ·    |          |           | 1         | '      |
| Туре  | RO   | RO                                                                                             | RO   | RO   | RO   | RO | RO   | RO     | RO        | RO         | RO       | RO       | RO       | RO        | RO        | RO     |
| Reset | 0    | 0                                                                                              | 0    | 0    | 0    | 0  | 0    | 0      | 0         | 0          | 0        | 0        | 0        | 0         | 0         | 0      |
|       | 15   | 14                                                                                             | 13   | 12   | 11   | 10 | 9    | 8      | 7         | 6          | 5        | 4        | 3        | 2         | 1         | 0      |
|       |      | 1                                                                                              | 1    | rese | rved |    | 1    | 1      |           |            |          |          | D1       |           | 1         |        |
| Туре  | RO   | RO                                                                                             | RO   | RO   | RO   | RO | RO   | RO     | RO        | RO         | RO       | RO       | RO       | RO        | RO        | RO     |
| Reset | 0    | 0                                                                                              | 0    | 0    | 0    | 0  | 0    | 0      | 1         | 1          | 1        | 1        | 0        | 0         | 0         | 0      |
| Bit/F | ield |                                                                                                | Name |      | Туре |    |      |        |           |            |          |          |          |           |           |        |
| 31    | :8   | reserved RO 0 Software should not rely of compatibility with future p preserved across a read- |      |      |      |    |      |        | e produ   | cts, the v | alue of  | a reserv | •        |           |           |        |
| 7:    | 0    |                                                                                                | CID1 |      | RO   |    | 0xF0 | GPIO   | PrimeCe   | ell ID Re  | gister[1 | 5:8]     |          |           |           |        |
|       |      |                                                                                                |      |      |      |    |      | Provid | les softw | /are a st  | andard   | cross-pe | ripheral | identific | cation sy | /stem. |

## Register 31: GPIO PrimeCell Identification 2 (GPIOPCellID2), offset 0xFF8

The **GPIOPCeIIID0**, **GPIOPCeIIID1**, **GPIOPCeIIID2**, and **GPIOPCeIIID3** registers are four 8-bit wide registers, that can conceptually be treated as one 32-bit register. The register is used as a standard cross-peripheral identification system.

GPIO PrimeCell Identification 2 (GPIOPCellID2)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0xFF8 Type RO, reset 0x0x0000.0005

|       | 31   | 30 | 29       | 28   | 27    | 26                     | 25   | 24                                                                                                                                                  | 23        | 22        | 21       | 20       | 19       | 18       | 17        | 16     |
|-------|------|----|----------|------|-------|------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|----------|----------|----------|----------|-----------|--------|
|       |      | 1  | 1        | 1    | · · · |                        | 1    | rese                                                                                                                                                | rved      |           |          | · · · ·  |          |          | 1         |        |
| Туре  | RO   | RO | RO       | RO   | RO    | RO                     | RO   | RO                                                                                                                                                  | RO        | RO        | RO       | RO       | RO       | RO       | RO        | RO     |
| Reset | 0    | 0  | 0        | 0    | 0     | 0                      | 0    | 0                                                                                                                                                   | 0         | 0         | 0        | 0        | 0        | 0        | 0         | 0      |
|       | 15   | 14 | 13       | 12   | 11    | 10                     | 9    | 8                                                                                                                                                   | 7         | 6         | 5        | 4        | 3        | 2        | 1         | 0      |
|       |      | 1  | 1        | rese | rved  |                        | T    | -                                                                                                                                                   |           |           |          |          | 02       |          | Т         | T I    |
| Туре  | RO   | RO | RO       | RO   | RO    | RO                     | RO   | RO                                                                                                                                                  | RO        | RO        | RO       | RO       | RO       | RO       | RO        | RO     |
| Reset | 0    | 0  | 0        | 0    | 0     | 0                      | 0    | 0                                                                                                                                                   | 0         | 0         | 0        | 0        | 0        | 1        | 0         | 1      |
| Bit/F | ield |    | Name     |      | Туре  | Type Reset Description |      |                                                                                                                                                     |           |           |          |          |          |          |           |        |
| 31    | 8    |    | reserved | ł    | RO    |                        | 0    | Software should not rely on the value of a re<br>compatibility with future products, the value of<br>preserved across a read-modify-write operation |           |           |          |          |          |          | •         |        |
| 7:    | D    |    | CID2     |      | RO    |                        | 0x05 | GPIO                                                                                                                                                | PrimeC    | ell ID Re | gister[2 | 3:16]    |          |          |           |        |
|       |      |    |          |      |       |                        |      | Provid                                                                                                                                              | les softv | vare a st | andard   | cross-pe | ripheral | identifi | cation sy | /stem. |

# Register 32: GPIO PrimeCell Identification 3 (GPIOPCellID3), offset 0xFFC

The **GPIOPCeIIID0**, **GPIOPCeIIID1**, **GPIOPCeIIID2**, and **GPIOPCeIIID3** registers are four 8-bit wide registers, that can conceptually be treated as one 32-bit register. The register is used as a standard cross-peripheral identification system.

GPIO PrimeCell Identification 3 (GPIOPCellID3)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0xFFC Type RO, reset 0x0x0000.00B1

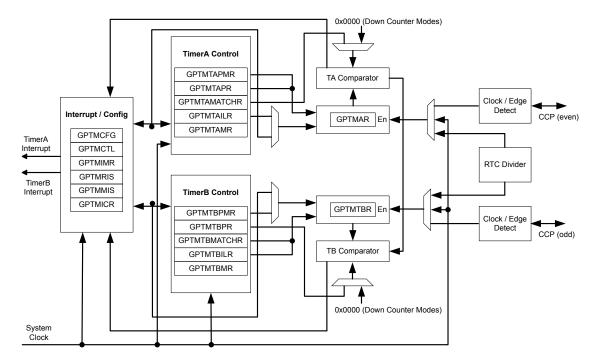
|       | 31   | 30 | 29   | 28                     | 27    | 26          | 25         | 24      | 23                                    | 22        | 21        | 20       | 19       | 18       | 17        | 16     |
|-------|------|----|------|------------------------|-------|-------------|------------|---------|---------------------------------------|-----------|-----------|----------|----------|----------|-----------|--------|
|       |      | ,  | 1    |                        | · · · |             | 1          | rese    | rved                                  |           |           |          |          | I        | 1         |        |
| Туре  | RO   | RO | RO   | RO                     | RO    | RO          | RO         | RO      | RO                                    | RO        | RO        | RO       | RO       | RO       | RO        | RO     |
| Reset | 0    | 0  | 0    | 0                      | 0     | 0           | 0          | 0       | 0                                     | 0         | 0         | 0        | 0        | 0        | 0         | 0      |
|       | 15   | 14 | 13   | 12                     | 11    | 10          | 9          | 8       | 7                                     | 6         | 5         | 4        | 3        | 2        | 1         | 0      |
|       |      | 1  | 1    | rese                   | rved  |             | 1          | T       |                                       |           | 1         | CII      | D3       | 1        | T         |        |
| Туре  | RO   | RO | RO   | RO                     | RO    | RO          | RO         | RO      | RO                                    | RO        | RO        | RO       | RO       | RO       | RO        | RO     |
| Reset | 0    | 0  | 0    | 0                      | 0     | 0           | 0          | 0       | 1                                     | 0         | 1         | 1        | 0        | 0        | 0         | 1      |
| Bit/F | ield |    | Name | Type Reset Description |       |             |            |         |                                       |           |           |          |          |          |           |        |
| comp  |      |    |      |                        |       | atibility w | ith futur/ | e produ | e value o<br>cts, the v<br>fy-write o | alue of   | a reserv  | •        |          |          |           |        |
| 7:    | 0    |    | CID3 |                        | RO    |             | 0xB1       | GPIO    | PrimeCe                               | ell ID Re | egister[3 | 1:24]    |          |          |           |        |
|       |      |    |      |                        |       |             |            | Provid  | les softw                             | are a st  | andard    | cross-pe | ripheral | identifi | cation sy | rstem. |

# **10 General-Purpose Timers**

Programmable timers can be used to count or time external events that drive the Timer input pins.

The Stellaris<sup>®</sup> General-Purpose Timer Module (GPTM) contains four GPTM blocks (Timer0, Timer1, Timer 2, and Timer 3). Each GPTM block provides two 16-bit timer/counters (referred to as TimerA and TimerB) that can be configured to operate independently as timers or event counters, or configured to operate as one 32-bit timer or one 32-bit Real-Time Clock (RTC). Timers can also be used to trigger analog-to-digital (ADC) conversions. The trigger signals from all of the general-purpose timers are ORed together before reaching the ADC module, so only one timer should be used to trigger ADC events.

**Note:** Timer2 is an internal timer and can only be used to generate internal interrupts or trigger ADC events.


The General-Purpose Timer Module is one timing resource available on the Stellaris<sup>®</sup> microcontrollers. Other timer resources include the System Timer (SysTick) (see "System Timer (SysTick)" on page 39) and the PWM timer in the PWM module (see "PWM Timer" on page 454).

The following modes are supported:

- 32-bit Timer modes
  - Programmable one-shot timer
  - Programmable periodic timer
  - Real-Time Clock using 32.768-KHz input clock
  - Software-controlled event stalling (excluding RTC mode)
- 16-bit Timer modes
  - General-purpose timer function with an 8-bit prescaler (for one-shot and periodic modes only)
  - Programmable one-shot timer
  - Programmable periodic timer
  - Software-controlled event stalling
- 16-bit Input Capture modes
  - Input edge count capture
  - Input edge time capture
- 16-bit PWM mode
  - Simple PWM mode with software-programmable output inversion of the PWM signal

# 10.1 Block Diagram





# 10.2 Functional Description

The main components of each GPTM block are two free-running 16-bit up/down counters (referred to as TimerA and TimerB), two 16-bit match registers, two prescaler match registers, and two 16-bit load/initialization registers and their associated control functions. The exact functionality of each GPTM is controlled by software and configured through the register interface.

Software configures the GPTM using the **GPTM Configuration (GPTMCFG)** register (see page 212), the **GPTM TimerA Mode (GPTMTAMR)** register (see page 213), and the **GPTM TimerB Mode (GPTMTBMR)** register (see page 214). When in one of the 32-bit modes, the timer can only act as a 32-bit timer. However, when configured in 16-bit mode, the GPTM can have its two 16-bit timers configured in any combination of the 16-bit modes.

## 10.2.1 GPTM Reset Conditions

After reset has been applied to the GPTM module, the module is in an inactive state, and all control registers are cleared and in their default states. Counters TimerA and TimerB are initialized to 0xFFFF, along with their corresponding load registers: the **GPTM TimerA Interval Load** (**GPTMTAILR**) register (see page 223) and the **GPTM TimerB Interval Load** (**GPTMTBILR**) register (see page 224). The prescale counters are initialized to 0x00: the **GPTM TimerA Prescale** (**GPTMTAPR**) register (see page 227) and the **GPTM TimerB Prescale** (**GPTMTBPR**) register (see page 228).

## 10.2.2 32-Bit Timer Operating Modes

**Note:** Both the odd- and even-numbered CCP pins are used for 16-bit mode. Only the even-numbered CCP pins are used for 32-bit mode.

This section describes the three GPTM 32-bit timer modes (One-Shot, Periodic, and RTC) and their configuration.

The GPTM is placed into 32-bit mode by writing a 0 (One-Shot/Periodic 32-bit timer mode) or a 1 (RTC mode) to the **GPTM Configuration (GPTMCFG)** register. In both configurations, certain GPTM registers are concatenated to form pseudo 32-bit registers. These registers include:

- **GPTM TimerA Interval Load (GPTMTAILR)** register [15:0], see page 223
- **GPTM TimerB Interval Load (GPTMTBILR)** register [15:0], see page 224
- GPTM TimerA (GPTMTAR) register [15:0], see page 231
- **GPTM TimerB (GPTMTBR)** register [15:0], see page 232

In the 32-bit modes, the GPTM translates a 32-bit write access to **GPTMTAILR** into a write access to both **GPTMTAILR** and **GPTMTBILR**. The resulting word ordering for such a write operation is:

GPTMTBILR[15:0]:GPTMTAILR[15:0]

Likewise, a read access to GPTMTAR returns the value:

GPTMTBR[15:0]:GPTMTAR[15:0]

## 10.2.2.1 32-Bit One-Shot/Periodic Timer Mode

In 32-bit one-shot and periodic timer modes, the concatenated versions of the TimerA and TimerB registers are configured as a 32-bit down-counter. The selection of one-shot or periodic mode is determined by the value written to the TAMR field of the **GPTM TimerA Mode (GPTMTAMR)** register (see page 213), and there is no need to write to the GPTM TimerB Mode (GPTMTBMR) register.

When software writes the TAEN bit in the **GPTM Control (GPTMCTL)** register (see page 215), the timer begins counting down from its preloaded value. Once the 0x0000.0000 state is reached, the timer reloads its start value from the concatenated **GPTMTAILR** on the next cycle. If configured to be a one-shot timer, the timer stops counting and clears the TAEN bit in the **GPTMCTL** register. If configured as a periodic timer, it continues counting.

In addition to reloading the count value, the GPTM generates interrupts and output triggers when it reaches the 0x0000000 state. The GPTM sets the TATORIS bit in the GPTM Raw Interrupt Status (GPTMRIS) register (see page 219), and holds it until it is cleared by writing the GPTM Interrupt Clear (GPTMICR) register (see page 221). If the time-out interrupt is enabled in the GPTM Interrupt Mask (GPTIMR) register (see page 217), the GPTM also sets the TATOMIS bit in the GPTM Masked Interrupt Status (GPTMMIS) register (see page 220).

The output trigger is a one-clock-cycle pulse that is asserted when the counter hits the 0x0000.0000 state, and deasserted on the following clock cycle. It is enabled by setting the TAOTE bit in **GPTMCTL**, and can trigger SoC-level events such as ADC conversions.

If software reloads the **GPTMTAILR** register while the counter is running, the counter loads the new value on the next clock cycle and continues counting from the new value.

If the TASTALL bit in the **GPTMCTL** register is asserted, the timer freezes counting until the signal is deasserted.

## 10.2.2.2 32-Bit Real-Time Clock Timer Mode

In Real-Time Clock (RTC) mode, the concatenated versions of the TimerA and TimerB registers are configured as a 32-bit up-counter. When RTC mode is selected for the first time, the counter is

loaded with a value of 0x0000.0001. All subsequent load values must be written to the **GPTM TimerA Match (GPTMTAMATCHR)** register (see page 225) by the controller.

The input clock on the CCP0, CCP2 or CCP4 pins is required to be 32.768 KHz in RTC mode. The clock signal is then divided down to a 1 Hz rate and is passed along to the input of the 32-bit counter.

When software writes the TAEN bit in the **GPTMCTL** register, the counter starts counting up from its preloaded value of 0x0000.0001. When the current count value matches the preloaded value in the **GPTMTAMATCHR** register, it rolls over to a value of 0x0000.0000 and continues counting until either a hardware reset, or it is disabled by software (clearing the TAEN bit). When a match occurs, the GPTM asserts the RTCRIS bit in **GPTMRIS**. If the RTC interrupt is enabled in **GPTIMR**, the GPTM also sets the RTCMIS bit in **GPTMISR** and generates a controller interrupt. The status flags are cleared by writing the RTCCINT bit in **GPTMICR**.

If the TASTALL and/or TBSTALL bits in the **GPTMCTL** register are set, the timer does not freeze if the RTCEN bit is set in **GPTMCTL**.

### 10.2.3 16-Bit Timer Operating Modes

The GPTM is placed into global 16-bit mode by writing a value of 0x4 to the **GPTM Configuration** (**GPTMCFG**) register (see page 212). This section describes each of the GPTM 16-bit modes of operation. TimerA and TimerB have identical modes, so a single description is given using an *n* to reference both.

### 10.2.3.1 16-Bit One-Shot/Periodic Timer Mode

In 16-bit one-shot and periodic timer modes, the timer is configured as a 16-bit down-counter with an optional 8-bit prescaler that effectively extends the counting range of the timer to 24 bits. The selection of one-shot or periodic mode is determined by the value written to the TnMR field of the **GPTMTnMR** register. The optional prescaler is loaded into the **GPTM Timern Prescale (GPTMTnPR)** register.

When software writes the TnEN bit in the **GPTMCTL** register, the timer begins counting down from its preloaded value. Once the 0x0000 state is reached, the timer reloads its start value from **GPTMTNILR** and **GPTMTNPR** on the next cycle. If configured to be a one-shot timer, the timer stops counting and clears the TnEN bit in the **GPTMCTL** register. If configured as a periodic timer, it continues counting.

In addition to reloading the count value, the timer generates interrupts and output triggers when it reaches the 0x0000 state. The GPTM sets the TnTORIS bit in the **GPTMRIS** register, and holds it until it is cleared by writing the **GPTMICR** register. If the time-out interrupt is enabled in **GPTIMR**, the GPTM also sets the TnTOMIS bit in **GPTMISR** and generates a controller interrupt.

The output trigger is a one-clock-cycle pulse that is asserted when the counter hits the 0x0000 state, and deasserted on the following clock cycle. It is enabled by setting the TnOTE bit in the **GPTMCTL** register, and can trigger SoC-level events such as ADC conversions.

If software reloads the **GPTMTAILR** register while the counter is running, the counter loads the new value on the next clock cycle and continues counting from the new value.

If the TRSTALL bit in the **GPTMCTL** register is enabled, the timer freezes counting until the signal is deasserted.

The following example shows a variety of configurations for a 16-bit free running timer while using the prescaler. All values assume a 50-MHz clock with Tc=20 ns (clock period).

| Prescale | #Clock (T c) <sup>a</sup> | Max Time | Units |
|----------|---------------------------|----------|-------|
| 00000000 | 1                         | 1.3107   | mS    |
| 00000001 | 2                         | 2.6214   | mS    |
| 00000010 | 3                         | 23.9321  | mS    |
|          |                           |          |       |
| 11111100 | 254                       | 332.9229 | mS    |
| 11111110 | 255                       | 334.2336 | mS    |
| 11111111 | 256                       | 335.5443 | mS    |

### Table 10-1. 16-Bit Timer With Prescaler Configurations

a. Tc is the clock period.

## 10.2.3.2 16-Bit Input Edge Count Mode

In Edge Count mode, the timer is configured as a down-counter capable of capturing three types of events: rising edge, falling edge, or both. To place the timer in Edge Count mode, the TnCMR bit of the **GPTMTnMR** register must be set to 0. The type of edge that the timer counts is determined by the TnEVENT fields of the **GPTMCTL** register. During initialization, the **GPTM Timern Match** (**GPTMTnMATCHR**) register is configured so that the difference between the value in the **GPTMTnILR** register and the **GPTMTnMATCHR** register equals the number of edge events that must be counted.

When software writes the TnEN bit in the **GPTM Control (GPTMCTL)** register, the timer is enabled for event capture. Each input event on the CCP pin decrements the counter by 1 until the event count matches **GPTMTnMATCHR**. When the counts match, the GPTM asserts the CnMRIS bit in the **GPTMRIS** register (and the CnMMIS bit, if the interrupt is not masked). The counter is then reloaded using the value in **GPTMTnILR**, and stopped since the GPTM automatically clears the TnEN bit in the **GPTMCTL** register. Once the event count has been reached, all further events are ignored until TnEN is re-enabled by software.

Figure 10-2 on page 205 shows how input edge count mode works. In this case, the timer start value is set to **GPTMnILR** =0x000A and the match value is set to **GPTMnMATCHR** =0x0006 so that four edge events are counted. The counter is configured to detect both edges of the input signal.

Note that the last two edges are not counted since the timer automatically clears the TnEN bit after the current count matches the value in the **GPTMnMR** register.

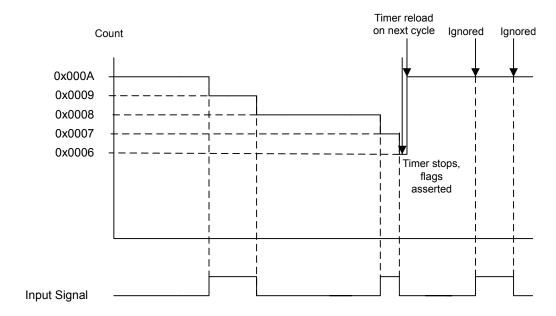
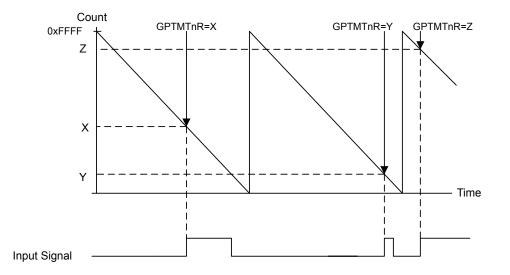



Figure 10-2. 16-Bit Input Edge Count Mode Example

# 10.2.3.3 16-Bit Input Edge Time Mode

**Note:** The prescaler is not available in 16-Bit Input Edge Time mode.


In Edge Time mode, the timer is configured as a free-running down-counter initialized to the value loaded in the **GPTMTnILR** register (or 0xFFFF at reset). This mode allows for event capture of both rising and falling edges. The timer is placed into Edge Time mode by setting the TnCMR bit in the **GPTMTnMR** register, and the type of event that the timer captures is determined by the TnEVENT fields of the **GPTMCnTL** register.

When software writes the TnEN bit in the **GPTMCTL** register, the timer is enabled for event capture. When the selected input event is detected, the current **Tn** counter value is captured in the **GPTMTnR** register and is available to be read by the controller. The GPTM then asserts the CnERIS bit (and the CnEMIS bit, if the interrupt is not masked).

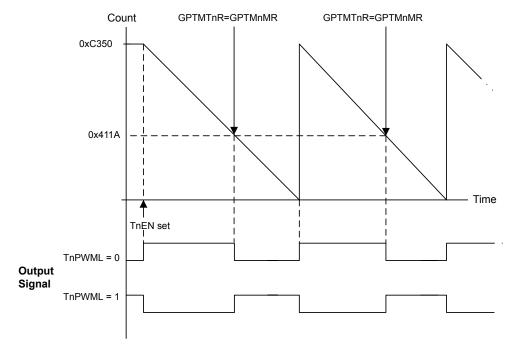
After an event has been captured, the timer does not stop counting. It continues to count until the TnEN bit is cleared. When the timer reaches the 0x0000 state, it is reloaded with the value from the **GPTMnILR** register.

Figure 10-3 on page 206 shows how input edge timing mode works. In the diagram, it is assumed that the start value of the timer is the default value of 0xFFFF, and the timer is configured to capture rising edge events.

Each time a rising edge event is detected, the current count value is loaded into the **GPTMTnR** register, and is held there until another rising edge is detected (at which point the new count value is loaded into **GPTMTnR**).






## 10.2.3.4 16-Bit PWM Mode

The GPTM supports a simple PWM generation mode. In PWM mode, the timer is configured as a down-counter with a start value (and thus period) defined by **GPTMTnILR**. PWM mode is enabled with the **GPTMTnMR** register by setting the TnAMS bit to 0x1, the TnCMR bit to 0x0, and the TnMR field to 0x2.

When software writes the TnEN bit in the **GPTMCTL** register, the counter begins counting down until it reaches the 0x0000 state. On the next counter cycle, the counter reloads its start value from **GPTMTNILR** (and **GPTMTNPR** if using a prescaler) and continues counting until disabled by software clearing the TnEN bit in the **GPTMCTL** register. No interrupts or status bits are asserted in PWM mode.

The output PWM signal asserts when the counter is at the value of the **GPTMTnILR** register (its start state), and is deasserted when the counter value equals the value in the **GPTM Timern Match Register (GPTMnMATCHR)**. Software has the capability of inverting the output PWM signal by setting the TnPWML bit in the **GPTMCTL** register.

Figure 10-4 on page 207 shows how to generate an output PWM with a 1-ms period and a 66% duty cycle assuming a 50-MHz input clock and **TnPWML** =0 (duty cycle would be 33% for the **TnPWML** =1 configuration). For this example, the start value is **GPTMnIRL**=0xC350 and the match value is **GPTMnMR**=0x411A.



#### Figure 10-4. 16-Bit PWM Mode Example

# **10.3** Initialization and Configuration

To use the general purpose timers, the peripheral clock must be enabled by setting the GPTM0, GPTM1, and GPTM2 bits in the RCGC1 register.

This section shows module initialization and configuration examples for each of the supported timer modes.

## 10.3.1 32-Bit One-Shot/Periodic Timer Mode

The GPTM is configured for 32-bit One-Shot and Periodic modes by the following sequence:

- 1. Ensure the timer is disabled (the TAEN bit in the **GPTMCTL** register is cleared) before making any changes.
- 2. Write the **GPTM Configuration Register (GPTMCFG)** with a value of 0x0.
- 3. Set the TAMR field in the GPTM TimerA Mode Register (GPTMTAMR):
  - a. Write a value of 0x1 for One-Shot mode.
  - b. Write a value of 0x2 for Periodic mode.
- 4. Load the start value into the GPTM TimerA Interval Load Register (GPTMTAILR).
- 5. If interrupts are required, set the TATOIM bit in the GPTM Interrupt Mask Register (GPTMIMR).
- 6. Set the TAEN bit in the **GPTMCTL** register to enable the timer and start counting.

7. Poll the TATORIS bit in the GPTMRIS register or wait for the interrupt to be generated (if enabled). In both cases, the status flags are cleared by writing a 1 to the TATOCINT bit of the GPTM Interrupt Clear Register (GPTMICR).

In One-Shot mode, the timer stops counting after 7 on page 208. To re-enable the timer, repeat the sequence. A timer configured in Periodic mode does not stop counting after it times out.

## 10.3.2 32-Bit Real-Time Clock (RTC) Mode

To use the RTC mode, the timer must have a 32.768-KHz input signal on its CCP0, CCP2 or CCP4 pins. To enable the RTC feature, follow these steps:

- 1. Ensure the timer is disabled (the TAEN bit is cleared) before making any changes.
- 2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x1.
- 3. Write the desired match value to the GPTM TimerA Match Register (GPTMTAMATCHR).
- 4. Set/clear the RTCEN bit in the GPTM Control Register (GPTMCTL) as desired.
- 5. If interrupts are required, set the RTCIM bit in the GPTM Interrupt Mask Register (GPTMIMR).
- 6. Set the TAEN bit in the GPTMCTL register to enable the timer and start counting.

When the timer count equals the value in the **GPTMTAMATCHR** register, the counter is re-loaded with 0x0000.0000 and begins counting. If an interrupt is enabled, it does not have to be cleared.

#### 10.3.3 16-Bit One-Shot/Periodic Timer Mode

A timer is configured for 16-bit One-Shot and Periodic modes by the following sequence:

- 1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.
- 2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x4.
- 3. Set the TnMR field in the GPTM Timer Mode (GPTMTnMR) register:
  - a. Write a value of 0x1 for One-Shot mode.
  - **b.** Write a value of 0x2 for Periodic mode.
- 4. If a prescaler is to be used, write the prescale value to the GPTM Timern Prescale Register (GPTMTnPR).
- 5. Load the start value into the GPTM Timer Interval Load Register (GPTMTnILR).
- 6. If interrupts are required, set the TnTOIM bit in the GPTM Interrupt Mask Register (GPTMIMR).
- 7. Set the TREN bit in the GPTM Control Register (GPTMCTL) to enable the timer and start counting.
- 8. Poll the TnTORIS bit in the GPTMRIS register or wait for the interrupt to be generated (if enabled). In both cases, the status flags are cleared by writing a 1 to the TnTOCINT bit of the GPTM Interrupt Clear Register (GPTMICR).

In One-Shot mode, the timer stops counting after 8 on page 208. To re-enable the timer, repeat the sequence. A timer configured in Periodic mode does not stop counting after it times out.

### 10.3.4 16-Bit Input Edge Count Mode

A timer is configured to Input Edge Count mode by the following sequence:

- 1. Ensure the timer is disabled (the TNEN bit is cleared) before making any changes.
- 2. Write the GPTM Configuration (GPTMCFG) register with a value of 0x4.
- 3. In the GPTM Timer Mode (GPTMTnMR) register, write the TnCMR field to 0x0 and the TnMR field to 0x3.
- 4. Configure the type of event(s) that the timer captures by writing the TREVENT field of the GPTM Control (GPTMCTL) register.
- 5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.
- 6. Load the desired event count into the GPTM Timern Match (GPTMTnMATCHR) register.
- 7. If interrupts are required, set the CnMIM bit in the GPTM Interrupt Mask (GPTMIMR) register.
- 8. Set the TREN bit in the **GPTMCTL** register to enable the timer and begin waiting for edge events.
- 9. Poll the CnMRIS bit in the GPTMRIS register or wait for the interrupt to be generated (if enabled). In both cases, the status flags are cleared by writing a 1 to the CnMCINT bit of the GPTM Interrupt Clear (GPTMICR) register.

In Input Edge Count Mode, the timer stops after the desired number of edge events has been detected. To re-enable the timer, ensure that the TnEN bit is cleared and repeat steps 4 on page 209-9 on page 209.

### 10.3.5 16-Bit Input Edge Timing Mode

A timer is configured to Input Edge Timing mode by the following sequence:

- 1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.
- 2. Write the **GPTM Configuration (GPTMCFG)** register with a value of 0x4.
- 3. In the GPTM Timer Mode (GPTMTnMR) register, write the TnCMR field to 0x1 and the TnMR field to 0x3.
- 4. Configure the type of event that the timer captures by writing the TREVENT field of the GPTM Control (GPTMCTL) register.
- 5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.
- 6. If interrupts are required, set the CnEIM bit in the GPTM Interrupt Mask (GPTMIMR) register.
- 7. Set the TNEN bit in the GPTM Control (GPTMCTL) register to enable the timer and start counting.
- 8. Poll the CnERIS bit in the **GPTMRIS** register or wait for the interrupt to be generated (if enabled). In both cases, the status flags are cleared by writing a 1 to the CnECINT bit of the **GPTM**

**Interrupt Clear (GPTMICR)** register. The time at which the event happened can be obtained by reading the **GPTM Timern (GPTMTnR)** register.

In Input Edge Timing mode, the timer continues running after an edge event has been detected, but the timer interval can be changed at any time by writing the **GPTMTnILR** register. The change takes effect at the next cycle after the write.

### 10.3.6 16-Bit PWM Mode

A timer is configured to PWM mode using the following sequence:

- 1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.
- 2. Write the GPTM Configuration (GPTMCFG) register with a value of 0x4.
- 3. In the GPTM Timer Mode (GPTMTnMR) register, set the TnAMS bit to 0x1, the TnCMR bit to 0x0, and the TnMR field to 0x2.
- 4. Configure the output state of the PWM signal (whether or not it is inverted) in the TREVENT field of the GPTM Control (GPTMCTL) register.
- 5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.
- 6. Load the GPTM Timern Match (GPTMTnMATCHR) register with the desired value.
- 7. Set the TREN bit in the **GPTM Control (GPTMCTL)** register to enable the timer and begin generation of the output PWM signal.

In PWM Timing mode, the timer continues running after the PWM signal has been generated. The PWM period can be adjusted at any time by writing the **GPTMTnILR** register, and the change takes effect at the next cycle after the write.

## 10.4 Register Map

"Register Map" on page 210 lists the GPTM registers. The offset listed is a hexadecimal increment to the register's address, relative to that timer's base address:

- Timer0: 0x4003.0000 0x4003.0000
- Timer1: 0x4003.1000 0x4003.1000
- Timer2: 0x4003.2000 0x4003.2000
- Timer3: 0x4003.3000 0x4003.3000

| Table 10-2. 1 | Timers Register | ' Map |
|---------------|-----------------|-------|
|---------------|-----------------|-------|

| Offset | Name     | Туре | Reset         | Description        | See<br>page |
|--------|----------|------|---------------|--------------------|-------------|
| 0x000  | GPTMCFG  | R/W  | 0x0x0000.0000 | GPTM Configuration | 212         |
| 0x004  | GPTMTAMR | R/W  | 0x0x0000.0000 | GPTM TimerA Mode   | 213         |
| 0x008  | GPTMTBMR | R/W  | 0x0x0000.0000 | GPTM TimerB Mode   | 214         |
| 0x00C  | GPTMCTL  | R/W  | 0x0x0000.0000 | GPTM Control       | 215         |

| Offset | Name         | Туре | Reset                                                        | Description                  | See<br>page |
|--------|--------------|------|--------------------------------------------------------------|------------------------------|-------------|
| 0x018  | GPTMIMR      | R/W  | 0x0x0000.0000                                                | GPTM Interrupt Mask          | 217         |
| 0x01C  | GPTMRIS      | RO   | 0x0x0000.0000                                                | GPTM Raw Interrupt Status    | 219         |
| 0x020  | GPTMMIS      | RO   | 0x0x0000.0000                                                | GPTM Masked Interrupt Status | 220         |
| 0x024  | GPTMICR      | W1C  | 0x0x0000.0000                                                | GPTM Interrupt Clear         | 221         |
| 0x028  | GPTMTAILR    | R/W  | 0x0000.FFFF<br>(16-bit mode)<br>0xFFFF.FFFF<br>(32-bit mode) | GPTM TimerA Interval Load    | 223         |
| 0x02C  | GPTMTBILR    | R/W  | 0x0000.FFFF                                                  | GPTM TimerB Interval Load    | 224         |
| 0x030  | GPTMTAMATCHR | R/W  | 0x0000.FFFF<br>(16-bit mode)<br>0xFFFF.FFFF<br>(32-bit mode) | GPTM TimerA Match            | 225         |
| 0x034  | GPTMTBMATCHR | R/W  | 0x0000.FFFF                                                  | GPTM TimerB Match            | 226         |
| 0x038  | GPTMTAPR     | R/W  | 0x0000.0000                                                  | GPTM TimerA Prescale         | 227         |
| 0x03C  | GPTMTBPR     | R/W  | 0x0000.0000                                                  | GPTM TimerB Prescale         | 228         |
| 0x040  | GPTMTAPMR    | R/W  | 0x0000.0000                                                  | GPTM TimerA Prescale Match   | 229         |
| 0x044  | GPTMTBPMR    | R/W  | 0x0000.0000                                                  | GPTM TimerB Prescale Match   | 230         |
| 0x048  | GPTMTAR      | RO   | 0x0000.FFFF<br>(16-bit mode)<br>0xFFFF.FFFF<br>(32-bit mode) | GPTM TimerA                  | 231         |
| 0x04C  | GPTMTBR      | RO   | 0x0000.FFFF                                                  | GPTM TimerB                  | 232         |

# 10.5 Register Descriptions

The remainder of this section lists and describes the GPTM registers, in numerical order by address offset.

## Register 1: GPTM Configuration (GPTMCFG), offset 0x000

This register configures the global operation of the GPTM module. The value written to this register determines whether the GPTM is in 32- or 16-bit mode.

#### GPTM Configuration (GPTMCFG)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Timer3 base: 0x4003.3000 Offset 0x000 Type R/W, reset 0x0x0000.0000

|                                       | 31   | 30 | 29                                                                                                                                                    | 28 | 27   | 26 | 25       | 24                                                       | 23         | 22        | 21         | 20       | 19       | 18  | 17      | 16  |  |  |
|---------------------------------------|------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------|----|------|----|----------|----------------------------------------------------------|------------|-----------|------------|----------|----------|-----|---------|-----|--|--|
|                                       |      | 1  | 1                                                                                                                                                     |    |      |    | 1        | rese                                                     | rved       |           |            | 1        |          | 1   | 1       |     |  |  |
| Туре                                  | RO   | RO | RO                                                                                                                                                    | RO | RO   | RO | RO       | RO                                                       | RO         | RO        | RO         | RO       | RO       | RO  | RO      | RO  |  |  |
| Reset                                 | 0    | 0  | 0                                                                                                                                                     | 0  | 0    | 0  | 0        | 0                                                        | 0          | 0         | 0          | 0        | 0        | 0   | 0       | 0   |  |  |
|                                       | 15   | 14 | 13                                                                                                                                                    | 12 | 11   | 10 | 9        | 8                                                        | 7          | 6         | 5          | 4        | 3        | 2   | 1       | 0   |  |  |
|                                       |      | 1  | 1                                                                                                                                                     |    |      |    | reserved |                                                          | 1          |           |            | I        | 1        |     | GPTMCFG |     |  |  |
| Туре                                  | RO   | RO | RO                                                                                                                                                    | RO | RO   | RO | RO       | RO                                                       | RO         | RO        | RO         | RO       | RO       | R/W | R/W     | R/W |  |  |
| Reset                                 | 0    | 0  | 0                                                                                                                                                     | 0  | 0    | 0  | 0        | 0                                                        | 0          | 0         | 0          | 0        | 0        | 0   | 0       | 0   |  |  |
| Bit/Field Name Type Reset Description |      |    |                                                                                                                                                       |    |      |    |          |                                                          |            |           |            |          |          |     |         |     |  |  |
| Bit/F                                 | ield |    | Name                                                                                                                                                  |    | Туре | I  | Reset    | Descr                                                    | iption     |           |            |          |          |     |         |     |  |  |
| 31:                                   | :3   | I  | Name         Type         Reset         Description           reserved         RO         0         Software sho<br>compatibility<br>preserved action |    |      |    |          | atibility v                                              | vith futur | e produ   | cts, the v | value of | a reserv | •   |         |     |  |  |
| 2:                                    | 0    | G  | PTMCF                                                                                                                                                 | G  | R/W  |    | 0        | GPTN                                                     | l Config   | uration   |            |          |          |     |         |     |  |  |
|                                       |      |    |                                                                                                                                                       |    |      |    |          | 0x0: 3                                                   | 2-bit tim  | er config | juration   |          |          |     |         |     |  |  |
|                                       |      |    |                                                                                                                                                       |    |      |    |          | 0x1: 32-bit real-time clock (RTC) counter configuration. |            |           |            |          |          |     |         |     |  |  |
|                                       |      |    |                                                                                                                                                       |    |      |    |          | 0x2: F                                                   | leserve    | d.        |            |          |          |     |         |     |  |  |
|                                       |      |    |                                                                                                                                                       |    |      |    |          | 0x3: Reserved.                                           |            |           |            |          |          |     |         |     |  |  |

0x4-0x7: 16-bit timer configuration, function is controlled by bits 1:0 of

GPTMTAMR and GPTMTBMR.

June 04, 2007

## Register 2: GPTM TimerA Mode (GPTMTAMR), offset 0x004

This register configures the GPTM based on the configuration selected in the **GPTMCFG** register. When in 16-bit PWM mode, set the TAAMS bit to 0x1, the TACMR bit to 0x0, and the TAMR field to 0x2.

#### GPTM TimerA Mode (GPTMTAMR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Timer3 base: 0x4003.3000 Offset 0x004 Type R/W, reset 0x0x0000.0000

| -             | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24                                                                                                                    | 23                   | 22                   | 21        | 20       | 19         | 18         | 17       | 16        |  |  |  |  |
|---------------|---------|---------|----------|---------|---------|---------|---------|-----------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|-----------|----------|------------|------------|----------|-----------|--|--|--|--|
|               |         |         |          |         |         |         | 1       | rese                                                                                                                  | rved                 |                      |           |          |            |            |          |           |  |  |  |  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                               | RO<br>0              | RO<br>0              | RO<br>0   | RO<br>0  | RO<br>0    | RO<br>0    | RO<br>0  | RO<br>0   |  |  |  |  |
|               | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8                                                                                                                     | 7                    | 6                    | 5         | 4        | 3          | 2          | 1        | 0         |  |  |  |  |
|               |         |         | i i      |         |         | rese    | erved   |                                                                                                                       |                      | r r                  |           |          | TAAMS      | TACMR      | TA       | MR        |  |  |  |  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                               | RO<br>0              | RO<br>0              | RO<br>0   | RO<br>0  | R/W<br>0   | R/W<br>0   | R/W<br>0 | R/W<br>0  |  |  |  |  |
| Bit/Fi        | ield    |         | Name     |         | Туре    | F       | Reset   | Descr                                                                                                                 | iption               |                      |           |          |            |            |          |           |  |  |  |  |
| 31:           | 4       |         | reserved |         | RO      |         | 0       | Softw                                                                                                                 | ara ahai             | ld not ro            | ly on the |          | of a race  | erved bit. | To prov  | udo.      |  |  |  |  |
| 51.           | 4       |         | leserveu |         | ĸo      |         | 0       | compa                                                                                                                 | atibility v          |                      | e produc  | cts, the | value of   | a reserve  | •        |           |  |  |  |  |
| 3             |         |         | TAAMS    |         | R/W     |         | 0       | GPTM TimerA Alternate Mode Select                                                                                     |                      |                      |           |          |            |            |          |           |  |  |  |  |
|               |         |         |          |         |         |         |         | 0: Capture mode is enabled.                                                                                           |                      |                      |           |          |            |            |          |           |  |  |  |  |
|               |         |         |          |         |         |         |         | 1: PW                                                                                                                 | M mode               | is enab              | ed.       |          |            |            |          |           |  |  |  |  |
|               |         |         |          |         |         |         |         | Note:                                                                                                                 |                      | nable P\<br>the TAMF |           |          | nust also  | clear the  | e tacmf  | R bit and |  |  |  |  |
| 2             |         |         | TACMR    |         | R/W     |         | 0       | GPTM                                                                                                                  | I TimerA             | Capture              | Mode      |          |            |            |          |           |  |  |  |  |
|               |         |         |          |         |         |         |         | 0: Edg                                                                                                                | je-Coun              | t mode.              |           |          |            |            |          |           |  |  |  |  |
|               |         |         |          |         |         |         |         | 1: Edg                                                                                                                | je-Time              | mode.                |           |          |            |            |          |           |  |  |  |  |
| 1:(           | C       |         | TAMR     |         | R/W     |         | 0       | GPTN                                                                                                                  | I TimerA             | Mode                 |           |          |            |            |          |           |  |  |  |  |
|               |         |         |          |         |         |         |         | 0x0: F                                                                                                                | leserved             | ł.                   |           |          |            |            |          |           |  |  |  |  |
|               |         |         |          |         |         |         |         | 0x1: C                                                                                                                | ne-Sho               | t Timer n            | node.     |          |            |            |          |           |  |  |  |  |
|               |         |         |          |         |         |         |         | 0x2: F                                                                                                                | eriodic <sup>·</sup> | Timer mo             | ode.      |          |            |            |          |           |  |  |  |  |
|               |         |         |          |         |         |         |         | 0x3: C                                                                                                                | apture i             | node.                |           |          |            |            |          |           |  |  |  |  |
|               |         |         |          |         |         |         |         | The Timer mode is based on the timer configuration defined by bits 2:0 in the <b>GPTMCFG</b> register (16-or 32-bit). |                      |                      |           |          |            |            |          |           |  |  |  |  |
|               |         |         |          |         |         |         |         | In 16-I<br>Timer                                                                                                      |                      | configur             | ation, T  | AMR COP  | trols the  | 16-bit tiı | mer mo   | des for   |  |  |  |  |
|               |         |         |          |         |         |         |         |                                                                                                                       |                      | configur<br>PTMTBN   |           |          | ter contro | ols the m  | iode an  | d the     |  |  |  |  |
|               |         |         |          |         |         |         |         |                                                                                                                       |                      |                      |           |          |            |            |          |           |  |  |  |  |

## Register 3: GPTM TimerB Mode (GPTMTBMR), offset 0x008

This register configures the GPTM based on the configuration selected in the **GPTMCFG** register. When in 16-bit PWM mode, set the TBAMS bit to 0x1, the TBCMR bit to 0x0, and the TBMR field to 0x2.

#### GPTM TimerB Mode (GPTMTBMR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Timer3 base: 0x4003.3000 Offset 0x008 Type R/W, reset 0x0x0000.0000

| _             | 31        | 30      | 29       | 28      | 27      | 26      | 25      | 24                                                                                                     | 23                                                                                                                                                                                                  | 22                    | 21        | 20        | 19        | 18         | 17         | 16       |  |  |  |
|---------------|-----------|---------|----------|---------|---------|---------|---------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|-----------|-----------|------------|------------|----------|--|--|--|
|               | reserved  |         |          |         |         |         |         |                                                                                                        |                                                                                                                                                                                                     |                       |           |           |           |            |            |          |  |  |  |
| Type<br>Reset | RO<br>0   | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                | RO<br>0                                                                                                                                                                                             | RO<br>0               | RO<br>0   | RO<br>0   | RO<br>0   | RO<br>0    | RO<br>0    | RO<br>0  |  |  |  |
|               | 15        | 14      | 13       | 12      | 11      | 10      | 9       | 8                                                                                                      | 7                                                                                                                                                                                                   | 6                     | 5         | 4         | 3         | 2          | 1          | 0        |  |  |  |
|               |           | I       | 1 1      |         | r r     | rese    | erved   |                                                                                                        |                                                                                                                                                                                                     | 1 1                   |           |           | TBAMS     | TBCMR      | ТВ         | MR       |  |  |  |
| Type<br>Reset | RO<br>0   | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                | RO<br>0                                                                                                                                                                                             | RO<br>0               | RO<br>0   | RO<br>0   | R/W<br>0  | R/W<br>0   | R/W<br>0   | R/W<br>0 |  |  |  |
|               |           |         |          |         |         |         |         |                                                                                                        |                                                                                                                                                                                                     |                       |           |           |           |            |            |          |  |  |  |
| Bit/F         | Bit/Field |         | Name     |         |         | F       | Reset   | Descr                                                                                                  | Description                                                                                                                                                                                         |                       |           |           |           |            |            |          |  |  |  |
| 31:4          |           | I       | reserved |         | RO      |         | 0       | compa                                                                                                  | Software should not rely on the value of a reserved bit. To provide<br>compatibility with future products, the value of a reserved bit should be<br>preserved across a read-modify-write operation. |                       |           |           |           |            |            |          |  |  |  |
| 3             | 3         |         | TBAMS    |         | R/W     | 0       |         | GPTM                                                                                                   | GPTM TimerB Alternate Mode Select                                                                                                                                                                   |                       |           |           |           |            |            |          |  |  |  |
|               |           |         |          |         |         |         |         | 0: Cap                                                                                                 | oture mo                                                                                                                                                                                            | ode is en             | abled.    |           |           |            |            |          |  |  |  |
|               |           |         |          |         |         |         |         | 1: PW                                                                                                  | M mode                                                                                                                                                                                              | e is enab             | led.      |           |           |            |            |          |  |  |  |
|               |           |         |          |         |         |         |         | Note:                                                                                                  |                                                                                                                                                                                                     | enable P\<br>the TBMF |           |           | nust also | o clear th | e tbcmf    | bit and  |  |  |  |
| 2             | 2         |         | TBCMR    |         |         |         | 0       |                                                                                                        | GPTM TimerB Capture Mode                                                                                                                                                                            |                       |           |           |           |            |            |          |  |  |  |
|               |           |         |          |         |         |         |         | 0: Edg                                                                                                 | 0: Edge-Count mode.                                                                                                                                                                                 |                       |           |           |           |            |            |          |  |  |  |
|               |           |         |          |         |         |         |         | 1: Edg                                                                                                 | 1: Edge-Time mode.                                                                                                                                                                                  |                       |           |           |           |            |            |          |  |  |  |
| 1:0           | 1:0       |         | TBMR     |         |         | 0       |         | GPTM                                                                                                   | GPTM TimerB Mode                                                                                                                                                                                    |                       |           |           |           |            |            |          |  |  |  |
|               |           |         |          |         |         |         | 0x0: F  | 0x0: Reserved.                                                                                         |                                                                                                                                                                                                     |                       |           |           |           |            |            |          |  |  |  |
|               |           |         |          |         |         |         |         | 0x1: C                                                                                                 | )ne-Sho                                                                                                                                                                                             | t Timer n             | node.     |           |           |            |            |          |  |  |  |
|               |           |         |          |         |         |         | 0x2: F  | 0x2: Periodic Timer mode.                                                                              |                                                                                                                                                                                                     |                       |           |           |           |            |            |          |  |  |  |
|               |           |         |          |         |         |         | 0x3: C  | 0x3: Capture mode.                                                                                     |                                                                                                                                                                                                     |                       |           |           |           |            |            |          |  |  |  |
|               |           |         |          |         |         |         |         | The timer mode is based on the timer configuration defined by bits 2:0 in the <b>GPTMCFG</b> register. |                                                                                                                                                                                                     |                       |           |           |           |            |            |          |  |  |  |
|               |           |         |          |         |         |         |         | In 16-<br>for Tir                                                                                      |                                                                                                                                                                                                     | configur              | ation, th | ese bits  | control   | the 16-b   | it timer r | nodes    |  |  |  |
|               |           |         |          |         |         |         |         |                                                                                                        | bit timer<br>ITAMR i                                                                                                                                                                                | configur<br>s used.   | ation, th | is regist | er's con  | tents are  | e ignored  | d and    |  |  |  |
|               |           |         |          |         |         |         |         |                                                                                                        |                                                                                                                                                                                                     |                       |           |           |           |            |            |          |  |  |  |

# Register 4: GPTM Control (GPTMCTL), offset 0x00C

This register is used alongside the GPTMCFG and GMTMTnMR registers to fine-tune the timer configuration, and to enable other features such as timer stall and the output trigger. The output trigger can be used to initiate transfers on the ADC module.

#### GPTM Control (GPTMCTL)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Timer3 base: 0x4003.3000 Offset 0x00C Type R/W, reset 0x0x0000.0000

| <b>7</b> 1 <sup>2</sup> - | 31        | 30       | 29       | 28       | 27           | 26       | 25       | 24                                                                                                                        | 23                                                                                                                                            | 22         | 21        | 20        | 19       | 18       | 17         | 16       |  |  |  |
|---------------------------|-----------|----------|----------|----------|--------------|----------|----------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|-----------|----------|----------|------------|----------|--|--|--|
| IIIIIIIIIIIIIIIIIIIIII    |           |          |          |          |              |          |          | r r                                                                                                                       |                                                                                                                                               |            |           |           |          |          |            |          |  |  |  |
| Туре                      | RO        | RO       | RO       | RO       | RO           | RO       | RO       | RO                                                                                                                        | RO                                                                                                                                            | RO         | RO        | RO        | RO       | RO       | RO         | RO       |  |  |  |
| Reset                     | 0         | 0        | 0        | 0        | 0            | 0        | 0        | 0                                                                                                                         | 0                                                                                                                                             | 0          | 0         | 0         | 0        | 0        | 0          | 0        |  |  |  |
|                           | 15        | 14       | 13       | 12       | 11           | 10       | 9        | 8                                                                                                                         | 7                                                                                                                                             | 6          | 5         | 4         | 3        | 2        | 1          | 0        |  |  |  |
| -                         | reserved  | TBPWML   | TBOTE    | reserved | TBEV         |          | TBSTALL  | TBEN                                                                                                                      | reserved                                                                                                                                      | TAPWML     | TAOTE     | RTCEN     |          | /ENT     | TASTALL    | TAEN     |  |  |  |
| Type<br>Reset             | RO<br>0   | R/W<br>0 | R/W<br>0 | RO<br>0  | R/W<br>0     | R/W<br>0 | R/W<br>0 | R/W<br>0                                                                                                                  | RO<br>0                                                                                                                                       | R/W<br>0   | R/W<br>0  | R/W<br>0  | R/W<br>0 | R/W<br>0 | R/W<br>0   | R/W<br>0 |  |  |  |
|                           |           |          |          |          |              |          |          |                                                                                                                           |                                                                                                                                               |            |           |           |          |          |            |          |  |  |  |
| Bit/F                     | Bit/Field |          | Name     |          |              |          | Reset    | Descr                                                                                                                     | Description                                                                                                                                   |            |           |           |          |          |            |          |  |  |  |
| 31:                       | 15        | reserved |          |          | RO           |          | 0        | Softw                                                                                                                     | are shou                                                                                                                                      | uld not re | lv on th  | e value o | f a rese | rved bit | . To provi | de       |  |  |  |
| •                         |           | 10001700 |          |          |              |          | Ū        | comp                                                                                                                      | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be |            |           |           |          |          |            |          |  |  |  |
|                           |           |          |          |          |              |          |          | preserved across a read-modify-write operation.                                                                           |                                                                                                                                               |            |           |           |          |          |            |          |  |  |  |
| 14                        |           | Т        | BPWML    | -        | R/W 0        |          |          | GPTM TimerB PWM Output Level                                                                                              |                                                                                                                                               |            |           |           |          |          |            |          |  |  |  |
|                           |           |          |          |          |              |          |          | 0: Output is unaffected.                                                                                                  |                                                                                                                                               |            |           |           |          |          |            |          |  |  |  |
|                           |           |          |          |          |              |          |          | 1: Output is inverted.                                                                                                    |                                                                                                                                               |            |           |           |          |          |            |          |  |  |  |
| 4.                        | <b>n</b>  | TBOTE    |          |          | R/W          |          | 0        | GPTM TimerB Output Trigger Enable                                                                                         |                                                                                                                                               |            |           |           |          |          |            |          |  |  |  |
| 13                        |           | IBOIL    |          |          | FC/ V V      |          | 0        | 1 00                                                                                                                      |                                                                                                                                               |            |           |           |          |          |            |          |  |  |  |
|                           |           |          |          |          |              |          |          | <ul><li>0: The output TimerB trigger is disabled.</li><li>1: The output TimerB trigger is enabled.</li></ul>              |                                                                                                                                               |            |           |           |          |          |            |          |  |  |  |
|                           |           |          |          |          |              |          |          | 1: The                                                                                                                    | e output                                                                                                                                      | TimerB t   | rigger is | s enabled | •        |          |            |          |  |  |  |
| 12                        |           | reserved |          |          | RO           |          | 0        | Software should not rely on the value of a reserved bit. To provide                                                       |                                                                                                                                               |            |           |           |          |          |            |          |  |  |  |
|                           |           |          |          |          |              |          |          | compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |                                                                                                                                               |            |           |           |          |          |            |          |  |  |  |
|                           | 10        | -        |          | ÷        | <b>D</b> 44/ |          |          | •                                                                                                                         |                                                                                                                                               |            |           | ,         | •        |          |            |          |  |  |  |
| 11:10                     |           | TBEVENT  |          |          | R/W          |          | 0        | GPTM TimerB Event Mode                                                                                                    |                                                                                                                                               |            |           |           |          |          |            |          |  |  |  |
|                           |           |          |          |          |              |          |          | 00: Positive edge.                                                                                                        |                                                                                                                                               |            |           |           |          |          |            |          |  |  |  |
|                           |           |          |          |          |              |          |          | 01: Negative edge.                                                                                                        |                                                                                                                                               |            |           |           |          |          |            |          |  |  |  |
|                           |           |          |          |          |              |          |          | 10: R                                                                                                                     | 10: Reserved.                                                                                                                                 |            |           |           |          |          |            |          |  |  |  |
|                           |           |          |          |          |              |          | 0        | 11: Both edges.                                                                                                           |                                                                                                                                               |            |           |           |          |          |            |          |  |  |  |
| g                         | )         | т        | BSTALL   | TALL     | R/W          |          |          | GPTM TimerB Stall Enable                                                                                                  |                                                                                                                                               |            |           |           |          |          |            |          |  |  |  |
|                           |           |          |          |          |              |          |          | 0: TimerB stalling is disabled.                                                                                           |                                                                                                                                               |            |           |           |          |          |            |          |  |  |  |
|                           |           |          |          |          |              |          |          | 1: Tim                                                                                                                    | nerB stal                                                                                                                                     | ling is en | abled.    |           |          |          |            |          |  |  |  |
|                           |           |          |          |          |              |          |          |                                                                                                                           |                                                                                                                                               |            |           |           |          |          |            |          |  |  |  |

| Bit/Field | Name     | Туре | Reset | Description                                                                                                                                                                                   |
|-----------|----------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8         | TBEN     | R/W  | 0     | GPTM TimerB Enable                                                                                                                                                                            |
|           |          |      |       | 0: TimerB is disabled.                                                                                                                                                                        |
|           |          |      |       | 1: TimerB is enabled and begins counting or the capture logic is enabled based on the <b>GPTMCFG</b> register.                                                                                |
| 7         | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |
| 6         | TAPWML   | R/W  | 0     | GPTM TimerA PWM Output Level                                                                                                                                                                  |
|           |          |      |       | 0: Output is unaffected.                                                                                                                                                                      |
|           |          |      |       | 1: Output is inverted.                                                                                                                                                                        |
| 5         | TAOTE    | R/W  | 0     | GPTM TimerA Output Trigger Enable                                                                                                                                                             |
|           |          |      |       | 0: The output TimerA trigger is disabled.                                                                                                                                                     |
|           |          |      |       | 1: The output TimerA trigger is enabled.                                                                                                                                                      |
| 4         | RTCEN    | R/W  | 0     | GPTM RTC Enable                                                                                                                                                                               |
|           |          |      |       | 0: RTC counting is disabled.                                                                                                                                                                  |
|           |          |      |       | 1: RTC counting is enabled.                                                                                                                                                                   |
| 3:2       | TAEVENT  | R/W  | 0     | GPTM TimerA Event Mode                                                                                                                                                                        |
|           |          |      |       | 00: Positive edge.                                                                                                                                                                            |
|           |          |      |       | 01: Negative edge.                                                                                                                                                                            |
|           |          |      |       | 10: Reserved.                                                                                                                                                                                 |
|           |          |      |       | 11: Both edges.                                                                                                                                                                               |
| 1         | TASTALL  | R/W  | 0     | GPTM TimerA Stall Enable                                                                                                                                                                      |
|           |          |      |       | 0: TimerA stalling is disabled.                                                                                                                                                               |
|           |          |      |       | 1: TimerA stalling is enabled.                                                                                                                                                                |
| 0         | TAEN     | R/W  | 0     | GPTM TimerA Enable                                                                                                                                                                            |
|           |          |      |       | 0: TimerA is disabled.                                                                                                                                                                        |
|           |          |      |       | 1: TimerA is enabled and begins counting or the capture logic is enabled                                                                                                                      |

1: TimerA is enabled and begins counting or the capture logic is enabled based on the **GPTMCFG** register.

# Register 5: GPTM Interrupt Mask (GPTMIMR), offset 0x018

This register allows software to enable/disable GPTM controller-level interrupts. Writing a 1 enables the interrupt, while writing a 0 disables it.

### GPTM Interrupt Mask (GPTMIMR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Timer3 base: 0x4003.3000 Offset 0x018 Type R/W, reset 0x0x0000.0000

| _             | 31      | 30      | 29       | 28      | 27           | 26       | 25                                                                                                                                                                                   | 24                                                                | 23        | 22                       | 21        | 20       | 19       | 18       | 17        | 16       |  |  |  |  |  |
|---------------|---------|---------|----------|---------|--------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------|--------------------------|-----------|----------|----------|----------|-----------|----------|--|--|--|--|--|
|               | l       |         |          |         |              |          |                                                                                                                                                                                      | rese                                                              | rved<br>I |                          |           | 1        | 1        | 1        |           |          |  |  |  |  |  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0      | RO<br>0  | RO<br>0                                                                                                                                                                              | RO<br>0                                                           | RO<br>0   | RO<br>0                  | RO<br>0   | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0   | RO<br>0  |  |  |  |  |  |
|               | 15      | 14      | 13       | 12      | 11           | 10       | 9                                                                                                                                                                                    | 8                                                                 | 7         | 6                        | 5         | 4        | 3        | 2        | 1         | 0        |  |  |  |  |  |
|               |         |         | reserved |         |              | CBEIM    | CBMIM                                                                                                                                                                                | твтоім                                                            |           | reser                    | ved       | Ì        | RTCIM    | CAEIM    | CAMIM     | ΤΑΤΟΙΜ   |  |  |  |  |  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0      | R/W<br>0 | R/W<br>0                                                                                                                                                                             | R/W<br>0                                                          | RO<br>0   | RO<br>0                  | RO<br>0   | RO<br>0  | R/W<br>0 | R/W<br>0 | R/W<br>0  | R/W<br>0 |  |  |  |  |  |
|               |         |         |          |         |              |          |                                                                                                                                                                                      |                                                                   |           |                          |           |          |          |          |           |          |  |  |  |  |  |
| Bit/Fi        | ield    |         | Name     |         | Туре         | F        | Reset                                                                                                                                                                                | Descr                                                             | iption    |                          |           |          |          |          |           |          |  |  |  |  |  |
| 31:"          | 11      |         | reserved |         | RO           |          | 0                                                                                                                                                                                    |                                                                   |           | ıld not re               |           |          |          |          |           |          |  |  |  |  |  |
|               |         |         |          |         |              |          |                                                                                                                                                                                      |                                                                   |           | /ith future<br>oss a rea |           |          |          |          | ed bit sh | ould be  |  |  |  |  |  |
| 10            | 'n      |         | CBEIM    |         | R/W          |          | <ul> <li>preserved across a read-modify-write operation.</li> <li>GPTM CaptureB Event Interrupt Mask</li> <li>0: Interrupt is disabled.</li> <li>1: Interrupt is enabled.</li> </ul> |                                                                   |           |                          |           |          |          |          |           |          |  |  |  |  |  |
|               | ,       |         | CDLIW    |         | 10.00        |          | 0                                                                                                                                                                                    | 0 GPTM CaptureB Event Interrupt Mask<br>0: Interrupt is disabled. |           |                          |           |          |          |          |           |          |  |  |  |  |  |
|               |         |         |          |         |              |          |                                                                                                                                                                                      |                                                                   |           |                          |           |          |          |          |           |          |  |  |  |  |  |
| 0             |         |         | CBMIM    |         |              |          | 0                                                                                                                                                                                    |                                                                   |           |                          |           |          |          |          |           |          |  |  |  |  |  |
| 9             |         |         | CRIMIM   |         | R/W          |          | 0                                                                                                                                                                                    |                                                                   |           | eB Matcl                 |           | ipt masi | C        |          |           |          |  |  |  |  |  |
|               |         |         |          |         |              |          |                                                                                                                                                                                      |                                                                   |           | enabled.                 |           |          |          |          |           |          |  |  |  |  |  |
|               |         |         | TOTOUL   |         | <b>D</b> 444 |          | •                                                                                                                                                                                    |                                                                   |           |                          |           |          |          |          |           |          |  |  |  |  |  |
| 8             |         |         | TBTOIM   |         | R/W          |          | 0                                                                                                                                                                                    |                                                                   |           | Time-O                   |           | upt Mas  | iκ       |          |           |          |  |  |  |  |  |
|               |         |         |          |         |              |          |                                                                                                                                                                                      |                                                                   |           | disabled.                |           |          |          |          |           |          |  |  |  |  |  |
|               |         |         |          |         |              |          |                                                                                                                                                                                      |                                                                   |           | enabled.                 |           |          |          |          |           |          |  |  |  |  |  |
| 7:4           | 4       |         | reserved |         | RO           |          | 0                                                                                                                                                                                    |                                                                   |           | Ild not re               | -         |          |          |          |           |          |  |  |  |  |  |
|               |         |         |          |         |              |          |                                                                                                                                                                                      | prese                                                             | rved acr  | oss a rea                | ad-modi   | fy-write | operatio | n.       |           |          |  |  |  |  |  |
| 3             |         |         | RTCIM    |         | R/W          |          | 0                                                                                                                                                                                    | GPTM                                                              | I RTC Ir  | terrupt N                | lask      |          |          |          |           |          |  |  |  |  |  |
|               |         |         |          |         |              |          |                                                                                                                                                                                      | 0: Inte                                                           | rrupt is  | disabled.                |           |          |          |          |           |          |  |  |  |  |  |
|               |         |         |          |         |              |          |                                                                                                                                                                                      | 1: Inte                                                           | errupt is | enabled.                 |           |          |          |          |           |          |  |  |  |  |  |
| 2             |         |         | CAEIM    |         | R/W          |          | 0                                                                                                                                                                                    | GPTN                                                              | I Captur  | eA Even                  | t Interru | pt Mask  |          |          |           |          |  |  |  |  |  |
|               |         |         |          |         |              |          |                                                                                                                                                                                      | 0: Inte                                                           | rrupt is  | disabled.                |           |          |          |          |           |          |  |  |  |  |  |
|               |         |         |          |         |              |          |                                                                                                                                                                                      | 1: Inte                                                           | rrupt is  | enabled.                 |           |          |          |          |           |          |  |  |  |  |  |
|               |         |         |          |         |              |          |                                                                                                                                                                                      |                                                                   |           |                          |           |          |          |          |           |          |  |  |  |  |  |

| Bit/Field | Name   | Туре | Reset | Description                         |
|-----------|--------|------|-------|-------------------------------------|
| 1         | CAMIM  | R/W  | 0     | GPTM CaptureA Match Interrupt Mask  |
|           |        |      |       | 0: Interrupt is disabled.           |
|           |        |      |       | 1: Interrupt is enabled.            |
| 0         | TATOIM | R/W  | 0     | GPTM TimerA Time-Out Interrupt Mask |
|           |        |      |       | 0: Interrupt is disabled.           |
|           |        |      |       | 1: Interrupt is enabled.            |

# Register 6: GPTM Raw Interrupt Status (GPTMRIS), offset 0x01C

This register shows the state of the GPTM's internal interrupt signal. These bits are set whether or not the interrupt is masked in the **GPTMIMR** register. Each bit can be cleared by writing a 1 to its corresponding bit in **GPTMICR**.

### GPTM Raw Interrupt Status (GPTMRIS)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Timer3 base: 0x4003.3000 Offset 0x01C Type RO, reset 0x0x0000.0000

| Type NO,      | 16361 0 |         | 5000                                                                                                                                 |         |         |         |                                                               |         |          |                          |            |           |            |           |           |         |  |  |  |
|---------------|---------|---------|--------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|---------------------------------------------------------------|---------|----------|--------------------------|------------|-----------|------------|-----------|-----------|---------|--|--|--|
|               | 31      | 30      | 29                                                                                                                                   | 28      | 27      | 26      | 25                                                            | 24      | 23       | 22                       | 21         | 20        | 19         | 18        | 17        | 16      |  |  |  |
|               |         |         |                                                                                                                                      |         |         |         |                                                               | reser   | rved     |                          |            |           |            |           |           |         |  |  |  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                              | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                       | RO<br>0 | RO<br>0  | RO<br>0                  | RO<br>0    | RO<br>0   | RO<br>0    | RO<br>0   | RO<br>0   | RO<br>0 |  |  |  |
| Report        |         |         |                                                                                                                                      |         |         |         |                                                               |         |          |                          |            |           |            |           |           |         |  |  |  |
| ſ             | 15      | 14      | 13                                                                                                                                   | 12      | 11      | 10      | 9                                                             | 8       | 7        | 6                        | 5          | 4         | 3          | 2         | 1         | 0       |  |  |  |
| _             |         |         | reserved                                                                                                                             |         |         | CBERIS  | CBMRIS                                                        | TBTORIS |          | rese                     |            |           | RTCRIS     | CAERIS    | CAMRIS    | TATORIS |  |  |  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                              | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                       | RO<br>0 | RO<br>0  | RO<br>0                  | RO<br>0    | RO<br>0   | RO<br>0    | RO<br>0   | RO<br>0   | RO<br>0 |  |  |  |
|               |         |         |                                                                                                                                      |         |         |         |                                                               |         |          |                          |            |           |            |           |           |         |  |  |  |
| Bit/Fi        | ield    |         | Name                                                                                                                                 |         | Туре    | F       | Reset                                                         | Descri  | ption    |                          |            |           |            |           |           |         |  |  |  |
| 31:1          | 11      |         | reserved                                                                                                                             |         | RO      |         | 0                                                             | Softwa  | are shou | uld not re               | ly on the  | e value   | of a rese  | rved bit. | . To prov | ride    |  |  |  |
|               |         |         |                                                                                                                                      |         |         |         |                                                               | •       | •        | with futur               | •          |           |            |           | ed bit sh | ould be |  |  |  |
| 10            | )       |         | cBERIS       RO       0       GPTM CaptureB Event Raw Interrupt         This is the CaptureB Event interrupt status prior to masking |         |         |         |                                                               |         |          |                          |            |           |            |           |           |         |  |  |  |
|               |         |         |                                                                                                                                      |         |         |         | This is the CaptureB Event interrupt status prior to masking. |         |          |                          |            |           |            |           |           |         |  |  |  |
| 9             |         |         | CBMRIS                                                                                                                               |         | RO      |         | 0                                                             | GPTM    | l Captur | reB Matc                 | h Raw Ir   | nterrupt  |            |           |           |         |  |  |  |
|               |         |         |                                                                                                                                      |         |         |         |                                                               | This is | the Ca   | ptureB M                 | latch int  | errupt s  | tatus prie | or to ma  | sking.    |         |  |  |  |
| 8             |         |         | TBTORIS                                                                                                                              |         | RO      |         | 0                                                             | GPTM    | l TimerE | 3 Time-O                 | ut Raw     | Interrup  | t          |           |           |         |  |  |  |
|               |         |         |                                                                                                                                      |         |         |         |                                                               | This is | the Tin  | nerB time                | e-out inte | errupt st | atus prio  | or to mas | sking.    |         |  |  |  |
| 7:4           | 4       |         | reserved                                                                                                                             |         | RO      |         | 0                                                             |         |          | uld not re<br>with futur |            |           |            |           | •         |         |  |  |  |
|               |         |         |                                                                                                                                      |         |         |         |                                                               |         |          | oss a rea                |            |           |            |           |           |         |  |  |  |
| 3             |         |         | RTCRIS                                                                                                                               |         | RO      |         | 0                                                             | GPTM    | RTC R    | aw Inter                 | rupt       |           |            |           |           |         |  |  |  |
|               |         |         |                                                                                                                                      |         |         |         |                                                               | This is | the RT   | C Event                  | interrup   | t status  | prior to 1 | masking   |           |         |  |  |  |
| 2             |         |         | CAERIS                                                                                                                               |         | RO      |         | 0                                                             | GPTM    | l Captur | reA Even                 | t Raw Ir   | nterrupt  |            |           |           |         |  |  |  |
|               |         |         |                                                                                                                                      |         |         |         |                                                               | This is | the Ca   | ptureA E                 | vent inte  | errupt st | atus prio  | or to mas | sking.    |         |  |  |  |
| 1             |         |         | CAMRIS                                                                                                                               |         | RO      |         | 0                                                             | GPTM    | l Captur | reA Matc                 | h Raw Iı   | nterrupt  |            |           |           |         |  |  |  |
|               |         |         |                                                                                                                                      |         |         |         |                                                               | This is | the Ca   | ptureA N                 | latch int  | errupt s  | tatus pri  | or to ma  | sking.    |         |  |  |  |
| 0             |         |         | TATORIS                                                                                                                              |         | RO      |         | 0                                                             | GPTM    | TimerA   | A Time-O                 | ut Raw     | Interrup  | t          |           |           |         |  |  |  |
|               |         |         |                                                                                                                                      |         |         |         |                                                               | This th | ne Time  | rA time-c                | out interr | upt stat  | us prior   | to maski  | ng.       |         |  |  |  |

### Register 7: GPTM Masked Interrupt Status (GPTMMIS), offset 0x020

This register show the state of the GPTM's controller-level interrupt. If an interrupt is unmasked in **GPTMIMR**, and there is an event that causes the interrupt to be asserted, the corresponding bit is set in this register. All bits are cleared by writing a 1 to the corresponding bit in **GPTMICR**.

#### GPTM Masked Interrupt Status (GPTMMIS)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Timer3 base: 0x4003.3000 Offset 0x020 Type RO, reset 0x0x0000.0000

| -             | 31      | 30      | 29         | 28      | 27      | 26      | 25      | 24      | 23         | 22                        | 21         | 20         | 19         | 18        | 17        | 16      |
|---------------|---------|---------|------------|---------|---------|---------|---------|---------|------------|---------------------------|------------|------------|------------|-----------|-----------|---------|
|               |         | 1       |            |         |         |         |         | reser   | ved        |                           |            | l          |            |           |           | •       |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0    | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0    | RO<br>0                   | RO<br>0    | RO<br>0    | RO<br>0    | RO<br>0   | RO<br>0   | RO<br>0 |
|               | 15      | 14      | 13         | 12      | 11      | 10      | 9       | 8       | 7          | 6                         | 5          | 4          | 3          | 2         | 1         | 0       |
|               |         | 1       | reserved   |         |         | CBEMIS  | CBMMIS  | твтоміз |            | reser                     | ved        |            | RTCMIS     | CAEMIS    | CAMMIS    | TATOMIS |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0    | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0    | RO<br>0                   | RO<br>0    | RO<br>0    | RO<br>0    | RO<br>0   | RO<br>0   | RO<br>0 |
|               |         |         |            |         |         |         |         |         |            |                           |            |            |            |           |           |         |
| Bit/F         | ield    |         | Name       |         | Туре    | F       | Reset   | Descri  | ption      |                           |            |            |            |           |           |         |
| 31:           | 11      | ı       | reserved   |         | RO      |         | 0       |         |            | uld not re                |            |            |            |           | •         |         |
|               |         |         |            |         |         |         |         |         | •          | vith future<br>oss a rea  | -          |            |            |           | ed bit sh | ould be |
| 10            | )       |         | CBEMIS     |         | RO      |         | 0       | GPTM    | Captur     | eB Even                   | t Maske    | d Interri  | int        |           |           |         |
|               |         |         | 0020       |         |         |         | Ū       |         | •          | ptureB e                  |            |            | •          | r maskir  | ng.       |         |
| 9             |         | (       | CBMMIS     |         | RO      |         | 0       |         |            | eB Matcl                  |            |            |            |           | 0         |         |
| 0             |         | · · · · | ODIVIIVIIO |         | RO      |         | 0       |         | •          | ptureB m                  |            |            | •          | er maski  | na        |         |
| 8             |         | т       | BTOMIS     |         | RO      |         | 0       |         |            | 3 Time-O                  |            |            |            |           |           |         |
| 0             |         | I       | DIONIS     | 1       | RU      |         | 0       |         |            | nerB time                 |            |            | •          | er maski  | na        |         |
| 7.            |         |         |            |         | 50      |         | 0       |         |            |                           |            |            |            |           | -         | d al a  |
| 7:4           | 4       | I       | reserved   |         | RO      |         | 0       | compa   | tibility v | uld not re<br>vith future | e produc   | cts, the v | value of   | a reserv  | •         |         |
|               |         |         |            |         |         |         |         | preser  | ved acr    | oss a rea                 | ad-modif   | fy-write   | operatio   | n.        |           |         |
| 3             |         | I       | RTCMIS     |         | RO      |         | 0       | GPTM    | RTC M      | lasked In                 | terrupt    |            |            |           |           |         |
|               |         |         |            |         |         |         |         | This is | the RT     | C event                   | interrupt  | t status a | after ma   | sking.    |           |         |
| 2             |         | (       | CAEMIS     |         | RO      |         | 0       | GPTM    | Captur     | eA Even                   | t Maske    | d Interru  | upt        |           |           |         |
|               |         |         |            |         |         |         |         | This is | the Ca     | ptureA e                  | vent inte  | errupt st  | atus afte  | er maskir | ng.       |         |
| 1             |         | (       | CAMMIS     |         | RO      |         | 0       | GPTM    | Captur     | eA Matcl                  | n Maske    | d Interr   | upt        |           |           |         |
|               |         |         |            |         |         |         |         | This is | the Ca     | ptureA m                  | atch int   | errupt s   | tatus afte | er maski  | ng.       |         |
| 0             |         | 1       | TATOMIS    |         | RO      |         | 0       | GPTM    | TimerA     | A Time-O                  | ut Mask    | ed Inter   | rupt       |           |           |         |
|               |         |         |            |         |         |         |         | This is | the Tin    | nerA time                 | e-out inte | errupt st  | atus afte  | er maski  | ng.       |         |

# Register 8: GPTM Interrupt Clear (GPTMICR), offset 0x024

This register is used to clear the status bits in the **GPTMRIS** and **GPTMMIS** registers. Writing a 1 to a bit clears the corresponding bit in the **GPTMRIS** and **GPTMMIS** registers.

### GPTM Interrupt Clear (GPTMICR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Timer3 base: 0x4003.3000 Offset 0x024 Type W1C, reset 0x0x0000.0000

|               | 31      | 30      | 29       | 28      | 27      | 26       | 25       | 24       | 23          | 22         | 21        | 20       | 19                                | 18       | 17       | 16       |
|---------------|---------|---------|----------|---------|---------|----------|----------|----------|-------------|------------|-----------|----------|-----------------------------------|----------|----------|----------|
|               |         | •       |          |         |         |          |          | rese     | rved        |            | l         | l        |                                   |          |          |          |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0     | RO<br>0    | RO<br>0   | RO<br>0  | RO<br>0                           | RO<br>0  | RO<br>0  | RO<br>0  |
|               | 15      | 14      | 13       | 12      | 11      | 10       | 9        | 8        | 7           | 6          | 5         | 4        | 3                                 | 2        | 1        | 0        |
|               |         | 1       | reserved |         |         | CBECINT  | CBMCINT  | TBTOCINT |             | resei      | ved       |          | RTCCINT                           | CAECINT  | CAMCINT  | TATOCINT |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | W1C<br>0 | W1C<br>0 | W1C<br>0 | RO<br>0     | RO<br>0    | RO<br>0   | RO<br>0  | W1C<br>0                          | W1C<br>0 | W1C<br>0 | W1C<br>0 |
| Bit/F         | ield    |         | Name     |         | Туре    | F        | Reset    | Descr    | iption      |            |           |          |                                   |          |          |          |
| 31:           | 11      | I       | reserved |         | RO      |          | 0        | compa    | atibility w | ith futur  | e produo  | cts, the | of a rese<br>value of<br>operatio | a reserv |          |          |
| 10            | )       | C       | CBECINT  |         | W1C     |          | 0        | GPTM     | I Captur    | eB Even    | t Interru | pt Clea  | r                                 |          |          |          |
|               |         |         |          |         |         |          |          | 0: The   | interrup    | ot is unaf | fected.   |          |                                   |          |          |          |
|               |         |         |          |         |         |          |          | 1: The   | interrup    | ot is clea | red.      |          |                                   |          |          |          |
| 9             |         | C       | BMCINT   |         | W1C     |          | 0        | GPTM     | I Captur    | eB Matc    | n Interru | ipt Clea | r                                 |          |          |          |
|               |         |         |          |         |         |          |          | 0: The   | interrup    | ot is unaf | fected.   |          |                                   |          |          |          |
|               |         |         |          |         |         |          |          | 1: The   | interrup    | ot is clea | red.      |          |                                   |          |          |          |
| 8             |         | Т       | BTOCIN   | Г       | W1C     |          | 0        | GPTM     | I TimerB    | Time-O     | ut Interr | upt Clea | ar                                |          |          |          |
|               |         |         |          |         |         |          |          | 0: The   | interrup    | ot is unaf | fected.   |          |                                   |          |          |          |
|               |         |         |          |         |         |          |          | 1: The   | interrup    | ot is clea | red.      |          |                                   |          |          |          |
| 7:4           | 4       | I       | reserved |         | RO      |          | 0        | compa    | atibility w | ith futur  | e produ   | cts, the | of a rese<br>value of<br>operatio | a reserv | •        |          |
| 3             |         | F       | RTCCINT  |         | W1C     |          | 0        | GPTM     | I RTC In    | terrupt C  | lear      |          |                                   |          |          |          |
|               |         |         |          |         |         |          |          | 0: The   | interrup    | ot is unaf | fected.   |          |                                   |          |          |          |
|               |         |         |          |         |         |          |          | 1: The   | interrup    | ot is clea | red.      |          |                                   |          |          |          |
| 2             |         | C       | CAECINT  |         | W1C     |          | 0        | GPTM     | I Captur    | eA Even    | t Interru | pt Clear | r                                 |          |          |          |
|               |         |         |          |         |         |          |          | 0: The   | interrup    | ot is unaf | fected.   |          |                                   |          |          |          |
|               |         |         |          |         |         |          |          | 1: The   | interrup    | ot is clea | red.      |          |                                   |          |          |          |
| 1             |         | C       | CAMCINT  |         | W1C     |          | 0        | GPTM     | I Captur    | eA Matc    | h Raw li  | nterrupt |                                   |          |          |          |
|               |         |         |          |         |         |          |          | This is  | the Ca      | ptureA m   | atch int  | errupt s | tatus aft                         | er maski | ng.      |          |

| Bit/Field | Name     | Туре | Reset | Description                        |
|-----------|----------|------|-------|------------------------------------|
| 0         | TATOCINT | W1C  | 0     | GPTM TimerA Time-Out Raw Interrupt |
|           |          |      |       | 0: The interrupt is unaffected.    |
|           |          |      |       | 1: The interrupt is cleared.       |

# Register 9: GPTM TimerA Interval Load (GPTMTAILR), offset 0x028

This register is used to load the starting count value into the timer. When GPTM is configured to one of the 32-bit modes, **GPTMTAILR** appears as a 32-bit register (the upper 16-bits correspond to the contents of the **GPTM TimerB Interval Load (GPTMTBILR)** register). In 16-bit mode, the upper 16 bits of this register read as 0s and have no effect on the state of **GPTMTBILR**.

| Timer0 ba<br>Timer1 ba<br>Timer2 ba<br>Timer3 ba<br>Offset 0x0 | ase: 0x4(<br>ase: 0x4(<br>ase: 0x4(<br>ase: 0x4(<br>ase: 0x4(<br>)28 | 003.1000<br>003.2000<br>003.3000 |          | t mode) a | nd 0xFFF | F.FFFF ( | 32-bit mod                       | e)       |                                         |          |          |           |          |          |          |          |
|----------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------|----------|-----------|----------|----------|----------------------------------|----------|-----------------------------------------|----------|----------|-----------|----------|----------|----------|----------|
| _                                                              | 31                                                                   | 30                               | 29       | 28        | 27       | 26       | 25                               | 24       | 23                                      | 22       | 21       | 20        | 19       | 18       | 17       | 16       |
|                                                                |                                                                      | T                                | 1        |           | г т<br>1 |          | 1 1                              | TAI      | I I<br>LRH                              |          | Γ        |           | 1        | ſ        | ſ        |          |
| Type<br>Reset                                                  | R/W<br>0                                                             | R/W<br>1                         | R/W<br>1 | R/W<br>0  | R/W<br>1 | R/W<br>0 | R/W<br>1                         | R/W<br>1 | R/W<br>1                                | R/W<br>1 | R/W<br>0 | R/W<br>1  | R/W<br>1 | R/W<br>1 | R/W<br>1 | R/W<br>0 |
| -                                                              | 15                                                                   | 14                               | 13       | 12        | 11       | 10       | 9                                | 8        | 7                                       | 6        | 5        | 4         | 3        | 2        | 1        | 0        |
| ĺ                                                              |                                                                      | 1                                | 1        |           |          |          | 1 1                              | TAI      | LRL                                     |          |          |           |          |          |          |          |
| Type<br>Reset                                                  | R/W<br>1                                                             | R/W<br>1                         | R/W<br>1 | R/W<br>1  | R/W<br>1 | R/W<br>1 | R/W<br>1                         | R/W<br>1 | R/W<br>1                                | R/W<br>1 | R/W<br>1 | R/W<br>1  | R/W<br>1 | R/W<br>1 | R/W<br>1 | R/W<br>1 |
| Bit/Fi                                                         | ield                                                                 |                                  | Name     |           | Туре     | F        | Reset                            | Descr    | iption                                  |          |          |           |          |          |          |          |
| 31:1                                                           | 16                                                                   |                                  | TAILRH   |           | R/W      | 0:       | <pre><pre>FFFF</pre></pre>       | GPTN     | 1 TimerA                                | Interval | Load R   | egister I | High     |          |          |          |
|                                                                |                                                                      |                                  |          |           |          | 0x00     | oit mode)<br>00 (16-bit<br>node) | Timer    | configur<br><b>B Interv</b><br>A read r | al Load  | (GPTM    | TBILR)    | register | loads th | is value |          |
|                                                                |                                                                      |                                  |          |           |          |          |                                  |          | bit mode<br>of <b>GPTM</b>              |          | ld reads | as 0 an   | d does r | iot have | an effec | t on the |
| 15:                                                            | 0                                                                    |                                  | TAILRL   |           | R/W      | 0:       | <b>FFFF</b>                      | GPTM     | 1 TimerA                                | Interval | Load R   | egister l | _ow      |          |          |          |
|                                                                |                                                                      |                                  |          |           |          |          |                                  |          | oth 16- a<br>A. A read                  |          |          |           |          |          |          | ter for  |

#### GPTM TimerA Interval Load (GPTMTAILR)

### Register 10: GPTM TimerB Interval Load (GPTMTBILR), offset 0x02C

This register is used to load the starting count value into TimerB. When the GPTM is configured to a 32-bit mode, **GPTMTBILR** returns the current value of TimerB and ignores writes.

### GPTM TimerB Interval Load (GPTMTBILR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Timer3 base: 0x4003.3000 Offset 0x02C Type R/W, reset 0x0000.FFFF

|               | 31       | 30       | 29       | 28       | 27       | 26       | 25       | 24       | 23          | 22         | 21       | 20                                    | 19       | 18       | 17       | 16       |
|---------------|----------|----------|----------|----------|----------|----------|----------|----------|-------------|------------|----------|---------------------------------------|----------|----------|----------|----------|
|               |          | 1        | 1        |          | r r      |          | 1        | rese     | rved        | r          | r        | · · · · ·                             |          |          | 1        | 1        |
| Type<br>Reset | RO<br>0     | RO<br>0    | RO<br>0  | RO<br>0                               | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0  |
|               | 15       | 14       | 13       | 12       | 11       | 10       | 9        | 8        | 7           | 6          | 5        | 4                                     | 3        | 2        | 1        | 0        |
|               |          | 1        | 1        |          |          |          | 1        | ТВІ      | LRL         | 1          | 1        |                                       |          |          | 1        | '        |
| Type<br>Reset | R/W<br>1    | R/W<br>1   | R/W<br>1 | R/W<br>1                              | R/W<br>1 | R/W<br>1 | R/W<br>1 | R/W<br>1 |
| Bit/F         | ield     |          | Name     |          | Туре     | F        | Reset    | Descr    | iption      |            |          |                                       |          |          |          |          |
| 31:           | 16       |          | reserved |          | RO       |          | 0        | compa    | atibility v | vith futur | e produ  | e value o<br>cts, the v<br>fy-write o | alue of  | a reserv | •        |          |
| 15            | :0       |          | TBILRL   |          | R/W      | 0:       | ĸFFFF    | GPTM     | 1 TimerE    | 8 Interva  | I Load R | legister                              |          |          |          |          |
|               |          |          |          |          |          |          |          |          |             |            | •        | ured as a<br>it mode                  |          | -        |          |          |

When the GPTM is not configured as a 32-bit timer, a write to this field updates **GPTMTBILR**. In 32-bit mode, writes are ignored, and reads return the current value of **GPTMTBILR**.

# Register 11: GPTM TimerA Match (GPTMTAMATCHR), offset 0x030

This register is used in 32-bit Real-Time Clock mode and 16-bit PWM and Input Edge Count modes.

#### GPTM TimerA Match (GPTMTAMATCHR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Timer3 base: 0x4003.3000 Offset 0x030

Type R/W, reset 0x0000.FFFF (16-bit mode) and 0xFFFF.FFFF (32-bit mode)

| _             | 31       | 30       | 29           | 28       | 27       | 26       | 25                               | 24            | 23       | 22                            | 21           | 20                               | 19        | 18        | 17           | 16       |
|---------------|----------|----------|--------------|----------|----------|----------|----------------------------------|---------------|----------|-------------------------------|--------------|----------------------------------|-----------|-----------|--------------|----------|
|               |          | 1        | 1 1          |          |          |          | 1 1                              | TAN           | 1RH      |                               |              |                                  |           |           |              |          |
| Type<br>Reset | R/W<br>0 | R/W<br>1 | R/W<br>1     | R/W<br>0 | R/W      | R/W<br>0 | R/W<br>1                         | R/W<br>1      | R/W<br>1 | R/W<br>1                      | R/W<br>0     | R/W<br>1                         | R/W<br>1  | R/W<br>1  | R/W<br>1     | R/W<br>0 |
| Reset         | 15       | 14       | 13           | 12       | 11       | 10       |                                  |               | 7        | 6                             |              |                                  |           |           | 1            | 0        |
| ſ             | 15       | 14       | 1            | 12       |          | 10       | 9                                | 8<br>TAN      |          | 0                             | 5            | 4                                | 3         | 2         |              |          |
| _ [           |          |          | <b>D</b> 444 | DAAK     |          |          | <b>D</b> 444                     |               |          |                               | <b>D</b> 444 |                                  |           |           | <b>D</b> 444 |          |
| Type<br>Reset | R/W<br>1 | R/W<br>1 | R/W<br>1     | R/W<br>1 | R/W<br>1 | R/W<br>1 | R/W<br>1                         | R/W<br>1      | R/W<br>1 | R/W<br>1                      | R/W<br>1     | R/W<br>1                         | R/W<br>1  | R/W<br>1  | R/W<br>1     | R/W<br>1 |
|               |          |          |              |          |          |          |                                  |               |          |                               |              |                                  |           |           |              |          |
| Bit/Fi        | ield     |          | Name         |          | Туре     | F        | Reset                            | Descr         | iption   |                               |              |                                  |           |           |              |          |
| 31:1          | 16       |          | TAMRH        |          | R/W      | 0        | <b>KFFFF</b>                     | GPTN          | 1 TimerA | Match F                       | Register     | High                             |           |           |              |          |
|               |          |          |              |          |          | 0x00     | oit mode)<br>00 (16-bit<br>node) | GPTM          | ICFG reg | gister, th                    | is value     | al-Time (<br>is comp<br>h events | ared to t | ,         |              |          |
|               |          |          |              |          |          |          |                                  |               |          | , this fiel<br>I <b>TBMAT</b> |              | as 0 and                         | d does n  | ot have   | an effec     | t on the |
| 15:           | 0        |          | TAMRL        |          | R/W      | 0        | <pre>kFFFF</pre>                 | GPTN          | 1 TimerA | Match F                       | Register     | Low                              |           |           |              |          |
|               |          |          |              |          |          |          |                                  | GPTM          | ICFG re  | gister, th                    | is value     | al-Time (<br>is comp<br>h events | ared to t | ,         |              |          |
|               |          |          |              |          |          |          |                                  |               |          |                               |              | de, this v<br>le output          |           |           | GPTMT        | AILR,    |
|               |          |          |              |          |          |          |                                  | GPTM<br>numbe | ITAILR,  | determir<br>je events         | nes how      | unt mode<br>many ed<br>d is equ  | ge even   | ts are co | ounted. T    |          |

# Register 12: GPTM TimerB Match (GPTMTBMATCHR), offset 0x034

This register is used in 32-bit Real-Time Clock mode and 16-bit PWM and Input Edge Count modes.

#### GPTM TimerB Match (GPTMTBMATCHR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Timer3 base: 0x4003.3000 Offset 0x034 Type R/W, reset 0x0000.FFFF

|               | 31      | 30       | 29       | 28      | 27           | 26      | 25      | 24       | 23          | 22         | 21       | 20                                    | 19      | 18       | 17      | 16      |
|---------------|---------|----------|----------|---------|--------------|---------|---------|----------|-------------|------------|----------|---------------------------------------|---------|----------|---------|---------|
|               |         | 1        |          |         |              |         | 1       | rese     | rved        |            |          | •                                     |         |          | 1       | •       |
| Type<br>Reset | RO<br>0 | RO<br>0  | RO<br>0  | RO<br>0 | RO<br>0      | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0     | RO<br>0    | RO<br>0  | RO<br>0                               | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 |
|               | 15      | 14       | 13       | 12      | 11           | 10      | 9       | 8        | 7           | 6          | 5        | 4                                     | 3       | 2        | 1       | 0       |
|               |         | 1        | 1 1      |         | г <b>т т</b> |         | 1       | TBN      | I<br>MRL    |            | r        | 1                                     |         | 1        | 1       |         |
| Type<br>Reset | R/W     | R/W<br>1 | R/W      | R/W     | R/W<br>1     | R/W     | R/W     | R/W<br>1 | R/W         | R/W<br>1   | R/W      | R/W                                   | R/W     | R/W      | R/W     | R/W     |
| Reset         | I       | I        | I        | I       |              | I       | I       | I        | I           | I          | 1        | I                                     | I       | 1        | I       | I       |
| Bit/F         | ield    |          | Name     |         | Туре         | F       | Reset   | Descr    | iption      |            |          |                                       |         |          |         |         |
| 31:           | 16      |          | reserved |         | RO           |         | 0       | compa    | atibility v | vith futur | e produ  | e value o<br>cts, the v<br>fy-write o | alue of | a reserv | •       |         |
| 15            | :0      |          | TBMRL    |         | R/W          | 0>      | ĸFFFF   | GPTM     | 1 TimerE    | Match I    | Register | Low                                   |         |          |         |         |
|               |         |          |          |         |              |         |         |          | 0           |            |          | ide, this<br>ne outpu                 |         | •        | GPTM    | BILR,   |

When configured for Edge Count mode, this value along with **GPTMTBILR**, determines how many edge events are counted. The total number of edge events counted is equal to the value in **GPTMTBILR** minus this value.

# Register 13: GPTM TimerA Prescale (GPTMTAPR), offset 0x038

This register allows software to extend the range of the 16-bit timers when operating in one-shot or periodic mode.

### GPTM TimerA Prescale (GPTMTAPR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Timer3 base: 0x4003.3000 Offset 0x038 Type R/W, reset 0x0000.0000

|               | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24      | 23                     | 22         | 21       | 20                                     | 19       | 18        | 17       | 16       |
|---------------|---------|---------|----------|---------|---------|---------|---------|---------|------------------------|------------|----------|----------------------------------------|----------|-----------|----------|----------|
|               |         | 1       |          |         | r       |         | 1       | rese    | rved                   | 1          |          |                                        |          | 1         | 1        |          |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                | RO<br>0    | RO<br>0  | RO<br>0                                | RO<br>0  | RO<br>0   | RO<br>0  | RO<br>0  |
|               | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8       | 7                      | 6          | 5        | 4                                      | 3        | 2         | 1        | 0        |
|               |         | 1       |          | rese    | rved    |         |         |         |                        | I          |          | TAF                                    | PSR      | 1         | 1        |          |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | R/W<br>0               | R/W<br>0   | R/W<br>0 | R/W<br>0                               | R/W<br>0 | R/W<br>0  | R/W<br>0 | R/W<br>0 |
|               |         |         |          |         |         |         |         |         |                        |            |          |                                        |          |           |          |          |
| Bit/F         | ield    |         | Name     |         | Туре    | F       | Reset   | Descr   | iption                 |            |          |                                        |          |           |          |          |
| 31            | :8      |         | reserved |         | RO      |         | 0       | compa   | atibility v            | vith futur | e produ  | e value o<br>cts, the v<br>ify-write o | alue of  | a reserv  | •        |          |
| 7:            | 0       |         | TAPSR    |         | R/W     |         | 0       | GPTN    | 1 TimerA               | Presca     | le       |                                        |          |           |          |          |
|               |         |         |          |         |         |         |         |         | egister lo<br>register |            | value oi | n a write.                             | A read   | returns t | he curre | nt value |

Refer to Table 10-1 on page 204 for more details and an example.

### Register 14: GPTM TimerB Prescale (GPTMTBPR), offset 0x03C

This register allows software to extend the range of the 16-bit timers when operating in one-shot or periodic mode.

### GPTM TimerB Prescale (GPTMTBPR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Timer3 base: 0x4003.3000 Offset 0x03C Type R/W, reset 0x0000.0000

|               | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24      | 23                     | 22         | 21       | 20                                    | 19       | 18        | 17       | 16       |
|---------------|---------|---------|----------|---------|---------|---------|---------|---------|------------------------|------------|----------|---------------------------------------|----------|-----------|----------|----------|
|               |         | 1       |          |         |         |         | 1       | rese    | rved                   | 1          |          |                                       |          |           |          | ·        |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                | RO<br>0    | RO<br>0  | RO<br>0                               | RO<br>0  | RO<br>0   | RO<br>0  | RO<br>0  |
|               | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8       | 7                      | 6          | 5        | 4                                     | 3        | 2         | 1        | 0        |
|               |         |         |          | rese    | rved    |         |         |         |                        |            |          | TBF                                   | rsr      |           | 1        | '        |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | R/W<br>0               | R/W<br>0   | R/W<br>0 | R/W<br>0                              | R/W<br>0 | R/W<br>0  | R/W<br>0 | R/W<br>0 |
|               |         |         |          |         |         |         |         |         |                        |            |          |                                       |          |           |          |          |
| Bit/F         | ield    |         | Name     |         | Туре    | F       | Reset   | Descr   | iption                 |            |          |                                       |          |           |          |          |
| 31:           | 8       |         | reserved |         | RO      |         | 0       | compa   | atibility v            | vith futur | e produ  | e value o<br>cts, the v<br>fy-write o | alue of  | a reserv  | •        |          |
| 7:0           | C       |         | TBPSR    |         | R/W     |         | 0       | GPTM    | 1 TimerB               | 8 Presca   | le       |                                       |          |           |          |          |
|               |         |         |          |         |         |         |         |         | egister lo<br>register |            | value or | n a write.                            | A read i | returns t | he curre | nt value |

Refer to Table 10-1 on page 204 for more details and an example.

# Register 15: GPTM TimerA Prescale Match (GPTMTAPMR), offset 0x040

This register effectively extends the range of **GPTMTAMATCHR** to 24 bits when operating in 16-bit one-shot or periodic mode.

### GPTM TimerA Prescale Match (GPTMTAPMR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Timer3 base: 0x4003.3000 Offset 0x040 Type R/W, reset 0x0000.0000

|       | 31   | 30 | 29       | 28   | 27    | 26 | 25    | 24     | 23          | 22         | 21       | 20                                       | 19      | 18       | 17        | 16      |
|-------|------|----|----------|------|-------|----|-------|--------|-------------|------------|----------|------------------------------------------|---------|----------|-----------|---------|
|       |      | 1  | 1 1      |      | · · · |    | I     | rese   | rved        | r          | 1        |                                          |         | 1        | T         |         |
| Туре  | RO   | RO | RO       | RO   | RO    | RO | RO    | RO     | RO          | RO         | RO       | RO                                       | RO      | RO       | RO        | RO      |
| Reset | 0    | 0  | 0        | 0    | 0     | 0  | 0     | 0      | 0           | 0          | 0        | 0                                        | 0       | 0        | 0         | 0       |
|       | 15   | 14 | 13       | 12   | 11    | 10 | 9     | 8      | 7           | 6          | 5        | 4                                        | 3       | 2        | 1         | 0       |
|       |      | 1  |          | rese | rved  |    | 1     | 1      |             | I          | 1        | TAPS                                     | SMR     | 1        | I         |         |
| Туре  | RO   | RO | RO       | RO   | RO    | RO | RO    | RO     | R/W         | R/W        | R/W      | R/W                                      | R/W     | R/W      | R/W       | R/W     |
| Reset | 0    | 0  | 0        | 0    | 0     | 0  | 0     | 0      | 0           | 0          | 0        | 0                                        | 0       | 0        | 0         | 0       |
| Bit/F | ield |    | Name     |      | Туре  | I  | Reset | Descr  | iption      |            |          |                                          |         |          |           |         |
| 31    | :8   |    | reserved |      | RO    |    | 0     | compa  | atibility v | vith futur | e produ  | e value of<br>cts, the v<br>ify-write of | alue of | a reserv | •         |         |
| 7:    | 0    |    | TAPSMR   |      | R/W   |    | 0     | GPTM   | 1 TimerA    | Presca     | le Matcl | n                                        |         |          |           |         |
|       |      |    |          |      |       |    |       | This v | alue is u   | used alor  | ngside ( | Эртмта                                   | МАТСН   | R to dei | tect time | r match |

This value is used alongside **GPTMTAMATCHR** to detect timer match events while using a prescaler.

### Register 16: GPTM TimerB Prescale Match (GPTMTBPMR), offset 0x044

This register effectively extends the range of **GPTMTBMATCHR** to 24 bits when operating in 16-bit one-shot or periodic mode.

### GPTM TimerB Prescale Match (GPTMTBPMR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Timer3 base: 0x4003.3000 Offset 0x044 Type R/W, reset 0x0000.0000

|       | 31   | 30 | 29       | 28   | 27    | 26 | 25    | 24     | 23          | 22         | 21              | 20     | 19      | 18               | 17                       | 16      |
|-------|------|----|----------|------|-------|----|-------|--------|-------------|------------|-----------------|--------|---------|------------------|--------------------------|---------|
|       |      | 1  |          |      | · · · |    | 1     | rese   | rved        |            |                 |        |         | r                | T                        |         |
| Туре  | RO   | RO | RO       | RO   | RO    | RO | RO    | RO     | RO          | RO         | RO              | RO     | RO      | RO               | RO                       | RO      |
| Reset | 0    | 0  | 0        | 0    | 0     | 0  | 0     | 0      | 0           | 0          | 0               | 0      | 0       | 0                | 0                        | 0       |
|       | 15   | 14 | 13       | 12   | 11    | 10 | 9     | 8      | 7           | 6          | 5               | 4      | 3       | 2                | 1                        | 0       |
|       |      | 1  |          | rese | rved  |    | 1     | -      |             | ſ          | ſ               | TBP:   | SMR     | 1                | 1                        | 1       |
| Туре  | RO   | RO | RO       | RO   | RO    | RO | RO    | RO     | R/W         | R/W        | R/W             | R/W    | R/W     | R/W              | R/W                      | R/W     |
| Reset | 0    | 0  | 0        | 0    | 0     | 0  | 0     | 0      | 0           | 0          | 0               | 0      | 0       | 0                | 0                        | 0       |
| Bit/F | ield |    | Name     |      | Туре  | I  | Reset | Descr  | iption      |            |                 |        |         |                  |                          |         |
| 31    | :8   |    | reserved |      | RO    |    | 0     | compa  | atibility w | /ith futur | e produ         |        | alue of | a reserv         | t. To prov<br>ved bit sh |         |
| 7:    | 0    | -  | TBPSMR   |      | R/W   |    | 0     | GPTN   | 1 TimerB    | Presca     | le Match        | ı      |         |                  |                          |         |
|       |      |    |          |      |       |    |       | This v | alue is u   | ised alo   | ngside <b>G</b> | ЭРТМТВ | МАТСН   | I <b>R</b> to de | tect time                | r match |

This value is used alongside **GPTMTBMATCHR** to detect timer match events while using a prescaler.

# Register 17: GPTM TimerA (GPTMTAR), offset 0x048

This register shows the current value of the TimerA counter in all cases except for Input Edge Count mode. When in this mode, this register contains the time at which the last edge event took place.

#### GPTM TimerA (GPTMTAR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Timer3 base: 0x4003.3000 Offset 0x048

Type RO, reset 0x0000.FFFF (16-bit mode) and 0xFFFF.FFFF (32-bit mode)

| _     | 31   | 30 | 29   | 28 | 27       | 26   | 25                               | 24    | 23        | 22                             | 21      | 20 | 19 | 18 | 17         | 16 |
|-------|------|----|------|----|----------|------|----------------------------------|-------|-----------|--------------------------------|---------|----|----|----|------------|----|
|       |      | 1  | I    | 1  | г г      |      | т т                              | TA    | I<br>.RH  | 1                              |         | I  |    | r  | r          |    |
| Туре  | RO   | RO | RO   | RO | RO       | RO   | RO                               | RO    | RO        | RO                             | RO      | RO | RO | RO | RO         | RO |
| Reset | 0    | 1  | 1    | 0  | 1        | 0    | 1                                | 1     | 1         | 1                              | 0       | 1  | 1  | 1  | 1          | 0  |
|       | 15   | 14 | 13   | 12 | 11       | 10   | 9                                | 8     | 7         | 6                              | 5       | 4  | 3  | 2  | 1          | 0  |
|       |      | 1  | T    | I  | г г<br>1 |      | I I                              | TA    | I<br>NRL  | 1                              |         | Γ  | 1  |    | Γ          |    |
| Туре  | RO   | RO | RO   | RO | RO       | RO   | RO                               | RO    | RO        | RO                             | RO      | RO | RO | RO | RO         | RO |
| Reset | 1    | 1  | 1    | 1  | 1        | 1    | 1                                | 1     | 1         | 1                              | 1       | 1  | 1  | 1  | 1          | 1  |
| Bit/F | ield |    | Name |    | Туре     | F    | Reset                            | Descr | iption    |                                |         |    |    |    |            |    |
| 31:   | 16   |    | TARH |    | RO       | 0:   | xFFFF                            | GPTN  | /I TimerA | Registe                        | er High |    |    |    |            |    |
|       |      |    |      |    |          | 0x00 | bit mode)<br>00 (16-bit<br>node) |       |           | <b>FG</b> is in<br>in a 16-l   |         |    |    |    | ead. If th | ıe |
| 15:   | 0    |    | TARL |    | RO       | 0:   | xFFFF                            | GPTN  | /I Timer/ | Registe                        | er Low  |    |    |    |            |    |
|       |      |    |      |    |          |      |                                  | excep |           | the curr<br>t Edge C<br>event. |         |    |    |    |            | •  |

### Register 18: GPTM TimerB (GPTMTBR), offset 0x04C

This register shows the current value of the TimerB counter in all cases except for Input Edge Count mode. When in this mode, this register contains the time at which the last edge event took place.

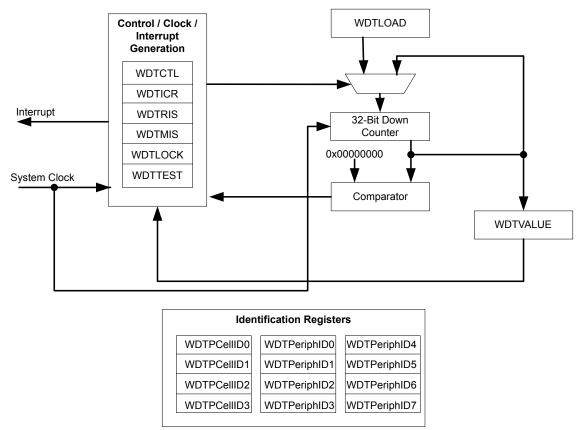
#### GPTM TimerB (GPTMTBR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Timer3 base: 0x4003.3000 Offset 0x04C Type RO, reset 0x0000.FFFF

|               | 31      | 30                              | 29       | 28      | 27                                                                                                                      | 26      | 25      | 24          | 23          | 22         | 21      | 20                                     | 19      | 18       | 17      | 16               |  |
|---------------|---------|---------------------------------|----------|---------|-------------------------------------------------------------------------------------------------------------------------|---------|---------|-------------|-------------|------------|---------|----------------------------------------|---------|----------|---------|------------------|--|
|               |         | 1                               | · · ·    |         | г <u>г</u> г                                                                                                            |         | 1       | rese        | rved        | 1          |         |                                        | 1       | 1        | 1       |                  |  |
| Type<br>Reset | RO<br>0 | RO<br>0                         | RO<br>0  | RO<br>0 | RO<br>0                                                                                                                 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0     | RO<br>0    | RO<br>0 | RO<br>0                                | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0          |  |
| Reber         |         |                                 | -        |         | -                                                                                                                       | -       |         |             | -           |            | -       | -                                      |         |          |         | -                |  |
|               | 15      | 14                              | 13       | 12      | 11                                                                                                                      | 10      | 9       | 8           | 7           | 6          | 5       | 4                                      | 3       | 2        | 1       | 0                |  |
|               |         | I                               | 1 1      |         |                                                                                                                         |         | 1       | ТВ          | I<br>RL     |            |         |                                        |         | I        | I       |                  |  |
| Туре          | RO      | RO                              | RO       | RO      | RO                                                                                                                      | RO      | RO      | RO          | RO          | RO         | RO      | RO                                     | RO      | RO       | RO      | RO               |  |
| Reset         | 1       | 1                               | 1        | 1       | 1                                                                                                                       | 1       | 1       | 1           | 1           | 1          | 1       | 1                                      | 1       | 1        | 1       | 1                |  |
| Bit/F         | ield    | 1 1 1 1 1 1<br>Id Name Type Res |          |         |                                                                                                                         | Reset   | Descr   | iption      |             |            |         |                                        |         |          |         |                  |  |
| 31:           | 16      |                                 | reserved |         | RO                                                                                                                      |         | 0       | compa       | atibility v | vith futur | e produ | e value o<br>cts, the v<br>ify-write o | alue of | a reserv | •       | vide<br>hould be |  |
| 15            | :0      |                                 | TBRL     |         | RO                                                                                                                      | 0:      | ĸFFFF   | GPTM TimerB |             |            |         |                                        |         |          |         |                  |  |
|               |         |                                 |          |         | A read returns the current value of the GPTM TimerB Count<br>except in Input Edge Count mode, when it returns the times |         |         |             |             |            |         |                                        |         |          |         | •                |  |

A read returns the current value of the **GPTM TimerB Count Register**, except in Input Edge Count mode, when it returns the timestamp from the last edge event.

# 11 Watchdog Timer


A watchdog timer can generate nonmaskable interrupts (NMIs) or a reset when a time-out value is reached. The watchdog timer is used to regain control when a system has failed due to a software error or due to the failure of an external device to respond in the expected way.

The Stellaris<sup>®</sup> Watchdog Timer module consists of a 32-bit down counter, a programmable load register, interrupt generation logic, a locking register, and user-enabled stalling.

The Watchdog Timer can be configured to generate an interrupt to the controller on its first time-out, and to generate a reset signal on its second time-out. Once the Watchdog Timer has been configured, the lock register can be written to prevent the timer configuration from being inadvertently altered.

# 11.1 Block Diagram





# 11.2 Functional Description

The Watchdog Timer module consists of a 32-bit down counter, a programmable load register, interrupt generation logic, and a locking register. Once the Watchdog Timer has been configured, the **Watchdog Timer Lock (WDTLOCK)** register is written, which prevents the timer configuration from being inadvertently altered by software.

The Watchdog Timer module generates the first time-out signal when the 32-bit counter reaches the zero state after being enabled; enabling the counter also enables the watchdog timer interrupt. After the first time-out event, the 32-bit counter is re-loaded with the value of the **Watchdog Timer Load (WDTLOAD)** register, and the timer resumes counting down from that value.

If the timer counts down to its zero state again before the first time-out interrupt is cleared, and the reset signal has been enabled (via the WatchdogResetEnable function), the Watchdog timer asserts its reset signal to the system. If the interrupt is cleared before the 32-bit counter reaches its second time-out, the 32-bit counter is loaded with the value in the WDTLOAD register, and counting resumes from that value.

If **WDTLOAD** is written with a new value while the Watchdog Timer counter is counting, then the counter is loaded with the new value and continues counting.

Writing to **WDTLOAD** does not clear an active interrupt. An interrupt must be specifically cleared by writing to the **Watchdog Interrupt Clear (WDTICR)** register.

The Watchdog module interrupt and reset generation can be enabled or disabled as required. When the interrupt is re-enabled, the 32-bit counter is preloaded with the load register value and not its last state.

# 11.3 Initialization and Configuration

To use the WDT, its peripheral clock must be enabled by setting the WDT bit in the **RCGC0** register. The Watchdog Timer is configured using the following sequence:

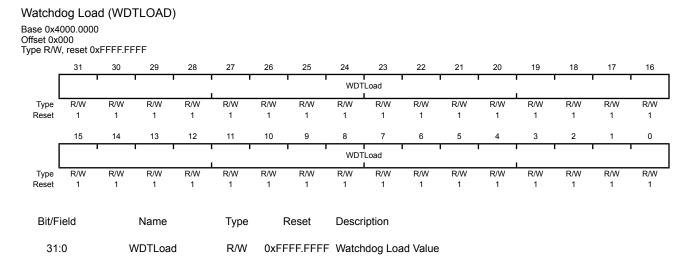
- 1. Load the **WDTLOAD** register with the desired timer load value.
- 2. If the Watchdog is configured to trigger system resets, set the RESEN bit in the WDTCTL register.
- 3. Set the INTEN bit in the WDTCTL register to enable the Watchdog and lock the control register.

If software requires that all of the watchdog registers are locked, the Watchdog Timer module can be fully locked by writing any value to the **WDTLOCK** register. To unlock the Watchdog Timer, write a value of 0x1ACCE551.

# 11.4 Register Map

"Register Map" on page 234 lists the Watchdog registers. The offset listed is a hexadecimal increment to the register's address, relative to the Watchdog Timer base address of 0x4000.0000.

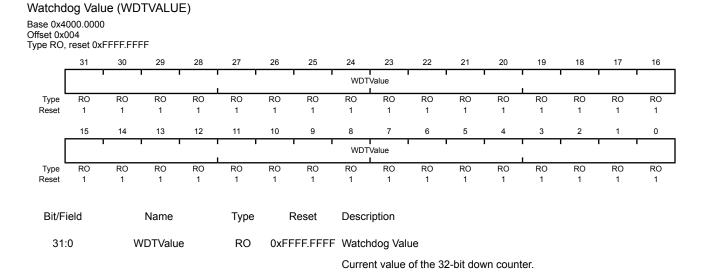
| Offset | Name     | Туре | Reset       | Description                      | See<br>page |
|--------|----------|------|-------------|----------------------------------|-------------|
| 0x000  | WDTLOAD  | R/W  | 0xFFFF.FFFF | Watchdog Load                    | 236         |
| 0x004  | WDTVALUE | RO   | 0xFFFF.FFFF | Watchdog Value                   | 237         |
| 0x008  | WDTCTL   | R/W  | 0x0000.0000 | Watchdog Control                 | 238         |
| 0x00C  | WDTICR   | WO   | -           | Watchdog Interrupt Clear         | 239         |
| 0x010  | WDTRIS   | RO   | 0x0000.0000 | Watchdog Raw Interrupt Status    | 240         |
| 0x014  | WDTMIS   | RO   | 0x0000.0000 | Watchdog Masked Interrupt Status | 241         |
| 0x418  | WDTTEST  | R/W  | 0x0000.0000 | Watchdog Test                    | 242         |


| Offset | Name         | Туре | Reset       | Description                          | See<br>page |
|--------|--------------|------|-------------|--------------------------------------|-------------|
| 0xC00  | WDTLOCK      | R/W  | 0x0000.0000 | Watchdog Lock                        | 243         |
| 0xFD0  | WDTPeriphID4 | RO   | 0x0000.0000 | Watchdog Peripheral Identification 4 | 244         |
| 0xFD4  | WDTPeriphID5 | RO   | 0x0000.0000 | Watchdog Peripheral Identification 5 | 245         |
| 0xFD8  | WDTPeriphID6 | RO   | 0x0000.0000 | Watchdog Peripheral Identification 6 | 246         |
| 0xFDC  | WDTPeriphID7 | RO   | 0x0000.0000 | Watchdog Peripheral Identification 7 | 247         |
| 0xFE0  | WDTPeriphID0 | RO   | 0x0000.0005 | Watchdog Peripheral Identification 0 | 248         |
| 0xFE4  | WDTPeriphID1 | RO   | 0x0000.0018 | Watchdog Peripheral Identification 1 | 249         |
| 0xFE8  | WDTPeriphID2 | RO   | 0x0000.0018 | Watchdog Peripheral Identification 2 | 250         |
| 0xFEC  | WDTPeriphID3 | RO   | 0x0000.0001 | Watchdog Peripheral Identification 3 | 251         |
| 0xFF0  | WDTPCellID0  | RO   | 0x0000.000D | Watchdog PrimeCell Identification 0  | 252         |
| 0xFF4  | WDTPCellID1  | RO   | 0x0000.00F0 | Watchdog PrimeCell Identification 1  | 253         |
| 0xFF8  | WDTPCellID2  | RO   | 0x0000.0005 | Watchdog PrimeCell Identification 2  | 254         |
| 0xFFC  | WDTPCellID3  | RO   | 0x0000.00B1 | Watchdog PrimeCell Identification 3  | 255         |

# 11.5 Register Descriptions

The remainder of this section lists and describes the WDT registers, in numerical order by address offset.

# Register 1: Watchdog Load (WDTLOAD), offset 0x000


This register is the 32-bit interval value used by the 32-bit counter. When this register is written, the value is immediately loaded and the counter restarts counting down from the new value. If the **WDTLOAD** register is loaded with 0x0000.0000, an interrupt is immediately generated.



#### June 04, 2007

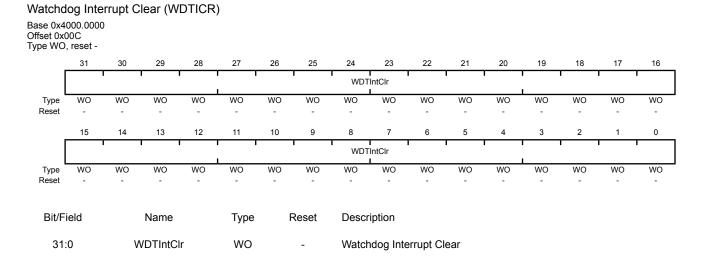
# Register 2: Watchdog Value (WDTVALUE), offset 0x004

This register contains the current count value of the timer.



# Register 3: Watchdog Control (WDTCTL), offset 0x008

This register is the watchdog control register. The watchdog timer can be configured to generate a reset signal (on second time-out) or an interrupt on time-out.


When the watchdog interrupt has been enabled, all subsequent writes to the control register are ignored. The only mechanism that can re-enable writes is a hardware reset.

| Watchd<br>Base 0x4<br>Offset 0x0<br>Type R/W | 000.000 | 0  | DTCTL    | )  |          |    |       |        |                       |            |          |            |              |          |                          |         |
|----------------------------------------------|---------|----|----------|----|----------|----|-------|--------|-----------------------|------------|----------|------------|--------------|----------|--------------------------|---------|
|                                              | 31      | 30 | 29       | 28 | 27       | 26 | 25    | 24     | 23                    | 22         | 21       | 20         | 19           | 18       | 17                       | 16      |
|                                              |         | 1  |          |    | ı ı<br>I |    | 1     | rese   | rved                  | 1          |          | 1          | 1            |          | 1                        | •       |
| Туре                                         | RO      | RO | RO       | RO | RO       | RO | RO    | RO     | RO                    | RO         | RO       | RO         | RO           | RO       | RO                       | RO      |
| Reset                                        | 0       | 0  | 0        | 0  | 0        | 0  | 0     | 0      | 0                     | 0          | 0        | 0          | 0            | 0        | 0                        | 0       |
|                                              | 15      | 14 | 13       | 12 | 11       | 10 | 9     | 8      | 7                     | 6          | 5        | 4          | 3            | 2        | 1                        | 0       |
|                                              |         | 1  |          |    | і і<br>І |    | rese  | erved  | 1                     | 1          |          | 1          | 1            |          | RESEN                    | INTEN   |
| Туре                                         | RO      | RO | RO       | RO | RO       | RO | RO    | RO     | RO                    | RO         | RO       | RO         | RO           | RO       | R/W                      | R/W     |
| Reset                                        | 0       | 0  | 0        | 0  | 0        | 0  | 0     | 0      | 0                     | 0          | 0        | 0          | 0            | 0        | 0                        | 0       |
| Bit/F                                        | ield    |    | Name     |    | Туре     |    | Reset | Descr  | iption                |            |          |            |              |          |                          |         |
| 31:                                          | :2      |    | reserved |    | RO       |    | 0     | comp   | atibility v           | vith futur | e produ  | cts, the v |              | a reserv | t. To prov<br>ved bit sh |         |
| 1                                            |         |    | RESEN    |    | R/W      |    | 0     | Watch  | ndog Res              | set Enab   | le       |            |              |          |                          |         |
|                                              |         |    |          |    |          |    |       | 0: Dis | abled.                |            |          |            |              |          |                          |         |
|                                              |         |    |          |    |          |    |       | 1: Ena | able the              | Watchdo    | og modu  | le reset   | output.      |          |                          |         |
| 0                                            |         |    | INTEN    |    | R/W      |    | 0     | Watch  | ndog Inte             | errupt Er  | able     |            |              |          |                          |         |
|                                              |         |    |          |    |          |    |       |        | errupt ev<br>dware re |            | oled (on | ce this b  | it is set, i | t can or | nly be cle               | ared by |

1: Interrupt event enabled. Once enabled, all writes are ignored.

### Register 4: Watchdog Interrupt Clear (WDTICR), offset 0x00C

This register is the interrupt clear register. A write of any value to this register clears the Watchdog interrupt and reloads the 32-bit counter from the **WDTLOAD** register. Value for a read or reset is indeterminate.



# Register 5: Watchdog Raw Interrupt Status (WDTRIS), offset 0x010

This register is the raw interrupt status register. Watchdog interrupt events can be monitored via this register if the controller interrupt is masked.

### Watchdog Raw Interrupt Status (WDTRIS)

Base 0x4000.0000 Offset 0x010 Type RO, reset 0x0000.0000

|               | 31            | 30      | 29      | 28      | 27      | 26      | 25      | 24       | 23                                   | 22         | 21         | 20         | 19       | 18              | 17      | 16      |
|---------------|---------------|---------|---------|---------|---------|---------|---------|----------|--------------------------------------|------------|------------|------------|----------|-----------------|---------|---------|
|               |               | 1       | •       | •       |         |         | •       | rese     | rved                                 |            | •          |            |          | •               | •       | •       |
| Type<br>Reset | RO<br>0       | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0                              | RO<br>0    | RO<br>0    | RO<br>0    | RO<br>0  | RO<br>0         | RO<br>0 | RO<br>0 |
|               | 15            | 14      | 13      | 12      | 11      | 10      | 9       | 8        | 7                                    | 6          | 5          | 4          | 3        | 2               | 1       | 0       |
|               |               | 1       | 1       | I       |         |         | 1       | reserved |                                      |            | 1          |            |          | 1               | 1       | WDTRIS  |
| Type<br>Reset | RO<br>0       | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0                              | RO<br>0    | RO<br>0    | RO<br>0    | RO<br>0  | RO<br>0         | RO<br>0 | RO<br>0 |
| Bit/F         | Bit/Field     |         | Name    |         | Туре    |         | Reset   | Descr    | iption                               |            |            |            |          |                 |         |         |
| 31:           | 31:1 reserved |         |         |         | RO      |         | 0       | compa    | are shou<br>atibility w<br>rved acro | ith futur/ | e produ    | cts, the v | alue of  | a reserv        | •       |         |
| 0             |               |         | WDTRIS  | i       | RO      |         | 0       | Watch    | idog Rav                             | v Interru  | ipt Statu  | S          |          |                 |         |         |
|               | 0 WDTRIS RO 0 |         |         |         |         |         |         | Gives    | the raw                              | interrup   | t state (p | orior to n | nasking) | ) of <b>WDT</b> | INTR.   |         |

June 04, 2007

### Register 6: Watchdog Masked Interrupt Status (WDTMIS), offset 0x014

This register is the masked interrupt status register. The value of this register is the logical AND of the raw interrupt bit and the Watchdog interrupt enable bit.

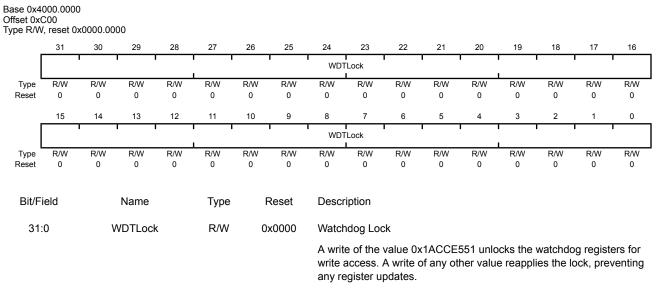
### Watchdog Masked Interrupt Status (WDTMIS)

Base 0x4000.0000 Offset 0x014 Type RO, reset 0x0000.0000

|               | 31      | 30      | 29         | 28      | 27       | 26      | 25      | 24               | 23          | 22                                    | 21        | 20         | 19      | 18        | 17      | 16               |
|---------------|---------|---------|------------|---------|----------|---------|---------|------------------|-------------|---------------------------------------|-----------|------------|---------|-----------|---------|------------------|
|               |         |         | <b>т</b> т |         | <b> </b> |         | 1       | rese             | rved        | 1                                     |           |            |         | 1         | 1       |                  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0    | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0          | RO<br>0     | RO<br>0                               | RO<br>0   | RO<br>0    | RO<br>0 | RO<br>0   | RO<br>0 | RO<br>0          |
|               | 15      | 14      | 13         | 12      | 11       | 10      | 9       | 8                | 7           | 6                                     | 5         | 4          | 3       | 2         | 1       | 0                |
|               |         | •       | 1 1        |         | r î      | -       | 1       | reserved         | 1           | 1                                     |           | · · ·      | -       | 1         | 1       | WDTMIS           |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0    | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0          | RO<br>0     | RO<br>0                               | RO<br>0   | RO<br>0    | RO<br>0 | RO<br>0   | RO<br>0 | RO<br>0          |
| Bit/F         | ield    |         | Name       |         | Туре     | F       | Reset   | Descr            | iption      |                                       |           |            |         |           |         |                  |
| 31            | :1      |         | reserved   |         | RO       |         | 0       | compa            | atibility v | uld not re<br>vith futur<br>oss a rea | e produ   | cts, the v | alue of | a reserv  | •       | vide<br>hould be |
| C             | )       |         | WDTMIS     |         | RO       |         | 0       | Watch            |             |                                       |           |            |         |           |         |                  |
|               |         |         |            |         |          |         |         | Gives<br>interru |             | sked inte                             | rrupt sta | ate (after | maskin  | g) of the |         | NTR              |

# Register 7: Watchdog Test (WDTTEST), offset 0x418

This register provides user-enabled stalling when the microcontroller asserts the CPU halt flag during debug.


### Watchdog Test (WDTTEST)

Base 0x4000.0000 Offset 0x418 Type R/W, reset 0x0000.0000

| 21          | ,  |    |                 |          |            |    |            |       |                      |           |          |                                                 |            |           |    |                    |
|-------------|----|----|-----------------|----------|------------|----|------------|-------|----------------------|-----------|----------|-------------------------------------------------|------------|-----------|----|--------------------|
|             | 31 | 30 | 29              | 28       | 27         | 26 | 25         | 24    | 23                   | 22        | 21       | 20                                              | 19         | 18        | 17 | 16                 |
|             |    | 1  | ì               | т т<br>т | ſ          |    | 1          | rese  | rved                 | 1         | 1        | 1                                               |            | 1         | 1  | '                  |
| Туре        | RO | RO | RO              | RO       | RO         | RO | RO         | RO    | RO                   | RO        | RO       | RO                                              | RO         | RO        | RO | RO                 |
| Reset       | 0  | 0  | 0               | 0        | 0          | 0  | 0          | 0     | 0                    | 0         | 0        | 0                                               | 0          | 0         | 0  | 0                  |
|             | 15 | 14 | 13              | 12       | 11         | 10 | 9          | 8     | 7                    | 6         | 5        | 4                                               | 3          | 2         | 1  | 0                  |
|             |    | Î  | Î               | reserved | î          |    | Î          | STALL |                      | Î         | 1        | res                                             | l<br>erved | 1         | 1  | 1                  |
| Туре        | RO | RO | RO              | RO       | RO         | RO | RO         | R/W   | RO                   | RO        | RO       | RO                                              | RO         | RO        | RO | RO                 |
| Reset       | 0  | 0  | 0               | 0        | 0          | 0  | 0          | 0     | 0                    | 0         | 0        | 0                                               | 0          | 0         | 0  | 0                  |
| Bit/F<br>31 |    |    | Name<br>reserve | d        | Type<br>RO |    | Reset<br>0 | compa | are sho<br>atibility | with futu | ure prod | he value<br>ucts, the<br>dify-write             | value o    | f a reser | •  | ovide<br>should be |
| 8           | 5  |    | STALL           |          | R/W        |    | 0          |       | •                    | all Enab  |          |                                                 |            |           |    |                    |
|             |    |    |                 |          |            |    |            | debug | ger, th              | e watcho  | dog time | <sup>®</sup> microco<br>r stops co<br>ner resun | ounting    | . Once th |    | a<br>controller    |
| 7:          | 0  |    | reserve         | d        | RO         |    | 0          | compa | atibility            | with futu | ure prod | he value<br>ucts, the<br>dify-write             | value o    | f a reser | •  | ovide<br>should be |

# Register 8: Watchdog Lock (WDTLOCK), offset 0xC00

Writing 0x1ACCE551 to the **WDTLOCK** register enables write access to all other registers. Writing any other value to the **WDTLOCK** register re-enables the locked state for register writes to all the other registers. Reading the **WDTLOCK** register returns the lock status rather than the 32-bit value written. Therefore, when write accesses are disabled, reading the **WDTLOCK** register returns 0x0000.0001 (when locked; otherwise, the returned value is 0x0000.0000 (unlocked)).



A read of this register returns the following values:

Locked: 0x0000.0001

Unlocked: 0x0000.0000

Watchdog Lock (WDTLOCK)

# Register 9: Watchdog Peripheral Identification 4 (WDTPeriphID4), offset 0xFD0

The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

### Watchdog Peripheral Identification 4 (WDTPeriphID4)

Base 0x4000.0000 Offset 0xFD0 Type RO, reset 0x0000.0000

|       | 31            | 30 | 29   | 28   | 27   | 26 | 25    | 24          | 23                                    | 22       | 21           | 20      | 19       | 18 | 17 | 16 |
|-------|---------------|----|------|------|------|----|-------|-------------|---------------------------------------|----------|--------------|---------|----------|----|----|----|
|       |               | •  |      |      | , ,  |    | •     | rese        | rved                                  |          |              |         | 1        | •  | 1  |    |
| Туре  | RO            | RO | RO   | RO   | RO   | RO | RO    | RO          | RO                                    | RO       | RO           | RO      | RO       | RO | RO | RO |
| Reset | 0             | 0  | 0    | 0    | 0    | 0  | 0     | 0           | 0                                     | 0        | 0            | 0       | 0        | 0  | 0  | 0  |
| -     | 15            | 14 | 13   | 12   | 11   | 10 | 9     | 8           | 7                                     | 6        | 5            | 4       | 3        | 2  | 1  | 0  |
|       |               | 1  |      | rese | rved |    |       |             |                                       | I<br>Pl  | I<br>D4<br>I | 1       | 1        |    |    |    |
| Туре  | RO            | RO | RO   | RO   | RO   | RO | RO    | RO          | RO                                    | RO       | RO           | RO      | RO       | RO | RO | RO |
| Reset | 0             | 0  | 0    | 0    | 0    | 0  | 0     | 0           | 0                                     | 0        | 0            | 0       | 0        | 0  | 0  | 0  |
| Bit/F | ield          |    | Name |      | Туре |    | Reset | Descr       | iption                                |          |              |         |          |    |    |    |
| 31:   | 31:8 reserved |    |      | RO   |      | 0  | compa | atibility v | ild not re<br>vith futur<br>oss a rea | e produ  | cts, the v   | alue of | a reserv | •  |    |    |
| 7:0   | 0             |    | PID4 |      | RO   |    | 0x00  | WDT         | Peripher                              | al ID Re | gister[7     | :0]     |          |    |    |    |

### Register 10: Watchdog Peripheral Identification 5 (WDTPeriphID5), offset 0xFD4

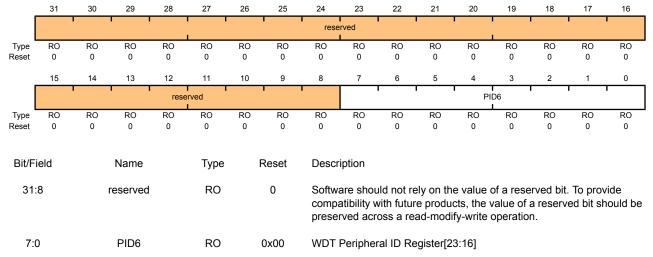
The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

### Watchdog Peripheral Identification 5 (WDTPeriphID5)

Base 0x4000.0000

Offset 0xFD4 Type RO, reset 0x0000.0000

|       | 31               | 30       | 29   | 28      | 27                               | 26         | 25 | 24       | 23                                                                                                                                                                                      | 22      | 21      | 20 | 19 | 18             | 17 | 16 |  |  |  |  |
|-------|------------------|----------|------|---------|----------------------------------|------------|----|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|----|----|----------------|----|----|--|--|--|--|
|       |                  | 1        |      |         | · · ·                            |            | 1  | reserved |                                                                                                                                                                                         |         |         |    |    |                |    |    |  |  |  |  |
| Туре  | RO               | RO       | RO   | RO<br>0 | RO                               | RO         | RO | RO<br>0  | RO                                                                                                                                                                                      | RO<br>0 | RO<br>0 | RO | RO | RO             | RO | RO |  |  |  |  |
| Reset | 0                | 0        | 0    | 0       | 0                                | 0          | 0  | U        | 0                                                                                                                                                                                       | 0       | 0       | 0  | 0  | 0              | 0  | 0  |  |  |  |  |
|       | 15               | 14       | 13   | 12      | 11                               | 10         | 9  | 8        | 7                                                                                                                                                                                       | 6       | 5       | 4  | 3  | 2              | 1  | 0  |  |  |  |  |
|       | reserved PID:    |          |      |         |                                  |            |    |          |                                                                                                                                                                                         |         |         |    |    | I I I I<br>ID5 |    |    |  |  |  |  |
| Туре  | RO               | RO       | RO   | RO      | RO                               | RO         | RO | RO       | RO                                                                                                                                                                                      | RO      | RO      | RO | RO | RO             | RO | RO |  |  |  |  |
| Reset | 0                | 0        | 0    | 0       | 0                                | 0          | 0  | 0        | 0                                                                                                                                                                                       | 0       | 0       | 0  | 0  | 0              | 0  | 0  |  |  |  |  |
| Bit/F | Bit/Field        |          | Name |         |                                  | Type Reset |    |          | iption                                                                                                                                                                                  |         |         |    |    |                |    |    |  |  |  |  |
| 31:8  |                  | reserved |      |         | RO                               | 0          |    | compa    | Software should not rely on the value of a reserved bit. To provid compatibility with future products, the value of a reserved bit shou preserved across a read-modify-write operation. |         |         |    |    |                |    |    |  |  |  |  |
| 7:0   | 0 PID5 RO 0x00 W |          |      |         | WDT Peripheral ID Register[15:8] |            |    |          |                                                                                                                                                                                         |         |         |    |    |                |    |    |  |  |  |  |


### Register 11: Watchdog Peripheral Identification 6 (WDTPeriphID6), offset 0xFD8

The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

#### Watchdog Peripheral Identification 6 (WDTPeriphID6)

Base 0x4000.0000

Offset 0xFD8 Type RO, reset 0x0000.0000



### Register 12: Watchdog Peripheral Identification 7 (WDTPeriphID7), offset 0xFDC

The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

### Watchdog Peripheral Identification 7 (WDTPeriphID7)

Base 0x4000.0000

Offset 0xFDC Type RO, reset 0x0000.0000

|       | 31                   | 30 | 29       | 28 | 27                                | 26 | 25    | 24    | 23                                                                                                                                                                                         | 22 | 21 | 20 | 19   | 18 | 17 | 16 |  |  |  |  |
|-------|----------------------|----|----------|----|-----------------------------------|----|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|----|------|----|----|----|--|--|--|--|
|       |                      | 1  | 1 1      |    | · · ·                             |    | 1     | rese  | rved                                                                                                                                                                                       |    |    |    |      |    | 1  | •  |  |  |  |  |
| Туре  | RO                   | RO | RO       | RO | RO                                | RO | RO    | RO    | RO                                                                                                                                                                                         | RO | RO | RO | RO   | RO | RO | RO |  |  |  |  |
| Reset | 0                    | 0  | 0        | 0  | 0                                 | 0  | 0     | 0     | 0                                                                                                                                                                                          | 0  | 0  | 0  | 0    | 0  | 0  | 0  |  |  |  |  |
| -     | 15                   | 14 | 13       | 12 | 11                                | 10 | 9     | 8     | 7                                                                                                                                                                                          | 6  | 5  | 4  | 3    | 2  | 1  | 0  |  |  |  |  |
|       |                      |    |          |    |                                   |    |       |       |                                                                                                                                                                                            |    |    |    | PID7 |    |    |    |  |  |  |  |
| Туре  | RO                   | RO | RO       | RO | RO                                | RO | RO    | RO    | RO                                                                                                                                                                                         | RO | RO | RO | RO   | RO | RO | RO |  |  |  |  |
| Reset | 0                    | 0  | 0        | 0  | 0                                 | 0  | 0     | 0     | 0                                                                                                                                                                                          | 0  | 0  | 0  | 0    | 0  | 0  | 0  |  |  |  |  |
| Bit/F | Bit/Field            |    | Name     |    |                                   | I  | Reset | Descr | iption                                                                                                                                                                                     |    |    |    |      |    |    |    |  |  |  |  |
| 31:8  |                      | I  | reserved |    | RO                                | (  |       | compa | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation. |    |    |    |      |    |    |    |  |  |  |  |
| 7:0   | 7:0 PID7 RO 0x00 WDT |    |          |    | WDT Peripheral ID Register[31:24] |    |       |       |                                                                                                                                                                                            |    |    |    |      |    |    |    |  |  |  |  |

### Register 13: Watchdog Peripheral Identification 0 (WDTPeriphID0), offset 0xFE0

The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

### Watchdog Peripheral Identification 0 (WDTPeriphID0)

Base 0x4000.0000

Offset 0xFE0 Type RO, reset 0x0000.0005

|           | 31       | 30 | 29       | 28 | 27   | 26   | 25    | 24    | 23                                                                                                                                                                                         | 22       | 21       | 20        | 19   | 18 | 17 | 16 |  |  |  |  |  |
|-----------|----------|----|----------|----|------|------|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|-----------|------|----|----|----|--|--|--|--|--|
|           |          | r  | Ì        | 1  | ı ı  |      | 1     | rese  | rved<br>I                                                                                                                                                                                  | 1        | 1        | 1         |      | Î  | 1  | 1  |  |  |  |  |  |
| Туре      | RO       | RO | RO       | RO | RO   | RO   | RO    | RO    | RO                                                                                                                                                                                         | RO       | RO       | RO        | RO   | RO | RO | RO |  |  |  |  |  |
| Reset     | 0        | 0  | 0        | 0  | 0    | 0    | 0     | 0     | 0                                                                                                                                                                                          | 0        | 0        | 0         | 0    | 0  | 0  | 0  |  |  |  |  |  |
| -         | 15       | 14 | 13       | 12 | 11   | 10   | 9     | 8     | 7                                                                                                                                                                                          | 6        | 5        | 4         | 3    | 2  | 1  | 0  |  |  |  |  |  |
|           | reserved |    |          |    |      |      |       |       |                                                                                                                                                                                            |          |          |           | PID0 |    |    |    |  |  |  |  |  |
| Туре      | RO       | RO | RO       | RO | RO   | RO   | RO    | RO    | RO                                                                                                                                                                                         | RO       | RO       | RO        | RO   | RO | RO | RO |  |  |  |  |  |
| Reset     | 0        | 0  | 0        | 0  | 0    | 0    | 0     | 0     | 0                                                                                                                                                                                          | 0        | 0        | 0         | 0    | 1  | 0  | 1  |  |  |  |  |  |
| Bit/Field |          |    | Name     |    | Туре |      | Reset | Descr | iption                                                                                                                                                                                     |          |          |           |      |    |    |    |  |  |  |  |  |
| 31:8      |          |    | reserved |    | RO   | RO 0 |       | compa | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation. |          |          |           |      |    |    |    |  |  |  |  |  |
| 7:0       | 7:0 PID0 |    |          |    | RO   |      | 0x05  | Watch | ndog Pe                                                                                                                                                                                    | ripheral | ID Regis | ster[7:0] |      |    |    |    |  |  |  |  |  |

### Register 14: Watchdog Peripheral Identification 1 (WDTPeriphID1), offset 0xFE4

The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

### Watchdog Peripheral Identification 1 (WDTPeriphID1)

Base 0x4000.0000

Offset 0xFE4 Type RO, reset 0x0000.0018

|       | 31        | 30 | 29       | 28      | 27      | 26         | 25      | 24      | 23                                                                                                                                                                                          | 22      | 21 | 20 | 19      | 18 | 17 | 16 |
|-------|-----------|----|----------|---------|---------|------------|---------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----|----|---------|----|----|----|
|       |           | 1  | 1        |         |         |            | 1       | rese    | rved                                                                                                                                                                                        |         | •  | 1  |         | 1  | 1  | •  |
| Туре  | RO        | RO | RO       | RO<br>0 | RO<br>0 | RO         | RO<br>0 | RO<br>0 | RO                                                                                                                                                                                          | RO<br>0 | RO | RO | RO<br>0 | RO | RO | RO |
| Reset | 0         | 0  | 0        | 0       | 0       | 0          | 0       | U       | 0                                                                                                                                                                                           | 0       | 0  | 0  | 0       | 0  | 0  | 0  |
|       | 15        | 14 | 13       | 12      | 11      | 10         | 9       | 8       | 7                                                                                                                                                                                           | 6       | 5  | 4  | 3       | 2  | 1  | 0  |
|       | PID1      |    |          |         |         |            |         |         |                                                                                                                                                                                             |         |    |    |         | 1  | 1  | •  |
| Туре  | RO        | RO | RO       | RO      | RO      | RO         | RO      | RO      | RO                                                                                                                                                                                          | RO      | RO | RO | RO      | RO | RO | RO |
| Reset | 0         | 0  | 0        | 0       | 0       | 0          | 0       | 0       | 0                                                                                                                                                                                           | 0       | 0  | 1  | 1       | 0  | 0  | 0  |
| Bit/F | Bit/Field |    | Name     |         |         | Type Reset |         |         | iption                                                                                                                                                                                      |         |    |    |         |    |    |    |
| 31:8  |           | I  | reserved |         | RO      | 0          |         | compa   | Software should not rely on the value of a reserved bit. To provi<br>compatibility with future products, the value of a reserved bit sho<br>preserved across a read-modify-write operation. |         |    |    |         |    |    |    |
| 7:0   | 7:0       |    | PID1     |         | RO      | RO 0x18    |         | Watch   | Watchdog Peripheral ID Register[15:8]                                                                                                                                                       |         |    |    |         |    |    |    |

### Register 15: Watchdog Peripheral Identification 2 (WDTPeriphID2), offset 0xFE8

The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

### Watchdog Peripheral Identification 2 (WDTPeriphID2)

Base 0x4000.0000

Offset 0xFE8 Type RO, reset 0x0000.0018

|               | 31        | 30       | 29      | 28      | 27      | 26         | 25      | 24      | 23                                                                                                                                                                                           | 22        | 21      | 20        | 19      | 18      | 17      | 16      |  |
|---------------|-----------|----------|---------|---------|---------|------------|---------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|-----------|---------|---------|---------|---------|--|
|               |           | 1        |         |         | · ·     |            | 1       | rese    | rved                                                                                                                                                                                         |           |         | 1         | 1       |         | 1       |         |  |
| Type<br>Reset | RO<br>0   | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0    | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                      | RO<br>0   | RO<br>0 | RO<br>0   | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 |  |
|               | 15        | 14       | 13      | 12      | 11      | 10         | 9       | 8       | 7                                                                                                                                                                                            | 6         | 5       | 4         | 3       | 2       | 1       | 0       |  |
| [             |           | 1        | 1 1     | rese    | rved    | PID2       |         |         |                                                                                                                                                                                              |           |         |           |         |         |         |         |  |
| Туре          | RO        | RO       | RO      | RO      | RO      | RO         | RO      | RO      | RO                                                                                                                                                                                           | RO        | RO      | RO        | RO      | RO      | RO      | RO      |  |
| Reset         | 0         | 0        | 0       | 0       | 0       | 0          | 0       | 0       | 0                                                                                                                                                                                            | 0         | 0       | 1         | 1       | 0       | 0       | 0       |  |
| Bit/Fi        | Bit/Field |          | Name    |         |         | Type Reset |         |         | iption                                                                                                                                                                                       |           |         |           |         |         |         |         |  |
| 31:8          |           | reserved |         |         | RO      | RO 0       |         | compa   | Software should not rely on the value of a reserved bit. To provid<br>compatibility with future products, the value of a reserved bit sho<br>preserved across a read-modify-write operation. |           |         |           |         |         |         |         |  |
| 7:0           | D         |          | PID2    |         | RO      |            | 0x18    | Watch   | ndog Per                                                                                                                                                                                     | ipheral I | D Regis | ster[23:1 | 6]      |         |         |         |  |

### Register 16: Watchdog Peripheral Identification 3 (WDTPeriphID3), offset 0xFEC

The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

### Watchdog Peripheral Identification 3 (WDTPeriphID3)

Base 0x4000.0000

Offset 0xFEC Type RO, reset 0x0000.0001

|       | 31   | 30 | 29       | 28   | 27       | 26 | 25      | 24        | 23        | 22         | 21       | 20          | 19        | 18        | 17 | 16   |
|-------|------|----|----------|------|----------|----|---------|-----------|-----------|------------|----------|-------------|-----------|-----------|----|------|
|       |      | 1  | 1        | 1    | r r      |    | 1       | l<br>rese | rved      | 1          | 1        | 1           |           | 1         | 1  | 1    |
|       |      |    |          |      | <u> </u> |    |         | 1000      | l         |            |          |             |           |           |    |      |
| Туре  | RO   | RO | RO       | RO   | RO       | RO | RO      | RO        | RO        | RO         | RO       | RO          | RO        | RO        | RO | RO   |
| Reset | 0    | 0  | 0        | 0    | 0        | 0  | 0       | 0         | 0         | 0          | 0        | 0           | 0         | 0         | 0  | 0    |
|       | 15   | 14 | 13       | 12   | 11       | 10 | 9       | 8         | 7         | 6          | 5        | 4           | 3         | 2         | 1  | 0    |
|       |      | 1  | Î        | 1    | rved     |    | 1       | 1         |           |            | I        |             | D3        | 1         | 1  |      |
|       |      |    |          | Tese | l veu    |    |         |           |           |            |          | FI          | 03<br>I   |           |    |      |
| Туре  | RO   | RO | RO       | RO   | RO       | RO | RO      | RO        | RO        | RO         | RO       | RO          | RO        | RO        | RO | RO   |
| Reset | 0    | 0  | 0        | 0    | 0        | 0  | 0       | 0         | 0         | 0          | 0        | 0           | 0         | 0         | 0  | 1    |
|       |      |    |          |      |          |    |         |           |           |            |          |             |           |           |    |      |
| Bit/F | أماط |    | Name     |      | Туре     |    | Reset   | Descr     | intion    |            |          |             |           |           |    |      |
| Ditti |      |    | Name     |      | турс     |    | i leget | DC3Ci     | iption    |            |          |             |           |           |    |      |
| 31:   | ·8   |    | reserved |      | RO       |    | 0       | Softwa    | are shou  | ild not re | ly on th | e value o   | of a rese | erved hit |    | /ide |
| 01.   | .0   |    |          |      | no       |    | Ū       |           |           |            | -        | cts, the v  |           |           |    |      |
|       |      |    |          |      |          |    |         | •         |           |            | •        | ify-write   |           |           |    |      |
|       |      |    |          |      |          |    |         | P1000     |           |            |          | ing million | oporatio  | ,         |    |      |
| 7:0   | 0    |    | PID3     |      | RO       |    | 0x01    | Watch     | ndoa Per  | ipheral I  | D Regis  | ster[31:24  | 41        |           |    |      |
| 1.    | •    |    | 00       |      |          |    | 0.01    | , ator    | laby i oi | prioruri   | Bitogic  |             | .1        |           |    |      |

# Register 17: Watchdog PrimeCell Identification 0 (WDTPCellID0), offset 0xFF0

The WDTPCellIDn registers are hard-coded and the fields within the register determine the reset value.

### Watchdog PrimeCell Identification 0 (WDTPCellID0)

Base 0x4000.0000 Offset 0xFF0 Type RO, reset 0x0000.000D

| _     | 31        | 30       | 29   | 28 | 27 | 26         | 25   | 24    | 23                                                                                                                                                                                           | 22        | 21       | 20      | 19 | 18   | 17 | 16 |  |  |  |  |  |
|-------|-----------|----------|------|----|----|------------|------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|---------|----|------|----|----|--|--|--|--|--|
|       |           | •        |      |    |    |            | 1    | rese  | rved                                                                                                                                                                                         | 1         |          |         |    |      |    |    |  |  |  |  |  |
| Туре  | RO        | RO       | RO   | RO | RO | RO         | RO   | RO    | RO                                                                                                                                                                                           | RO        | RO       | RO      | RO | RO   | RO | RO |  |  |  |  |  |
| Reset | 0         | 0        | 0    | 0  | 0  | 0          | 0    | 0     | 0                                                                                                                                                                                            | 0         | 0        | 0       | 0  | 0    | 0  | 0  |  |  |  |  |  |
|       | 15        | 14       | 13   | 12 | 11 | 10         | 9    | 8     | 7                                                                                                                                                                                            | 6         | 5        | 4       | 3  | 2    | 1  | 0  |  |  |  |  |  |
|       |           |          |      |    |    |            |      |       |                                                                                                                                                                                              |           |          |         |    | CIDO |    |    |  |  |  |  |  |
| Туре  | RO        | RO       | RO   | RO | RO | RO         | RO   | RO    | RO                                                                                                                                                                                           | RO        | RO       | RO      | RO | RO   | RO | RO |  |  |  |  |  |
| Reset | 0         | 0        | 0    | 0  | 0  | 0          | 0    | 0     | 0                                                                                                                                                                                            | 0         | 0        | 0       | 1  | 1    | 0  | 1  |  |  |  |  |  |
| Bit/F | Bit/Field |          | Name |    |    | Type Reset |      |       | iption                                                                                                                                                                                       |           |          |         |    |      |    |    |  |  |  |  |  |
| 31:8  |           | reserved |      |    | RO | RO 0       |      | compa | Software should not rely on the value of a reserved bit. To provid<br>compatibility with future products, the value of a reserved bit sho<br>preserved across a read-modify-write operation. |           |          |         |    |      |    |    |  |  |  |  |  |
| 7:0   | 0         |          | CID0 |    | RO |            | 0x0D | Watch | ndog Prir                                                                                                                                                                                    | meCell II | D Regist | er[7:0] |    |      |    |    |  |  |  |  |  |

## Register 18: Watchdog PrimeCell Identification 1 (WDTPCellID1), offset 0xFF4

The WDTPCellIDn registers are hard-coded and the fields within the register determine the reset value.

#### Watchdog PrimeCell Identification 1 (WDTPCellID1)

Base 0x4000.0000 Offset 0xFF4 Type RO, reset 0x0000.00F0

|       | 31   | 30 | 29       | 28 | 27   | 26 | 25    | 24    | 23                                  | 22         | 21       | 20         | 19           | 18       | 17 | 16 |
|-------|------|----|----------|----|------|----|-------|-------|-------------------------------------|------------|----------|------------|--------------|----------|----|----|
|       |      | 1  |          |    |      |    | 1     | rese  | erved                               |            |          |            |              | •        |    |    |
| Туре  | RO   | RO | RO       | RO | RO   | RO | RO    | RO    | RO                                  | RO         | RO       | RO         | RO           | RO       | RO | RO |
| Reset | 0    | 0  | 0        | 0  | 0    | 0  | 0     | 0     | 0                                   | 0          | 0        | 0          | 0            | 0        | 0  | 0  |
|       | 15   | 14 | 13       | 12 | 11   | 10 | 9     | 8     | 7                                   | 6          | 5        | 4          | 3            | 2        | 1  | 0  |
|       |      |    |          |    |      |    |       |       |                                     |            |          |            | I<br>D1<br>I | 1        | I  |    |
| Туре  | RO   | RO | RO       | RO | RO   | RO | RO    | RO    | RO                                  | RO         | RO       | RO         | RO           | RO       | RO | RO |
| Reset | 0    | 0  | 0        | 0  | 0    | 0  | 0     | 0     | 1                                   | 1          | 1        | 1          | 0            | 0        | 0  | 0  |
| Bit/F | ield |    | Name     |    | Туре | I  | Reset | Descr | iption                              |            |          |            |              |          |    |    |
| 31    | :8   |    | reserved |    | RO   |    | 0     | compa | are shou<br>atibility v<br>rved acr | vith futur | e produ  | cts, the v | alue of      | a reserv | •  |    |
| 7:0   |      |    | CID1     |    | RO   |    | 0xF0  | Watch | ndog Prir                           | neCell II  | D Regist | ter[15:8]  |              |          |    |    |

## Register 19: Watchdog PrimeCell Identification 2 (WDTPCellID2), offset 0xFF8

The WDTPCellIDn registers are hard-coded and the fields within the register determine the reset value.

#### Watchdog PrimeCell Identification 2 (WDTPCellID2)

Base 0x4000.0000 Offset 0xFF8 Type RO, reset 0x0000.0005

|       | 31   | 30 | 29       | 28 | 27   | 26 | 25    | 24    | 23                                  | 22         | 21       | 20         | 19      | 18       | 17 | 16 |
|-------|------|----|----------|----|------|----|-------|-------|-------------------------------------|------------|----------|------------|---------|----------|----|----|
|       |      | 1  |          |    |      |    | •     | rese  | rved                                |            |          |            |         | l        |    |    |
| Туре  | RO   | RO | RO       | RO | RO   | RO | RO    | RO    | RO                                  | RO         | RO       | RO         | RO      | RO       | RO | RO |
| Reset | 0    | 0  | 0        | 0  | 0    | 0  | 0     | 0     | 0                                   | 0          | 0        | 0          | 0       | 0        | 0  | 0  |
| -     | 15   | 14 | 13       | 12 | 11   | 10 | 9     | 8     | 7                                   | 6          | 5        | 4          | 3       | 2        | 1  | 0  |
|       |      |    |          |    |      |    |       |       |                                     |            |          | CI         | D2      | I        | ſ  |    |
| Туре  | RO   | RO | RO       | RO | RO   | RO | RO    | RO    | RO                                  | RO         | RO       | RO         | RO      | RO       | RO | RO |
| Reset | 0    | 0  | 0        | 0  | 0    | 0  | 0     | 0     | 0                                   | 0          | 0        | 0          | 0       | 1        | 0  | 1  |
| Bit/F | ield |    | Name     |    | Туре | I  | Reset | Descr | iption                              |            |          |            |         |          |    |    |
| 31:   | :8   | I  | reserved |    | RO   |    | 0     | compa | are shou<br>atibility v<br>rved acr | vith futur | e produ  | cts, the v | alue of | a reserv | •  |    |
| 7:0   | 0    |    | CID2     |    | RO   |    | 0x05  | Watch | ndog Prir                           | neCell II  | D Regist | ter[23:16  | 6]      |          |    |    |

## Register 20: Watchdog PrimeCell Identification 3 (WDTPCellID3 ), offset 0xFFC

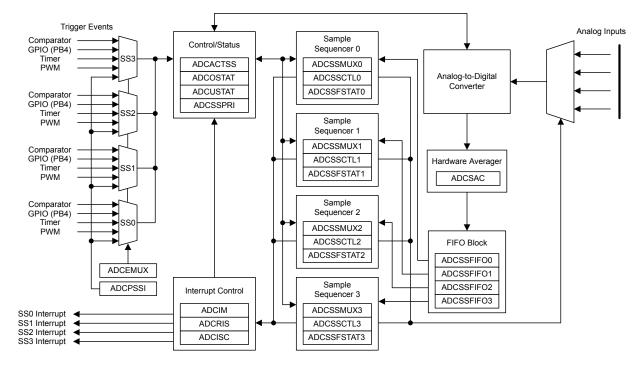
The WDTPCellIDn registers are hard-coded and the fields within the register determine the reset value.

#### Watchdog PrimeCell Identification 3 (WDTPCellID3)

Base 0x4000.0000 Offset 0xFFC Type RO, reset 0x0000.00B1

| _      | 31             | 30 | 29       | 28    | 27        | 26        | 25      | 24        | 23          | 22         | 21      | 20                                     | 19      | 18       | 17 | 16 |
|--------|----------------|----|----------|-------|-----------|-----------|---------|-----------|-------------|------------|---------|----------------------------------------|---------|----------|----|----|
|        |                | 1  | , ,      |       | r r       |           | 1       | rese      | rved        |            |         | 1                                      |         | r        | ,  |    |
| Туре   | RO             | RO | RO       | RO    | RO        | RO        | RO      | RO        | RO          | RO         | RO      | RO                                     | RO      | RO       | RO | RO |
| Reset  | 0              | 0  | 0        | 0     | 0         | 0         | 0       | 0         | 0           | 0          | 0       | 0                                      | 0       | 0        | 0  | 0  |
|        | 15             | 14 | 13       | 12    | 11        | 10        | 9       | 8         | 7           | 6          | 5       | 4                                      | 3       | 2        | 1  | 0  |
|        |                | 1  | 1 1      | rese  | rved      |           | 1       | 1         |             | r 1        |         | CI                                     | D3      | 1        | 1  |    |
| Туре   | RO             | RO | RO       | RO    | RO        | RO        | RO      | RO        | RO          | RO         | RO      | RO                                     | RO      | RO       | RO | RO |
| Reset  | 0              | 0  | 0        | 0     | 0         | 0         | 0       | 0         | 1           | 0          | 1       | 1                                      | 0       | 0        | 0  | 1  |
| Bit/Fi | ield           |    | Name     |       | Туре      | I         | Reset   | Descr     | iption      |            |         |                                        |         |          |    |    |
| 31:8   |                |    | reserved |       | RO        |           | 0       | compa     | atibility w | vith futur | e produ | e value o<br>cts, the v<br>ify-write o | alue of | a reserv | •  |    |
| 7:0    | 0 CID3 RO 0xB1 |    |          | Watch | ndog Prir | neCell II | ) Regis | ter[31:24 | ]           |            |         |                                        |         |          |    |    |

# 12 Analog-to-Digital Converter (ADC)


An analog-to-digital converter (ADC) is a peripheral that converts a continuous analog voltage to a discrete digital number.

The Stellaris<sup>®</sup> ADC module features 10-bit conversion resolution and supports four input channels, plus an internal temperature sensor. The ADC module contains a programmable sequencer which allows for the sampling of multiple analog input sources without controller intervention. Each sample sequence provides flexible programming with fully configurable input source, trigger events, interrupt generation, and sequence priority.

The Stellaris<sup>®</sup> ADC provides the following features:

- Four analog input channels
- Single-ended and differential-input configurations
- Internal temperature sensor
- Sample rate of one million samples/second
- Four programmable sample conversion sequences from one to eight entries long, with corresponding conversion result FIFOs
- Flexible trigger control
  - Controller (software)
  - Timers
  - Analog Comparators
  - PWM
  - GPIO
- Hardware averaging of up to 64 samples for improved accuracy

## 12.1 Block Diagram



#### Figure 12-1. ADC Module Block Diagram

## 12.2 Functional Description

The Stellaris<sup>®</sup> ADC collects sample data by using a programmable sequence-based approach instead of the traditional single or double-sampling approach found on many ADC modules. Each *sample sequence* is a fully programmed series of consecutive (back-to-back) samples, allowing the ADC to collect data from multiple input sources without having to be re-configured or serviced by the controller. The programming of each sample in the sample sequence includes parameters such as the input source and mode (differential versus single-ended input), interrupt generation on sample completion, and the indicator for the last sample in the sequence.

## 12.2.1 Sample Sequencers

The sampling control and data capture is handled by the Sample Sequencers. All of the sequencers are identical in implementation except for the number of samples that can be captured and the depth of the FIFO. Table 12-1 on page 257 shows the maximum number of samples that each Sequencer can capture and its corresponding FIFO depth. In this implementation, each FIFO entry is a 32-bit word, with the lower 10 bits containing the conversion result.

| Sequencer | Number of Samples | Depth of FIFO |
|-----------|-------------------|---------------|
| SS3       | 1                 | 1             |
| SS2       | 4                 | 4             |
| SS1       | 4                 | 4             |
| SS0       | 8                 | 8             |

For a given sample sequence, each sample is defined by two 4-bit nibbles in the **ADC Sample Sequence Input Multiplexer Select (ADCSSMUXn)** and **ADC Sample Sequence Control (ADCSSCTLn)** registers, where "n" corresponds to the sequence number. The **ADCSSMUXn** nibbles select the input pin, while the **ADCSSCTLn** nibbles contain the sample control bits corresponding to parameters such as temperature sensor selection, interrupt enable, end of sequence, and differential input mode. Sample Sequencers are enabled by setting the respective ASENn bit in the **ADC Active Sample Sequencer (ADCACTSS)** register, but can be configured before being enabled.

When configuring a sample sequence, multiple uses of the same input pin within the same sequence is allowed. In the **ADCSSCTLn** register, the Interrupt Enable (IE) bits can be set for any combination of samples, allowing interrupts to be generated after every sample in the sequence if necessary. Also, the END bit can be set at any point within a sample sequence. For example, if Sequencer 0 is used, the END bit can be set in the nibble associated with the fifth sample, allowing Sequencer 0 to complete execution of the sample sequence after the fifth sample.

After a sample sequence completes execution, the result data can be retrieved from the ADC Sample Sequence Result FIFO (ADCSSFIFOn) registers. The FIFOs are simple circular buffers that read a single address to "pop" result data. For software debug purposes, the positions of the FIFO head and tail pointers are visible in the ADC Sample Sequence FIFO Status (ADCSSFSTATn) registers along with FULL and EMPTY status flags. Overflow and underflow conditions are monitored using the ADCOSTAT and ADCUSTAT registers.

## 12.2.2 Module Control

Outside of the Sample Sequencers, the remainder of the control logic is responsible for tasks such as interrupt generation, sequence prioritization, and trigger configuration.

Most of the ADC control logic runs at the ADC clock rate of 14-18 MHz. The internal ADC divider is configured automatically by hardware when the system XTAL is selected. The automatic clock divider configuration targets 16.667 MHz operation for all Stellaris<sup>®</sup> devices.

## 12.2.2.1 Interrupts

The Sample Sequencers dictate the events that cause interrupts, but they don't have control over whether the interrupt is actually sent to the interrupt controller. The ADC module's interrupt signal is controlled by the state of the MASK bits in the **ADC Interrupt Mask (ADCIM)** register. Interrupt status can be viewed at two locations: the **ADC Raw Interrupt Status (ADCRIS)** register, which shows the raw status of a Sample Sequencer's interrupt signal, and the **ADC Interrupt Status and Clear (ADCISC)** register, which shows the logical AND of the **ADCRIS** register's INR bit and the **ADCIM** register's MASK bits. Interrupts are cleared by writing a 1 to the corresponding IN bit in **ADCISC**.

## 12.2.2.2 Prioritization

When sampling events (triggers) happen concurrently, they are prioritized for processing by the values in the **ADC Sample Sequencer Priority (ADCSSPRI)** register. Valid priority values are in the range of 0-3, with 0 being the highest priority and 3 being the lowest. Multiple active Sample Sequencer units with the same priority do not provide consistent results, so software must ensure that all active Sample Sequencer units have a unique priority value.

## 12.2.2.3 Sampling Events

Sample triggering for each Sample Sequencer is defined in the **ADC Event Multiplexer Select** (ADCEMUX) register. The external peripheral triggering sources vary by Stellaris<sup>®</sup> family member,

but all devices share the "Controller" and "Always" triggers. Software can initiate sampling by setting the CH bits in the **ADC Processor Sample Sequence Initiate (ADCPSSI)** register.

When using the "Always" trigger, care must be taken. If a sequence's priority is too high, it is possible to starve other lower priority sequences.

#### 12.2.3 Hardware Sample Averaging Circuit

Higher precision results can be generated using the hardware averaging circuit, however, the improved results are at the cost of throughput. Up to 64 samples can be accumulated and averaged to form a single data entry in the sequencer FIFO. Throughput is decreased proportionally to the number of samples in the averaging calculation. For example, if the averaging circuit is configured to average 16 samples, the throughput is decreased by a factor of 16.

By default the averaging circuit is off and all data from the converter passes through to the sequencer FIFO. The averaging hardware is controlled by the **ADC Sample Averaging Control (ADCSAC)** register (see page 272). There is a single averaging circuit and all input channels receive the same amount of averaging whether they are single-ended or differential.

#### 12.2.4 Analog-to-Digital Converter

The converter itself generates a 10-bit output value for selected analog input. Special analog pads are used to minimize the distortion on the input.

#### 12.2.5 Test Modes

There is a user-available test mode that allows for loopback operation within the digital portion of the ADC module. This can be useful for debugging software without having to provide actual analog stimulus. This mode is available through the **ADC Test Mode Loopback (ADCTMLB)** register (see page 287).

#### 12.2.6 Internal Temperature Sensor

The internal temperature sensor provides an analog temperature reading as well as a reference voltage. The voltage at the output terminal SENSO is given by the following equation:

SENSO = 2.7 - ((T + 55) / 75)

This relation is shown in Figure 12-2 on page 260.

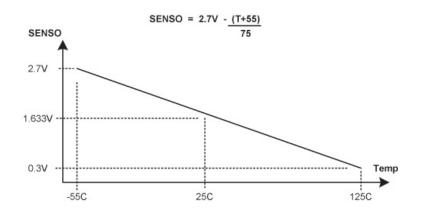



Figure 12-2. Internal Temperature Sensor Characteristic

## 12.3 Initialization and Configuration

In order for the ADC module to be used, the PLL must be enabled and using a supported crystal frequency (see the **RCC** register). Using unsupported frequencies can cause faulty operation in the ADC module.

## 12.3.1 Module Initialization

Initialization of the ADC module is a simple process with very few steps. The main steps include enabling the clock to the ADC and reconfiguring the Sample Sequencer priorities (if needed).

The initialization sequence for the ADC is as follows:

- 1. Enable the ADC clock by writing a value of 0x0001.0000 to the RCGC1 register (see page 98).
- If required by the application, reconfigure the Sample Sequencer priorities in the ADCSSPRI register. The default configuration has Sample Sequencer 0 with the highest priority, and Sample Sequencer 3 as the lowest priority.

#### 12.3.2 Sample Sequencer Configuration

Configuration of the Sample Sequencers is slightly more complex than the module initialization since each sample sequence is completely programmable.

The configuration for each Sample Sequencer should be as follows:

- Ensure that the Sample Sequencer is disabled by writing a 0 to the corresponding ASEN bit in the ADCACTSS register. Programming of the Sample Sequencers is allowed without having them enabled. Disabling the Sequencer during programming prevents erroneous execution if a trigger event were to occur during the configuration process.
- 2. Configure the trigger event for the Sample Sequencer in the **ADCEMUX** register.
- 3. For each sample in the sample sequence, configure the corresponding input source in the **ADCSSMUXn** register.

- 4. For each sample in the sample sequence, configure the sample control bits in the corresponding nibble in the **ADCSSCTLn** register. When programming the last nibble, ensure that the END bit is set. Failure to set the END bit causes unpredictable behavior.
- 5. If interrupts are to be used, write a 1 to the corresponding MASK bit in the **ADCIM** register.
- 6. Enable the Sample Sequencer logic by writing a 1 to the corresponding ASEN bit in the **ADCACTSS** register.

## 12.4 Register Map

"Register Map" on page 261 lists the ADC registers. The offset listed is a hexadecimal increment to the register's address, relative to the ADC base address of 0x4003.8000.

| Offset | Name        | Туре  | Reset       | Description                                    | See<br>page |
|--------|-------------|-------|-------------|------------------------------------------------|-------------|
| 0x000  | ADCACTSS    | R/W   | 0x0000.0000 | ADC Active Sample Sequencer                    | 263         |
| 0x004  | ADCRIS      | RO    | 0x0000.0000 | ADC Raw Interrupt Status                       | 264         |
| 0x008  | ADCIM       | R/W   | 0x0000.0000 | ADC Interrupt Mask                             | 265         |
| 0x00C  | ADCISC      | R/W1C | 0x0000.0000 | ADC Interrupt Status and Clear                 | 266         |
| 0x010  | ADCOSTAT    | R/W1C | 0x0000.0000 | ADC Overflow Status                            | 267         |
| 0x014  | ADCEMUX     | R/W   | 0x0000.0000 | ADC Event Multiplexer Select                   | 268         |
| 0x018  | ADCUSTAT    | R/W1C | 0x0000.0000 | ADC Underflow Status                           | 269         |
| 0x020  | ADCSSPRI    | R/W   | 0x0000.3210 | ADC Sample Sequencer Priority                  | 270         |
| 0x028  | ADCPSSI     | WO    | -           | ADC Processor Sample Sequence Initiate         | 271         |
| 0x030  | ADCSAC      | R/W   | 0x0000.0000 | ADC Sample Averaging Control                   | 272         |
| 0x040  | ADCSSMUX0   | R/W   | 0x0000.0000 | ADC Sample Sequence Input Multiplexer Select 0 | 273         |
| 0x044  | ADCSSCTL0   | R/W   | 0x0000.0000 | ADC Sample Sequence Control 0                  | 275         |
| 0x048  | ADCSSFIF00  | RO    | 0x0000.0000 | ADC Sample Sequence Result FIFO 0              | 277         |
| 0x04C  | ADCSSFSTAT0 | RO    | 0x0000.0100 | ADC Sample Sequence FIFO 0 Status              | 278         |
| 0x060  | ADCSSMUX1   | R/W   | 0x0000.0000 | ADC Sample Sequence Input Multiplexer Select 1 | 279         |
| 0x064  | ADCSSCTL1   | R/W   | 0x0000.0000 | ADC Sample Sequence Control 1                  | 280         |
| 0x068  | ADCSSFIF01  | RO    | 0x0000.0000 | ADC Sample Sequence Result FIFO 1              | 277         |
| 0x06C  | ADCSSFSTAT1 | RO    | 0x0000.0100 | ADC Sample Sequence FIFO 1 Status              | 278         |
| 0x080  | ADCSSMUX2   | R/W   | 0x0000.0000 | ADC Sample Sequence Input Multiplexer Select 2 | 281         |
| 0x084  | ADCSSCTL2   | R/W   | 0x0000.0000 | ADC Sample Sequence Control 2                  | 282         |
| 0x0A0  | ADCSSMUX3   | R/W   | 0x0000.0000 | ADC Sample Sequence Input Multiplexer Select 3 | 283         |
| 0x0A4  | ADCSSCTL3   | R/W   | 0x0000.0002 | ADC Sample Sequence Control 3                  | 284         |
| 0x0A8  | ADCSSFIF03  | RO    | 0x0000.0000 | ADC Sample Sequence Result FIFO 3              | 285         |

#### Table 12-2. ADC Register Map

| Offset | Name        | Туре | Reset       | Description                       | See<br>page |
|--------|-------------|------|-------------|-----------------------------------|-------------|
| 0x0AC  | ADCSSFSTAT3 | RO   | 0x0000.0100 | ADC Sample Sequence FIFO 3 Status | 286         |
| 0x100  | ADCTMLB     | RO   | 0x0000.0000 | ADC Test Mode Loopback            | 287         |
| 0x100  | ADCTMLB     | RO   | 0x0000.0000 | ADC Test Mode Loopback            | 287         |

## 12.5 Register Descriptions

The remainder of this section lists and describes the ADC registers, in numerical order by address offset.

## Register 1: ADC Active Sample Sequencer (ADCACTSS), offset 0x000

This register controls the activation of the Sample Sequencers. Each Sample Sequencer can be enabled/disabled independently.

#### ADC Active Sample Sequencer (ADCACTSS)

Base 0x4003.8000 Offset 0x000 Type R/W, reset 0x0000.0000

| _             | 31            | 30          | 29       | 28      | 27      | 26      | 25      | 24      | 23          | 22        | 21       | 20       | 19                                 | 18       | 17       | 16       |
|---------------|---------------|-------------|----------|---------|---------|---------|---------|---------|-------------|-----------|----------|----------|------------------------------------|----------|----------|----------|
|               |               | 1           |          |         | і і     |         | 1       | rese    | rved        |           |          |          |                                    |          |          |          |
| Type<br>Reset | RO<br>0       | RO<br>0     | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0   | RO<br>0  | RO<br>0  | RO<br>0                            | RO<br>0  | RO<br>0  | RO<br>0  |
|               | 15            | 14          | 13       | 12      | 11      | 10      | 9       | 8       | 7           | 6         | 5        | 4        | 3                                  | 2        | 1        | 0        |
|               |               | 1           | 1        |         | і і     | rese    | erved   | 1       |             | i i       |          |          | ASEN3                              | ASEN2    | ASEN1    | ASEN0    |
| Type<br>Reset | RO<br>0       | RO<br>0     | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0   | RO<br>0  | RO<br>0  | R/W<br>0                           | R/W<br>0 | R/W<br>0 | R/W<br>0 |
| Bit/Fi        | ield          |             | Name     |         | Туре    | F       | Reset   | Descri  | iption      |           |          |          |                                    |          |          |          |
| 31:4          |               | ı           | reserved |         | RO      |         | 0       | compa   | atibility w | ith futur | e produo | cts, the | of a rese<br>value of<br>operation | a reserv | •        |          |
| 3             | 3 ASEN3 R/W 0 |             |          |         |         |         | 0       | •       | nce logi    |           | •        | •        | 3 is ena<br>ve. Othe               |          |          | •        |
| 2             |               | ASEN2 R/W   |          |         |         |         | 0       |         | nce logi    |           | •        |          | 2 is ena<br>ve. Othe               |          | ,        | •        |
| 1             |               | ASEN1 R/W 0 |          |         |         |         | 0       | •       | nce logi    |           | •        | •        | 1 is ena<br>ve. Othe               |          |          | •        |
| 0             |               |             | ASEN0    |         | R/W 0   |         |         | •       | nce logi    |           | •        | •        | 0 is ena<br>ve. Othe               |          |          | •        |

## Register 2: ADC Raw Interrupt Status (ADCRIS), offset 0x004

This register shows the status of the raw interrupt signal of each Sample Sequencer. These bits may be polled by software to look for interrupt conditions without having to generate controller interrupts.

#### ADC Raw Interrupt Status (ADCRIS)

Base 0x4003.8000 Offset 0x004 Type RO, reset 0x0000.0000

|               | 31          | 30      | 29      | 28      | 27      | 26      | 25      | 24                            | 23                                   | 22        | 21      | 20         | 19      | 18       | 17      | 16      |
|---------------|-------------|---------|---------|---------|---------|---------|---------|-------------------------------|--------------------------------------|-----------|---------|------------|---------|----------|---------|---------|
|               |             |         |         |         | г г     |         | 1       | rese                          | rved                                 |           |         | 1          |         | 1        |         |         |
| Туре          | RO          | RO      | RO      | RO      | RO      | RO      | RO      | RO                            | RO                                   | RO        | RO      | RO         | RO      | RO       | RO      | RO      |
| Reset         | 0           | 0       | 0       | 0       | 0       | 0       | 0       | 0                             | 0                                    | 0         | 0       | 0          | 0       | 0        | 0       | 0       |
|               | 15          | 14      | 13      | 12      | 11      | 10      | 9       | 8                             | 7                                    | 6         | 5       | 4          | 3       | 2        | 1       | 0       |
|               |             |         |         |         |         | rese    | erved   |                               |                                      |           |         |            | INR3    | INR2     | INR1    | INR0    |
| Type<br>Reset | RO<br>0     | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                       | RO<br>0                              | RO<br>0   | RO<br>0 | RO<br>0    | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 |
| Neder         | 0           | 0       | U       | U       | Ū       | 0       | 0       | 0                             | 0                                    | 0         | 0       | 0          | 0       | Ū        | Ū       | 0       |
| Bit/F         | ield        |         | Name    |         | Туре    | I       | Reset   | Descr                         | iption                               |           |         |            |         |          |         |         |
| 31:           | 31:4 res    |         |         |         | RO      |         | 0       | compa                         | are shou<br>atibility w<br>rved acro | ith futur | e produ | cts, the v | alue of | a reserv | •       |         |
| 3             |             |         | INR3    |         | RO      |         | 0       | has co                        | hardwa<br>ompleted<br>SC IN3 I       | l conver  | •       |            | •       |          |         |         |
| 2             |             |         | INR2    |         | RO      |         | 0       | has co                        | hardwa<br>ompleted<br>SC IN2 I       | l conver  | •       |            | •       |          |         |         |
| 1             |             |         | INR1    |         | RO      |         | 0       | has co                        | hardwa<br>ompleted<br>SC IN1 I       | l conver  | •       |            | •       |          |         |         |
| 0             | 0 INR0 RO 0 |         |         |         |         | 0       | has co  | hardwa<br>mpleted<br>SC IN0 I | l conver                             | •         |         | •          |         |          |         |         |

## Register 3: ADC Interrupt Mask (ADCIM), offset 0x008

This register controls whether the Sample Sequencer raw interrupt signals are promoted to controller interrupts. The raw interrupt signal for each Sample Sequencer can be masked independently.

| ADC In<br>Base 0x4<br>Offset 0x0<br>Type R/W | 003.8000<br>008 | )       |          | )       |         |         |                               |          |                               |           |                                     |           |                                     |            |          |            |
|----------------------------------------------|-----------------|---------|----------|---------|---------|---------|-------------------------------|----------|-------------------------------|-----------|-------------------------------------|-----------|-------------------------------------|------------|----------|------------|
|                                              | 31              | 30      | 29       | 28      | 27      | 26      | 25                            | 24       | 23                            | 22        | 21                                  | 20        | 19                                  | 18         | 17       | 16         |
|                                              |                 |         |          |         |         |         |                               | rese     | rved                          |           |                                     |           |                                     |            |          | •          |
| Туре                                         | RO<br>0         | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                       | RO<br>0  | RO<br>0                       | RO<br>0   | RO<br>0                             | RO<br>0   | RO<br>0                             | RO<br>0    | RO<br>0  | RO<br>0    |
| Reset                                        |                 |         |          |         |         |         |                               |          |                               |           |                                     |           |                                     |            |          |            |
|                                              | 15              | 14      | 13       | 12      | 11      | 10      | 9                             | 8        | 7                             | 6         | 5                                   | 4         | 3<br>MASK3                          | 2<br>MASK2 | 1        |            |
|                                              |                 |         |          |         |         |         | erved                         | MASK1    | MASK0                         |           |                                     |           |                                     |            |          |            |
| Type<br>Reset                                | RO<br>0         | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                       | RO<br>0  | RO<br>0                       | RO<br>0   | RO<br>0                             | RO<br>0   | R/W<br>0                            | R/W<br>0   | R/W<br>0 | R/W<br>0   |
|                                              |                 |         |          |         |         |         |                               |          |                               |           |                                     |           |                                     |            |          |            |
| Bit/Field Name Type Reset Description        |                 |         |          |         |         |         |                               |          |                               |           |                                     |           |                                     |            |          |            |
| 31                                           | :4              | r       | reserved |         | RO      |         | 0                             | compa    | atibility w                   | ith futur | e produc                            | cts, the  | of a rese<br>value of<br>operation  | a reserv   |          |            |
| 3                                            | 3 MASK3         |         |          |         |         |         | 0                             | (ADCI    | <b>RIS</b> regis<br>w interru | ster INR  | 3 bit) is                           | promote   | inal from<br>ed to a co<br>a contro | ontroller  | interrup | t. If set, |
| 2                                            | 2 MASK2         |         |          |         | R/W     |         | 0                             | (ADCI    | <b>RIS</b> regis<br>w interru | ster INR  | 2 bit) is                           | promote   | inal from<br>ed to a co<br>a contro | ontroller  | interrup | t. If set, |
| 1 MASK1                                      |                 |         | R/W      |         | 0       | (ADCI   | <b>RIS</b> regis<br>w interru | ster INR | 1 bit) is                     | promote   | inal from<br>ed to a co<br>a contro | ontroller | interrup                            | t. If set, |          |            |
| 0 MASKO R/W                                  |                 |         |          |         |         |         | 0                             | (ADCI    | <b>RIS</b> regis<br>w interru | ster INR  | 0 bit) is                           | promote   | inal from<br>ed to a co<br>a contro | ontroller  | interrup | t. If set, |

## **Register 4: ADC Interrupt Status and Clear (ADCISC), offset 0x00C**

This register provides the mechanism for clearing interrupt conditions, and shows the status of controller interrupts generated by the Sample Sequencers. When read, each bit field is the logical AND of the respective INR and MASK bits. Interrupts are cleared by writing a 1 to the corresponding bit position. If software is polling the **ADCRIS** instead of generating interrupts, the INR bits are still cleared via the **ADCISC** register, even if the IN bit is not set.

| set 0x0                                                                                                                          | 003.800<br>00C |    | 0.0000   | (  | ,              |     |                                                                                                                                             |          |             |            |           |           |                                   |          |       |      |
|----------------------------------------------------------------------------------------------------------------------------------|----------------|----|----------|----|----------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|------------|-----------|-----------|-----------------------------------|----------|-------|------|
|                                                                                                                                  | 31             | 30 | 29       | 28 | 27             | 26  | 25                                                                                                                                          | 24       | 23          | 22         | 21        | 20        | 19                                | 18       | 17    | 16   |
|                                                                                                                                  |                | 1  | 1        | 1  | <del>г г</del> |     | 1                                                                                                                                           | rese     | rved        | 1          | 1         | 1         |                                   | 1        | 1     | 1    |
| Туре                                                                                                                             | RO             | RO | RO       | RO | RO             | RO  | RO                                                                                                                                          | RO       | RO          | RO         | RO        | RO        | RO                                | RO       | RO    | RO   |
| Reset                                                                                                                            | 0              | 0  | 0        | 0  | 0              | 0   | 0                                                                                                                                           | 0        | 0           | 0          | 0         | 0         | 0                                 | 0        | 0     | 0    |
| -                                                                                                                                | 15             | 14 | 13       | 12 | 11             | 10  | 9                                                                                                                                           | 8        | 7           | 6          | 5         | 4         | 3                                 | 2        | 1     | 0    |
|                                                                                                                                  |                | •  | •        |    |                | res | erved                                                                                                                                       | •        |             |            |           | •         | IN3                               | IN2      | IN1   | IN0  |
| Туре                                                                                                                             | RO             | RO | RO       | RO | RO             | RO  | RO                                                                                                                                          | RO       | RO          | RO         | RO        | RO        | R/W1C                             | R/W1C    | R/W1C | R/W1 |
| Reset                                                                                                                            | 0              | 0  | 0        | 0  | 0              | 0   | 0                                                                                                                                           | 0        | 0           | 0          | 0         | 0         | 0                                 | 0        | 0     | 0    |
| Bit/Fi                                                                                                                           | ield           |    | Name     |    | Туре           |     | Reset                                                                                                                                       | Descr    | iption      |            |           |           |                                   |          |       |      |
| 31:                                                                                                                              | 4              |    | reserved | ł  | RO             |     | 0                                                                                                                                           | comp     | atibility v | vith futur | e produ   | cts, the  | of a rese<br>value of<br>operatio | a reserv | •     |      |
| 3                                                                                                                                |                |    | IN3      |    | R/W1C          |     | 0                                                                                                                                           | provic   | ling a lev  |            | d interru | pt to the | ASK3 ar                           |          |       |      |
| 2 IN2 R/W1C 0 This bit is set by hat<br>providing a level bat<br>a 1, and also clears                                            |                |    |          |    |                |     |                                                                                                                                             | vel base | d interru   | pt to the  |           |           |                                   |          |       |      |
| 1                                                                                                                                |                |    | IN1      |    | R/W1C          |     | 0 This bit is set by hardware when the MASK1 ar<br>providing a level based interrupt to the controlle<br>a 1, and also clears the INR1 bit. |          |             |            |           |           |                                   |          |       |      |
| 0 IN0 R/W1C 0 This bit is set by hardware when the M providing a level based interrupt to the a 1, and also clears the INR0 bit. |                |    |          |    |                |     |                                                                                                                                             |          |             |            |           |           |                                   |          |       |      |

ADC Interrupt Status and Clear (ADCISC)

## Register 5: ADC Overflow Status (ADCOSTAT), offset 0x010

This register indicates overflow conditions in the Sample Sequencer FIFOs. Once the overflow condition has been handled by software, the condition can be cleared by writing a 1 to the corresponding bit position.

#### ADC Overflow Status (ADCOSTAT)

Base 0x4003.8000 Offset 0x010 Type R/W1C, reset 0x0000.0000

|               | 31      | 30      | 29       | 28      | 27       | 26      | 25      | 24                          | 23                              | 22                                                                | 21                                 | 20                  | 19         | 18                     | 17         | 16                 |
|---------------|---------|---------|----------|---------|----------|---------|---------|-----------------------------|---------------------------------|-------------------------------------------------------------------|------------------------------------|---------------------|------------|------------------------|------------|--------------------|
|               |         | 1       |          |         | т т<br>т |         | 1       | rese                        | rved                            |                                                                   |                                    |                     |            |                        |            |                    |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0                     | RO<br>0                         | RO<br>0                                                           | RO<br>0                            | RO<br>0             | RO<br>0    | RO<br>0                | RO<br>0    | RO<br>0            |
|               | 15      | 14      | 13       | 12      | 11       | 10      | 9       | 8                           | 7                               | 6                                                                 | 5                                  | 4                   | 3          | 2                      | 1          | 0                  |
|               |         | 1       | 1 1      |         | г г      | res     | erved   |                             |                                 | 1 1                                                               |                                    |                     | OV3        | OV2                    | OV1        | OV0                |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0                     | RO<br>0                         | RO<br>0                                                           | RO<br>0                            | RO<br>0             | R/W1C<br>0 | R/W1C<br>0             | R/W1C<br>0 | R/W1C<br>0         |
| Bit/F         | ield    |         | Name     |         | Туре     |         | Reset   | Descr                       | iption                          |                                                                   |                                    |                     |            |                        |            |                    |
| 31:           | :4      |         | reserved |         | RO       |         | 0       | compa                       | atibility v                     | uld not re<br>vith futur<br>oss a rea                             | e produo                           | cts, the            | value of   | a reserv               | •          |                    |
| 3             | 3       |         | OV3      |         | R/W1C    |         | 0       | overflo<br>When<br>bit is s | ow conc<br>an over<br>set by ha | ies that t<br>lition whe<br>flow is de<br>ardware f<br>by writing | ere the F<br>etected,<br>to indica | IFO is f<br>the mos | ull and a  | write wa<br>write is d | as reque   | ested.<br>and this |
| 2             |         |         | OV2      |         | R/W1C    |         | 0       | overflo<br>When<br>bit is s | ow conc<br>an over<br>set by ha | ies that t<br>lition whe<br>flow is de<br>ardware f<br>by writing | ere the F<br>etected,<br>to indica | IFO is f<br>the mos | ull and a  | write wa<br>write is d | as reque   | ested.<br>and this |
| 1             |         |         | OV1      |         | R/W1C    |         | 0       | overflo<br>When<br>bit is s | ow conc<br>an over<br>set by ha | ies that t<br>ition whe<br>flow is de<br>ardware f<br>by writing  | ere the F<br>etected,<br>to indica | IFO is f<br>the mos | ull and a  | write wa<br>write is d | as reque   | ested.<br>and this |
| 0             | I       |         | OV0      |         | R/W1C    |         | 0       | overflo<br>When             | ow conc<br>an over              | ies that t<br>lition whe<br>flow is de<br>ardware 1               | ere the F<br>etected,              | IFO is f<br>the mos | ull and a  | write wa<br>write is d | as reque   | ested.<br>and this |

bit is cleared by writing a 1.

## Register 6: ADC Event Multiplexer Select (ADCEMUX), offset 0x014

The **ADCEMUX** selects the event (trigger) that initiates sampling for each Sample Sequencer. Each Sample Sequencer can be configured with a unique trigger source.

#### ADC Event Multiplexer Select (ADCEMUX)

Base 0x4003.8000 Offset 0x014 Type R/W, reset 0x0000.0000

| .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 31       | 30                                                                                                                                                                         | 29       | 28       | 27       | 26       | 25       | 24       | 23       | 22        | 21        | 20                     | 19       | 18       | 17        | 16       |
|-----------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|-----------|-----------|------------------------|----------|----------|-----------|----------|
|                                         |          |                                                                                                                                                                            |          |          |          |          | l .      | rese     | rved     | i i       | Î         | I                      |          |          | 1         |          |
| Туре                                    | RO       | RO                                                                                                                                                                         | RO       | RO       | RO       | RO       | RO       | RO       | RO       | RO        | RO        | RO                     | RO       | RO       | RO        | RO       |
| Reset                                   | 0        | 0                                                                                                                                                                          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0         | 0         | 0                      | 0        | 0        | 0         | 0        |
| I                                       | 15       | 14                                                                                                                                                                         | 13<br>I  | 12<br>I  | 11       | 10       | 9        | 8        | 7        | 6         | 5         | 4                      | 3        | 2        | 1         |          |
| _                                       |          |                                                                                                                                                                            | M3       |          |          |          | M2       |          |          |           | M1        |                        |          |          | 00        |          |
| Type<br>Reset                           | R/W<br>0 | R/W<br>0                                                                                                                                                                   | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0  | R/W<br>0  | R/W<br>0               | R/W<br>0 | R/W<br>0 | R/W<br>0  | R/W<br>0 |
|                                         |          |                                                                                                                                                                            |          |          |          |          |          |          |          |           |           |                        |          |          |           |          |
| Bit/F                                   | ield     |                                                                                                                                                                            | Name     |          | Туре     | F        | Reset    | Descr    | iption   |           |           |                        |          |          |           |          |
| 31:                                     | 16       | ı                                                                                                                                                                          | reserved | l        | RO       |          | 0        |          |          |           |           | e value (              |          |          |           |          |
|                                         |          |                                                                                                                                                                            |          |          |          |          |          |          |          |           |           | cts, the v<br>fy-write |          |          | ed bit sh | ould be  |
| 15:                                     | 12       |                                                                                                                                                                            | EM3      |          | R/W      |          | 0        | This fi  | eld sele | cts the t | rigger so | ource for              | Sample   | Sequer   | ncer 3.   |          |
|                                         |          | EM3       R/W       0       This field selects the trigger source for Sample Sequencer 3.         The valid configurations for this field are:       EM Binary Value Event |          |          |          |          |          |          |          |           |           |                        |          |          |           |          |
|                                         |          |                                                                                                                                                                            |          |          |          |          |          | EM B     | inary V  | alue Ev   | rent      |                        |          |          |           |          |
|                                         |          |                                                                                                                                                                            |          |          |          |          |          | 0000     |          | Co        | ontroller | (default)              |          |          |           |          |
|                                         |          |                                                                                                                                                                            |          |          |          |          |          | 0001     |          | An        | alog Co   | mparato                | r 0      |          |           |          |
|                                         |          |                                                                                                                                                                            |          |          |          |          |          | 0010     |          | An        | alog Co   | mparato                | r 1      |          |           |          |
|                                         |          |                                                                                                                                                                            |          |          |          |          |          | 0011     |          | Re        | eserved   |                        |          |          |           |          |
|                                         |          |                                                                                                                                                                            |          |          |          |          |          | 0100     |          | Ex        | ternal (C | SPIO PB                | 4)       |          |           |          |
|                                         |          |                                                                                                                                                                            |          |          |          |          |          | 0101     |          | Tin       | ner       |                        |          |          |           |          |
|                                         |          |                                                                                                                                                                            |          |          |          |          |          | 0110     |          | P۷        | VM0       |                        |          |          |           |          |
|                                         |          |                                                                                                                                                                            |          |          |          |          |          | 0111     |          | P۷        | VM1       |                        |          |          |           |          |
|                                         |          |                                                                                                                                                                            |          |          |          |          |          | 1000     |          | P۷        | VM2       |                        |          |          |           |          |
|                                         |          |                                                                                                                                                                            |          |          |          |          |          | 1001     | -1110    | res       | served    |                        |          |          |           |          |
|                                         |          |                                                                                                                                                                            |          |          |          |          |          | 1111     |          | Alv       | ways (co  | ontinuous              | sly samp | ole)     |           |          |
| 11:                                     | :8       |                                                                                                                                                                            | EM2      |          |          |          |          |          |          |           |           |                        |          |          |           | ĥe       |
| 7:4                                     | 4        |                                                                                                                                                                            | EM1      |          | R/W      |          | 0        |          |          |           |           | ource for<br>ose for E |          | Sequer   | ncer 1. T | ĥe       |
| 3:(                                     | 0        |                                                                                                                                                                            | EM0      |          | R/W      |          | 0        |          |          |           |           | ource for<br>ose for E |          | Sequer   | ncer 0. T | ĥe       |

## Register 7: ADC Underflow Status (ADCUSTAT), offset 0x018

This register indicates underflow conditions in the Sample Sequencer FIFOs. The corresponding underflow condition can be cleared by writing a 1 to the relevant bit position.

#### ADC Underflow Status (ADCUSTAT)

Base 0x4003.8000 Offset 0x018 Type R/W1C, reset 0x0000.0000

| Type R/W      | /1C, rese | t 0x0000. | 0000     |         |         |         |         |                  |                     |           |                      |                       |                                         |            |            |            |
|---------------|-----------|-----------|----------|---------|---------|---------|---------|------------------|---------------------|-----------|----------------------|-----------------------|-----------------------------------------|------------|------------|------------|
| _             | 31        | 30        | 29       | 28      | 27      | 26      | 25      | 24               | 23                  | 22        | 21                   | 20                    | 19                                      | 18         | 17         | 16         |
|               |           |           |          |         |         |         | •       | rese             | rved                |           |                      |                       |                                         |            |            |            |
| Туре          | RO        | RO        | RO       | RO      | RO      | RO      | RO      | RO               | RO                  | RO        | RO                   | RO                    | RO                                      | RO         | RO         | RO         |
| Reset         | 0         | 0         | 0        | 0       | 0       | 0       | 0       | 0                | 0                   | 0         | 0                    | 0                     | 0                                       | 0          | 0          | 0          |
| r             | 15        | 14        | 13       | 12      | 11      | 10      | 9       | 8                | 7                   | 6         | 5                    | 4                     | 3                                       | 2          | 1          | 0          |
|               |           |           |          |         | <br>I   | rese    | erved   |                  |                     |           |                      |                       | UV3                                     | UV2        | UV1        | UV0        |
| Type<br>Reset | RO<br>0   | RO<br>0   | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0          | RO<br>0             | RO<br>0   | RO<br>0              | RO<br>0               | R/W1C<br>0                              | R/W1C<br>0 | R/W1C<br>0 | R/W1C<br>0 |
| Reset         | 0         | 0         | 0        | 0       | 0       | U       | 0       | 0                | 0                   | 0         | 0                    | 0                     | 0                                       | 0          | 0          | 0          |
| Bit/Fi        | iold      |           | Name     |         | Tuno    | r       | Dooot   | Deser            | intion              |           |                      |                       |                                         |            |            |            |
| DIVE          | leiu      |           | Name     |         | Туре    | r       | Reset   | Descri           | ιριιοπ              |           |                      |                       |                                         |            |            |            |
| 31:           | :4        | r         | reserved |         | RO      |         | 0       | compa            | atibility v         | ith futur | e produo             | cts, the v            | of a rese<br>value of<br>operation      | a reserv   |            |            |
| 3             |           |           | UV3      |         | R/W1C   | ;       | 0       | underf<br>The pi | flow con<br>roblema | dition wh | ere the l<br>does no | FIFO is e<br>t move t | nple Sec<br>empty an<br>he FIFO<br>a 1. | d a read   | was req    | uested.    |
| 2             |           |           | UV2      |         | R/W1C   | ;       | 0       | underf<br>The pi | flow con<br>roblema | dition wh | ere the l<br>does no | FIFO is e<br>t move t | nple Sec<br>empty an<br>he FIFO<br>a 1. | d a read   | was req    | uested.    |
| 1             |           |           | UV1      |         | R/W1C   | ;       | 0       | underf<br>The pi | flow con<br>roblema | dition wh | ere the l<br>does no | FIFO is e<br>t move t | nple Sec<br>empty an<br>he FIFO<br>a 1. | d a read   | was req    | uested.    |
| 0             |           |           | UV0      |         | R/W1C   | ;       | 0       | underf<br>The pi | flow con<br>roblema | dition wh | ere the l<br>does no | FIFO is e<br>t move t | nple Sec<br>empty an<br>he FIFO<br>a 1. | d a read   | was req    | uested.    |

## **Register 8: ADC Sample Sequencer Priority (ADCSSPRI), offset 0x020**

This register sets the priority for each of the Sample Sequencers. Out of reset, Sequencer 0 has the highest priority, and sample sequence 3 has the lowest priority. When reconfiguring sequence priorities, each sequence must have a unique priority or the ADC behavior is inconsistent.

#### ADC Sample Sequencer Priority (ADCSSPRI)

Base 0x4003.8000 Offset 0x020 Type R/W, reset 0x0000.3210

|               | 31      | 30      | 29       | 28       | 27                                                                                                                                                                                                                                                                                                        | 26      | 25    | 24       | 23                      | 22         | 21       | 20                                    | 19      | 18       | 17         | 16         |
|---------------|---------|---------|----------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|----------|-------------------------|------------|----------|---------------------------------------|---------|----------|------------|------------|
| ſ             |         | 1       | 1        | 1        | г г                                                                                                                                                                                                                                                                                                       |         | 1     | rese     | rved                    |            | 1        |                                       |         |          |            | •          |
| Туре          | RO      | RO      | RO       | RO       | RO                                                                                                                                                                                                                                                                                                        | RO      | RO    | RO       | RO                      | RO         | RO       | RO                                    | RO      | RO       | RO         | RO         |
| Reset         | 0       | 0       | 0        | 0        | 0                                                                                                                                                                                                                                                                                                         | 0       | 0     | 0        | 0                       | 0          | 0        | 0                                     | 0       | 0        | 0          | 0          |
|               | 15      | 14      | 13       | 12       | 11                                                                                                                                                                                                                                                                                                        | 10      | 9     | 8        | 7                       | 6          | 5        | 4                                     | 3       | 2        | 1          | 0          |
|               | rese    | rved    | S        | S3       | resei                                                                                                                                                                                                                                                                                                     | rved    | S     | S2       | rese                    | rved       | S        | S1                                    | rese    | rved     | S          | S0         |
| Type<br>Reset | RO<br>0 | RO<br>0 | R/W<br>1 | R/W<br>1 | RO<br>0                                                                                                                                                                                                                                                                                                   | RO<br>0 | R/W   | R/W<br>0 | RO<br>0                 | RO<br>0    | R/W<br>0 | R/W<br>1                              | RO<br>0 | RO<br>0  | R/W<br>0   | R/W<br>0   |
|               | 0       |         |          | ·        | 0                                                                                                                                                                                                                                                                                                         | 0       | ·     | Ū        | Ū                       | Ū          | Ū        | ·                                     | Ū       | Ū        | Ū          | Ū          |
| Bit/Fi        | eld     |         | Name     |          | Туре                                                                                                                                                                                                                                                                                                      |         | Reset | Descr    | iption                  |            |          |                                       |         |          |            |            |
| 31:1          | 14      | ļ       | reserved |          | RO                                                                                                                                                                                                                                                                                                        |         | 0     | compa    | atibility v             | vith futur | e produ  | e value o<br>cts, the v<br>fy-write o | alue of | a reserv | •          |            |
| 13:1          | 12      |         | SS3      |          | R/W 0x3 The SS3 field contains a binary-encoded value that specifies the priority encoding of Sample Sequencer 3. A priority encoding of 0 is highest and 3 is lowest. The priorities assigned to the Sequencers must be uniquely mapped. ADC behavior is not consistent if two or more fields are equal. |         |       |          |                         |            |          |                                       |         |          |            |            |
| 11:1          | 10      | l       | reserved |          | RO                                                                                                                                                                                                                                                                                                        |         | 0     | compa    | atibility v             | vith futur | e produ  | e value o<br>cts, the v<br>fy-write o | alue of | a reserv |            |            |
| 9:8           | 3       |         | SS2      |          | R/W                                                                                                                                                                                                                                                                                                       |         | 0x2   |          | S2 field of S           |            |          | /-encode<br>er 2.                     | d value | that spe | cifies the | e priority |
| 7:6           | 3       | I       | reserved |          | RO                                                                                                                                                                                                                                                                                                        |         | 0     | compa    | atibility v             | vith futur | e produ  | e value o<br>cts, the v<br>fy-write o | alue of | a reserv | •          |            |
| 5:4           | 1       |         | SS1      |          | R/W                                                                                                                                                                                                                                                                                                       |         | 0x1   |          | S1 field (<br>ling of S |            | -        | /-encode<br>er 1.                     | d value | that spe | cifies the | e priority |
| 3:2           | 2       | l       | reserved |          | RO                                                                                                                                                                                                                                                                                                        |         | 0     | compa    | atibility v             | vith futur | e produ  | e value o<br>cts, the v<br>fy-write o | alue of | a reserv |            |            |
| 1:0           | )       |         | SS0      |          | R/W                                                                                                                                                                                                                                                                                                       |         | 0x0   |          | ຣ0 field ດ<br>ling of S |            |          | /-encode<br>er 0.                     | d value | that spe | cifies the | e priority |

## Register 9: ADC Processor Sample Sequence Initiate (ADCPSSI), offset 0x028

This register provides a mechanism for application software to initiate sampling in the Sample Sequencers. Sample sequences can be initiated individually or in any combination. When multiple sequences are triggered simultaneously, the priority encodings in **ADCSSPRI** dictate execution order.

#### ADC Processor Sample Sequence Initiate (ADCPSSI)

Base 0x4003.8000

Offset 0x028 Type WO, reset -

|               | 31   | 30 | 29       | 28                                                                                                                                                                                                     | 27       | 26   | 25                                                                                                                        | 24    | 23                   | 22       | 21       | 20                                 | 19      | 18          | 17       | 16     |  |
|---------------|------|----|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|---------------------------------------------------------------------------------------------------------------------------|-------|----------------------|----------|----------|------------------------------------|---------|-------------|----------|--------|--|
|               |      | 1  | 1 1      |                                                                                                                                                                                                        | т т      |      | 1                                                                                                                         | rese  | rved                 | Í        |          | 1                                  | l .     | Í           | 1        |        |  |
| Туре <b>І</b> | WO   | WO | WO       | WO                                                                                                                                                                                                     | WO       | WO   | WO                                                                                                                        | WO    | WO                   | WO       | WO       | WO                                 | WO      | WO          | WO       | WO     |  |
| Reset         | -    | -  | -        | -                                                                                                                                                                                                      | -        | -    | -                                                                                                                         | -     | -                    | -        | -        | -                                  | -       | -           | -        | -      |  |
|               | 15   | 14 | 13       | 12                                                                                                                                                                                                     | 11       | 10   | 9                                                                                                                         | 8     | 7                    | 6        | 5        | 4                                  | 3       | 2           | 1        | 0      |  |
| [             |      | 1  | 1 1      |                                                                                                                                                                                                        | 1 1<br>1 | rese | erved                                                                                                                     | ı     |                      | 1        | r        | 1                                  | SS3     | SS2         | SS1      | SS0    |  |
| Type          | WO   | WO | WO       | WO                                                                                                                                                                                                     | WO       | WO   | WO                                                                                                                        | WO    | WO                   | WO       | WO       | WO                                 | WO      | WO          | WO       | wo     |  |
| Reset         | -    | -  | -        | -                                                                                                                                                                                                      | -        | -    | -                                                                                                                         | -     | -                    | -        | -        | -                                  | -       | -           | -        | -      |  |
|               |      |    |          |                                                                                                                                                                                                        | _        |      |                                                                                                                           | _     |                      |          |          |                                    |         |             |          |        |  |
| Bit/Fi        | ield |    | Name     |                                                                                                                                                                                                        | Туре     | l    | Reset                                                                                                                     | Descr | iption               |          |          |                                    |         |             |          |        |  |
| 31:           | :4   |    | reserved | red WO - Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |          |      |                                                                                                                           |       |                      |          |          |                                    |         |             |          |        |  |
| 3             |      |    | SS3      |                                                                                                                                                                                                        | wo       |      | compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |       |                      |          |          |                                    |         |             |          |        |  |
| 2             |      |    | SS2      |                                                                                                                                                                                                        | WO       |      | -                                                                                                                         | meani | ngful da<br>encer 2, | ta. Wher | n set by | lid; a rea<br>software,<br>equence | samplir | ng is trigg | jered on | Sample |  |
| 1             |      |    | SS1      |                                                                                                                                                                                                        | WO       |      | -                                                                                                                         | meani | ngful da<br>encer 1, | ta. Wher | n set by | lid; a rea<br>software,<br>equence | samplir | ng is trigg | jered on | Sample |  |
| 0             |      |    | SS0      |                                                                                                                                                                                                        | WO       |      | -                                                                                                                         | meani | ngful da             | ta. Wher | n set by | lid; a rea<br>software,<br>equence | samplir | ng is trigg | jered on | Sample |  |

register.

## Register 10: ADC Sample Averaging Control (ADCSAC), offset 0x030

This register controls the amount of hardware averaging applied to conversion results. The final conversion result stored in the FIFO is averaged from  $2^{AVG}$  consecutive ADC samples at the specified ADC speed. If AVG is 0, the sample is passed directly through without any averaging. If AVG=6, then 64 consecutive ADC samples are averaged to generate one result in the sequencer FIFO. An AVG = 7 provides unpredictable results.

ADC Sample Averaging Control (ADCSAC)

Base 0x4003.8000 Offset 0x030

Type R/W, reset 0x0000.0000

|               | 31      | 30      | 29       | 28      | 27      | 26      | 25       | 24      | 23                                   | 22         | 21       | 20         | 19      | 18       | 17       | 16       |
|---------------|---------|---------|----------|---------|---------|---------|----------|---------|--------------------------------------|------------|----------|------------|---------|----------|----------|----------|
|               |         | 1       |          | l       | · ·     |         | •        | rese    | rved                                 |            |          |            |         | •        | 1        |          |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0                              | RO<br>0    | RO<br>0  | RO<br>0    | RO<br>0 | RO<br>0  | RO<br>0  | RO<br>0  |
|               | 15      | 14      | 13       | 12      | 11      | 10      | 9        | 8       | 7                                    | 6          | 5        | 4          | 3       | 2        | 1        | 0        |
|               |         | 1       |          |         | · ·     |         | reserved | 1       | · · ·                                |            |          |            |         |          | AVG      |          |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0                              | RO<br>0    | RO<br>0  | RO<br>0    | RO<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 |
| Bit/F         | ield    |         | Name     |         | Туре    | I       | Reset    | Descr   | iption                               |            |          |            |         |          |          |          |
| 31            | :3      |         | reserved |         | RO      |         | 0        | compa   | are shou<br>atibility w<br>rved acro | /ith futur | e produ  | cts, the v | alue of | a reserv | •        |          |
| 2:            | 0       |         | AVG      |         | R/W     |         | 0        | sampl   | fies the a<br>les. The<br>of 7 crea  | AVG fiel   | d can be | any val    | ue betw |          |          |          |

## Register 11: ADC Sample Sequence Input Multiplexer Select 0 (ADCSSMUX0), offset 0x040

This register defines the analog input configuration for each sample in a sequence executed with Sample Sequencer 0.

This register is 32-bits wide and contains information for eight possible samples.

#### ADC Sample Sequence Input Multiplexer Select 0 (ADCSSMUX0)

Base 0x4003.8000 Offset 0x040 Type R/W, reset 0x0000.0000

| .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                            | 31      | 30      | 29       | 28       | 27      | 26      | 25       | 24       | 23          | 22         | 21       | 20                                     | 19        | 18        | 17       | 16       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|----------|----------|---------|---------|----------|----------|-------------|------------|----------|----------------------------------------|-----------|-----------|----------|----------|
| [                                                                                                                                                                                                                                                                                                  | rese    | rved    | MU       | IX7      | rese    | rved    | М        | I<br>JX6 | rese        | erved      | м        | I<br>JX5                               | rese      | rved      | мu       | IX4      |
| Type<br>Reset                                                                                                                                                                                                                                                                                      | RO<br>0 | RO<br>0 | R/W<br>0 | R/W<br>0 | RO<br>0 | RO<br>0 | R/W<br>0 | R/W<br>0 | RO<br>0     | RO<br>0    | R/W<br>0 | R/W<br>0                               | RO<br>0   | RO<br>0   | R/W<br>0 | R/W<br>0 |
| Reset                                                                                                                                                                                                                                                                                              | 15      | 14      | 13       | 12       | 11      | 10      | 9        | 8        | 7           | 6          | 5        | 4                                      | 3         | 2         | 1        | 0        |
| [                                                                                                                                                                                                                                                                                                  |         | rved    |          | IX3      | rese    |         |          | JX2      |             | i<br>erved | 1        | T<br>JX1                               |           | rved      | мu       |          |
| Type<br>Reset                                                                                                                                                                                                                                                                                      | RO<br>0 | RO<br>0 | R/W<br>0 | R/W<br>0 | RO<br>0 | RO<br>0 | R/W<br>0 | R/W<br>0 | RO<br>0     | RO<br>0    | R/W<br>0 | R/W<br>0                               | RO<br>0   | RO<br>0   | R/W<br>0 | R/W<br>0 |
| Bit/Fi                                                                                                                                                                                                                                                                                             | ield    |         | Name     |          | Туре    |         | Reset    | Descr    | iption      |            |          |                                        |           |           |          |          |
| 31:                                                                                                                                                                                                                                                                                                | 30      | ļ       | reserved |          | RO      |         | 0        | compa    | atibility v | vith futur | e produ  | e value o<br>cts, the v<br>ify-write o | alue of   | a reserv  |          |          |
| 29:28 MUX7 R/W 0 The MUX7 field is used during the eighth sample of a sequence exwith the Sample Sequencer. It specifies which of the analog inpresent sampled for the analog-to-digital conversion. The value set here in the corresponding pin, for example, a value of 1 indicates the in ADC1. |         |         |          |          |         |         |          |          |             |            |          | outs is<br>ndicates                    |           |           |          |          |
| 27:2                                                                                                                                                                                                                                                                                               | 26      | l       | reserved |          | RO      |         | 0        | compa    | atibility v | vith futur | e produ  | e value o<br>cts, the v<br>ify-write o | alue of   | a reserv  |          |          |
| 25:2                                                                                                                                                                                                                                                                                               | 24      |         | MUX6     |          | R/W     |         | 0        | execu    | ted with    | the Sam    | nple Seq | the seve<br>uencer a<br>og-to-dig      | and spec  | ifies whi |          |          |
| 23:2                                                                                                                                                                                                                                                                                               | 22      | l       | reserved |          | RO      |         | 0        | compa    | atibility v | vith futur | e produ  | e value o<br>cts, the v<br>ify-write o | alue of   | a reserv  |          |          |
| 21:2                                                                                                                                                                                                                                                                                               | 20      |         | MUX5     |          | R/W     |         | 0        | with th  | ne Samp     | le Sequ    | encer ar | the sixth<br>nd specif<br>tal conve    | fies whic |           |          |          |
| 19:18       reserved       RO       0       Software should not rely on the value of a reserved bit. To procompatibility with future products, the value of a reserved bit s preserved across a read-modify-write operation.                                                                       |         |         |          |          |         |         |          |          |             |            |          | •                                      |           |           |          |          |
| 17:'                                                                                                                                                                                                                                                                                               | 16      |         | MUX4     |          | R/W     |         | 0        | with th  | ne Samp     | le Sequ    | encer ar | the fifth<br>nd specif<br>tal conve    | fies whic |           |          |          |

| Bit/Field | Name     | Туре | Reset | Description                                                                                                                                                                                   |
|-----------|----------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15:14     | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |
| 13:12     | MUX3     | R/W  | 0     | The MUX3 field is used during the fourth sample of a sequence executed with the Sample Sequencer and specifies which of the analog inputs is sampled for the analog-to-digital conversion.    |
| 11:10     | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |
| 9:8       | MUX2     | R/W  | 0     | The MUX2 field is used during the third sample of a sequence executed with the Sample Sequencer and specifies which of the analog inputs is sampled for the analog-to-digital conversion.     |
| 7:6       | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |
| 5:4       | MUX1     | R/W  | 0     | The MUX1 field is used during the second sample of a sequence executed with the Sample Sequencer and specifies which of the analog inputs is sampled for the analog-to-digital conversion.    |
| 3:2       | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |
| 1:0       | MUX0     | R/W  | 0     | The MUX0 field is used during the first sample of a sequence executed with the Sample Sequencer and specifies which of the analog inputs is sampled for the analog-to-digital conversion.     |

## Register 12: ADC Sample Sequence Control 0 (ADCSSCTL0), offset 0x044

This register contains the configuration information for each sample for a sequence executed with Sample Sequencer 0. When configuring a sample sequence, the END bit must be set at some point, whether it be after the first sample, last sample, or any sample in between.

This register is 32-bits wide and contains information for eight possible samples.

#### ADC Sample Sequence Control 0 (ADCSSCTL0)

| Base 0x4<br>Offset 0x0<br>Type R/W | 044      |          | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,        |          | ,        |          |                                                 |                                                |                                                          |                                               |                                               |                                                   |                                               |                                                                        |                                         |
|------------------------------------|----------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|-------------------------------------------------|------------------------------------------------|----------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------|-----------------------------------------|
|                                    | 31       | 30       | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28       | 27       | 26       | 25       | 24                                              | 23                                             | 22                                                       | 21                                            | 20                                            | 19                                                | 18                                            | 17                                                                     | 16                                      |
|                                    | TS7      | IE7      | END7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D7       | TS6      | IE6      | END6     | D6                                              | TS5                                            | IE5                                                      | END5                                          | D5                                            | TS4                                               | IE4                                           | END4                                                                   | D4                                      |
| Type<br>Reset                      | R/W<br>0 | R/W<br>0 | R/W<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0                                        | R/W<br>0                                       | R/W<br>0                                                 | R/W<br>0                                      | R/W<br>0                                      | R/W<br>0                                          | R/W<br>0                                      | R/W<br>0                                                               | R/W<br>0                                |
|                                    | 15       | 14       | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12       | 11       | 10       | 9        | 8                                               | 7                                              | 6                                                        | 5                                             | 4                                             | 3                                                 | 2                                             | 1                                                                      | 0                                       |
|                                    | TS3      | IE3      | END3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D3       | TS2      | IE2      | END2     | D2                                              | TS1                                            | IE1                                                      | END1                                          | D1                                            | TS0                                               | IE0                                           | END0                                                                   | D0                                      |
| Type<br>Reset                      | R/W<br>0 | R/W<br>0 | R/W<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0                                        | R/W<br>0                                       | R/W<br>0                                                 | R/W<br>0                                      | R/W<br>0                                      | R/W<br>0                                          | R/W<br>0                                      | R/W<br>0                                                               | R/W<br>0                                |
| Bit/F                              | ield     |          | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | Туре     | F        | Reset    | Descr                                           | iption                                         |                                                          |                                               |                                               |                                                   |                                               |                                                                        |                                         |
| 31                                 | 1        |          | TS7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | R/W      |          | 0        | and sp<br>senso                                 | pecifies t<br>r is read                        | he input<br>. Otherw                                     | t source                                      | of the sa                                     | ample. If                                         | f set, the                                    | mple sec<br>tempera<br>e <b>ADCS</b>                                   | ature                                   |
| 30                                 | )        |          | IE7       R/W       0       The IE7 bit is used during the eighth sample of the sample sequence and specifies whether the raw interrupt signal (INR0 bit) is asserted at the end of the sample's conversion. If the MASK0 bit in the ADCIM register is set, the interrupt is promoted to a controller-level interrupt. When this bit is set, the raw interrupt is asserted, otherwise it is not. It is legal to have multiple samples within a sequence generate interrupts.         END7       R/W       0       The END7 bit indicates that this is the last sample of the sequence. It is |          |          |          |          |                                                 |                                                |                                                          |                                               |                                               |                                                   |                                               |                                                                        |                                         |
| 29                                 | )        |          | END7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | R/W      |          | 0        | possib<br>after th<br>even t<br>the EN<br>which | ble to end<br>ne samp<br>hough th<br>₪ bit sor | the sec<br>le contai<br>le fields<br>mewhere<br>a single | quence c<br>ining a s<br>may be r<br>e within | on any sa<br>et END a<br>non-zero<br>the sequ | ample po<br>are not r<br>. It is req<br>ience. (S | osition. S<br>equeste<br>juired the<br>Sample | e sequen<br>Samples<br>d for con<br>at softwa<br>Sequenc<br>rdwired to | defined<br>version<br>re write<br>ær 3, |
|                                    |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |          |          |          | Setting                                         | g this bit                                     | indicate                                                 | es that th                                    | iis samp                                      | le is the                                         | last in t                                     | he seque                                                               | ence.                                   |
| 28                                 | 3        |          | D7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | R/W      |          | 0        | The co<br>"i", wh<br>does r                     | orrespon<br>ere the p                          | ding <b>AD</b><br>baired in<br>a differe                 | CSSMU                                         | Xx nibble "2i and                             | le must b<br>2i+1". T                             | be set to<br>The temp                         | entially sa<br>the pair<br>perature<br>og inputs                       | number<br>sensor                        |
| 27                                 | 7        |          | TS6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | R/W      |          | 0        | Same                                            | definitio                                      | n as TS                                                  | 7 but us                                      | ed durin                                      | g the se                                          | venth sa                                      | ample.                                                                 |                                         |
| 26                                 | 6        |          | IE6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | R/W      |          | 0        | Same                                            | definitio                                      | n as IE'                                                 | 7 but us                                      | ed durin                                      | g the se                                          | venth sa                                      | ample.                                                                 |                                         |
| 25                                 | 5        |          | END6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | R/W      |          | 0        | Same                                            | definitio                                      | n as en                                                  | D7 but u                                      | sed duri                                      | ng the s                                          | eventh s                                      | sample.                                                                |                                         |
| 24                                 | 1        |          | D6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | R/W      |          | 0        | Same                                            | definitio                                      | <b>n as</b> D7                                           | but use                                       | d during                                      | the seve                                          | enth sar                                      | nple.                                                                  |                                         |
| 23                                 | 3        |          | TS5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | R/W      |          | 0        | Same                                            | definitio                                      | n as TS                                                  | 7 but us                                      | ed durin                                      | g the six                                         | th samp                                       | ole.                                                                   |                                         |

| Bit/Field | Name | Туре | Reset | Description                                                                             |
|-----------|------|------|-------|-----------------------------------------------------------------------------------------|
| 22        | IE5  | R/W  | 0     | Same definition as IE7 but used during the sixth sample.                                |
| 21        | END5 | R/W  | 0     | Same definition as END7 but used during the sixth sample.                               |
| 20        | D5   | R/W  | 0     | Same definition as ${\tdotspin 7}$ but used during the sixth sample.                    |
| 19        | TS4  | R/W  | 0     | Same definition as ${\tt TS7}$ but used during the fifth sample.                        |
| 18        | IE4  | R/W  | 0     | Same definition as IE7 but used during the fifth sample.                                |
| 17        | END4 | R/W  | 0     | Same definition as END7 but used during the fifth sample.                               |
| 16        | D4   | R/W  | 0     | Same definition as ${\ensuremath{ {\rm D7}}}$ but used during the fifth sample.         |
| 15        | TS3  | R/W  | 0     | Same definition as ${\tt TS7}$ but used during the fourth sample.                       |
| 14        | IE3  | R/W  | 0     | Same definition as $IE7$ but used during the fourth sample.                             |
| 13        | END3 | R/W  | 0     | Same definition as END7 but used during the fourth sample.                              |
| 12        | D3   | R/W  | 0     | Same definition as ${\ensuremath{ {\rm D7}}}$ but used during the fourth sample.        |
| 11        | TS2  | R/W  | 0     | Same definition as ${\tt TS7}$ but used during the third sample.                        |
| 10        | IE2  | R/W  | 0     | Same definition as ${\tt IE7}$ but used during the third sample.                        |
| 9         | END2 | R/W  | 0     | Same definition as $\mathtt{END7}$ but used during the third sample.                    |
| 8         | D2   | R/W  | 0     | Same definition as ${\scriptscriptstyle \mathbb{D}7}$ but used during the third sample. |
| 7         | TS1  | R/W  | 0     | Same definition as $\ensuremath{{\rm TS7}}$ but used during the second sample.          |
| 6         | IE1  | R/W  | 0     | Same definition as IE7 but used during the second sample.                               |
| 5         | END1 | R/W  | 0     | Same definition as $\mathtt{END7}$ but used during the second sample.                   |
| 4         | D1   | R/W  | 0     | Same definition as ${\ensuremath{\mathbb D}} 7$ but used during the second sample.      |
| 3         | TS0  | R/W  | 0     | Same definition as ${\tt TS7}$ but used during the first sample.                        |
| 2         | IE0  | R/W  | 0     | Same definition as IE7 but used during the first sample.                                |
| 1         | END0 | R/W  | 0     | Same definition as END7 but used during the first sample.                               |
|           |      |      |       | Since this sequencer has only one entry, this bit must be set.                          |
| 0         | D0   | R/W  | 0     | Same definition as ${\tt D7}$ but used during the first sample.                         |

## Register 13: ADC Sample Sequence Result FIFO 0 (ADCSSFIFO0), offset 0x048 Register 14: ADC Sample Sequence Result FIFO 1 (ADCSSFIFO1), offset 0x068 Register 15: ADC Sample Sequence Result FIFO 2 (ADCSSFIFO2), offset 0x088

This register contains the conversion results for samples collected with the Sample Sequencer (the **ADCSSFIF0** register is used for Sample Sequencer 0, **ADCSSFIF01** for Sequencer 1, and **ADCSSFIF02** for Sequencer 2). Reads of this register return conversion result data in the order sample 0, sample 1, and so on, until the FIFO is empty. If the FIFO is not properly handled by software, overflow and underflow conditions are registered in the **ADCOSTAT** and **ADCUSTAT** registers.

| Type RO       |         | (0000.000 | 0        |         |         |         |         |         |                                         |            |         |            |                                    |          |         |         |
|---------------|---------|-----------|----------|---------|---------|---------|---------|---------|-----------------------------------------|------------|---------|------------|------------------------------------|----------|---------|---------|
|               | 31      | 30        | 29       | 28      | 27      | 26      | 25      | 24      | 23                                      | 22         | 21      | 20         | 19                                 | 18       | 17      | 16      |
|               |         | '         |          |         |         |         | •       | rese    | rved                                    |            |         |            |                                    |          | •       |         |
| Type<br>Reset | RO<br>0 | RO<br>0   | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                 | RO<br>0    | RO<br>0 | RO<br>0    | RO<br>0                            | RO<br>0  | RO<br>0 | RO<br>0 |
|               | 15      | 14        | 13       | 12      | 11      | 10      | 9       | 8       | 7                                       | 6          | 5       | 4          | 3                                  | 2        | 1       | 0       |
|               |         | 1         | rese     | rved    |         |         |         | 1       | ı – – – – – – – – – – – – – – – – – – – |            | DA      | TA         | 1                                  |          | 1       |         |
| Type<br>Reset | RO<br>0 | RO<br>0   | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                 | RO<br>0    | RO<br>0 | RO<br>0    | RO<br>0                            | RO<br>0  | RO<br>0 | RO<br>0 |
| Bit/F         | ield    |           | Name     |         | Туре    | F       | Reset   | Descr   | iption                                  |            |         |            |                                    |          |         |         |
| 31:           | 10      | r         | reserved |         | RO      |         | 0       | compa   | atibility w                             | /ith futur | e produ | cts, the v | of a rese<br>value of<br>operation | a reserv | •       |         |
| 9:            | 0       |           | DATA     |         | RO      |         | 0       | Conve   | ersion re                               | sult data  | 1.      |            |                                    |          |         |         |

#### ADC Sample Sequence Result FIFO 0 (ADCSSFIFO0)

Base 0x4003.8000 Offset 0x048

### Register 16: ADC Sample Sequence FIFO 0 Status (ADCSSFSTAT0), offset 0x04C

#### Register 17: ADC Sample Sequence FIFO 1 Status (ADCSSFSTAT1), offset 0x06C

#### Register 18: ADC Sample Sequence FIFO 2 Status (ADCSSFSTAT2), offset 0x08C

This register provides a window into the Sample Sequencer, providing full/empty status information as well as the positions of the head and tail pointers. The reset value of 0x100 indicates an empty FIFO. The ADCSSFSTAT0 register provides status on FIF0, ADCSSFSTAT1 on FIFO1, and ADCSSFSTAT2 on FIFO2.

ADC Sample Sequence FIFO 0 Status (ADCSSFSTAT0)

Base 0x4003.8000 Offset 0x04C Type RO, reset 0x0000.0100

|       | 31 | 30       | 29      | 28   | 27   | 26       | 25    | 24     | 23         | 22                                    | 21       | 20         | 19        | 18         | 17              | 16          |
|-------|----|----------|---------|------|------|----------|-------|--------|------------|---------------------------------------|----------|------------|-----------|------------|-----------------|-------------|
|       |    | т т      |         | 1 1  |      | r        | 1     | reser  | ved        | 1 1                                   |          | r i        |           | r          | 1               | 1           |
|       |    |          |         |      |      |          |       |        |            |                                       |          |            |           |            |                 |             |
| Туре  | RO | RO       | RO      | RO   | RO   | RO       | RO    | RO     | RO         | RO                                    | RO       | RO         | RO        | RO         | RO              | RO          |
| Reset | 0  | 0        | 0       | 0    | 0    | 0        | 0     | 0      | 0          | 0                                     | 0        | 0          | 0         | 0          | 0               | 0           |
|       | 15 | 14       | 13      | 12   | 11   | 10       | 9     | 8      | 7          | 6                                     | 5        | 4          | 3         | 2          | 1               | 0           |
|       |    | reserved |         | FULL |      | reserved | 1     | EMPTY  |            | HP                                    | TR       |            |           | TP         | <b>T</b><br>YTR |             |
| Туре  | RO | RO       | RO      | RO   | RO   | RO       | RO    | RO     | RO         | RO                                    | RO       | RO         | RO        | RO         | RO              | RO          |
| Reset | 0  | 0        | 0       | 0    | 0    | 0        | 0     | 1      | 0          | 0                                     | 0        | 0          | 0         | 0          | 0               | 0           |
| Bit/F |    |          | Name    |      | Туре | F        | Reset | Descri | ption      |                                       |          |            |           |            |                 |             |
| 31:   | 13 | re       | eserved | I    | RO   |          | 0     | compa  | tibility v | uld not re<br>vith futur<br>oss a rea | e produ  | cts, the v | alue of   | a reserv   | •               |             |
| 12    | 2  |          | FULL    |      | RO   |          | 0     | When   | set, ind   | icates th                             | at the F | IFO is cu  | irrently  | full.      |                 |             |
| 11:   | :9 | re       | eserved | I    | RO   |          | 0     | compa  | tibility v | uld not re<br>vith futur<br>oss a rea | e produ  | cts, the v | alue of   | a reserv   | •               |             |
| 8     |    | E        | EMPTY   |      | RO   |          | 1     | When   | set, ind   | icates th                             | at the F | IFO is cu  | irrently  | empty.     |                 |             |
| 7:4   | 4  |          | HPTR    |      | RO   |          | 0     |        |            | ains the to be wr                     |          | 'head" po  | ointer in | dex for t  | he FIFC         | ), that is, |
| 3:0   | 0  |          | TPTR    |      | RO   |          | 0     |        |            | ains the<br>to be rea                 |          | "tail" poi | nter ind  | ex for the | e FIFO,         | that is,    |

## Register 19: ADC Sample Sequence Input Multiplexer Select 1 (ADCSSMUX1), offset 0x060

This register defines the analog input configuration for each sample in a sequence executed with Sample Sequencer 1. This register is 16-bits wide and contains information for four possible samples.

#### ADC Sample Sequence Input Multiplexer Select 1 (ADCSSMUX1)

Base 0x4003.8000 Offset 0x060 Type R/W, reset 0x0000.0000

|               | 31      | 30      | 29       | 28                                                                                                                                                                                                                      | 27      | 26      | 25       | 24       | 23          | 22         | 21       | 20                                     | 19       | 18         | 17       | 16       |
|---------------|---------|---------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|----------|----------|-------------|------------|----------|----------------------------------------|----------|------------|----------|----------|
| ſ             |         |         | 1        | 1                                                                                                                                                                                                                       | ı ı     |         | 1        | rese     | rved        | 1          | 1        |                                        |          |            | 1        |          |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0                                                                                                                                                                                                                 | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0  | RO<br>0     | RO<br>0    | RO<br>0  | RO<br>0                                | RO<br>0  | RO<br>0    | RO<br>0  | RO<br>0  |
| -             | 15      | 14      | 13       | 12                                                                                                                                                                                                                      | 11      | 10      | 9        | 8        | 7           | 6          | 5        | 4                                      | 3        | 2          | 1        | 0        |
|               | rese    | rved    | ML       | JX3                                                                                                                                                                                                                     | rese    | rved    | М        | JX2      | rese        | erved      | М        | JX1                                    | rese     | erved      | ML       | JXO      |
| Type<br>Reset | RO<br>0 | RO<br>0 | R/W<br>0 | R/W<br>0                                                                                                                                                                                                                | RO<br>0 | RO<br>0 | R/W<br>0 | R/W<br>0 | RO<br>0     | RO<br>0    | R/W<br>0 | R/W<br>0                               | RO<br>0  | RO<br>0    | R/W<br>0 | R/W<br>0 |
| Bit/Fi        | eld     |         | Name     |                                                                                                                                                                                                                         | Туре    |         | Reset    | Descr    | iption      |            |          |                                        |          |            |          |          |
| 31:1          | 14      |         | reserved | I                                                                                                                                                                                                                       | RO      |         | 0        | compa    | atibility v | vith futur | e produ  | e value o<br>cts, the v<br>ify-write o | alue of  | a reserv   | •        |          |
| 13:1          | 12      |         | MUX3     | IUX3       R/W       0       The MUX3 field is used during the fourth sample of a sequence executed with the Sample Sequencer and specifies which of the analog inputs is sampled for the analog-to-digital conversion. |         |         |          |          |             |            |          |                                        |          |            |          |          |
| 11:1          | 10      |         | reserved | l                                                                                                                                                                                                                       | RO      |         | 0        | compa    | atibility v | vith futur | e produ  | e value o<br>cts, the v<br>ify-write o | alue of  | a reserv   | •        |          |
| 9:8           | 3       |         | MUX2     |                                                                                                                                                                                                                         | R/W     |         | 0        | with th  | ne Samp     | le Sequ    | encer ar | the third<br>nd specif<br>tal conve    | ies whic |            |          |          |
| 7:6           | 6       |         | reserved | I                                                                                                                                                                                                                       | RO      |         | 0        | compa    | atibility v | vith futur | e produ  | e value o<br>cts, the v<br>ify-write o | alue of  | a reserv   |          |          |
| 5:4           | 1       |         | MUX1     |                                                                                                                                                                                                                         | R/W     |         | 0        | execu    | ted with    | the Sam    | ple Seq  | the seco<br>uencer a<br>og-to-dig      | nd spec  | cifies whi |          |          |
| 3:2           | 2       |         | reserved | I                                                                                                                                                                                                                       | RO      |         | 0        | compa    | atibility v | vith futur | e produ  | e value o<br>cts, the v<br>ify-write o | alue of  | a reserv   |          |          |
| 1:0           | )       |         | MUX0     |                                                                                                                                                                                                                         | R/W     |         | 0        | with th  | ne Samp     | le Sequ    | encer ar | the first s<br>nd specif<br>tal conve  | ies whic |            |          |          |

## Register 20: ADC Sample Sequence Control 1 (ADCSSCTL1), offset 0x064

This register contains the configuration information for each sample for a sequence executed with Sample Sequencer 1. When configuring a sample sequence, the END bit must be set at some point, whether it be after the first sample, last sample, or any sample in between. This register is 16-bits wide and contains information for four possible samples.

ADC Sample Sequence Control 1 (ADCSSCTL1)

Base 0x4003.8000

Offset 0x064 Type R/W, reset 0x0000.0000

|               | 31       | 30       | 29       | 28       | 27       | 26       | 25       | 24       | 23          | 22       | 21       | 20         | 19         | 18         | 17                     | 16       |
|---------------|----------|----------|----------|----------|----------|----------|----------|----------|-------------|----------|----------|------------|------------|------------|------------------------|----------|
|               |          | 1        | 1        |          |          |          | 1        | rese     | rved        |          |          |            |            | 1          | 1 1                    |          |
| Type<br>Reset | RO<br>0     | RO<br>0  | RO<br>0  | RO<br>0    | RO<br>0    | RO<br>0    | RO<br>0                | RO<br>0  |
| ŗ             | 15       | 14       | 13       | 12       | 11       | 10       | 9        | 8        | 7           | 6        | 5        | 4          | 3          | 2          | 1                      | 0        |
|               | TS3      | IE3      | END3     | D3       | TS2      | IE2      | END2     | D2       | TS1         | IE1      | END1     | D1         | TS0        | IE0        | END0                   | D0       |
| Type<br>Reset | R/W<br>0    | R/W<br>0 | R/W<br>0 | R/W<br>0   | R/W<br>0   | R/W<br>0   | R/W<br>0               | R/W<br>0 |
| Bit/F         | ield     |          | Name     |          | Туре     | F        | Reset    | Descr    | iption      |          |          |            |            |            |                        |          |
| 31:'          | 16       | I        | reserved |          | RO       |          | 0        | compa    | atibility v |          | e produ  | cts, the v | alue of    | a reserv   | . To prov<br>ed bit sh |          |
| 15            | 5        |          | TS3      |          | R/W      |          | 0        | Same     | definitio   | n as TS  | 7 but us | ed durin   | g the for  | urth sam   | ple.                   |          |
| 14            | ŀ        |          | IE3      |          | R/W      |          | 0        | Same     | definitio   | on as IE | 7 but us | ed durin   | g the for  | urth sam   | ple.                   |          |
| 13            | 3        |          | END3     |          | R/W      |          | 0        | Same     | definitio   | on as EN | D7 but u | sed duri   | ng the f   | ourth sa   | mple.                  |          |
| 12            | 2        |          | D3       |          | R/W      |          | 0        | Same     | definitio   | on as D7 | but use  | d during   | the four   | th samp    | le.                    |          |
| 11            |          |          | TS2      |          | R/W      |          | 0        | Same     | definitio   | n as TS  | 7 but us | ed durin   | g the thi  | rd samp    | le.                    |          |
| 10            | )        |          | IE2      |          | R/W      |          | 0        | Same     | definitio   | on as IE | 7 but us | ed durin   | g the thi  | rd samp    | le.                    |          |
| 9             |          |          | END2     |          | R/W      |          | 0        | Same     | definitio   | on as EN | D7 but u | sed duri   | ng the t   | hird sam   | ple.                   |          |
| 8             |          |          | D2       |          | R/W      |          | 0        | Same     | definitio   | on as D7 | but use  | d during   | the third  | d sample   | 9.                     |          |
| 7             |          |          | TS1      |          | R/W      |          | 0        | Same     | definitio   | n as TS  | 7 but us | ed durin   | g the se   | cond sa    | mple.                  |          |
| 6             |          |          | IE1      |          | R/W      |          | 0        | Same     | definitic   | n as IE  | 7 but us | ed durin   | g the se   | cond sa    | mple.                  |          |
| 5             |          |          | END1     |          | R/W      |          | 0        | Same     | definitio   | on as EN | D7 but u | sed duri   | ng the s   | econd s    | ample.                 |          |
| 4             |          |          | D1       |          | R/W      |          | 0        | Same     | definitic   | n as D7  | but use  | d during   | the sec    | ond sam    | ple.                   |          |
| 3             |          |          | TS0      |          | R/W      |          | 0        | Same     | definitio   | n as ts  | 7 but us | ed durin   | g the fire | st sampl   | e.                     |          |
| 2             |          |          | IE0      |          | R/W      |          | 0        | Same     | definitio   | on as IE | 7 but us | ed durin   | g the firs | st sampl   | e.                     |          |
| 1             |          |          | END0     |          | R/W      |          | 0        | Same     | definitio   | on as en | D7 but u | sed duri   | ng the fi  | irst samp  | ole.                   |          |
|               |          |          |          |          |          |          |          | Since    | this seq    | uencer l | nas only | one ent    | ry, this b | oit must l | oe set.                |          |
| 0             |          |          | D0       |          | R/W      |          | 0        | Same     | definitio   | n as D7  | but use  | d during   | the first  | sample     |                        |          |
|               |          |          |          |          |          |          |          |          |             |          |          |            |            |            |                        |          |

# Register 21: ADC Sample Sequence Input Multiplexer Select 2 (ADCSSMUX2), offset 0x080

This register defines the analog input configuration for each sample in a sequence executed with Sample Sequencer 2. This register is 16-bits wide and contains information for four possible samples.

#### ADC Sample Sequence Input Multiplexer Select 2 (ADCSSMUX2)

Base 0x4003.8000 Offset 0x080 Type R/W, reset 0x0000.0000

|               | 31      | 30  | 29       | 28       | 27       | 26   | 25    | 24                                                                                                                                            | 23                                                                                                                                           | 22         | 21        | 20                        | 19        | 18        | 17        | 16        |  |  |  |
|---------------|---------|-----|----------|----------|----------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|---------------------------|-----------|-----------|-----------|-----------|--|--|--|
| [             | 1       | 50  | 1        | 1        | 1        | 20   | 1     | 1                                                                                                                                             | rved                                                                                                                                         | 1          | 1         | 1                         | 19        | 10        | 1         | · · · ·   |  |  |  |
| Turne         | DO      | RO  | RO       | RO       | RO       | RO   | RO    | RO                                                                                                                                            | RO                                                                                                                                           | RO         | RO        | RO                        |           | RO        | DO        | DO        |  |  |  |
| Type<br>Reset | RO<br>0 | 0   | 0        | 0        | 0        | 0    | 0     | 0                                                                                                                                             | 0                                                                                                                                            | 0          | 0         | 0                         | RO<br>0   | 0         | RO<br>0   | RO<br>0   |  |  |  |
|               | 15      | 14  | 13       | 12       | 11       | 10   | 9     | 8                                                                                                                                             | 7                                                                                                                                            | 6          | 5         | 4                         | 3         | 2         | 1         | 0         |  |  |  |
| [             | reser   | ved | ML       | I<br>JX3 | rese     | rved | м     | UX2                                                                                                                                           | rese                                                                                                                                         | erved      | М         | I<br>JX1                  | rese      | rved      | м         | JX0       |  |  |  |
| Туре          | RO      | RO  | R/W      | R/W      | RO       | RO   | R/W   | R/W                                                                                                                                           | RO                                                                                                                                           | RO         | R/W       | R/W                       | RO        | RO        | R/W       | R/W       |  |  |  |
| Reset         | 0       | 0   | 0        | 0        | 0        | 0    | 0     | 0                                                                                                                                             | 0                                                                                                                                            | 0          | 0         | 0                         | 0         | 0         | 0         | 0         |  |  |  |
|               | - 1 -1  |     | N        |          | <b>T</b> |      | Decet | D                                                                                                                                             |                                                                                                                                              |            |           |                           |           |           |           |           |  |  |  |
| Bit/Fi        | leia    |     | Name     |          | Туре     |      | Reset | Descr                                                                                                                                         | iption                                                                                                                                       |            |           |                           |           |           |           |           |  |  |  |
| 31:1          | 14      |     | reserved | l        | RO       |      | 0     | Software should not rely on the value of a reserved bit. To provide                                                                           |                                                                                                                                              |            |           |                           |           |           |           |           |  |  |  |
|               |         |     |          |          |          |      |       |                                                                                                                                               | compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                    |            |           |                           |           |           |           |           |  |  |  |
|               |         |     | MUX3 R/V |          |          |      |       |                                                                                                                                               |                                                                                                                                              |            |           |                           |           |           |           |           |  |  |  |
| 13:1          | 12      |     | MUX3     |          | R/W      |      | 0     |                                                                                                                                               | The MUX3 field is used during the fourth sample of a sequence executed with the Sample Sequencer and specifies which of the analog inputs is |            |           |                           |           |           |           |           |  |  |  |
|               |         |     |          |          |          |      |       |                                                                                                                                               |                                                                                                                                              |            |           | tal conve                 |           |           | analog    | inputo io |  |  |  |
| 11:1          | 10      |     |          |          |          |      |       | Softw                                                                                                                                         | ara shoi                                                                                                                                     | ild not re | alv on th | م بالدير م                | of a rose | arvad hit | To prov   | vide      |  |  |  |
|               | 10      |     | leserveu |          | NO       |      | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be |                                                                                                                                              |            |           |                           |           |           |           |           |  |  |  |
|               |         |     |          |          |          |      |       | preserved across a read-modify-write operation.                                                                                               |                                                                                                                                              |            |           |                           |           |           |           |           |  |  |  |
| 9:8           | 8       |     | MUX2     |          | R/W      |      | 0     | The MUX2 field is used during the third sample of a sequence executed                                                                         |                                                                                                                                              |            |           |                           |           |           |           |           |  |  |  |
|               |         |     |          |          |          |      |       | with the Sample Sequencer and specifies which of the analog inputs is sampled for the analog-to-digital conversion.                           |                                                                                                                                              |            |           |                           |           |           |           |           |  |  |  |
|               |         |     |          |          |          |      |       | samp                                                                                                                                          | led for tr                                                                                                                                   | ie analog  | g-to-algi | tal conve                 | ersion.   |           |           |           |  |  |  |
| 7:6           | 6       |     | reserved | l        | RO       |      | 0     |                                                                                                                                               |                                                                                                                                              |            |           | e value o                 |           |           |           |           |  |  |  |
|               |         |     |          |          |          |      |       |                                                                                                                                               |                                                                                                                                              |            |           | cts, the v<br>ify-write ( |           |           | ed dit si | nould be  |  |  |  |
| _             |         |     |          |          |          |      | •     | •                                                                                                                                             |                                                                                                                                              |            |           |                           |           |           |           |           |  |  |  |
| 5:4           | 4       |     | MUX1     |          | R/W      |      | 0     |                                                                                                                                               |                                                                                                                                              |            | •         | the seco<br>uencer a      |           |           | •         |           |  |  |  |
|               |         |     |          |          |          |      |       |                                                                                                                                               |                                                                                                                                              |            |           | og-to-dig                 |           |           |           | o analog  |  |  |  |
| 3:2           | 2       |     | reserved | I        | RO       |      | 0     | Softw                                                                                                                                         | are shoi                                                                                                                                     | uld not re | elv on th | e value o                 | of a rese | erved bit | . To prov | /ide      |  |  |  |
| 0.            | _       |     |          |          |          |      | Ū     | comp                                                                                                                                          | atibility v                                                                                                                                  | vith futur | e produ   | cts, the v                | alue of   | a reserv  |           | nould be  |  |  |  |
|               |         |     |          |          |          |      |       | prese                                                                                                                                         | rved acr                                                                                                                                     | oss a re   | ad-modi   | fy-write                  | operatio  | n.        |           |           |  |  |  |
| 1:0           | D       |     | MUX0     |          | R/W      |      | 0     |                                                                                                                                               |                                                                                                                                              |            |           | the first                 |           |           |           |           |  |  |  |
|               |         |     |          |          |          |      |       |                                                                                                                                               |                                                                                                                                              |            |           | nd specif<br>tal conve    |           | h of the  | analog    | inputs is |  |  |  |
|               |         |     |          |          |          |      |       | camp                                                                                                                                          |                                                                                                                                              | .e unulo   | g to argi |                           |           |           |           |           |  |  |  |

## Register 22: ADC Sample Sequence Control 2 (ADCSSCTL2), offset 0x084

This register contains the configuration information for each sample for a sequence executed with Sample Sequencer 2. When configuring a sample sequence, the END bit must be set at some point, whether it be after the first sample, last sample, or any sample in between. This register is 16-bits wide and contains information for four possible samples.

ADC Sample Sequence Control 2 (ADCSSCTL2)

Base 0x4003.8000

Offset 0x084 Type R/W, reset 0x0000.0000

| .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 31       | 30       | 29       | 28       | 27       | 26       | 25       | 24       | 23        | 22             | 21       | 20         | 19         | 18        | 17                     | 16       |
|-----------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|----------------|----------|------------|------------|-----------|------------------------|----------|
|                                         |          |          |          |          |          |          | 1        | rese     | rved      |                |          |            |            |           |                        |          |
| Type<br>Reset                           | RO<br>0   | RO<br>0        | RO<br>0  | RO<br>0    | RO<br>0    | RO<br>0   | RO<br>0                | RO<br>0  |
| r                                       | 15       | 14       | 13       | 12       | 11       | 10       | 9        | 8        | 7         | 6              | 5        | 4          | 3          | 2         | 1                      | 0        |
|                                         | TS3      | IE3      | END3     | D3       | TS2      | IE2      | END2     | D2       | TS1       | IE1            | END1     | D1         | TS0        | IE0       | END0                   | D0       |
| Type<br>Reset                           | R/W<br>0  | R/W<br>0       | R/W<br>0 | R/W<br>0   | R/W<br>0   | R/W<br>0  | R/W<br>0               | R/W<br>0 |
| Bit/Fi                                  | eld      |          | Name     |          | Туре     | F        | Reset    | Descr    | iption    |                |          |            |            |           |                        |          |
| 31:1                                    | 16       | r        | reserved |          | RO       |          | 0        | compa    |           | /ith futur     | e produc | cts, the v | alue of    | a reserv  | . To prov<br>ed bit sh |          |
| 15                                      | 5        |          | TS3      |          | R/W      |          | 0        | Same     | definitio | n as TS        | 7 but us | ed durin   | g the for  | urth sam  | ple.                   |          |
| 14                                      | ŀ        |          | IE3      |          | R/W      |          | 0        | Same     | definitio | n as IE        | 7 but us | ed durin   | g the for  | urth sam  | ple.                   |          |
| 13                                      | 3        |          | END3     |          | R/W      |          | 0        | Same     | definitio | n as EN        | D7 but u | sed duri   | ng the f   | ourth sai | mple.                  |          |
| 12                                      | 2        |          | D3       |          | R/W      |          | 0        | Same     | definitio | n as D7        | but use  | d during   | the four   | th samp   | le.                    |          |
| 11                                      |          |          | TS2      |          | R/W      |          | 0        | Same     | definitio | n as TS        | 7 but us | ed durin   | g the thi  | rd samp   | le.                    |          |
| 10                                      | )        |          | IE2      |          | R/W      |          | 0        | Same     | definitio | n as IE        | 7 but us | ed durin   | g the thi  | rd samp   | le.                    |          |
| 9                                       |          |          | END2     |          | R/W      |          | 0        | Same     | definitio | n as en        | D7 but u | sed duri   | ng the tl  | nird sam  | ple.                   |          |
| 8                                       |          |          | D2       |          | R/W      |          | 0        | Same     | definitio | n as D7        | but use  | d during   | the third  | d sample  | e.                     |          |
| 7                                       |          |          | TS1      |          | R/W      |          | 0        | Same     | definitio | n as TS        | 7 but us | ed durin   | g the se   | cond sa   | mple.                  |          |
| 6                                       |          |          | IE1      |          | R/W      |          | 0        | Same     | definitio | n as IE        | 7 but us | ed durin   | g the se   | cond sa   | mple.                  |          |
| 5                                       |          |          | END1     |          | R/W      |          | 0        | Same     | definitio | n as EN        | D7 but u | sed duri   | ng the s   | econd s   | ample.                 |          |
| 4                                       |          |          | D1       |          | R/W      |          | 0        | Same     | definitio | <b>n as</b> D7 | but use  | d during   | the sec    | ond sam   | ple.                   |          |
| 3                                       |          |          | TS0      |          | R/W      |          | 0        | Same     | definitio | n as TS        | 7 but us | ed durin   | g the firs | st sampl  | e.                     |          |
| 2                                       |          |          | IE0      |          | R/W      |          | 0        | Same     | definitio | n as IE        | 7 but us | ed durin   | g the firs | st sampl  | e.                     |          |
| 1                                       |          |          | END0     |          | R/W      |          | 0        | Same     | definitio | n as en        | D7 but u | sed duri   | ng the fi  | rst samp  | ole.                   |          |
|                                         |          |          |          |          |          |          |          | Since    | this seq  | uencer ł       | nas only | one ent    | ry, this b | it must t | pe set.                |          |
| 0                                       |          |          | D0       |          | R/W      |          | 0        | Same     | definitio | n as D7        | but use  | d during   | the first  | sample    |                        |          |

# Register 23: ADC Sample Sequence Input Multiplexer Select 3 (ADCSSMUX3), offset 0x0A0

This register defines the analog input configuration for each sample in a sequence executed with Sample Sequencer 3. This register is 4-bits wide and contains information for one possible sample.

#### ADC Sample Sequence Input Multiplexer Select 3 (ADCSSMUX3)

Base 0x4003.8000 Offset 0x0A0 Type R/W, reset 0x0000.0000

| -             | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24      | 23                                                                                                                                                                                            | 22      | 21       | 20        | 19       | 18      | 17      | 16      |  |  |  |  |
|---------------|---------|---------|----------|---------|---------|---------|---------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|-----------|----------|---------|---------|---------|--|--|--|--|
|               |         | 1       |          |         |         |         | I       | rese    | rved                                                                                                                                                                                          |         |          |           |          |         |         |         |  |  |  |  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                       | RO<br>0 | RO<br>0  | RO<br>0   | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 |  |  |  |  |
| 100001        |         |         |          | 12      |         |         |         |         | 7                                                                                                                                                                                             |         |          |           |          |         | 4       |         |  |  |  |  |
| ı             | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8       | /                                                                                                                                                                                             | 6       | 5        | 4         | 3        | 2       | 1       | 0       |  |  |  |  |
|               |         |         |          |         |         |         | rese    | erved   |                                                                                                                                                                                               |         |          |           |          |         | MU      | ixo     |  |  |  |  |
| Туре          | RO      | RO      | RO       | RO      | RO      | RO      | RO      | RO      | RO                                                                                                                                                                                            | RO      | RO       | RO        | RO       | RO      | R/W     | R/W     |  |  |  |  |
| Reset         | 0       | 0       | 0        | 0       | 0       | 0       | 0       | 0       | 0                                                                                                                                                                                             | 0       | 0        | 0         | 0        | 0       | 0       | 0       |  |  |  |  |
| Bit/F         | ield    |         | Name     |         | Туре    | F       | Reset   | Descr   | iption                                                                                                                                                                                        |         |          |           |          |         |         |         |  |  |  |  |
| 31:           | :2      | ļ       | reserved |         | RO      |         | 0       |         | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |         |          |           |          |         |         |         |  |  |  |  |
| 1:0           | 0       |         | MUX0     |         | R/W     |         | 0       | with th | UX0 field<br>ne Samp<br>ed for th                                                                                                                                                             | le Sequ | encer ar | nd specif | ies whic | •       |         |         |  |  |  |  |

## Register 24: ADC Sample Sequence Control 3 (ADCSSCTL3), offset 0x0A4

This register contains the configuration information for each sample for a sequence executed with Sample Sequencer 3. The END bit is always set since there is only one sample in this sequencer. This register is 4-bits wide and contains information for one possible sample.

#### ADC Sample Sequence Control 3 (ADCSSCTL3)

| Base 0x4003.8000<br>Offset 0x0A4<br>Type R/W, reset 0x0000.0002 |  |
|-----------------------------------------------------------------|--|
|                                                                 |  |

|        | 31      | 30       | 29      | 28      | 27       | 26      | 25                                                                                                                                                                                  | 24      | 23        | 22        | 21       | 20        | 19         | 18       | 17       | 16  |
|--------|---------|----------|---------|---------|----------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|-----------|----------|-----------|------------|----------|----------|-----|
|        |         | 1        | 1 1     |         | , ,<br>, |         | 1                                                                                                                                                                                   | rese    | rved      | 1 1       |          | 1         | 1          | r        | 1        |     |
| Туре   | RO      | RO       | RO      | RO      | RO       | RO      | RO                                                                                                                                                                                  | RO      | RO        | RO        | RO       | RO        | RO         | RO       | RO       | RO  |
| Reset  | 0       | 0        | 0       | 0       | 0        | 0       | 0                                                                                                                                                                                   | 0       | 0         | 0         | 0        | 0         | 0          | 0        | 0        | 0   |
|        | 15      | 14       | 13      | 12      | 11       | 10      | 9                                                                                                                                                                                   | 8       | 7         | 6         | 5        | 4         | 3          | 2        | 1        | 0   |
|        |         | •        |         |         |          | rese    | erved                                                                                                                                                                               |         |           |           |          |           | TS0        | IE0      | END0     | D0  |
| Type   | RO<br>0 | RO       | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0                                                                                                                                                                             | RO<br>0 | RO<br>0   | RO<br>0   | RO<br>0  | RO<br>0   | R/W<br>0   | R/W      | R/W<br>0 | R/W |
| Reset  | U       | 0        | U       | 0       | U        | 0       | U                                                                                                                                                                                   | 0       | 0         | 0         | U        | U         | U          | 0        | U        | 0   |
| Bit/Fi | eld     |          | Name    |         | Туре     | F       | Reset                                                                                                                                                                               | Descri  | iption    |           |          |           |            |          |          |     |
| 31:    | 4       | reserved |         | RO      |          | 0       | Software should not rely on the value of a reserved bit. To p<br>compatibility with future products, the value of a reserved bit<br>preserved across a read-modify-write operation. |         |           |           |          |           |            | •        |          |     |
| 3      |         |          | TS0     |         | R/W      |         | 0                                                                                                                                                                                   | Same    | definitic | on as TS  | 7 but us | ed durin  | g the fire | st sampl | e.       |     |
| 2      |         |          | IE0     |         | R/W      |         | 0                                                                                                                                                                                   | Same    | definitio | on as IE  | 7 but us | ed durin  | g the firs | st sampl | e.       |     |
| 1      |         |          | END0    |         | R/W      |         | 0                                                                                                                                                                                   | Same    | definitio | on as en  | D7 but u | ised duri | ing the fi | rst sam  | ple.     |     |
|        |         |          |         |         |          |         |                                                                                                                                                                                     | Since   | this seq  | luencer l | nas only | one ent   | ry, this b | oit must | be set.  |     |
| 0      |         |          | D0      |         | R/W      |         | 0                                                                                                                                                                                   | Same    | definitio | on as D7  | but use  | d during  | the first  | sample   |          |     |

# Register 25: ADC Sample Sequence Result FIFO 3 (ADCSSFIFO3), offset 0x0A8

This register contains the conversion results for samples collected with Sample Sequencer 3. Reads of this register return the conversion result data. If the FIFO is not properly handled by software, overflow and underflow conditions are registered in the **ADCOSTAT** and **ADCUSTAT** registers.

Bit fields and definitions are the same as ADCSSFIFO0 (see page 277) but are for FIFO 3.

# Register 26: ADC Sample Sequence FIFO 3 Status (ADCSSFSTAT3), offset 0x0AC

This register provides a window into the Sample Sequencer FIFO 3, providing full/empty status information as well as the positions of the head and tail pointers. The reset value of 0x100 indicates an empty FIFO.

This register has the same bit fields and definitions as **ADCSSFSTAT0** (see page 278) but is for FIFO 3.

## Register 27: ADC Test Mode Loopback (ADCTMLB), offset 0x100

This register provides loopback operation within the digital logic of the ADC, which can be useful in debugging software without having to provide actual analog stimulus. This test mode is entered by writing a value of 0x0000.0001 to this register. When data is read from the FIFO in loopback mode, the read-only portion of this register is returned.

#### **Read-Only Register**

#### ADC Test Mode Loopback (ADCTMLB)

Base 0x4003.8000

Offset 0x100 Type RO, reset 0x0000.0000

| _      | 31   | 30 | 29       | 28   | 27   | 26 | 25    | 24     | 23          | 22         | 21         | 20        | 19        | 18       | 17                      | 16 |
|--------|------|----|----------|------|------|----|-------|--------|-------------|------------|------------|-----------|-----------|----------|-------------------------|----|
|        |      | 1  |          |      | · ·  |    | 1     | rese   | rved        |            | 1          |           |           |          |                         |    |
| Туре   | RO   | RO | RO       | RO   | RO   | RO | RO    | RO     | RO          | RO         | RO         | RO        | RO        | RO       | RO                      | RO |
| Reset  | 0    | 0  | 0        | 0    | 0    | 0  | 0     | 0      | 0           | 0          | 0          | 0         | 0         | 0        | 0                       | 0  |
|        | 15   | 14 | 13       | 12   | 11   | 10 | 9     | 8      | 7           | 6          | 5          | 4         | 3         | 2        | 1                       | 0  |
|        |      |    | rese     | rved |      |    |       | CN     | NT<br>I     | 1          | CONT       | DIFF      | TS        |          | MUX                     |    |
| Туре   | RO   | RO | RO       | RO   | RO   | RO | RO    | RO     | RO          | RO         | RO         | RO        | RO        | RO<br>0  | RO                      | RO |
| Reset  | 0    | 0  | 0        | 0    | 0    | 0  | 0     | 0      | 0           | 0          | 0          | 0         | 0         | U        | 0                       | 0  |
| Bit/Fi | ield |    | Name     |      | Туре | F  | Reset | Descr  | iption      |            |            |           |           |          |                         |    |
| 31:1   | 10   | r  | reserved |      | RO   |    | 0     | compa  | atibility v | vith futur | e produ    |           | alue of   | a reserv | . To prov<br>ed bit sh  |    |
| 9:6    | 6    |    | CNT      |      | RO   |    | 0     |        | e as it p   | •          |            |           |           |          | counts ea<br>alue for t |    |
| 5      |      |    | CONT     |      | RO   |    | 0     | two se | equence     | rs were    | to run ba  |           | ack, this | indicate | For exar<br>es that th  | •  |
| 4      |      |    | DIFF     |      | RO   |    | 0     | When   | set, ind    | icates th  | at this is | a differe | ential sa | mple.    |                         |    |
| 3      |      |    | TS       |      | RO   |    | 0     | When   | set, ind    | icates th  | at this is | s a temp  | erature   | sensor s | ample.                  |    |
| 2:0    | )    |    | MUX      |      | RO   |    | 0     | Indica | tes whic    | h analog   | g input is | s to be s | ampled.   |          |                         |    |

#### Write-Only Register

#### ADC Test Mode Loopback (ADCTMLB)

Base 0x4003.8000

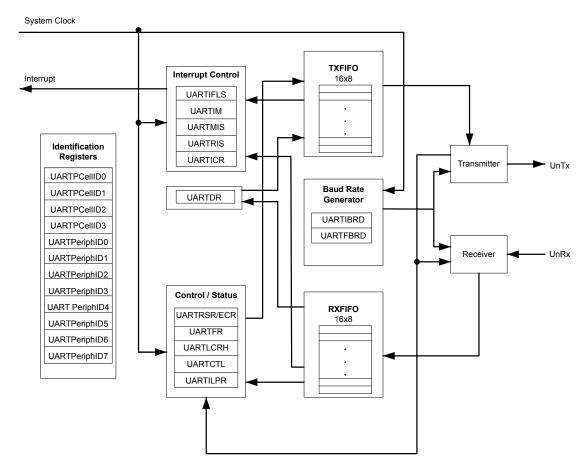
Offset 0x100 Type RO, reset 0x0000.0000

|       | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24       | 23   | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|-------|----|----|----|----|----|----|----|----------|------|----|----|----|----|----|----|----|
|       |    |    | 1  | 1  |    |    |    | rese     | rved |    |    |    |    |    | 1  | _  |
| Туре  | RO       | RO   | RO | RO | RO | RO | RO | RO | RO |
| Reset | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0        | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|       | 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8        | 7    | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|       |    | •  |    | •  |    | •  |    | reserved |      |    | •  |    |    | •  | •  | LB |
| Туре  | RO       | RO   | RO | RO | RO | RO | RO | RO | WO |
| Reset | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0        | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0  |

June 04, 2007

| Bit/Field | Name     | Туре | Reset | Description                                                                                                                                                                                   |
|-----------|----------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:1      | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |
| 0         | LB       | WO   | 0     | When set, forces a loopback within the digital block to provide information on input and unique numbering.                                                                                    |

The 10-bit loopback data is defined as shown in the read for bits  $9{:}0$  below.


## 13 Universal Asynchronous Receivers/Transmitters (UARTs)

The Stellaris<sup>®</sup> Universal Asynchronous Receiver/Transmitter (UART) provides fully programmable, 16C550-type serial interface characteristics. The LM3S6965 controller is equipped with three UART modules.

Each UART has the following features:

- Separate transmit and receive FIFOs
- Programmable FIFO length, including 1-byte deep operation providing conventional double-buffered interface
- FIFO trigger levels of 1/8, 1/4, 1/2, 3/4, and 7/8
- Programmable baud-rate generator allowing rates up to 460.8 Kbps
- Standard asynchronous communication bits for start, stop and parity
- False start bit detection
- Line-break generation and detection
- Fully programmable serial interface characteristics:
  - 5, 6, 7, or 8 data bits
  - Even, odd, stick, or no-parity bit generation/detection
  - 1 or 2 stop bit generation
- IrDA serial-IR (SIR) encoder/decoder providing:
  - Programmable use of IrDA Serial InfraRed (SIR) or UART input/output
  - Support of IrDA SIR encoder/decoder functions for data rates up to 115.2 Kbps half-duplex
  - Support of normal 3/16 and low-power (1.41-2.23 μs) bit durations
  - Programmable internal clock generator enabling division of reference clock by 1 to 256 for low-power mode bit duration

## 13.1 Block Diagram



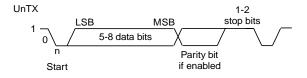
#### Figure 13-1. UART Module Block Diagram

## 13.2 Functional Description

Each Stellaris<sup>®</sup> UART performs the functions of parallel-to-serial and serial-to-parallel conversions. It is similar in functionality to a 16C550 UART, but is not register compatible.

The UART is configured for transmit and/or receive via the TXE and RXE bits of the **UART Control** (**UARTCTL**) register (see page 308). Transmit and receive are both enabled out of reset. Before any control registers are programmed, the UART must be disabled by clearing the UARTEN bit in **UARTCTL**. If the UART is disabled during a TX or RX operation, the current transaction is completed prior to the UART stopping.

The UART peripheral also includes a serial IR (SIR) encoder/decoder block that can be connected to an infrared transceiver to implement an IrDA SIR physical layer. The SIR function is programmed using the UARTCTL register.


#### 13.2.1 Transmit/Receive Logic

The transmit logic performs parallel-to-serial conversion on the data read from the transmit FIFO. The control logic outputs the serial bit stream beginning with a start bit, and followed by the data

bits (LSB first), parity bit, and the stop bits according to the programmed configuration in the control registers. See Figure 13-2 on page 291 for details.

The receive logic performs serial-to-parallel conversion on the received bit stream after a valid start pulse has been detected. Overrun, parity, frame error checking, and line-break detection are also performed, and their status accompanies the data that is written to the receive FIFO.

#### Figure 13-2. UART Character Frame



#### 13.2.2 Baud-Rate Generation

The baud-rate divisor is a 22-bit number consisting of a 16-bit integer and a 6-bit fractional part. The number formed by these two values is used by the baud-rate generator to determine the bit period. Having a fractional baud-rate divider allows the UART to generate all the standard baud rates.

The 16-bit integer is loaded through the **UART Integer Baud-Rate Divisor (UARTIBRD)** register (see page 304) and the 6-bit fractional part is loaded with the **UART Fractional Baud-Rate Divisor (UARTFBRD)** register (see page 305). The baud-rate divisor (BRD) has the following relationship to the system clock (where *BRDI* is the integer part of the BRD and *BRDF* is the fractional part, separated by a decimal place.):

BRD = BRDI + BRDF = SysClk / (16 \* Baud Rate)

The 6-bit fractional number (that is to be loaded into the DIVFRAC bit field in the **UARTFBRD** register) can be calculated by taking the fractional part of the baud-rate divisor, multiplying it by 64, and adding 0.5 to account for rounding errors:

```
UARTFBRD[DIVFRAC] = integer(BRDF * 64 + 0.5)
```

The UART generates an internal baud-rate reference clock at 16x the baud-rate (referred to as Baud16). This reference clock is divided by 16 to generate the transmit clock, and is used for error detection during receive operations.

Along with the **UART Line Control, High Byte (UARTLCRH)** register (see page 306), the **UARTIBRD** and **UARTFBRD** registers form an internal 30-bit register. This internal register is only updated when a write operation to **UARTLCRH** is performed, so any changes to the baud-rate divisor must be followed by a write to the **UARTLCRH** register for the changes to take effect.

To update the baud-rate registers, there are four possible sequences:

- **UARTIBRD** write, **UARTFBRD** write, and **UARTLCRH** write
- UARTFBRD write, UARTIBRD write, and UARTLCRH write
- UARTIBRD write and UARTLCRH write
- UARTFBRD write and UARTLCRH write

## 13.2.3 Data Transmission

Data received or transmitted is stored in two 16-byte FIFOs, though the receive FIFO has an extra four bits per character for status information. For transmission, data is written into the transmit FIFO. If the UART is enabled, it causes a data frame to start transmitting with the parameters indicated in the **UARTLCRH** register. Data continues to be transmitted until there is no data left in the transmit FIFO. The BUSY bit in the **UART Flag (UARTFR)** register (see page 301) is asserted as soon as data is written to the transmit FIFO (that is, if the FIFO is non-empty) and remains asserted while data is being transmitted. The BUSY bit is negated only when the transmit FIFO is empty, and the last character has been transmitted from the shift register, including the stop bits. The UART can indicate that it is busy even though the UART may no longer be enabled.

When the receiver is idle (the UnRx is continuously 1) and the data input goes Low (a start bit has been received), the receive counter begins running and data is sampled on the eighth cycle of Baud16 (described in "Transmit/Receive Logic" on page 290).

The start bit is valid if UnRx is still low on the eighth cycle of Baud16, otherwise a false start bit is detected and it is ignored. Start bit errors can be viewed in the **UART Receive Status (UARTRSR)** register (see page 299). If the start bit was valid, successive data bits are sampled on every 16th cycle of Baud16 (that is, one bit period later) according to the programmed length of the data characters. The parity bit is then checked if parity mode was enabled. Data length and parity are defined in the **UARTLCRH** register.

Lastly, a valid stop bit is confirmed if UnRx is High, otherwise a framing error has occurred. When a full word is received, the data is stored in the receive FIFO, with any error bits associated with that word.

#### 13.2.4 Serial IR (SIR)

The UART peripheral includes an IrDA serial-IR (SIR) encoder/decoder block. The IrDA SIR block provides functionality that converts between an asynchronous UART data stream, and half-duplex serial SIR interface. No analog processing is performed on-chip. The role of the SIR block is to provide a digital encoded output, and decoded input to the UART. The UART signal pins can be connected to an infrared transceiver to implement an IrDA SIR physical layer link. The SIR block has two modes of operation:

- In normal IrDA mode, a zero logic level is transmitted as high pulse of 3/16th duration of the selected baud rate bit period on the output pin, while logic one levels are transmitted as a static LOW signal. These levels control the driver of an infrared transmitter, sending a pulse of light for each zero. On the reception side, the incoming light pulses energize the photo transistor base of the receiver, pulling its output LOW. This drives the UART input pin LOW.
- In low-power IrDA mode, the width of the transmitted infrared pulse is set to three times the period of the internally generated IrLPBaud16 signal (1.63 µs, assuming a nominal 1.8432 MHz frequency) by changing the appropriate bit in the UARTCR register.

Figure 13-3 on page 293 shows the UART transmit and receive signals, with and without IrDA modulation.

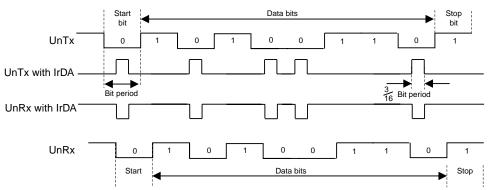



Figure 13-3. IrDA Data Modulation

In both normal and low-power IrDA modes:

- During transmission, the UART data bit is used as the base for encoding
- During reception, the decoded bits are transferred to the UART receive logic

The IrDA SIR physical layer specifies a half-duplex communication link, with a minimum 10 ms delay between transmission and reception. This delay must be generated by software because it is not automatically supported by the UART. The delay is required because the infrared receiver electronics might become biased, or even saturated from the optical power coupled from the adjacent transmitter LED. This delay is known as latency, or receiver setup time.

#### 13.2.5 FIFO Operation

The UART has two 16-entry FIFOs; one for transmit and one for receive. Both FIFOs are accessed via the **UART Data (UARTDR)** register (see page 297). Read operations of the **UARTDR** register return a 12-bit value consisting of 8 data bits and 4 error flags while write operations place 8-bit data in the transmit FIFO.

Out of reset, both FIFOs are disabled and act as 1-byte-deep holding registers. The FIFOs are enabled by setting the FEN bit in **UARTLCRH** (page 306).

FIFO status can be monitored via the **UART Flag (UARTFR)** register (see page 301) and the **UART Receive Status (UARTRSR)** register. Hardware monitors empty, full and overrun conditions. The **UARTFR** register contains empty and full flags (TXFE, TXFF, RXFE and RXFF bits) and the **UARTRSR** register shows overrun status via the OE bit.

The trigger points at which the FIFOs generate interrupts is controlled via the **UART Interrupt FIFO Level Select (UARTIFLS)** register (see page 310). Both FIFOs can be individually configured to trigger interrupts at different levels. Available configurations include 1/8,  $\frac{1}{2}$ ,  $\frac{3}{2}$ , and 7/8. For example, if the  $\frac{1}{4}$  option is selected for the receive FIFO, the UART generates a receive interrupt after 4 data bytes are received. Out of reset, both FIFOs are configured to trigger an interrupt at the  $\frac{1}{2}$  mark.

#### 13.2.6 Interrupts

The UART can generate interrupts when the following conditions are observed:

- Overrun Error
- Break Error

- Parity Error
- Framing Error
- Receive Timeout
- Transmit (when condition defined in the TXIFLSEL bit in the UARTIFLS register is met)
- Receive (when condition defined in the RXIFLSEL bit in the UARTIFLS register is met)

All of the interrupt events are ORed together before being sent to the interrupt controller, so the UART can only generate a single interrupt request to the controller at any given time. Software can service multiple interrupt events in a single interrupt service routine by reading the **UART Masked Interrupt Status (UARTMIS)** register (see page 314).

The interrupt events that can trigger a controller-level interrupt are defined in the **UART Interrupt Mask (UARTIM**) register (see page 311) by setting the corresponding IM bit to 1. If interrupts are not used, the raw interrupt status is always visible via the **UART Raw Interrupt Status (UARTRIS)** register (see page 313).

Interrupts are always cleared (for both the **UARTMIS** and **UARTRIS** registers) by setting the corresponding bit in the **UART Interrupt Clear (UARTICR)** register (see page 315).

#### 13.2.7 Loopback Operation

The UART can be placed into an internal loopback mode for diagnostic or debug work. This is accomplished by setting the LBE bit in the **UARTCTL** register (see page 308). In loopback mode, data transmitted on UnTx is received on the UnRx input.

#### 13.2.8 IrDA SIR block

The IrDA SIR block contains an IrDA serial IR (SIR) protocol encoder/decoder. When enabled, the SIR block uses the UnTx and UnRx pins for the SIR protocol, which should be connected to an IR transceiver.

The SIR block can receive and transmit, but it is only half-duplex so it cannot do both at the same time. Transmission must be stopped before data can be received. The IrDA SIR physcial layer specifies a minimum 10-ms delay between transmission and reception.

## **13.3** Initialization and Configuration

To use the UART, the peripheral clock must be enabled by setting the UART0 bit in the **RCGC1** register. To use the UARTs, the peripheral clock must be enabled by setting the UART0, UART1, or UART2 bits in the **RCGC1** register.

This section discusses the steps that are required for using a UART module. For this example, the system clock is assumed to be 20 MHz and the desired UART configuration is:

- 115200 baud rate
- Data length of 8 bits
- One stop bit
- No parity
- FIFOs disabled

No interrupts

The first thing to consider when programming the UART is the baud-rate divisor (BRD), since the **UARTIBRD** and **UARTFBRD** registers must be written before the **UARTLCRH** register. Using the equation described in "Baud-Rate Generation" on page 291, the BRD can be calculated:

BRD = 20,000,000 / (16 \* 115,200) = 10.8507

which means that the DIVINT field of the **UARTIBRD** register (see page 304) should be set to 10. The value to be loaded into the **UARTFBRD** register (see page 305) is calculated by the equation:

```
UARTFBRD[DIVFRAC] = integer(0.8507 * 64 + 0.5) = 54
```

With the BRD values in hand, the UART configuration is written to the module in the following order:

- 1. Disable the UART by clearing the UARTEN bit in the UARTCTL register.
- 2. Write the integer portion of the BRD to the **UARTIBRD** register.
- 3. Write the fractional portion of the BRD to the UARTFBRD register.
- 4. Write the desired serial parameters to the **UARTLCRH** register (in this case, a value of 0x0000.0060).
- 5. Enable the UART by setting the UARTEN bit in the **UARTCTL** register.

## 13.4 Register Map

"Register Map" on page 295 lists the UART registers. The offset listed is a hexadecimal increment to the register's address, relative to that UART's base address:

- UART0: 0x4000.C000
- UART1: 0x4000.D000
- UART2: 0x4000.E000
- **Note:** The UART must be disabled (see the UARTEN bit in the **UARTCTL** register on page 308) before any of the control registers are reprogrammed. When the UART is disabled during a TX or RX operation, the current transaction is completed prior to the UART stopping.

Table 13-1. UART Register Map

| Offset | Name            | Туре | Reset       | Description                     | See<br>page |
|--------|-----------------|------|-------------|---------------------------------|-------------|
| 0x000  | UARTDR          | RO   | 0x0000.0000 | UART Data                       | 297         |
| 0x004  | UARTRSR/UARTECR | RO   | 0x0000.0000 | UART Receive Status/Error Clear | 299         |
| 0x004  | UARTRSR/UARTECR | RO   | 0x0000.0000 | UART Receive Status/Error Clear | 299         |
| 0x018  | UARTFR          | RO   | 0x0000.0090 | UART Flag                       | 301         |
| 0x020  | UARTILPR        | R/W  | 0x0000.0000 | UART IrDA Low-Power Register    | 303         |
| 0x024  | UARTIBRD        | R/W  | 0x0000.0000 | UART Integer Baud-Rate Divisor  | 304         |

| Offset | Name          | Туре | Reset       | Description                       | See<br>page |
|--------|---------------|------|-------------|-----------------------------------|-------------|
| 0x028  | UARTFBRD      | R/W  | 0x0000.0000 | UART Fractional Baud-Rate Divisor | 305         |
| 0x02C  | UARTLCRH      | R/W  | 0x0000.0000 | UART Line Control                 | 306         |
| 0x030  | UARTCTL       | R/W  | 0x0000.0300 | UART Control                      | 308         |
| 0x034  | UARTIFLS      | R/W  | 0x0000.0012 | UART Interrupt FIFO Level Select  | 310         |
| 0x038  | UARTIM        | R/W  | 0x0000.0000 | UART Interrupt Mask               | 311         |
| 0x03C  | UARTRIS       | RO   | 0x0000.000F | UART Raw Interrupt Status         | 313         |
| 0x040  | UARTMIS       | RO   | 0x0000.0000 | UART Masked Interrupt Status      | 314         |
| 0x044  | UARTICR       | W1C  | 0x0000.0000 | UART Interrupt Clear              | 315         |
| 0xFD0  | UARTPeriphID4 | RO   | 0x0000.0000 | UART Peripheral Identification 4  | 317         |
| 0xFD4  | UARTPeriphID5 | RO   | 0x0000.0000 | UART Peripheral Identification 5  | 318         |
| 0xFD8  | UARTPeriphID6 | RO   | 0x0000.0000 | UART Peripheral Identification 6  | 319         |
| 0xFDC  | UARTPeriphID7 | RO   | 0x0000.0000 | UART Peripheral Identification 7  | 320         |
| 0xFE0  | UARTPeriphID0 | RO   | 0x0000.0011 | UART Peripheral Identification 0  | 321         |
| 0xFE4  | UARTPeriphID1 | RO   | 0x0000.0000 | UART Peripheral Identification 1  | 322         |
| 0xFE8  | UARTPeriphID2 | RO   | 0x0000.0018 | UART Peripheral Identification 2  | 323         |
| 0xFEC  | UARTPeriphID3 | RO   | 0x0000.0001 | UART Peripheral Identification 3  | 324         |
| 0xFF0  | UARTPCellID0  | RO   | 0x0000.000D | UART PrimeCell Identification 0   | 325         |
| 0xFF4  | UARTPCellID1  | RO   | 0x0000.00F0 | UART PrimeCell Identification 1   | 326         |
| 0xFF8  | UARTPCellID2  | RO   | 0x0000.0005 | UART PrimeCell Identification 2   | 327         |
| 0xFFC  | UARTPCellID3  | RO   | 0x0000.00B1 | UART PrimeCell Identification 3   | 328         |

## 13.5 Register Descriptions

The remainder of this section lists and describes the UART registers, in numerical order by address offset.

#### Register 1: UART Data (UARTDR), offset 0x000

This register is the data register (the interface to the FIFOs).

When FIFOs are enabled, data written to this location is pushed onto the transmit FIFO. If FIFOs are disabled, data is stored in the transmitter holding register (the bottom word of the transmit FIFO). A write to this register initiates a transmission from the UART.

For received data, if the FIFO is enabled, the data byte and the 4-bit status (break, frame, parity and overrun) is pushed onto the 12-bit wide receive FIFO. If FIFOs are disabled, the data byte and status are stored in the receiving holding register (the bottom word of the receive FIFO). The received data can be retrieved by reading this register.

#### UART Data (UARTDR)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 UART2 base: 0x4000.E000 Offset 0x000 Type RO, reset 0x0000.0000

| , ,                                                                                                                                                                                                                                                             |         |         |                                                                       |         |         |         |         |                    |          |                                    |                     |                      |                      |          |           |          |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|-----------------------------------------------------------------------|---------|---------|---------|---------|--------------------|----------|------------------------------------|---------------------|----------------------|----------------------|----------|-----------|----------|--|--|--|--|
| _                                                                                                                                                                                                                                                               | 31      | 30      | 29                                                                    | 28      | 27      | 26      | 25      | 24                 | 23       | 22                                 | 21                  | 20                   | 19                   | 18       | 17        | 16       |  |  |  |  |
|                                                                                                                                                                                                                                                                 |         | 1       | 1                                                                     | 1       |         |         | 1       | rese               | rved     | 1                                  | 1                   |                      | 1                    | 1        | 1         |          |  |  |  |  |
| Туре                                                                                                                                                                                                                                                            | RO      | RO      | RO                                                                    | RO      | RO      | RO      | RO      | RO                 | RO       | RO                                 | RO                  | RO                   | RO                   | RO       | RO        | RO       |  |  |  |  |
| Reset                                                                                                                                                                                                                                                           | 0       | 0       | 0                                                                     | 0       | 0       | 0       | 0       | 0                  | 0        | 0                                  | 0                   | 0                    | 0                    | 0        | 0         | 0        |  |  |  |  |
|                                                                                                                                                                                                                                                                 | 15      | 14      | 13                                                                    | 12      | 11      | 10      | 9       | 8                  | 7        | 6                                  | 5                   | 4                    | 3                    | 2        | 1         | 0        |  |  |  |  |
|                                                                                                                                                                                                                                                                 |         | rese    | erved                                                                 | •       | OE      | BE      | PE      | FE                 |          | 1                                  | 1                   | DA                   | ATA                  | 1        | 1         | •        |  |  |  |  |
| Type<br>Reset                                                                                                                                                                                                                                                   | RO<br>0 | RO<br>0 | RO<br>0                                                               | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0            | R/W<br>0 | R/W<br>0                           | R/W<br>0            | R/W<br>0             | R/W<br>0             | R/W<br>0 | R/W<br>0  | R/W<br>0 |  |  |  |  |
| 10000                                                                                                                                                                                                                                                           | 0       | Ū       | Ū                                                                     | Ū       | Ū       | Ū       | Ū       | Ū                  | 0        | Ū                                  | Ū                   | Ū                    | Ū                    | 0        | Ū         | Ū        |  |  |  |  |
| Bit/F                                                                                                                                                                                                                                                           | ield    |         | Name                                                                  |         | Туре    | F       | Reset   | Descr              | iption   |                                    |                     |                      |                      |          |           |          |  |  |  |  |
| 31:12       reserved       RO       0       Software should not rely on the value of a reserved compatibility with future products, the value of a reserved across a read-modify-write operation.         11       OE       RO       0       UART Overrun Error |         |         |                                                                       |         |         |         |         |                    |          |                                    |                     |                      | a reserv             |          |           |          |  |  |  |  |
| 11                                                                                                                                                                                                                                                              | 1       |         | OE                                                                    |         | RO      |         | 0       | UART Overrun Error |          |                                    |                     |                      |                      |          |           |          |  |  |  |  |
|                                                                                                                                                                                                                                                                 |         |         | 1=New data was received when the FIFO was full, resulting in data los |         |         |         |         |                    |          |                                    |                     |                      |                      |          | ata loss. |          |  |  |  |  |
|                                                                                                                                                                                                                                                                 |         |         |                                                                       |         |         |         |         | 0=The              | ere has  | been no                            | data los            | s due to             | a FIFO               | overrun  |           |          |  |  |  |  |
| 10                                                                                                                                                                                                                                                              | )       |         | BE                                                                    |         | RO      |         | 0       | UART               | Break    | Error                              |                     |                      |                      |          |           |          |  |  |  |  |
|                                                                                                                                                                                                                                                                 |         |         |                                                                       |         |         |         |         | the re             | ceive da | to 1 whe<br>ata input<br>time (def | was hel             | d Low fo             | or longer            | than a f | ull-word  | g that   |  |  |  |  |
| In FIFO mode, this error is associated with the<br>the FIFO. When a break occurs, only one 0 ch<br>FIFO. The next character is only enabled after<br>goes to a 1 (marking state) and the next valid                                                             |         |         |                                                                       |         |         |         |         |                    |          |                                    | aracter is the rece | s loaded<br>eived da | into the<br>ta input |          |           |          |  |  |  |  |
| 9 PE RO 0 UART Parity Error                                                                                                                                                                                                                                     |         |         |                                                                       |         |         |         |         |                    |          |                                    |                     |                      |                      |          |           |          |  |  |  |  |
|                                                                                                                                                                                                                                                                 |         |         |                                                                       |         |         |         |         |                    |          | to 1 whe<br>parity de              |                     |                      |                      |          |           |          |  |  |  |  |
|                                                                                                                                                                                                                                                                 |         |         |                                                                       |         |         |         |         | In FIF<br>the FI   |          | , this err                         | or is ass           | ociated              | with the             | charact  | er at the | top of   |  |  |  |  |
|                                                                                                                                                                                                                                                                 |         |         |                                                                       |         |         |         |         |                    |          |                                    |                     |                      |                      |          |           |          |  |  |  |  |

| Bit/Field | Name | Туре | Reset | Description                                                                                                       |
|-----------|------|------|-------|-------------------------------------------------------------------------------------------------------------------|
| 8         | FE   | RO   | 0     | UART Framing Error                                                                                                |
|           |      |      |       | This bit is set to 1 when the received character does not have a valid stop bit (a valid stop bit is 1).          |
| 7:0       | DATA | R/W  | 0     | When written, the data that is to be transmitted via the UART. When read, the data that was received by the UART. |

# Register 2: UART Receive Status/Error Clear (UARTRSR/UARTECR), offset 0x004

The **UARTRSR/UARTECR** register is the receive status register/error clear register.

In addition to the **UARTDR** register, receive status can also be read from the **UARTRSR** register. If the status is read from this register, then the status information corresponds to the entry read from **UARTDR** prior to reading **UARTRSR**. The status information for overrun is set immediately when an overrun condition occurs.

A write of any value to the **UARTECR** register clears the framing, parity, break, and overrun errors. All the bits are cleared to 0 on reset.

#### Read-Only Receive Status (UARTRSR) Register

UART Receive Status/Error Clear (UARTRSR/UARTECR)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 UART2 base: 0x4000.E000 Offset 0x004 Type RO, reset 0x0000.0000

|               | 31        | 30      | 29       | 28      | 27      | 26      | 25                                      | 24      | 23                 | 22                     | 21                    | 20                                             | 19                   | 18                     | 17                  | 16                |  |  |  |
|---------------|-----------|---------|----------|---------|---------|---------|-----------------------------------------|---------|--------------------|------------------------|-----------------------|------------------------------------------------|----------------------|------------------------|---------------------|-------------------|--|--|--|
|               |           |         | 1        |         | · ·     |         | 1                                       | rese    | rved               |                        | 1                     |                                                |                      |                        |                     |                   |  |  |  |
| Type<br>Reset | RO<br>0   | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                 | RO<br>0 | RO<br>0            | RO<br>0                | RO<br>0               | RO<br>0                                        | RO<br>0              | RO<br>0                | RO<br>0             | RO<br>0           |  |  |  |
| _             | 15        | 14      | 13       | 12      | 11      | 10      | 9                                       | 8       | 7                  | 6                      | 5                     | 4                                              | 3                    | 2                      | 1                   | 0                 |  |  |  |
|               |           | 1       | 1 1      |         | · ·     | rese    | erved                                   |         |                    |                        |                       |                                                | OE                   | BE                     | PE                  | FE                |  |  |  |
| Type<br>Reset | RO<br>0   | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                 | RO<br>0 | RO<br>0            | RO<br>0                | RO<br>0               | RO<br>0                                        | RO<br>0              | RO<br>0                | RO<br>0             | RO<br>0           |  |  |  |
| Bit/F         | ield      |         | Name     |         | Туре    | F       | Reset                                   | Descr   | iption             |                        |                       |                                                |                      |                        |                     |                   |  |  |  |
| 31:           | 4         |         | reserved |         | RO      |         | 0                                       | compa   | atibility w        | ith futur              | e produo              | e value o<br>cts, the v<br>fy-write o          | alue of              | a reserv               |                     |                   |  |  |  |
|               |           |         |          |         |         |         | The UARTRSR register cannot be written. |         |                    |                        |                       |                                                |                      |                        |                     |                   |  |  |  |
| 3             | 3 OE RO ( |         |          |         |         |         |                                         | UART    | Overru             | n Error                |                       |                                                |                      |                        |                     |                   |  |  |  |
|               | B OE RO 0 |         |          |         |         |         |                                         |         |                    |                        | -                     | s receive<br>ite to <b>UA</b>                  |                      |                        | is alrea            | dy full.          |  |  |  |
|               |           |         |          |         |         |         |                                         | the FI  | FO is ful          | I, only th             | e conte               | d since ints of the<br>lata in or              | e shift re           | egister a              | re overw            |                   |  |  |  |
| 2             |           |         | BE       |         | RO      |         | 0                                       | UART    | Break E            | Error                  |                       |                                                |                      |                        |                     |                   |  |  |  |
|               |           |         |          |         |         |         |                                         |         | ceived d           | ata inpu               | t was he              | ak condit<br>eld Low f<br>start, dat           | or longe             | r than a               | full-wore           | •                 |  |  |  |
|               |           |         |          |         |         |         |                                         | This b  | it is clea         | red to 0               | by a wri              | te to UA                                       | RTECR                | -                      |                     |                   |  |  |  |
|               |           |         |          |         |         |         |                                         |         | FO. Whe<br>The ne> | en a brea<br>(t charac | ak occur<br>ter is or | ociated<br>s, only o<br>nly enabl<br>d the ne: | ne 0 cha<br>ed after | aracter is<br>the rece | loaded<br>vive data | into the<br>input |  |  |  |

| Bit/Field | Name | Туре | Reset | Description                                                                                                                                            |
|-----------|------|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1         | PE   | RO   | 0     | UART Parity Error                                                                                                                                      |
|           |      |      |       | This bit is set to 1 when the parity of the received data character does not match the parity defined by bits 2 and 7 of the <b>UARTLCRH</b> register. |
|           |      |      |       | This bit is cleared to 0 by a write to <b>UARTECR</b> .                                                                                                |
| 0         | FE   | RO   | 0     | UART Framing Error                                                                                                                                     |
|           |      |      |       | This bit is set to 1 when the received character does not have a valid stop bit (a valid stop bit is 1).                                               |
|           |      |      |       | This bit is cleared to 0 by a write to <b>UARTECR</b> .                                                                                                |
|           |      |      |       | In FIFO mode, this error is associated with the character at the top of the FIFO.                                                                      |

#### Write-Only Error Clear (UARTECR) Register

#### UART Receive Status/Error Clear (UARTRSR/UARTECR)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 UART2 base: 0x4000.E000 Offset 0x004 Type RO, reset 0x0000.0000

|               | 31             | 30      | 29      | 28      | 27      | 26      | 25      | 24          | 23                     | 22       | 21                                    | 20        | 19        | 18       | 17          | 16      |
|---------------|----------------|---------|---------|---------|---------|---------|---------|-------------|------------------------|----------|---------------------------------------|-----------|-----------|----------|-------------|---------|
|               |                | •       | •       |         | · ·     |         | •       | rese        | rved                   |          |                                       | •         |           | 1        | •           |         |
| Type<br>Reset | WO<br>0        | WO<br>0 | WO<br>0 | WO<br>0 | WO<br>0 | WO<br>0 | WO<br>0 | WO<br>0     | WO<br>0                | WO<br>0  | WO<br>0                               | WO<br>0   | WO<br>0   | WO<br>0  | WO<br>0     | WO<br>0 |
|               | 15             | 14      | 13      | 12      | 11      | 10      | 9       | 8           | 7                      | 6        | 5                                     | 4         | 3         | 2        | 1           | 0       |
|               |                | 1       |         | rese    | rved    |         | 1       | 1           |                        |          | ſ                                     | DA        | TA        | I        | 1           |         |
| Type<br>Reset | WO<br>0        | WO<br>0 | WO<br>0 | WO<br>0 | WO<br>0 | WO<br>0 | WO<br>0 | WO<br>0     | WO<br>0                | WO<br>0  | WO<br>0                               | WO<br>0   | WO<br>0   | WO<br>0  | WO<br>0     | WO<br>0 |
| Bit/F         | Bit/Field Name |         |         | Туре    | F       | Reset   | Descr   | iption      |                        |          |                                       |           |           |          |             |         |
| 31:           | :8 reserved    |         |         | WO      |         | 0       | compa   | atibility v | vith futur             | e produ  | e value o<br>cts, the v<br>fy-write o | alue of   | a reserv  |          |             |         |
| 7:0           | 0              |         | DATA    |         | WO      |         | 0       |             | e to this<br>in flags. | register | of any d                              | lata clea | rs the fr | aming, p | oarity, bro | eak and |

## Register 3: UART Flag (UARTFR), offset 0x018

The **UARTFR** register is the flag register. After reset, the TXFF, RXFF, and BUSY bits are 0, and TXFE and RXFE bits are 1.

| UART I                                                                                                                                                                                                          | Flag (U                                                      | ARTFF   | R)             |         |         |         |         |                      |                           |          |            |             |            |          |             |          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------|----------------|---------|---------|---------|---------|----------------------|---------------------------|----------|------------|-------------|------------|----------|-------------|----------|
| UART1 b<br>UART2 b<br>Offset 0x                                                                                                                                                                                 | oase: 0x40<br>oase: 0x40<br>oase: 0x40<br>018<br>, reset 0x0 | 00.D000 | )              |         |         |         |         |                      |                           |          |            |             |            |          |             |          |
|                                                                                                                                                                                                                 | 31                                                           | 30      | 29             | 28      | 27      | 26      | 25      | 24                   | 23                        | 22       | 21         | 20          | 19         | 18       | 17          | 16       |
|                                                                                                                                                                                                                 | 1                                                            |         | <del>г г</del> |         |         |         | 1       | rese                 | rved                      | 1        |            | 1           | 1          |          | 1 I         |          |
| Type<br>Reset                                                                                                                                                                                                   | RO<br>0                                                      | RO<br>0 | RO<br>0        | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0              | RO<br>0                   | RO<br>0  | RO<br>0    | RO<br>0     | RO<br>0    | RO<br>0  | RO<br>0     | RO<br>0  |
|                                                                                                                                                                                                                 | 15                                                           | 14      | 13             | 12      | 11      | 10      | 9       | 8                    | 7                         | 6        | 5          | 4           | 3          | 2        | 1           | 0        |
|                                                                                                                                                                                                                 |                                                              |         |                | rese    | rved    |         | •       | '                    | TXFE                      | RXFF     | TXFF       | RXFE        | BUSY       |          | reserved    |          |
| Type<br>Reset                                                                                                                                                                                                   | RO<br>0                                                      | RO<br>0 | RO<br>0        | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0              | RO<br>1                   | RO<br>0  | RO<br>0    | RO<br>1     | RO<br>0    | RO<br>0  | RO<br>0     | RO<br>0  |
| Bit/F                                                                                                                                                                                                           | ield                                                         |         | Name           |         | Туре    |         | Reset   | Descr                | iption                    |          |            |             |            |          |             |          |
| 31:8 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should b preserved across a read-modify-write operation. |                                                              |         |                |         |         |         |         |                      |                           |          |            |             |            |          |             |          |
| 7 TXFE RO 1 UART Transmit FIFO Empty                                                                                                                                                                            |                                                              |         |                |         |         |         |         |                      |                           |          |            |             |            |          |             |          |
|                                                                                                                                                                                                                 |                                                              |         |                |         |         |         |         |                      | neaning<br><b>'LCRH</b> r |          | t depen    | ds on the   | e state o  | f the FE | n bit in th | ie       |
|                                                                                                                                                                                                                 |                                                              |         |                |         |         |         |         |                      | FIFO is o<br>er is em     |          | (fen is C  | )), this bi | t is set w | hen the  | transmit    | holding  |
|                                                                                                                                                                                                                 |                                                              |         |                |         |         |         |         | If the is emp        |                           | enabled  | (fen is    | 1), this t  | oit is set | when th  | ne transm   | it FIFO  |
| 6                                                                                                                                                                                                               | 6                                                            |         | RXFF           |         | RO      |         | 0       | UART                 | Receiv                    | e FIFO F | ull        |             |            |          |             |          |
|                                                                                                                                                                                                                 |                                                              |         |                |         |         |         |         |                      | neaning<br><b>'LCRH</b> r |          | t depen    | ds on the   | e state o  | f the FE | n bit in th | ie       |
|                                                                                                                                                                                                                 |                                                              |         |                |         |         |         |         | If the lis full.     | FIFO is                   | disabled | , this bit | is set w    | hen the    | receive  | holding r   | egister  |
|                                                                                                                                                                                                                 |                                                              |         |                |         |         |         |         | If the               | FIFO is                   | enabled, | this bit   | is set wł   | nen the r  | eceive   | FIFO is fu  | ull.     |
| 5                                                                                                                                                                                                               | 5                                                            |         | TXFF           |         | RO      |         | 0       | UART                 | Transm                    | nit FIFO | Full       |             |            |          |             |          |
|                                                                                                                                                                                                                 |                                                              |         |                |         |         |         |         |                      | neaning<br><b>'LCRH</b> r |          | t depen    | ds on the   | e state o  | f the FE | n bit in th | ie       |
|                                                                                                                                                                                                                 |                                                              |         |                |         |         |         |         | If the l<br>is full. | FIFO is                   | disabled | , this bit | is set w    | hen the t  | transmit | t holding i | register |
|                                                                                                                                                                                                                 |                                                              |         |                |         |         |         |         | If the               | FIFO is                   | enabled, | this bit   | is set wł   | nen the t  | ransmit  | FIFO is f   | ull.     |
|                                                                                                                                                                                                                 |                                                              |         |                |         |         |         |         |                      |                           |          |            |             |            |          |             |          |

| Bit/Field | Name     | Туре | Reset | Description                                                                                                                                                                                   |
|-----------|----------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4         | RXFE     | RO   | 1     | UART Receive FIFO Empty                                                                                                                                                                       |
|           |          |      |       | The meaning of this bit depends on the state of the FEN bit in the UARTLCRH register.                                                                                                         |
|           |          |      |       | If the FIFO is disabled, this bit is set when the receive holding register is empty.                                                                                                          |
|           |          |      |       | If the FIFO is enabled, this bit is set when the receive FIFO is empty.                                                                                                                       |
| 3         | BUSY     | RO   | 0     | UART Busy                                                                                                                                                                                     |
|           |          |      |       | When this bit is 1, the UART is busy transmitting data. This bit remains set until the complete byte, including all stop bits, has been sent from the shift register.                         |
|           |          |      |       | This bit is set as soon as the transmit FIFO becomes non-empty (regardless of whether UART is enabled).                                                                                       |
| 2:0       | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |

#### Register 4: UART IrDA Low-Power Register (UARTILPR), offset 0x020

The **UARTILPR** register is an 8-bit read/write register that stores the low-power counter divisor value used to generate the IrLPBaud16 signal by dividing down the system clock (SysClk). All the bits are cleared to 0 when reset.

The IrLPBaud16 internal signal is generated by dividing down the UARTCLK signal according to the low-power divisor value written to **UARTILPR**. The low-power divisor value is calculated as follows:

ILPDVSR = SysClk / F<sub>IrLPBaud16</sub>

where  $\mathtt{F}_{\tt IrLPBaud16}$  is nominally 1.8432 MHz.

IrLPBaud16 is an internal signal used for SIR pulse generation when low-power mode is used. You must choose the divisor so that  $1.42 \text{ MHz} < F_{IrLPBaud16} < 2.12 \text{ MHz}$ , which results in a low-power pulse duration of  $1.41-2.11 \mu s$  (three times the period of IrLPBaud16). The minimum frequency of IrLPBaud16 ensures that pulses less than one period of IrLPBaud16 are rejected, but that pulses greater than 1.4  $\mu s$  are accepted as valid pulses.

**Note:** Zero is an illegal value. Programming a zero value results in no IrLPBaud16 pulses being generated.

#### UART IrDA Low-Power Register (UARTILPR)

| UARTI                            | UARTIIDA LOW-FOWEI REGISIEI (UARTILER)                                                                                                                                          |      |      |     |        |      |       |        |             |            |          |                                       |           |          |     |     |     |  |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-----|--------|------|-------|--------|-------------|------------|----------|---------------------------------------|-----------|----------|-----|-----|-----|--|
| UART1 b<br>UART2 b<br>Offset 0x( | JART0 base: 0x4000.C000<br>JART1 base: 0x4000.D000<br>JART2 base: 0x4000.E000<br>Jffset 0x020<br>Type R/W, reset 0x0000.0000<br>31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 |      |      |     |        |      |       |        |             |            |          |                                       |           |          |     |     |     |  |
|                                  | 31                                                                                                                                                                              | 30   | 2    | 29  | 28     | 27   | 26    | 25     | 24          | 23         | 22       | 21                                    | 20        | 19       | 18  | 17  | 16  |  |
|                                  |                                                                                                                                                                                 | 1    | 1    | I   | r<br>I |      |       | Ĩ      | rese        | rved       |          | r                                     | i         | 1        |     | 1   | i i |  |
| Туре                             | RO                                                                                                                                                                              | RO   | ) F  | 20  | RO     | RO   | RO    | RO     | RO          | RO         | RO       | RO                                    | RO        | RO       | RO  | RO  | RO  |  |
| Reset                            | 0                                                                                                                                                                               | 0    |      | 0   | 0      | 0    | 0     | 0      | 0           | 0          | 0        | 0                                     | 0         | 0        | 0   | 0   | 0   |  |
|                                  | 15                                                                                                                                                                              | 14   |      | 13  | 12     | 11   | 10    | 9      | 8           | 7          | 6        | 5                                     | 4         | 3        | 2   | 1   | 0   |  |
|                                  |                                                                                                                                                                                 | 1    |      |     | reser  | rved |       | •      | •           |            |          |                                       | ILPD      | VSR      |     | 1   | '   |  |
| Туре                             | RO                                                                                                                                                                              | RO   |      | 80  | RO     | RO   | RO    | RO     | RO          | R/W        | R/W      | R/W                                   | R/W       | R/W      | R/W | R/W | R/W |  |
| Reset                            | 0                                                                                                                                                                               | 0    |      | 0   | 0      | 0    | 0     | 0      | 0           | 0          | 0        | 0                                     | 0         | 0        | 0   | 0   | 0   |  |
| Reset 0 0 0 0<br>Bit/Field Name  |                                                                                                                                                                                 |      |      |     | Туре   |      | Reset | Descr  | iption      |            |          |                                       |           |          |     |     |     |  |
| 31:                              |                                                                                                                                                                                 | rese | rved |     | RO     |      | 0     | compa  | atibility v | /ith futur | e produ  | e value o<br>cts, the v<br>fy-write o | alue of   | a reserv | •   |     |     |  |
| 7:                               | 0                                                                                                                                                                               |      | ILPD | VSR |        | R/W  | (     | 0x0000 | IrDA L      | .ow-Pow    | er Divis | or                                    |           |          |     |     |     |  |
|                                  |                                                                                                                                                                                 |      |      |     |        |      |       |        | This is     | s an 8-bi  | t low-po | wer divis                             | sor value | Э.       |     |     |     |  |

## Register 5: UART Integer Baud-Rate Divisor (UARTIBRD), offset 0x024

The **UARTIBRD** register is the integer part of the baud-rate divisor value. All the bits are cleared on reset. The minimum possible divide ratio is 1 (when **UARTIBRD**=0), in which case the **UARTFBRD** register is ignored. When changing the **UARTIBRD** register, the new value does not take effect until transmission/reception of the current character is complete. Any changes to the baud-rate divisor must be followed by a write to the **UARTLCRH** register. See "Baud-Rate Generation" on page 291 for configuration details.

UART Integer Baud-Rate Divisor (UARTIBRD)

| UART0 ba<br>UART1 ba<br>UART2 ba<br>Offset 0x0<br>Type R/W | ase: 0x4<br>ase: 0x4<br>024                                | 000.D000<br>000.E000 | )        | ·   |     | ·        |      |                                                                                                          |      |     |     |     |         |          |     |     |  |
|------------------------------------------------------------|------------------------------------------------------------|----------------------|----------|-----|-----|----------|------|----------------------------------------------------------------------------------------------------------|------|-----|-----|-----|---------|----------|-----|-----|--|
|                                                            | 31                                                         | 30                   | 29       | 28  | 27  | 26       | 25   | 24                                                                                                       | 23   | 22  | 21  | 20  | 19      | 18       | 17  | 16  |  |
|                                                            |                                                            | i                    | i .      | ſ   |     |          | 1    | rese                                                                                                     | rved |     |     |     |         | 1        | 1   | Î   |  |
| Туре                                                       | RO                                                         | RO                   | RO       | RO  | RO  | RO       | RO   | RO                                                                                                       | RO   | RO  | RO  | RO  | RO      | RO       | RO  | RO  |  |
| Reset                                                      | 0                                                          | 0                    | 0        | 0   | 0   | 0        | 0    | 0                                                                                                        | 0    | 0   | 0   | 0   | 0       | 0        | 0   | 0   |  |
|                                                            | 15                                                         | 14                   | 13       | 12  | 11  | 10       | 9    | 8                                                                                                        | 7    | 6   | 5   | 4   | 3       | 2        | 1   | 0   |  |
|                                                            |                                                            | 1                    | 1        | •   |     |          |      |                                                                                                          |      |     |     |     |         |          |     |     |  |
| Туре                                                       | R/W                                                        | R/W                  | R/W      | R/W | R/W | R/W      | R/W  | R/W                                                                                                      | R/W  | R/W | R/W | R/W | R/W     | R/W      | R/W | R/W |  |
| Reset                                                      | 0                                                          | 0                    | 0        | 0   | 0   | 0        | 0    | 0                                                                                                        | 0    | 0   | 0   | 0   | 0       | 0        | 0   | 0   |  |
| Bit/F                                                      | Reset 0 0 0 0 0 0 0 0 0<br>Bit/Field Name Type Reset Descr |                      |          |     |     | iption   |      |                                                                                                          |      |     |     |     |         |          |     |     |  |
| 31:                                                        | 16                                                         |                      | reserved |     | RO  |          | 0    | Software should not rely on the<br>compatibility with future products<br>preserved across a read-modify- |      |     |     |     | alue of | a reserv | •   |     |  |
| 15:                                                        | 15:0 DIVINT R/W 0x0000 Integer Baud-Rate Div               |                      |          |     |     | Rate Div | isor |                                                                                                          |      |     |     |     |         |          |     |     |  |

## Register 6: UART Fractional Baud-Rate Divisor (UARTFBRD), offset 0x028

The **UARTFBRD** register is the fractional part of the baud-rate divisor value. All the bits are cleared on reset. When changing the **UARTFBRD** register, the new value does not take effect until transmission/reception of the current character is complete. Any changes to the baud-rate divisor must be followed by a write to the **UARTLCRH** register. See "Baud-Rate Generation" on page 291 for configuration details.

UART Fractional Baud-Rate Divisor (UARTFBRD)

UART0 base: 0x4000.C000

| UART2 ba<br>Offset 0x0                                                                                                           | ase: 0x4<br>028 | 000.D000<br>000.E000 |      |          |      |      |            |           |           |         |     |     |     |     |     |     |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------|------|----------|------|------|------------|-----------|-----------|---------|-----|-----|-----|-----|-----|-----|
|                                                                                                                                  | 31              | 30                   | 29   | 28       | 27   | 26   | 25         | 24        | 23        | 22      | 21  | 20  | 19  | 18  | 17  | 16  |
|                                                                                                                                  |                 | 1                    |      | r r<br>I | ì    |      | Ì          | rese      | rved      |         |     |     |     |     | ı   | Ì   |
| Туре                                                                                                                             | RO              | RO                   | RO   | RO       | RO   | RO   | RO         | RO        | RO        | RO      | RO  | RO  | RO  | RO  | RO  | RO  |
| Reset                                                                                                                            | 0               | 0                    | 0    | 0        | 0    | 0    | 0          | 0         | 0         | 0       | 0   | 0   | 0   | 0   | 0   | 0   |
|                                                                                                                                  | 15              | 14                   | 13   | 12       | 11   | 10   | 9          | 8         | 7         | 6       | 5   | 4   | 3   | 2   | 1   | 0   |
| [                                                                                                                                | reserved        |                      |      |          |      |      |            |           |           |         |     |     |     | RAC | r   |     |
| Туре                                                                                                                             | RO              | RO                   | RO   | RO       | RO   | RO   | RO         | RO        | RO        | RO      | R/W | R/W | R/W | R/W | R/W | R/W |
| Reset                                                                                                                            | 0               | 0                    | 0    | 0        | 0    | 0    | 0          | 0         | 0         | 0       | 0   | 0   | 0   | 0   | 0   | 0   |
| Reset 0 0<br>Bit/Field                                                                                                           |                 |                      | Name |          | Туре |      | Reset      | Descri    | iption    |         |     |     |     |     |     |     |
| 31:6 reserved RO 0 Software should not rely on the va<br>compatibility with future products,<br>preserved across a read-modify-v |                 |                      |      |          |      |      | cts, the v | alue of a | a reserv  | •       |     |     |     |     |     |     |
| 5:0                                                                                                                              | )               | C                    | C    | R/W      |      | 0x00 | Fractio    | onal Bau  | Id-Rate I | Divisor |     |     |     |     |     |     |

## Register 7: UART Line Control (UARTLCRH), offset 0x02C

The **UARTLCRH** register is the line control register. Serial parameters such as data length, parity and stop bit selection are implemented in this register.

When updating the baud-rate divisor (**UARTIBRD** and/or **UARTIFRD**), the **UARTLCRH** register must also be written. The write strobe for the baud-rate divisor registers is tied to the **UARTLCRH** register.

#### UART Line Control (UARTLCRH)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 UART2 base: 0x4000.E000 Offset 0x02C Type R/W, reset 0x0000.0000

|               | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24              | 23                     | 22         | 21         | 20                       | 19         | 18         | 17                       | 16       |
|---------------|---------|---------|----------|---------|---------|---------|---------|-----------------|------------------------|------------|------------|--------------------------|------------|------------|--------------------------|----------|
| [             | 1       | 50      | 1 1      | 20      |         | 20      | 1       | 1               | rved                   | ~~~        | 21         | 20                       | 19         | 10         | · · ·                    |          |
| Туре          | RO      | RO      | RO       | RO      | RO      | RO      | RO      | RO              | RO                     | RO         | RO         | RO                       | RO         | RO         | RO                       | RO       |
| Reset         | 0       | 0       | 0        | 0       | 0       | 0       | 0       | 0               | 0                      | 0          | 0          | 0                        | 0          | 0          | 0                        | 0        |
|               | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8               | 7                      | 6          | 5          | 4                        | 3          | 2          | 1                        | 0        |
|               |         |         |          | rese    | rved    |         |         |                 | SPS                    | WL         | EN         | FEN                      | STP2       | EPS        | PEN                      | BRK      |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0         | R/W<br>0               | R/W<br>0   | R/W<br>0   | R/W<br>0                 | R/W<br>0   | R/W<br>0   | R/W<br>0                 | R/W<br>0 |
|               |         |         |          |         |         |         |         |                 |                        |            |            |                          |            |            |                          |          |
| Bit/Fi        | ield    |         | Name     |         | Туре    | F       | Reset   | Descr           | iption                 |            |            |                          |            |            |                          |          |
| 31:           | 8       | 1       | reserved |         | RO      |         | 0       | Softw           | are shou               | ıld not re | ely on the | e value o                | of a rese  | rved bit.  | . To prov                | ride     |
|               |         |         |          |         |         |         |         |                 | -                      |            |            | cts, the v<br>fy-write ( |            |            | ed bit sh                | ould be  |
| 7             |         |         | SPS      |         | R/W     |         | 0       | UART            | Stick Pa               | arity Sel  | ect        |                          |            |            |                          |          |
|               |         |         |          |         |         |         |         | and cl          | hecked a               | as a 0. V  | Vhen bits  | s 1 and 7                | 7 are set  |            | oit is tran<br>s cleared |          |
|               |         |         |          |         |         |         |         |                 |                        |            |            | ecked as<br>parity is    |            | I          |                          |          |
|               |         |         |          |         |         |         |         | WIEI            |                        | s cleare   | u, slick j | panty is                 | uisabieu   |            |                          |          |
| 6:5           | 5       |         | WLEN     |         | R/W     |         | 0       | UART            | Word L                 | ength      |            |                          |            |            |                          |          |
|               |         |         |          |         |         |         |         |                 | its indica<br>as follo |            | umber c    | of data bi               | its transr | nitted or  | receive                  | d in a   |
|               |         |         |          |         |         |         |         | 0x3: 8          | bits                   |            |            |                          |            |            |                          |          |
|               |         |         |          |         |         |         |         | 0x2: 7          | ' bits                 |            |            |                          |            |            |                          |          |
|               |         |         |          |         |         |         |         | 0x1:6           | bits                   |            |            |                          |            |            |                          |          |
|               |         |         |          |         |         |         |         | 0x0: 5          | bits (de               | fault)     |            |                          |            |            |                          |          |
| 4             |         |         | FEN      |         | R/W     |         | 0       | UART            | Enable                 | FIFOs      |            |                          |            |            |                          |          |
|               |         |         |          |         |         |         |         | lf this<br>mode |                        | to 1, trar | nsmit and  | d receive                | e FIFO bi  | uffers are | e enable                 | d (FIFO  |
|               |         |         |          |         |         |         |         |                 |                        |            |            | disableo<br>egisters     | •          | cter moo   | de). The                 | FIFOs    |
| 3             |         |         | STP2     |         | R/W     |         | 0       | UART            | Two Ste                | op Bits S  | Select     |                          |            |            |                          |          |
|               |         |         |          |         |         |         |         |                 |                        |            |            |                          |            |            | end of a<br>g receive    |          |

| Bit/Field | Name | Туре | Reset | Description                                                                                                                                                                                                                 |
|-----------|------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2         | EPS  | R/W  | 0     | UART Even Parity Select                                                                                                                                                                                                     |
|           |      |      |       | If this bit is set to 1, even parity generation and checking is performed during transmission and reception, which checks for an even number of 1s in data and parity bits.                                                 |
|           |      |      |       | When cleared to 0, then odd parity is performed, which checks for an odd number of 1s.                                                                                                                                      |
|           |      |      |       | This bit has no effect when parity is disabled by the ${\tt PEN}$ bit.                                                                                                                                                      |
| 1         | PEN  | R/W  | 0     | UART Parity Enable                                                                                                                                                                                                          |
|           |      |      |       | If this bit is set to 1, parity checking and generation is enabled; otherwise, parity is disabled and no parity bit is added to the data frame.                                                                             |
| 0         | BRK  | R/W  | 0     | UART Send Break                                                                                                                                                                                                             |
|           |      |      |       | If this bit is set to 1, a Low level is continually output on the UnTX output, after completing transmission of the current character. For the proper execution of the break command, the software must set this bit for at |

after completing transmission of the current character. For the proper execution of the break command, the software must set this bit for at least two frames (character periods). For normal use, this bit must be cleared to 0.

## Register 8: UART Control (UARTCTL), offset 0x030

The **UARTCTL** register is the control register. All the bits are cleared on reset except for the Transmit Enable (TXE) and Receive Enable (RXE) bits, which are set to 1.

To enable the UART module, the UARTEN bit must be set to 1. If software requires a configuration change in the module, the UARTEN bit must be cleared before the configuration changes are written. If the UART is disabled during a transmit or receive operation, the current transaction is completed prior to the UART stopping.

| UART                                                    | Control                       | (UART                                                                                                                                       | CTL)     |         |         |         |          |          |            |           |           |            |           |                                 |                 |          |
|---------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|---------|---------|----------|----------|------------|-----------|-----------|------------|-----------|---------------------------------|-----------------|----------|
| UART0 b<br>UART1 b<br>UART2 b<br>Offset 0x0<br>Type R/M | ase: 0x40<br>ase: 0x40<br>030 | 00.D000<br>00.E000                                                                                                                          |          |         |         |         |          |          |            |           |           |            |           |                                 |                 |          |
|                                                         | 31                            | 30                                                                                                                                          | 29       | 28      | 27      | 26      | 25       | 24       | 23         | 22        | 21        | 20         | 19        | 18                              | 17              | 16       |
|                                                         |                               |                                                                                                                                             |          |         | · ·     |         | 1        | rese     | rved       | ľ         |           |            |           | i i                             |                 |          |
| Туре                                                    | RO                            | RO                                                                                                                                          | RO       | RO      | RO      | RO      | RO       | RO       | RO         | RO        | RO        | RO         | RO        | RO                              | RO              | RO       |
| Reset                                                   | 0                             | 0                                                                                                                                           | 0        | 0       | 0       | 0       | 0        | 0        | 0          | 0         | 0         | 0          | 0         | 0                               | 0               | 0        |
|                                                         | 15                            | 14                                                                                                                                          | 13       | 12      | 11      | 10      | 9        | 8        | 7          | 6         | 5         | 4          | 3         | 2                               | 1               | 0        |
|                                                         |                               |                                                                                                                                             | rese     | rved    |         |         | RXE      | TXE      | LBE        |           | rese      | rved       |           | SIRLP                           | SIREN           | UARTEN   |
| Type<br>Reset                                           | RO<br>0                       | RO<br>0                                                                                                                                     | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | R/W<br>1 | R/W<br>1 | R/W<br>0   | RO<br>0   | RO<br>0   | RO<br>0    | RO<br>0   | R/W<br>0                        | R/W<br>0        | R/W<br>0 |
| 100001                                                  | •                             | Ū                                                                                                                                           | Ū        | 0       | Ū       | Ū       | ·        |          | 0          | Ū         | 0         | Ū          | Ū         | Ū                               | Ū               | Ū        |
| Bit/F                                                   | ield                          | Name     Type     Reset     Description       reserved     RO     0     Software should not rely on the value of a reserved bit. To provide |          |         |         |         |          |          |            |           |           |            |           |                                 |                 |          |
| 31:                                                     | 10                            | I                                                                                                                                           | reserved |         | RO      |         | 0        | compa    |            | ith futur | e produo  | cts, the v | alue of   | a reserv                        | •               |          |
| 9                                                       | 1                             |                                                                                                                                             | RXE      |         | R/W     |         | 1        | UART     | Receive    | e Enable  |           |            |           |                                 |                 |          |
|                                                         |                               |                                                                                                                                             |          |         |         |         |          | the UA   |            | sabled ir | n the mic |            |           | JART is<br>it compl             |                 |          |
|                                                         |                               |                                                                                                                                             |          |         |         |         |          | Note:    | То е       | nable re  | ception   | , the UAI  | RTEN bit  | must als                        | so be se        | t.       |
| 8                                                       | i                             |                                                                                                                                             | TXE      |         | R/W     |         | 1        | UART     | Transm     | it Enable | 9         |            |           |                                 |                 |          |
|                                                         |                               |                                                                                                                                             |          |         |         |         |          | the UA   |            | isabled i | n the mi  | iddle of a |           | UART is<br>iission, it          |                 |          |
|                                                         |                               |                                                                                                                                             |          |         |         |         |          | Note:    | То е       | nable tra | ansmiss   | ion, the   | UARTEN    | bit mus                         | t also be       | e set.   |
| 7                                                       |                               |                                                                                                                                             | LBE      |         | R/W     |         | 0        | UART     | Loop Ba    | ack Enal  | ole       |            |           |                                 |                 |          |
|                                                         |                               |                                                                                                                                             |          |         |         |         |          | If this  | bit is set | to 1, the | UnTX      | path is fe | ed throug | gh the ਹ                        | nRX <b>patl</b> | n.       |
| 6:                                                      | 3                             | I                                                                                                                                           | reserved |         | RO      |         | 0        | compa    |            | ith futur | e produo  | cts, the v | alue of   | erved bit.<br>a reserven.<br>n. |                 |          |

| Bit/Field | Name   | Туре | Reset | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------|--------|------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2         | SIRLP  | R/W  | 0     | UART SIR Low Power Mode                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|           |        |      |       | This bit selects the IrDA encoding mode. If this bit is cleared to 0, low-level bits are transmitted as an active High pulse with a width of 3/16th of the bit period. If this bit is set to 1, low-level bits are transmitted with a pulse width which is 3 times the period of the IrLPBaud16 input signal, regardless of the selected bit rate. Setting this bit uses less power, but might reduce transmission distances. See page 303 for more information. |
| 1         | SIREN  | R/W  | 0     | UART SIR Enable                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|           |        |      |       | If this bit is set to 1, the IrDA SIR block is enabled, and the UART will transmit and receive data using SIR protocol.                                                                                                                                                                                                                                                                                                                                          |
| 0         | UARTEN | R/W  | 0     | UART Enable                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           |        |      |       | If this bit is set to 1, the UART is enabled. When the UART is disabled                                                                                                                                                                                                                                                                                                                                                                                          |

If this bit is set to 1, the UART is enabled. When the UART is disabled in the middle of transmission or reception, it completes the current character before stopping.

#### Register 9: UART Interrupt FIFO Level Select (UARTIFLS), offset 0x034

The UARTIFLS register is the interrupt FIFO level select register. You can use this register to define the FIFO level at which the TXRIS and RXRIS bits in the UARTRIS register are triggered.

The interrupts are generated based on a transition through a level rather than being based on the level. That is, the interrupts are generated when the fill level progresses through the trigger level. For example, if the receive trigger level is set to the half-way mark, the interrupt is triggered as the module is receiving the 9th character.

Out of reset, the TXIFLSEL and RXIFLSEL bits are configured so that the FIFOs trigger an interrupt at the half-way mark.

| UART0 b<br>UART1 b<br>UART2 b<br>Offset 0x | ase: 0x4<br>ase: 0x4<br>ase: 0x4<br>034 | 000.C000<br>000.D000<br>000.E000<br>×0000.00' |          |         | JARTIF  | L3)     |         |         |             |            |          |            |           |           |                        |          |
|--------------------------------------------|-----------------------------------------|-----------------------------------------------|----------|---------|---------|---------|---------|---------|-------------|------------|----------|------------|-----------|-----------|------------------------|----------|
|                                            | 31                                      | 30                                            | 29       | 28      | 27      | 26      | 25      | 24      | 23          | 22         | 21       | 20         | 19        | 18        | 17                     | 16       |
|                                            |                                         |                                               |          |         |         |         |         | rese    | rved        |            |          |            |           |           |                        |          |
| Type<br>Reset                              | RO<br>0                                 | RO<br>0                                       | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0    | RO<br>0  | RO<br>0    | RO<br>0   | RO<br>0   | RO<br>0                | RO<br>0  |
|                                            | 15                                      | 14                                            | 13       | 12      | 11      | 10      | 9       | 8       | 7           | 6          | 5        | 4          | 3         | 2         | 1                      | 0        |
|                                            |                                         |                                               |          |         | reser   |         |         |         | . <u> </u>  |            |          | RXIFLSEL   | L         |           | TXIFLSEL               |          |
| Type<br>Reset                              | RO<br>0                                 | RO<br>0                                       | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0    | R/W<br>0 | R/W<br>1   | R/W<br>0  | R/W<br>0  | R/W<br>1               | R/W<br>0 |
| Bit/F                                      | ield                                    |                                               | Name     |         | Туре    | I       | Reset   | Descr   | iption      |            |          |            |           |           |                        |          |
| 31                                         | :6                                      | r                                             | reserved |         | RO      |         | 0       | compa   | atibility w | ith futur  | e produ  |            | alue of   | a reserv  | . To prov<br>ed bit sh |          |
| 5:                                         | 3                                       | R                                             | XIFLSEI  | L       | R/W     |         | 0x2     | UART    | Receive     | e Interru  | pt FIFO  | Level Se   | elect     |           |                        |          |
|                                            |                                         |                                               |          |         |         |         |         | The tr  | igger po    | ints for t | he recei | ive interr | upt are a | as follow | /s:                    |          |
|                                            |                                         |                                               |          |         |         |         |         | 000: F  | RX FIFO     | ≥ 1/8 fu   | II       |            |           |           |                        |          |
|                                            |                                         |                                               |          |         |         |         |         | 001: F  | RX FIFO     | ≥ ¼ full   |          |            |           |           |                        |          |
|                                            |                                         |                                               |          |         |         |         |         | 010: F  | RX FIFO     | ≥ ½ full   | (default | :)         |           |           |                        |          |
|                                            |                                         |                                               |          |         |         |         |         | 011: F  | RX FIFO     | ≥ ¾ full   |          |            |           |           |                        |          |
|                                            |                                         |                                               |          |         |         |         |         | 100: F  | RX FIFO     | ≥ 7/8 fu   | II       |            |           |           |                        |          |
|                                            |                                         |                                               |          |         |         |         |         | 101-1   | 11: Rese    | rved       |          |            |           |           |                        |          |
| 2:                                         | 0                                       | T.                                            | XIFLSEI  | -       | R/W     |         | 0x2     | UART    | Transm      | it Interru | upt FIFC | ) Level S  | elect     |           |                        |          |
|                                            |                                         |                                               |          |         |         |         |         | The tr  | igger po    | ints for t | he trans | smit inter | rupt are  | as follo  | ws:                    |          |
|                                            |                                         |                                               |          |         |         |         |         | 000: T  | X FIFO      | ≤ 1/8 ful  | I        |            |           |           |                        |          |
|                                            |                                         |                                               |          |         |         |         |         | 001: T  | X FIFO      | ≤ ¼ full   |          |            |           |           |                        |          |
|                                            |                                         |                                               |          |         |         |         |         | 010: T  | X FIFO      | ≤ ½ full   | (default | )          |           |           |                        |          |
|                                            |                                         |                                               |          |         |         |         |         | 011: T  | X FIFO      | ≤ ¾ full   |          |            |           |           |                        |          |
|                                            |                                         |                                               |          |         |         |         |         | 100: T  | X FIFO      | ≤ 7/8 ful  | II       |            |           |           |                        |          |
|                                            |                                         |                                               |          |         |         |         |         | 101-1   | 11: Rese    | rved       |          |            |           |           |                        |          |
|                                            |                                         |                                               |          |         |         |         |         |         |             |            |          |            |           |           |                        |          |

UART Interrupt FIFO Level Select (UARTIFLS)

## Register 10: UART Interrupt Mask (UARTIM), offset 0x038

The **UARTIM** register is the interrupt mask set/clear register.

On a read, this register gives the current value of the mask on the relevant interrupt. Writing a 1 to a bit allows the corresponding raw interrupt signal to be routed to the interrupt controller. Writing a 0 prevents the raw interrupt signal from being sent to the interrupt controller.

#### UART Interrupt Mask (UARTIM)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 UART2 base: 0x4000.E000 Offset 0x038 Type R/W, reset 0x0000.0000

|               |         | 00      | 00       | 00      | 07      | 00       | 05       | 04       | 00          | 00          | 04        | 00                     | 40         | 40         | 47        | 40         |
|---------------|---------|---------|----------|---------|---------|----------|----------|----------|-------------|-------------|-----------|------------------------|------------|------------|-----------|------------|
| [             | 31      | 30      | 29       | 28      | 27      | 26       | 25       | 24       | 23          | 22          | 21        | 20                     | 19         | 18         | 17        | 16         |
| Tum-          | RO      | RO      | RO       | PO      | RO      | RO       | RO       | RO       | rved<br>RO  | RO          | RO        | RO                     | PO         | RO         | RO        | RO         |
| Type<br>Reset | 0       | 0       | 0        | RO<br>0 | 0       | 0        | 0        | 0        | 0           | 0           | 0         | 0                      | RO<br>0    | 0          | 0         | 0          |
|               | 15      | 14      | 13       | 12      | 11      | 10       | 9        | 8        | 7           | 6           | 5         | 4                      | 3          | 2          | 1         | 0          |
|               | ľ       |         | reserved |         |         | OEIM     | BEIM     | PEIM     | FEIM        | RTIM        | TXIM      | RXIM                   | l          | rese       | rved      |            |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0    | R/W<br>0    | R/W<br>0  | R/W<br>0               | RO<br>0    | RO<br>0    | RO<br>0   | RO<br>0    |
|               |         |         |          |         |         |          |          |          |             |             |           |                        |            |            |           |            |
| Bit/F         | ield    |         | Name     |         | Туре    | F        | Reset    | Descr    | iption      |             |           |                        |            |            |           |            |
| 31:           | 11      |         | reserved |         | RO      |          | 0        | Softwa   | are shou    | ıld not re  | elv on th | e value c              | of a rese  | rved bit.  | To prov   | ride       |
|               |         |         |          |         |         |          |          | compa    | atibility v | vith futur  | e produ   | cts, the v             | alue of a  | a reserve  | •         |            |
|               |         |         |          |         |         |          |          | prese    | rved acr    | oss a rea   | ad-modi   | fy-write o             | operation  | n.         |           |            |
| 10            | )       |         | OEIM     |         | R/W     |          | 0        | UART     | Overru      | n Error lı  | nterrupt  | Mask                   |            |            |           |            |
|               |         |         |          |         |         |          |          | On a ı   | read, the   | e current   | mask fo   | or the OE              | IM inter   | rupt is re | eturned.  |            |
|               |         |         |          |         |         |          |          | Setting  | g this bit  | to 1 pror   | notes the | e OEIM ir              | nterrupt t | o the inte | errupt co | ontroller. |
| 9             |         |         | BEIM     |         | R/W     |          | 0        | UART     | Break B     | Error Inte  | errupt Ma | ask                    |            |            |           |            |
|               |         |         |          |         |         |          |          | On a i   | read, the   | e current   | mask fo   | or the BE              | IM inter   | rupt is re | eturned.  |            |
|               |         |         |          |         |         |          |          | Setting  | g this bit  | to 1 pror   | notes the | еветмir                | nterrupt t | o the inte | errupt co | ontroller. |
| 8             |         |         | PEIM     |         | R/W     |          | 0        | UART     | Parity E    | Error Inte  | errupt Ma | ask                    |            |            |           |            |
|               |         |         |          |         |         |          |          | On a ı   | read, the   | e current   | mask fo   | or the PE              | IM inter   | rupt is re | eturned.  |            |
|               |         |         |          |         |         |          |          | Settin   | g this bit  | to 1 pror   | notes the | ереімir                | nterrupt t | o the inte | errupt co | ontroller. |
| 7             |         |         | FEIM     |         | R/W     |          | 0        |          | -           |             |           |                        | ·          |            | ·         |            |
| 1             |         |         |          |         |         |          | 0        |          |             | g Error li  |           |                        | TN intor   | rupt io ra | turned    |            |
|               |         |         |          |         |         |          |          |          |             |             |           | or the FE<br>e FEIM ir |            |            |           | ntrollor   |
|               |         |         |          |         |         |          |          |          | -           |             |           |                        |            |            | enuproc   | nu oner.   |
| 6             |         |         | RTIM     |         | R/W     |          | 0        | UART     | Receiv      | e Time-C    | Out Inter | rupt Mas               | k          |            |           |            |
|               |         |         |          |         |         |          |          | On a ı   | read, the   | e current   | mask fo   | or the RT              | IM inter   | rupt is re | eturned.  |            |
|               |         |         |          |         |         |          |          | Setting  | g this bit  | to 1 pror   | notes the | e rtim ir              | nterrupt t | o the inte | errupt co | ontroller. |
| 5             |         |         | TXIM     |         | R/W     |          | 0        | UART     | Transm      | iit Interru | ipt Mask  | ĸ                      |            |            |           |            |
|               |         |         |          |         |         |          |          | On a ı   | read, the   | current     | mask fo   | or the TX              | IM inter   | rupt is re | eturned.  |            |
|               |         |         |          |         |         |          |          | Setting  | g this bit  | to 1 pror   | notes the | етхіміr                | nterrupt t | o the inte | errupt co | ontroller. |
|               |         |         |          |         |         |          |          |          |             |             |           |                        |            |            |           |            |

| Bit/Field | Name     | Туре | Reset | Description                                                                                                                                                                                   |
|-----------|----------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4         | RXIM     | R/W  | 0     | UART Receive Interrupt Mask                                                                                                                                                                   |
|           |          |      |       | On a read, the current mask for the RXIM interrupt is returned.                                                                                                                               |
|           |          |      |       | Setting this bit to 1 promotes the $\ensuremath{\mathtt{RXIM}}$ interrupt to the interrupt controller.                                                                                        |
| 3:0       | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |

## Register 11: UART Raw Interrupt Status (UARTRIS), offset 0x03C

The **UARTRIS** register is the raw interrupt status register. On a read, this register gives the current raw status value of the corresponding interrupt. A write has no effect.

#### UART Raw Interrupt Status (UARTRIS)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 UART2 base: 0x4000.E000 Offset 0x03C Type RO, reset 0x0000.000F

| _             | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24      | 23          | 22         | 21          | 20                                    | 19        | 18        | 17        | 16      |
|---------------|---------|---------|----------|---------|---------|---------|---------|---------|-------------|------------|-------------|---------------------------------------|-----------|-----------|-----------|---------|
|               |         |         |          |         |         | •       | 1       | rese    | rved        |            |             |                                       |           |           |           |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0    | RO<br>0     | RO<br>0                               | RO<br>0   | RO<br>0   | RO<br>0   | RO<br>0 |
|               | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8       | 7           | 6          | 5           | 4                                     | 3         | 2         | 1         | 0       |
|               | Î       |         | reserved |         |         | OERIS   | BERIS   | PERIS   | FERIS       | RTRIS      | TXRIS       | RXRIS                                 | Î         | rese      | rved      |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0    | RO<br>0     | RO<br>0                               | RO<br>1   | RO<br>1   | RO<br>1   | RO<br>1 |
| Bit/Fi        | eld     |         | Name     |         | Туре    | F       | Reset   | Descr   | iption      |            |             |                                       |           |           |           |         |
| 31:1          | 11      | l       | reserved |         | RO      |         | 0       | compa   | atibility v | vith futur | e produo    | e value c<br>cts, the v<br>fy-write c | alue of a | a reserv  | •         |         |
| 10            | )       |         | OERIS    |         | RO      |         | 0       | UART    | Overru      | n Error F  | Raw Inte    | rrupt Sta                             | tus       |           |           |         |
|               |         |         |          |         |         |         |         | Gives   | the raw     | interrup   | t state (p  | prior to m                            | nasking)  | of this i | nterrupt. |         |
| 9             |         |         | BERIS    |         | RO      |         | 0       | UART    | Break B     | Error Rav  | w Interru   | pt Statu                              | s         |           |           |         |
|               |         |         |          |         |         |         |         | Gives   | the raw     | interrup   | t state (p  | prior to m                            | nasking)  | of this i | nterrupt. |         |
| 8             |         |         | PERIS    |         | RO      |         | 0       | UART    | Parity E    | Error Rav  | w Interru   | pt Status                             | S         |           |           |         |
|               |         |         |          |         |         |         |         | Gives   | the raw     | interrup   | t state (p  | orior to m                            | nasking)  | of this i | nterrupt. |         |
| 7             |         |         | FERIS    |         | RO      |         | 0       | UART    | Framin      | g Error F  | Raw Inte    | rrupt Sta                             | itus      |           |           |         |
|               |         |         |          |         |         |         |         | Gives   | the raw     | interrup   | t state (p  | prior to m                            | nasking)  | of this i | nterrupt. |         |
| 6             |         |         | RTRIS    |         | RO      |         | 0       | UART    | Receiv      | e Time-C   | Out Raw     | Interrup                              | t Status  |           |           |         |
|               |         |         |          |         |         |         |         | Gives   | the raw     | interrup   | t state (p  | prior to m                            | nasking)  | of this i | nterrupt. |         |
| 5             |         |         | TXRIS    |         | RO      |         | 0       | UART    | Transm      | it Raw I   | nterrupt    | Status                                |           |           |           |         |
|               |         |         |          |         |         |         |         | Gives   | the raw     | interrup   | t state (p  | prior to m                            | nasking)  | of this i | nterrupt. |         |
| 4             |         |         | RXRIS    |         | RO      |         | 0       | UART    | Receiv      | e Raw Ir   | nterrupt \$ | Status                                |           |           |           |         |
|               |         |         |          |         |         |         |         | Gives   | the raw     | interrup   | t state (p  | prior to m                            | nasking)  | of this i | nterrupt. |         |
| 3:0           | )       | ļ       | reserved |         | RO      |         | 0xF     | compa   | atibility v | vith futur | e produo    | e value c<br>cts, the v<br>fy-write c | alue of a | a reserv  |           |         |

## Register 12: UART Masked Interrupt Status (UARTMIS), offset 0x040

The **UARTMIS** register is the masked interrupt status register. On a read, this register gives the current masked status value of the corresponding interrupt. A write has no effect.

#### UART Masked Interrupt Status (UARTMIS)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 UART2 base: 0x4000.E000 Offset 0x040 Type RO, reset 0x0000.0000

| _             | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24      | 23          | 22         | 21         | 20                                    | 19        | 18       | 17      | 16      |
|---------------|---------|---------|----------|---------|---------|---------|---------|---------|-------------|------------|------------|---------------------------------------|-----------|----------|---------|---------|
|               |         |         |          |         |         |         | •       | rese    | rved        |            |            | ' '                                   |           |          | •       |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0    | RO<br>0    | RO<br>0                               | RO<br>0   | RO<br>0  | RO<br>0 | RO<br>0 |
|               | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8       | 7           | 6          | 5          | 4                                     | 3         | 2        | 1       | 0       |
| [             | 1       |         | reserved |         | r       | OEMIS   | BEMIS   | PEMIS   | FEMIS       | RTMIS      | TXMIS      | RXMIS                                 |           |          | rved    |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0    | RO<br>0    | RO<br>0                               | RO<br>0   | RO<br>0  | RO<br>0 | RO<br>0 |
| Bit/Fi        | ield    |         | Name     |         | Туре    | F       | Reset   | Descr   | iption      |            |            |                                       |           |          |         |         |
| 31:'          | 11      | I       | reserved |         | RO      |         | 0       | compa   | atibility v | vith futur | e produo   | e value c<br>cts, the v<br>fy-write c | alue of a | a reserv |         |         |
| 10            | )       |         | OEMIS    |         | RO      |         | 0       | UART    | Overru      | n Error N  | /lasked l  | nterrupt                              | Status    |          |         |         |
|               |         |         |          |         |         |         |         | Gives   | the mas     | sked inte  | rrupt sta  | ate of this                           | s interru | ot.      |         |         |
| 9             |         |         | BEMIS    |         | RO      |         | 0       | UART    | Break B     | Error Ma   | sked Int   | errupt St                             | atus      |          |         |         |
|               |         |         |          |         |         |         |         |         |             |            |            | ate of this                           |           | ot.      |         |         |
| 8             |         |         | PEMIS    |         | RO      |         | 0       |         |             |            |            | errupt St                             |           |          |         |         |
| 0             |         |         | FEINIS   |         | KU      |         | 0       |         | •           |            |            | ate of this                           |           | at       |         |         |
|               |         |         |          |         |         |         |         |         |             |            | •          |                                       |           | л.       |         |         |
| 7             |         |         | FEMIS    |         | RO      |         | 0       |         |             | •          |            | Interrupt                             |           |          |         |         |
|               |         |         |          |         |         |         |         | Gives   | the mas     | sked inte  | rrupt sta  | ate of this                           | sinterru  | ot.      |         |         |
| 6             |         |         | RTMIS    |         | RO      |         | 0       | UART    | Receiv      | e Time-C   | Dut Masl   | ked Inter                             | rupt Sta  | tus      |         |         |
|               |         |         |          |         |         |         |         | Gives   | the mas     | sked inte  | rrupt sta  | ate of this                           | s interru | ot.      |         |         |
| 5             |         |         | TXMIS    |         | RO      |         | 0       | UART    | Transm      | nit Maske  | ed Interro | upt Statu                             | S         |          |         |         |
|               |         |         |          |         |         |         |         | Gives   | the mas     | sked inte  | rrupt sta  | ate of this                           | s interru | ot.      |         |         |
| 4             |         |         | RXMIS    |         | RO      |         | 0       | UART    | Receiv      | e Maske    | d Interru  | pt Statu                              | S         |          |         |         |
|               |         |         |          |         |         |         |         | Gives   | the mas     | sked inte  | rrupt sta  | ate of this                           | s interru | ot.      |         |         |
| 3:0           | )       | I       | reserved |         | RO      |         | 0       | compa   | atibility v | vith futur | e produo   | e value c<br>cts, the v<br>fy-write c | alue of a | a reserv | •       |         |

## Register 13: UART Interrupt Clear (UARTICR), offset 0x044

The **UARTICR** register is the interrupt clear register. On a write of 1, the corresponding interrupt (both raw interrupt and masked interrupt, if enabled) is cleared. A write of 0 has no effect.

#### UART Interrupt Clear (UARTICR)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 UART2 base: 0x4000.E000 Offset 0x044 Type W1C, reset 0x0000.0000

| 11            | 31      | 30                                                                                               | 29             | 28      | 27      | 26         | 25      | 24      | 23          | 22         | 21         | 20                       | 19        | 18         | 17        | 16      |
|---------------|---------|--------------------------------------------------------------------------------------------------|----------------|---------|---------|------------|---------|---------|-------------|------------|------------|--------------------------|-----------|------------|-----------|---------|
|               |         |                                                                                                  | · ·            | 1       |         |            | 1       | rese    | rved        |            |            |                          |           |            |           |         |
| Type<br>Reset | RO<br>0 | RO<br>0                                                                                          | RO<br>0        | RO<br>0 | RO<br>0 | RO<br>0    | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0    | RO<br>0    | RO<br>0                  | RO<br>0   | RO<br>0    | RO<br>0   | RO<br>0 |
| Reset         |         | 14                                                                                               |                | 12      | 11      |            | 9       | 8       |             |            | 5          |                          | 3         | 2          |           | 0       |
|               | 15      | 14                                                                                               | 13<br>reserved | 12      |         | 10<br>OEIC | BEIC    | PEIC    | 7<br>FEIC   | 6<br>RTIC  | 5<br>TXIC  | 4<br>RXIC                | 3         | 1          | 1<br>rved |         |
| Туре          | RO      | RO                                                                                               | RO             | RO      | RO      | W1C        | W1C     | W1C     | W1C         | W1C        | W1C        | W1C                      | RO        | RO         | RO        | RO      |
| Reset         | 0       | 0                                                                                                | 0              | 0       | 0       | 0          | 0       | 0       | 0           | 0          | 0          | 0                        | 0         | 0          | 0         | 0       |
| Bit/F         | ield    |                                                                                                  | Name           |         | Туре    | F          | Reset   | Descr   | iption      |            |            |                          |           |            |           |         |
| 31:           | 11      |                                                                                                  | reserved       |         | RO      |            | 0       | Softwa  | are shou    | ıld not re | ely on the | e value o                | of a rese | erved bit. | To prov   | ide     |
|               |         |                                                                                                  |                |         |         |            |         | compa   | atibility v | /ith futur | e produ    | cts, the v<br>fy-write o | alue of   | a reserv   | ed bit sh | ould be |
| 10            | 0       |                                                                                                  | OEIC           |         | W1C     |            | 0       | Overr   | un Error    | Interrup   | t Clear    |                          |           |            |           |         |
|               |         |                                                                                                  |                |         |         |            |         | 0: No   | effect or   | the inte   | errupt.    |                          |           |            |           |         |
|               |         | 0: No effect on the interrupt.<br>1: Clears interrupt.<br>BEIC W1C 0 Break Error Interrupt Clear |                |         |         |            |         |         |             |            |            |                          |           |            |           |         |
| 9             | )       |                                                                                                  | BEIC           |         | W1C     |            | 0       | Break   | Error In    | terrupt C  | Clear      |                          |           |            |           |         |
|               |         |                                                                                                  |                |         |         |            |         | 0: No   | effect or   | the inte   | errupt.    |                          |           |            |           |         |
|               |         |                                                                                                  |                |         |         |            |         | 1: Cle  | ars inter   | rupt.      |            |                          |           |            |           |         |
| 8             | }       |                                                                                                  | PEIC           |         | W1C     |            | 0       | Parity  | Error In    | terrupt C  | Clear      |                          |           |            |           |         |
|               |         |                                                                                                  |                |         |         |            |         | 0: No   | effect or   | n the inte | errupt.    |                          |           |            |           |         |
|               |         |                                                                                                  |                |         |         |            |         | 1: Cle  | ars inter   | rupt.      |            |                          |           |            |           |         |
| 7             | ,       |                                                                                                  | FEIC           |         | W1C     |            | 0       | Frami   | ng Error    | Interrup   | t Clear    |                          |           |            |           |         |
|               |         |                                                                                                  |                |         |         |            |         | 0: No   | effect or   | the inte   | errupt.    |                          |           |            |           |         |
|               |         |                                                                                                  |                |         |         |            |         | 1: Cle  | ars inter   | rupt.      |            |                          |           |            |           |         |
| 6             | 6       |                                                                                                  | RTIC           |         | W1C     |            | 0       | Recei   | ve Time     | Out Inte   | errupt Cl  | ear                      |           |            |           |         |
|               |         |                                                                                                  |                |         |         |            |         | 0: No   | effect or   | the inte   | errupt.    |                          |           |            |           |         |
|               |         |                                                                                                  |                |         |         |            |         | 1: Cle  | ars inter   | rupt.      |            |                          |           |            |           |         |
| 5             | 5       |                                                                                                  | TXIC           |         | W1C     |            | 0       | Trans   | mit Inter   | rupt Clea  | ar         |                          |           |            |           |         |
|               |         |                                                                                                  |                |         |         |            |         | 0: No   | effect or   | the inte   | errupt.    |                          |           |            |           |         |
|               |         |                                                                                                  |                |         |         |            |         | 1: Cle  | ars inter   | rupt.      |            |                          |           |            |           |         |

| Bit/Field | Name     | Туре | Reset | Description                                                                                                                                                                                   |
|-----------|----------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4         | RXIC     | W1C  | 0     | Receive Interrupt Clear                                                                                                                                                                       |
|           |          |      |       | 0: No effect on the interrupt.                                                                                                                                                                |
|           |          |      |       | 1: Clears interrupt.                                                                                                                                                                          |
| 3:0       | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |

## Register 14: UART Peripheral Identification 4 (UARTPeriphID4), offset 0xFD0

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

#### UART Peripheral Identification 4 (UARTPeriphID4)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 UART2 base: 0x4000.E000 Offset 0xFD0 Type RO, reset 0x0000.0000

|       | 31   | 30 | 29       | 28   | 27   | 26 | 25    | 24    | 23          | 22         | 21       | 20      | 19      | 18       | 17                     | 16               |
|-------|------|----|----------|------|------|----|-------|-------|-------------|------------|----------|---------|---------|----------|------------------------|------------------|
|       |      |    |          |      |      |    | •     | rese  | rved        |            |          |         |         | I        | •                      | •                |
| Туре  | RO   | RO | RO       | RO   | RO   | RO | RO    | RO    | RO          | RO         | RO       | RO      | RO      | RO       | RO                     | RO               |
| Reset | 0    | 0  | 0        | 0    | 0    | 0  | 0     | 0     | 0           | 0          | 0        | 0       | 0       | 0        | 0                      | 0                |
|       | 15   | 14 | 13       | 12   | 11   | 10 | 9     | 8     | 7           | 6          | 5        | 4       | 3       | 2        | 1                      | 0                |
|       |      | T  |          | rese | rved |    | 1     | I     |             |            | ſ        | I<br>Pl | D4      | I        | T                      |                  |
| Туре  | RO   | RO | RO       | RO   | RO   | RO | RO    | RO    | RO          | RO         | RO       | RO      | RO      | RO       | RO                     | RO               |
| Reset | 0    | 0  | 0        | 0    | 0    | 0  | 0     | 0     | 0           | 0          | 0        | 0       | 0       | 0        | 0                      | 0                |
| Bit/F | ield |    | Name     |      | Туре |    | Reset | Descr | iption      |            |          |         |         |          |                        |                  |
|       |      |    |          |      |      |    |       |       |             |            |          |         |         |          |                        |                  |
| 31:8  |      | I  | reserved |      | RO   |    | 0     | compa | atibility v | vith futur | e produ  |         | alue of | a reserv | . To prov<br>ed bit sh | ride<br>Iould be |
| 7:    | 0    |    | PID4     |      | RO   |    | 0x00  | UART  | Periphe     | eral ID R  | egister[ | 7:0]    |         |          |                        |                  |

## Register 15: UART Peripheral Identification 5 (UARTPeriphID5), offset 0xFD4

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

#### UART Peripheral Identification 5 (UARTPeriphID5)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 UART2 base: 0x4000.E000 Offset 0xFD4 Type RO, reset 0x0000.0000

|       | 31   | 30 | 29       | 28   | 27   | 26 | 25    | 24    | 23          | 22         | 21        | 20                                    | 19      | 18       | 17 | 16 |  |
|-------|------|----|----------|------|------|----|-------|-------|-------------|------------|-----------|---------------------------------------|---------|----------|----|----|--|
|       |      |    |          |      | , ,  |    | •     | rese  | rved        |            |           | 1                                     |         | I        | •  |    |  |
| Туре  | RO   | RO | RO       | RO   | RO   | RO | RO    | RO    | RO          | RO         | RO        | RO                                    | RO      | RO       | RO | RO |  |
| Reset | 0    | 0  | 0        | 0    | 0    | 0  | 0     | 0     | 0           | 0          | 0         | 0                                     | 0       | 0        | 0  | 0  |  |
|       | 15   | 14 | 13       | 12   | 11   | 10 | 9     | 8     | 7           | 6          | 5         | 4                                     | 3       | 2        | 1  | 0  |  |
|       |      | T  | 1        | rese | rved |    | ı     | PID5  |             |            |           |                                       |         |          |    |    |  |
| Туре  | RO   | RO | RO       | RO   | RO   | RO | RO    | RO    | RO          | RO         | RO        | RO                                    | RO      | RO       | RO | RO |  |
| Reset | 0    | 0  | 0        | 0    | 0    | 0  | 0     | 0     | 0           | 0          | 0         | 0                                     | 0       | 0        | 0  | 0  |  |
| Bit/F | ield |    | Name     |      | Туре | I  | Reset | Descr | iption      |            |           |                                       |         |          |    |    |  |
| 31:   | :8   | I  | reserved |      | RO   |    | 0     | compa | atibility v | ith futur/ | e produ   | e value o<br>cts, the v<br>fy-write o | alue of | a reserv |    |    |  |
| 7:    | 0    |    | PID5     |      | RO   |    | 0x00  | UART  | Periphe     | eral ID R  | egister[' | 15:8]                                 |         |          |    |    |  |

## Register 16: UART Peripheral Identification 6 (UARTPeriphID6), offset 0xFD8

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

#### UART Peripheral Identification 6 (UARTPeriphID6)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 UART2 base: 0x4000.E000 Offset 0xFD8 Type RO, reset 0x0000.0000

|       | 31   | 30 | 29       | 28   | 27   | 26 | 25    | 24    | 23      | 22         | 21        | 20         | 19      | 18       | 17                     | 16               |
|-------|------|----|----------|------|------|----|-------|-------|---------|------------|-----------|------------|---------|----------|------------------------|------------------|
|       |      |    |          |      |      |    | 1     | rese  | rved    |            |           |            |         | 1        | •                      | •                |
| Туре  | RO   | RO | RO       | RO   | RO   | RO | RO    | RO    | RO      | RO         | RO        | RO         | RO      | RO       | RO                     | RO               |
| Reset | 0    | 0  | 0        | 0    | 0    | 0  | 0     | 0     | 0       | 0          | 0         | 0          | 0       | 0        | 0                      | 0                |
|       | 15   | 14 | 13       | 12   | 11   | 10 | 9     | 8     | 7       | 6          | 5         | 4          | 3       | 2        | 1                      | 0                |
|       |      | T  | 1        | rese | rved |    | 1     | PID6  |         |            |           |            |         |          |                        |                  |
| Туре  | RO   | RO | RO       | RO   | RO   | RO | RO    | RO    | RO      | RO         | RO        | RO         | RO      | RO       | RO                     | RO               |
| Reset | 0    | 0  | 0        | 0    | 0    | 0  | 0     | 0     | 0       | 0          | 0         | 0          | 0       | 0        | 0                      | 0                |
| Bit/F | ïeld |    | Name     |      | Туре | I  | Reset | Descr | iption  |            |           |            |         |          |                        |                  |
| 31:   | :8   | I  | reserved |      | RO   |    | 0     | compa |         | vith futur | e produ   | cts, the v | alue of | a reserv | . To prov<br>ed bit sh | ride<br>Iould be |
| 7:    | 0    |    | PID6     |      | RO   |    | 0x00  | UART  | Periphe | eral ID R  | egister[2 | 23:16]     |         |          |                        |                  |

## Register 17: UART Peripheral Identification 7 (UARTPeriphID7), offset 0xFDC

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 7 (UARTPeriphID7)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 UART2 base: 0x4000.E000 Offset 0xFDC Type RO, reset 0x0000.0000

|       | 31        | 30 | 29       | 28 | 27         | 26   | 25    | 24     | 23                                                                                                                                                                                          | 22        | 21        | 20     | 19 | 18           | 17 | 16 |  |  |  |  |
|-------|-----------|----|----------|----|------------|------|-------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|--------|----|--------------|----|----|--|--|--|--|
|       |           | 1  |          |    |            |      | 1     | rese   | erved                                                                                                                                                                                       |           |           |        |    |              | •  |    |  |  |  |  |
| Туре  | RO        | RO | RO       | RO | RO         | RO   | RO    | RO     | RO                                                                                                                                                                                          | RO        | RO        | RO     | RO | RO           | RO | RO |  |  |  |  |
| Reset | 0         | 0  | 0        | 0  | 0          | 0    | 0     | 0      | 0                                                                                                                                                                                           | 0         | 0         | 0      | 0  | 0            | 0  | 0  |  |  |  |  |
| -     | 15        | 14 | 13       | 12 | 11         | 10   | 9     | 8      | 7                                                                                                                                                                                           | 6         | 5         | 4      | 3  | 2            | 1  | 0  |  |  |  |  |
|       |           |    |          |    |            |      |       |        |                                                                                                                                                                                             |           |           |        |    | <br>PID7<br> |    |    |  |  |  |  |
| Туре  | RO        | RO | RO       | RO | RO         | RO   | RO    | RO     | RO                                                                                                                                                                                          | RO        | RO        | RO     | RO | RO           | RO | RO |  |  |  |  |
| Reset | 0         | 0  | 0        | 0  | 0          | 0    | 0     | 0      | 0                                                                                                                                                                                           | 0         | 0         | 0      | 0  | 0            | 0  | 0  |  |  |  |  |
| Bit/F | Bit/Field |    | Name     |    | Type Reset |      | Descr | iption |                                                                                                                                                                                             |           |           |        |    |              |    |    |  |  |  |  |
| 31:   | 31:8      |    | reserved |    | RO         | RO 0 |       | compa  | Software should not rely on the value of a reserved bit. To provi<br>compatibility with future products, the value of a reserved bit sho<br>preserved across a read-modify-write operation. |           |           |        |    |              |    |    |  |  |  |  |
| 7:0   | 0         |    | PID7     |    | RO         |      | 0x00  | UART   | Periphe                                                                                                                                                                                     | eral ID R | egister[3 | 31:24] |    |              |    |    |  |  |  |  |

## Register 18: UART Peripheral Identification 0 (UARTPeriphID0), offset 0xFE0

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

#### UART Peripheral Identification 0 (UARTPeriphID0)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 UART2 base: 0x4000.E000 Offset 0xFE0 Type RO, reset 0x0000.0011

| -             | 31        | 30       | 29      | 28      | 27      | 26      | 25                                                                                                   | 24                                                                                                                                                                                         | 23       | 22      | 21      | 20      | 19      | 18      | 17      | 16      |  |  |
|---------------|-----------|----------|---------|---------|---------|---------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|---------|---------|---------|---------|---------|---------|--|--|
|               |           |          |         |         |         |         | 1                                                                                                    | rese                                                                                                                                                                                       | reserved |         |         |         |         |         |         |         |  |  |
| Type<br>Reset | RO<br>0   | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                              | RO<br>0                                                                                                                                                                                    | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 |  |  |
| 100001        | 15        | 14       | 13      | 12      | 11      | 10      | 9                                                                                                    | 8                                                                                                                                                                                          | 7        | 6       | 5       | 4       | 3       | 2       | 1       | 0       |  |  |
|               | 10        | 1        | 1 1     | rese    | r r     | 10      |                                                                                                      | · · ·                                                                                                                                                                                      | PIDO     |         |         |         |         |         |         |         |  |  |
| Type<br>Reset | RO<br>0   | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                              | RO<br>0                                                                                                                                                                                    | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>1 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>1 |  |  |
| Bit/F         | Bit/Field |          | Name    |         |         | F       | Reset                                                                                                | Descr                                                                                                                                                                                      | iption   |         |         |         |         |         |         |         |  |  |
| 31:           | :8        | reserved |         |         | RO 0    |         |                                                                                                      | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation. |          |         |         |         |         |         |         |         |  |  |
| 7:(           | 7:0 PID0  |          |         | RO 0x11 |         |         | UART Peripheral ID Register[7:0]<br>Can be used by software to identify the presence of this periphe |                                                                                                                                                                                            |          |         |         |         |         |         |         |         |  |  |

## Register 19: UART Peripheral Identification 1 (UARTPeriphID1), offset 0xFE4

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

#### UART Peripheral Identification 1 (UARTPeriphID1)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 UART2 base: 0x4000.E000 Offset 0xFE4 Type RO, reset 0x0000.0000

|               | 31      | 30      | 29       | 28      | 27         | 26      | 25      | 24      | 23                                                                                                                                                                                            | 22        | 21         | 20         | 19       | 18         | 17        | 16      |  |  |
|---------------|---------|---------|----------|---------|------------|---------|---------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|------------|----------|------------|-----------|---------|--|--|
|               |         | 1       |          |         |            |         | 1       | rese    | reserved                                                                                                                                                                                      |           |            |            |          |            |           |         |  |  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0    | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                       | RO<br>0   | RO<br>0    | RO<br>0    | RO<br>0  | RO<br>0    | RO<br>0   | RO<br>0 |  |  |
| Reset         |         |         |          |         |            |         |         |         |                                                                                                                                                                                               |           |            |            |          |            | 0         |         |  |  |
|               | 15      | 14      | 13       | 12      | 11         | 10      | 9       | 8       | 7                                                                                                                                                                                             | 6         | 5          | 4          | 3        | 2          | 1         | 0       |  |  |
|               |         |         | -        | rese    | rved       |         |         |         | PID1                                                                                                                                                                                          |           |            |            |          |            |           |         |  |  |
| Туре          | RO      | RO      | RO       | RO      | RO         | RO      | RO      | RO      | RO                                                                                                                                                                                            | RO        | RO         | RO         | RO       | RO         | RO        | RO      |  |  |
| Reset         | 0       | 0       | 0        | 0       | 0          | 0       | 0       | 0       | 0                                                                                                                                                                                             | 0         | 0          | 0          | 0        | 0          | 0         | 0       |  |  |
| Bit/F         | ield    | Name    |          |         | Type Reset |         |         | Descr   | iption                                                                                                                                                                                        |           |            |            |          |            |           |         |  |  |
| 2.01          |         |         | . taine  |         | . ) p o    |         |         | 2000.   |                                                                                                                                                                                               |           |            |            |          |            |           |         |  |  |
| 31            | :8      |         | reserved |         | RO 0       |         |         |         | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |           |            |            |          |            |           |         |  |  |
| 7:            | 0       |         | PID1     |         | RO         |         | 0x00    | UART    | Periphe                                                                                                                                                                                       | eral ID R | egister[1  | 15:8]      |          |            |           |         |  |  |
|               |         |         |          |         |            |         |         | Can b   | e used b                                                                                                                                                                                      | by softwa | are to ide | entify the | e preser | nce of thi | is periph | eral.   |  |  |

## Register 20: UART Peripheral Identification 2 (UARTPeriphID2), offset 0xFE8

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

#### UART Peripheral Identification 2 (UARTPeriphID2)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 UART2 base: 0x4000.E000 Offset 0xFE8 Type RO, reset 0x0000.0018

|               | 31        | 30       | 29      | 28      | 27      | 26      | 25                                                                                                                                                                                             | 24      | 23      | 22      | 21      | 20      | 19       | 18         | 17        | 16      |
|---------------|-----------|----------|---------|---------|---------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|---------|---------|----------|------------|-----------|---------|
|               |           | •        |         |         |         |         | •                                                                                                                                                                                              | rese    | rved    |         |         |         | 1        | •          | 1         |         |
| Type<br>Reset | RO<br>0   | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                        | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0    | RO<br>0   | RO<br>0 |
|               | 15        | 14       | 13      | 12      | 11      | 10      | 9                                                                                                                                                                                              | 8       | 7       | 6       | 5       | 4       | 3        | 2          | 1         | 0       |
|               |           | î        | î î     | rese    | rved    |         | î                                                                                                                                                                                              | ì       |         |         |         | PI      | D2       | Î          | î         |         |
| Type<br>Reset | RO<br>0   | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                        | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>1 | RO<br>1  | RO<br>0    | RO<br>0   | RO<br>0 |
| Bit/F         | Bit/Field |          | Name    |         |         | F       | Reset                                                                                                                                                                                          | Descr   | iption  |         |         |         |          |            |           |         |
| 31            | :8        | reserved |         |         | RO 0    |         | Software should not rely on the value of a reserved bit. To provide<br>compatibility with future products, the value of a reserved bit shou<br>preserved across a read-modify-write operation. |         |         |         |         |         |          |            |           |         |
| 7:            | 0         |          | PID2    |         | RO      |         |                                                                                                                                                                                                |         | Periphe |         | • •     | -       | e preser | nce of thi | is periph | eral.   |

## Register 21: UART Peripheral Identification 3 (UARTPeriphID3), offset 0xFEC

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

#### UART Peripheral Identification 3 (UARTPeriphID3)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 UART2 base: 0x4000.E000 Offset 0xFEC Type RO, reset 0x0000.0001

|               | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24      | 23                                                                                                        | 22        | 21         | 20         | 19       | 18         | 17        | 16      |  |  |
|---------------|---------|---------|----------|---------|---------|---------|---------|---------|-----------------------------------------------------------------------------------------------------------|-----------|------------|------------|----------|------------|-----------|---------|--|--|
|               |         | 1       |          |         |         |         | 1       | rese    | reserved                                                                                                  |           |            |            |          |            |           |         |  |  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                   | RO<br>0   | RO<br>0    | RO<br>0    | RO<br>0  | RO<br>0    | RO<br>0   | RO<br>0 |  |  |
| Report        | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8       | 7                                                                                                         | 6         | 5          | 4          | 3        | 2          | 4         | 0       |  |  |
|               | 15      | 14      | 13       |         | r r     | 10      | 9<br>1  | °<br>1  |                                                                                                           |           |            |            |          |            |           |         |  |  |
|               |         |         |          | rese    | rved    |         |         |         | PID3                                                                                                      |           |            |            |          |            |           |         |  |  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                   | RO<br>0   | RO<br>0    | RO<br>0    | RO<br>0  | RO<br>0    | RO<br>0   | RO<br>1 |  |  |
| Reset         | 0       | 0       | 0        | 0       | 0       | 0       | 0       | 0       | 0                                                                                                         | 0         | 0          | 0          | 0        | 0          | 0         | 1       |  |  |
| Bit/F         | ield    |         | Name     |         | Туре    | F       | Reset   | Descr   | intion                                                                                                    |           |            |            |          |            |           |         |  |  |
| Ditt          |         |         | Nume     |         | Type    | '       | 10001   | Deser   | ption                                                                                                     |           |            |            |          |            |           |         |  |  |
| 31            | :8      |         | reserved |         | RO 0    |         |         |         | Software should not rely on the value of a reserv<br>compatibility with future products, the value of a r |           |            |            |          |            |           |         |  |  |
|               |         |         |          |         |         |         |         | prese   | rved acro                                                                                                 | oss a rea | ad-modif   | fy-write o | operatio | n.         |           |         |  |  |
| 7:            | 0       |         | PID3     |         | RO      |         | 0x01    | UART    | Periphe                                                                                                   | eral ID R | egister[3  | 31:24]     |          |            |           |         |  |  |
|               |         |         |          |         |         |         |         | Can b   | e used b                                                                                                  | by softwa | are to ide | entify the | e preser | nce of thi | is periph | eral.   |  |  |

# Register 22: UART PrimeCell Identification 0 (UARTPCellID0), offset 0xFF0

The **UARTPCellIDn** registers are hard-coded and the fields within the registers determine the reset values.

### UART PrimeCell Identification 0 (UARTPCelIID0)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 UART2 base: 0x4000.E000 Offset 0xFF0 Type RO, reset 0x0000.000D

| -             | 31                | 30      | 29      | 28      | 27      | 26      | 25      | 24                      | 23                               | 22       | 21         | 20      | 19        | 18        | 17        | 16      |
|---------------|-------------------|---------|---------|---------|---------|---------|---------|-------------------------|----------------------------------|----------|------------|---------|-----------|-----------|-----------|---------|
|               |                   |         |         |         |         |         | 1       | rese                    | rved                             |          |            |         |           |           |           |         |
| Type<br>Reset | RO<br>0           | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                 | RO<br>0                          | RO<br>0  | RO<br>0    | RO<br>0 | RO<br>0   | RO<br>0   | RO<br>0   | RO<br>0 |
|               | 15                | 14      | 13      | 12      | 11      | 10      | 9       | 8                       | 7                                | 6        | 5          | 4       | 3         | 2         | 1         | 0       |
| [             |                   | 1       | 1 1     | rese    | r r     |         | 1       |                         |                                  |          |            |         | D0        | 1         | 1         |         |
| Type<br>Reset | RO<br>0           | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                 | RO<br>0                          | RO<br>0  | RO<br>0    | RO<br>0 | RO<br>1   | RO<br>1   | RO<br>0   | RO<br>1 |
| Bit/F         | ield              |         | Name    |         | Туре    | F       | Reset   | Descr                   | iption                           |          |            |         |           |           |           |         |
| 31:           | 8 reserved RO 0 S |         |         |         |         |         | compa   | are shou<br>atibility w | /ith futur                       | e produc | cts, the v | alue of | a reserv  | •         |           |         |
| 7:(           | D                 |         | CID0    |         | RO      |         | 0x0D    |                         | <sup>°</sup> PrimeC<br>les softw |          | • •        | -       | eripheral | identific | ation sys | stem.   |

# Register 23: UART PrimeCell Identification 1 (UARTPCellID1), offset 0xFF4

The **UARTPCellIDn** registers are hard-coded and the fields within the registers determine the reset values.

### UART PrimeCell Identification 1 (UARTPCellID1)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 UART2 base: 0x4000.E000 Offset 0xFF4 Type RO, reset 0x0000.00F0

|               | 31      | 30      | 29                          | 28      | 27      | 26      | 25      | 24      | 23                                   | 22         | 21        | 20         | 19       | 18        | 17       | 16      |
|---------------|---------|---------|-----------------------------|---------|---------|---------|---------|---------|--------------------------------------|------------|-----------|------------|----------|-----------|----------|---------|
|               |         | 1       |                             |         | · · ·   |         | 1       | rese    | erved                                |            |           |            |          | 1         | 1        |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0                     | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                              | RO<br>0    | RO<br>0   | RO<br>0    | RO<br>0  | RO<br>0   | RO<br>0  | RO<br>0 |
| Neget         |         |         |                             |         |         |         |         |         |                                      |            |           |            |          |           | 0        |         |
|               | 15      | 14      | 13                          | 12      | 11      | 10      | 9       | 8       | 7                                    | 6          | 5         | 4          | 3        | 2         | 1        | 0       |
|               |         | •       |                             | rese    | rved    |         | •       | •       |                                      |            |           | CI         | D1       | •         | •        |         |
| Туре          | RO      | RO      | RO                          | RO      | RO      | RO      | RO      | RO      | RO                                   | RO         | RO        | RO         | RO       | RO        | RO       | RO      |
| Reset         | 0       | 0       | 0                           | 0       | 0       | 0       | 0       | 0       | 1                                    | 1          | 1         | 1          | 0        | 0         | 0        | 0       |
| Bit/F         | ield    |         | Name Type Reset Description |         |         |         |         |         |                                      |            |           |            |          |           |          |         |
| 31            | :8      |         | reserved                    |         | RO      |         | 0       | compa   | are shou<br>atibility w<br>rved acro | /ith futur | e produc  | cts, the v | alue of  | a reserv  | •        |         |
| 7:            | 0       |         | CID1                        |         | RO      |         | 0xF0    | UART    | PrimeC                               | ell ID Re  | egister[1 | 5:8]       |          |           |          |         |
|               |         |         |                             |         |         |         |         | Provid  | des softw                            | vare a st  | andard o  | cross-pe   | ripheral | identific | ation sy | stem.   |

# Register 24: UART PrimeCell Identification 2 (UARTPCellID2), offset 0xFF8

The **UARTPCellIDn** registers are hard-coded and the fields within the registers determine the reset values.

### UART PrimeCell Identification 2 (UARTPCelIID2)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 UART2 base: 0x4000.E000 Offset 0xFF8 Type RO, reset 0x0000.0005

|               | 31               | 30      | 29      | 28      | 27      | 26      | 25                      | 24         | 23                               | 22         | 21          | 20       | 19       | 18        | 17        | 16      |
|---------------|------------------|---------|---------|---------|---------|---------|-------------------------|------------|----------------------------------|------------|-------------|----------|----------|-----------|-----------|---------|
|               |                  | •       |         |         |         |         | •                       | rese       | rved                             |            |             |          |          | 1         | 1         |         |
| Type<br>Reset | RO<br>0          | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                 | RO<br>0    | RO<br>0                          | RO<br>0    | RO<br>0     | RO<br>0  | RO<br>0  | RO<br>0   | RO<br>0   | RO<br>0 |
|               | 15               | 14      | 13      | 12      | 11      | 10      | 9                       | 8          | 7                                | 6          | 5           | 4        | 3        | 2         | 1         | 0       |
|               |                  | î       | î î     | rese    | rved    |         | î                       | Ì          |                                  |            | · · · · · · | CI       | D2       | r         | î         |         |
| Type<br>Reset | RO<br>0          | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                 | RO<br>0    | RO<br>0                          | RO<br>0    | RO<br>0     | RO<br>0  | RO<br>0  | RO<br>1   | RO<br>0   | RO<br>1 |
| Bit/F         | ield             |         | Name    |         | Туре    | F       | Reset                   | Descr      | iption                           |            |             |          |          |           |           |         |
| 31            | :8 reserved RO 0 |         |         |         |         | compa   | are shou<br>atibility w | ith futur/ | e produc                         | cts, the v | alue of     | a reserv |          |           |           |         |
| 7:            | 0                |         | CID2    |         | RO      |         | 0x05                    |            | <sup>°</sup> PrimeC<br>les softw |            | • •         | •        | ripheral | identific | ation sys | stem.   |

# Register 25: UART PrimeCell Identification 3 (UARTPCellID3), offset 0xFFC

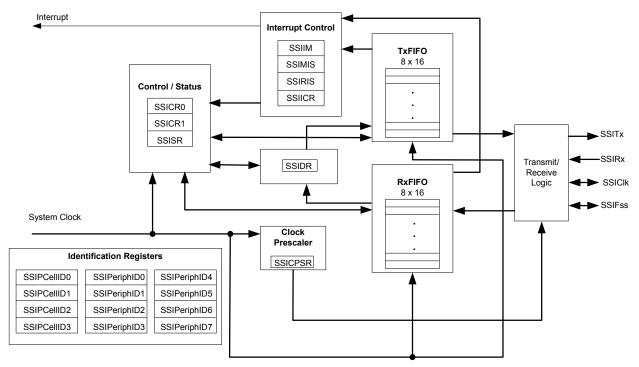
The **UARTPCellIDn** registers are hard-coded and the fields within the registers determine the reset values.

### UART PrimeCell Identification 3 (UARTPCelIID3)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 UART2 base: 0x4000.E000 Offset 0xFFC Type RO, reset 0x0000.00B1

|               | 31      | 30      | 29                          | 28      | 27      | 26      | 25      | 24      | 23                                   | 22         | 21        | 20         | 19       | 18        | 17       | 16      |
|---------------|---------|---------|-----------------------------|---------|---------|---------|---------|---------|--------------------------------------|------------|-----------|------------|----------|-----------|----------|---------|
|               |         | 1       |                             |         | · · ·   |         | 1       | rese    | erved                                |            |           |            |          | 1         |          |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0                     | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                              | RO<br>0    | RO<br>0   | RO<br>0    | RO<br>0  | RO<br>0   | RO<br>0  | RO<br>0 |
| Report        |         |         |                             |         |         |         |         |         | 7                                    |            |           |            |          |           | 4        |         |
|               | 15      | 14      | 13                          | 12      | 11      | 10      | 9       | 8       | ,<br>                                | 6          | 5         | 4          | 3        | 2         | 1        | 0       |
|               |         |         |                             | rese    | rved    |         |         |         |                                      |            |           | CI         | D3       | -         | -        | -       |
| Туре          | RO      | RO      | RO                          | RO      | RO      | RO      | RO      | RO      | RO                                   | RO         | RO        | RO         | RO       | RO        | RO       | RO      |
| Reset         | 0       | 0       | 0                           | 0       | 0       | 0       | 0       | 0       | 1                                    | 0          | 1         | 1          | 0        | 0         | 0        | 1       |
| Bit/F         | ield    |         | Name Type Reset Description |         |         |         |         |         |                                      |            |           |            |          |           |          |         |
| 31            | :8      |         | reserved                    |         | RO      |         | 0       | compa   | are shou<br>atibility w<br>rved acro | /ith futur | e produo  | cts, the v | alue of  | a reserv  | •        |         |
| 7:            | 0       |         | CID3                        |         | RO      |         | 0xB1    | UART    | PrimeC                               | ell ID Re  | egister[3 | 1:24]      |          |           |          |         |
|               |         |         |                             |         |         |         |         | Provid  | des softw                            | vare a st  | andard    | cross-pe   | ripheral | identific | ation sy | stem.   |

# 14 Synchronous Serial Interface (SSI)


The Stellaris<sup>®</sup> Synchronous Serial Interface (SSI) is a master or slave interface for synchronous serial communication with peripheral devices that have either Freescale SPI, MICROWIRE, or Texas Instruments synchronous serial interfaces.

The Stellaris<sup>®</sup> SSI module has the following features:

- Master or slave operation
- Programmable clock bit rate and prescale
- Separate transmit and receive FIFOs, 16 bits wide, 8 locations deep
- Programmable interface operation for Freescale SPI, MICROWIRE, or Texas Instruments synchronous serial interfaces
- Programmable data frame size from 4 to 16 bits
- Internal loopback test mode for diagnostic/debug testing

# 14.1 Block Diagram

## Figure 14-1. SSI Module Block Diagram



# 14.2 Functional Description

The SSI performs serial-to-parallel conversion on data received from a peripheral device. The CPU accesses data, control, and status information. The transmit and receive paths are buffered with

internal FIFO memories allowing up to eight 16-bit values to be stored independently in both transmit and receive modes.

## 14.2.1 Bit Rate Generation

The SSI includes a programmable bit rate clock divider and prescaler to generate the serial output clock. Bit rates are supported to 2 MHz and higher, although maximum bit rate is determined by peripheral devices.

The serial bit rate is derived by dividing down the 50-MHz input clock. The clock is first divided by an even prescale value CPSDVSR from 2 to 254, which is programmed in the **SSI Clock Prescale (SSICPSR)** register (see page 346). The clock is further divided by a value from 1 to 256, which is 1 + SCR, where SCR is the value programmed in the **SSI Control0 (SSICR0)** register (see page 341).

The frequency of the output clock SSIClk is defined by:

FSSIClk = FSysClk / (CPSDVSR \* (1 + SCR))

Note that although the SSIClk transmit clock can theoretically be 25 MHz, the module may not be able to operate at that speed. For master mode, the system clock must be at least two times faster than the SSIClk. For slave mode, the system clock must be at least 12 times faster than the SSIClk.

See "Electrical Characteristics" on page 519 to view SSI timing parameters.

## 14.2.2 FIFO Operation

## 14.2.2.1 Transmit FIFO

The common transmit FIFO is a 16-bit wide, 8-locations deep, first-in, first-out memory buffer. The CPU writes data to the FIFO by writing the **SSI Data (SSIDR)** register (see page 344), and data is stored in the FIFO until it is read out by the transmission logic.

When configured as a master or a slave, parallel data is written into the transmit FIFO prior to serial conversion and transmission to the attached slave or master, respectively, through the SSITx pin.

## 14.2.2.2 Receive FIFO

The common receive FIFO is a 16-bit wide, 8-locations deep, first-in, first-out memory buffer. Received data from the serial interface is stored in the buffer until read out by the CPU, which accesses the read FIFO by reading the **SSIDR** register.

When configured as a master or slave, serial data received through the SSIRx pin is registered prior to parallel loading into the attached slave or master receive FIFO, respectively.

## 14.2.3 Interrupts

The SSI can generate interrupts when the following conditions are observed:

- Transmit FIFO service
- Receive FIFO service
- Receive FIFO time-out
- Receive FIFO overrun

All of the interrupt events are ORed together before being sent to the interrupt controller, so the SSI can only generate a single interrupt request to the controller at any given time. You can mask each

of the four individual maskable interrupts by setting the appropriate bits in the **SSI Interrupt Mask (SSIIM)** register (see page 347). Setting the appropriate mask bit to 1 enables the interrupt.

Provision of the individual outputs, as well as a combined interrupt output, allows use of either a global interrupt service routine, or modular device drivers to handle interrupts. The transmit and receive dynamic dataflow interrupts have been separated from the status interrupts so that data can be read or written in response to the FIFO trigger levels. The status of the individual interrupt sources can be read from the **SSI Raw Interrupt Status (SSIRIS)** and **SSI Masked Interrupt Status (SSIMIS)** registers (see page 348 and page 349, respectively).

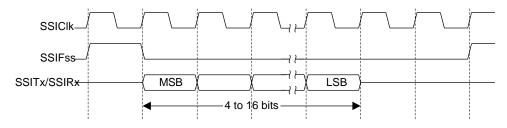
## 14.2.4 Frame Formats

Each data frame is between 4 and 16 bits long, depending on the size of data programmed, and is transmitted starting with the MSB. There are three basic frame types that can be selected:

- Texas Instruments synchronous serial
- Freescale SPI
- MICROWIRE

For all three formats, the serial clock (SSIClk) is held inactive while the SSI is idle, and SSIClk transitions at the programmed frequency only during active transmission or reception of data. The idle state of SSIClk is utilized to provide a receive timeout indication that occurs when the receive FIFO still contains data after a timeout period.

For Freescale SPI and MICROWIRE frame formats, the serial frame (SSIFSS) pin is active Low, and is asserted (pulled down) during the entire transmission of the frame.

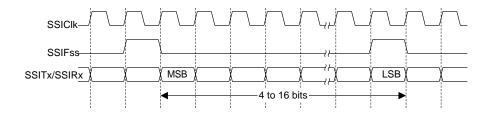

For Texas Instruments synchronous serial frame format, the SSIFSS pin is pulsed for one serial clock period starting at its rising edge, prior to the transmission of each frame. For this frame format, both the SSI and the off-chip slave device drive their output data on the rising edge of SSIClk, and latch data from the other device on the falling edge.

Unlike the full-duplex transmission of the other two frame formats, the MICROWIRE format uses a special master-slave messaging technique, which operates at half-duplex. In this mode, when a frame begins, an 8-bit control message is transmitted to the off-chip slave. During this transmit, no incoming data is received by the SSI. After the message has been sent, the off-chip slave decodes it and, after waiting one serial clock after the last bit of the 8-bit control message has been sent, responds with the requested data. The returned data can be 4 to 16 bits in length, making the total frame length anywhere from 13 to 25 bits.

## 14.2.4.1 Texas Instruments Synchronous Serial Frame Format

Figure 14-2 on page 331 shows the Texas Instruments synchronous serial frame format for a single transmitted frame.

#### Figure 14-2. TI Synchronous Serial Frame Format (Single Transfer)




In this mode, SSIClk and SSIFSS are forced Low, and the transmit data line SSITx is tristated whenever the SSI is idle. Once the bottom entry of the transmit FIFO contains data, SSIFSS is pulsed High for one SSIClk period. The value to be transmitted is also transferred from the transmit FIFO to the serial shift register of the transmit logic. On the next rising edge of SSIClk, the MSB of the 4 to 16-bit data frame is shifted out on the SSITx pin. Likewise, the MSB of the received data is shifted onto the SSIRx pin by the off-chip serial slave device.

Both the SSI and the off-chip serial slave device then clock each data bit into their serial shifter on the falling edge of each SSIC1k. The received data is transferred from the serial shifter to the receive FIFO on the first rising edge of SSIC1k after the LSB has been latched.

Figure 14-3 on page 332 shows the Texas Instruments synchronous serial frame format when back-to-back frames are transmitted.

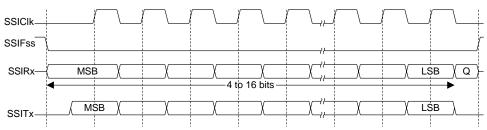
## Figure 14-3. TI Synchronous Serial Frame Format (Continuous Transfer)



## 14.2.4.2 Freescale SPI Frame Format

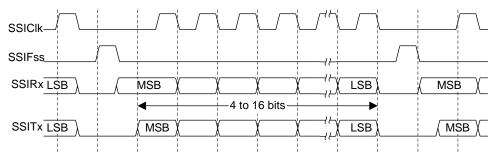
The Freescale SPI interface is a four-wire interface where the SSIFSS signal behaves as a slave select. The main feature of the Freescale SPI format is that the inactive state and phase of the SSIClk signal are programmable through the SPO and SPH bits within the **SSISCR0** control register.

## SPO Clock Polarity Bit


When the SPO clock polarity control bit is Low, it produces a steady state Low value on the SSIClk pin. If the SPO bit is High, a steady state High value is placed on the SSIClk pin when data is not being transferred.

## SPH Phase Control Bit

The SPH phase control bit selects the clock edge that captures data and allows it to change state. It has the most impact on the first bit transmitted by either allowing or not allowing a clock transition before the first data capture edge. When the SPH phase control bit is Low, data is captured on the first clock edge transition. If the SPH bit is High, data is captured on the second clock edge transition.


## 14.2.4.3 Freescale SPI Frame Format with SPO=0 and SPH=0

Single and continuous transmission signal sequences for Freescale SPI format with SPO=0 and SPH=0 are shown in Figure 14-4 on page 333 and Figure 14-5 on page 333.









Note: Q is undefined.

In this configuration, during idle periods:

- SSIClk is forced Low
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low
- When the SSI is configured as a master, it enables the SSIClk pad
- When the SSI is configured as a slave, it disables the SSIClk pad

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSIFSS master signal being driven Low. This causes slave data to be enabled onto the SSIRx input line of the master. The master SSITx output pad is enabled.

One half SSIClk period later, valid master data is transferred to the SSITx pin. Now that both the master and slave data have been set, the SSIClk master clock pin goes High after one further half SSIClk period.

The data is now captured on the rising and propagated on the falling edges of the SSIClk signal.

In the case of a single word transmission, after all bits of the data word have been transferred, the SSIFss line is returned to its idle High state one SSIClk period after the last bit has been captured.

However, in the case of continuous back-to-back transmissions, the SSIFss signal must be pulsed High between each data word transfer. This is because the slave select pin freezes the data in its serial peripheral register and does not allow it to be altered if the SPH bit is logic zero. Therefore, the master device must raise the SSIFss pin of the slave device between each data transfer to enable the serial peripheral data write. On completion of the continuous transfer, the SSIFss pin is returned to its idle state one SSIC1k period after the last bit has been captured.

# 14.2.4.4 Freescale SPI Frame Format with SPO=0 and SPH=1

The transfer signal sequence for Freescale SPI format with SPO=0 and SPH=1 is shown in Figure 14-6 on page 334, which covers both single and continuous transfers.

| SSICIk — |         |   |   |                    |   |     | - |
|----------|---------|---|---|--------------------|---|-----|---|
| SSIRx —  |         | X | χ | χ<br>4 to 16 bits— | χ |     |   |
| SSITx —  | / MSB / | X | X | χ                  | X | LSB | _ |

## Figure 14-6. Freescale SPI Frame Format with SPO=0 and SPH=1

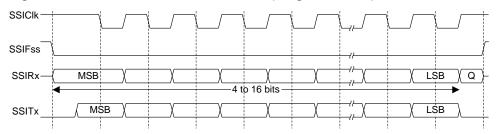
Note: Q is undefined.

In this configuration, during idle periods:

- SSIClk is forced Low
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low
- When the SSI is configured as a master, it enables the SSIClk pad
- When the SSI is configured as a slave, it disables the SSIC1k pad

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSIFss master signal being driven Low. The master SSITx output is enabled. After a further one half SSIClk period, both master and slave valid data is enabled onto their respective transmission lines. At the same time, the SSIClk is enabled with a rising edge transition.

Data is then captured on the falling edges and propagated on the rising edges of the SSIClk signal.


In the case of a single word transfer, after all bits have been transferred, the SSIFSS line is returned to its idle High state one SSIClk period after the last bit has been captured.

For continuous back-to-back transfers, the SSIFSS pin is held Low between successive data words and termination is the same as that of the single word transfer.

## 14.2.4.5 Freescale SPI Frame Format with SPO=1 and SPH=0

Single and continuous transmission signal sequences for Freescale SPI format with SPO=1 and SPH=0 are shown in Figure 14-7 on page 334 and Figure 14-8 on page 335.

#### Figure 14-7. Freescale SPI Frame Format (Single Transfer) with SPO=1 and SPH=0



**Note:** Q is undefined.

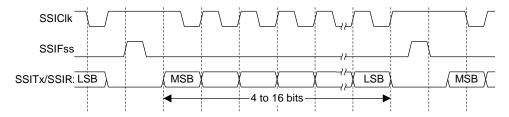



Figure 14-8. Freescale SPI Frame Format (Continuous Transfer) with SPO=1 and SPH=0

In this configuration, during idle periods:

- SSIClk is forced High
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low
- When the SSI is configured as a master, it enables the SSIClk pad
- When the SSI is configured as a slave, it disables the SSIClk pad

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSIFss master signal being driven Low, which causes slave data to be immediately transferred onto the SSIRx line of the master. The master SSITx output pad is enabled.

One half period later, valid master data is transferred to the SSITx line. Now that both the master and slave data have been set, the SSIC1k master clock pin becomes Low after one further half SSIC1k period. This means that data is captured on the falling edges and propagated on the rising edges of the SSIC1k signal.

In the case of a single word transmission, after all bits of the data word are transferred, the SSIFSS line is returned to its idle High state one SSIClk period after the last bit has been captured.

However, in the case of continuous back-to-back transmissions, the SSIFss signal must be pulsed High between each data word transfer. This is because the slave select pin freezes the data in its serial peripheral register and does not allow it to be altered if the SPH bit is logic zero. Therefore, the master device must raise the SSIFss pin of the slave device between each data transfer to enable the serial peripheral data write. On completion of the continuous transfer, the SSIFss pin is returned to its idle state one SSIC1k period after the last bit has been captured.

## 14.2.4.6 Freescale SPI Frame Format with SPO=1 and SPH=1

The transfer signal sequence for Freescale SPI format with SPO=1 and SPH=1 is shown in Figure 14-9 on page 336, which covers both single and continuous transfers.

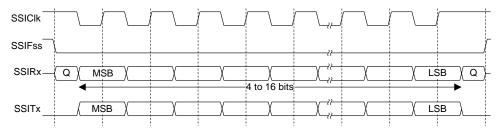


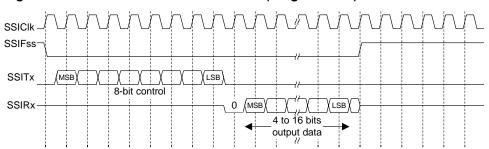

Figure 14-9. Freescale SPI Frame Format with SPO=1 and SPH=1

#### Note: Q is undefined.

In this configuration, during idle periods:

- SSICIK is forced High
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low
- When the SSI is configured as a master, it enables the SSIClk pad
- When the SSI is configured as a slave, it disables the SSIClk pad

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSIFSS master signal being driven Low. The master SSITx output pad is enabled. After a further one-half SSIClk period, both master and slave data are enabled onto their respective transmission lines. At the same time, SSIClk is enabled with a falling edge transition. Data is then captured on the rising edges and propagated on the falling edges of the SSIClk signal.


After all bits have been transferred, in the case of a single word transmission, the SSIFSS line is returned to its idle high state one SSICIk period after the last bit has been captured.

For continuous back-to-back transmissions, the SSIFSS pin remains in its active Low state, until the final bit of the last word has been captured, and then returns to its idle state as described above.

For continuous back-to-back transfers, the SSIFSS pin is held Low between successive data words and termination is the same as that of the single word transfer.

## 14.2.4.7 MICROWIRE Frame Format

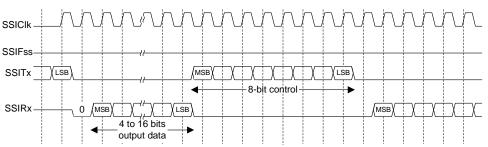
Figure 14-10 on page 336 shows the MICROWIRE frame format, again for a single frame. Figure 14-11 on page 337 shows the same format when back-to-back frames are transmitted.



#### Figure 14-10. MICROWIRE Frame Format (Single Frame)

MICROWIRE format is very similar to SPI format, except that transmission is half-duplex instead of full-duplex, using a master-slave message passing technique. Each serial transmission begins with an 8-bit control word that is transmitted from the SSI to the off-chip slave device. During this transmission, no incoming data is received by the SSI. After the message has been sent, the off-chip slave decodes it and, after waiting one serial clock after the last bit of the 8-bit control message has been sent, responds with the required data. The returned data is 4 to 16 bits in length, making the total frame length anywhere from 13 to 25 bits.

In this configuration, during idle periods:


- SSICIK is forced Low
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low

A transmission is triggered by writing a control byte to the transmit FIFO. The falling edge of SSIFSS causes the value contained in the bottom entry of the transmit FIFO to be transferred to the serial shift register of the transmit logic, and the MSB of the 8-bit control frame to be shifted out onto the SSITx pin. SSIFSS remains Low for the duration of the frame transmission. The SSIRx pin remains tristated during this transmission.

The off-chip serial slave device latches each control bit into its serial shifter on the rising edge of each SSIClk. After the last bit is latched by the slave device, the control byte is decoded during a one clock wait-state, and the slave responds by transmitting data back to the SSI. Each bit is driven onto the SSIRx line on the falling edge of SSIClk. The SSI in turn latches each bit on the rising edge of SSIClk. At the end of the frame, for single transfers, the SSIFss signal is pulled High one clock period after the last bit has been latched in the receive serial shifter, which causes the data to be transferred to the receive FIFO.

**Note:** The off-chip slave device can tristate the receive line either on the falling edge of SSIClk after the LSB has been latched by the receive shifter, or when the SSIFss pin goes High.

For continuous transfers, data transmission begins and ends in the same manner as a single transfer. However, the SSIFSS line is continuously asserted (held Low) and transmission of data occurs back-to-back. The control byte of the next frame follows directly after the LSB of the received data from the current frame. Each of the received values is transferred from the receive shifter on the falling edge of SSIClk, after the LSB of the frame has been latched into the SSI.



## Figure 14-11. MICROWIRE Frame Format (Continuous Transfer)

In the MICROWIRE mode, the SSI slave samples the first bit of receive data on the rising edge of SSIClk after SSIFss has gone Low. Masters that drive a free-running SSIClk must ensure that the SSIFss signal has sufficient setup and hold margins with respect to the rising edge of SSIClk.

Figure 14-12 on page 338 illustrates these setup and hold time requirements. With respect to the SSIClk rising edge on which the first bit of receive data is to be sampled by the SSI slave, SSIFss must have a setup of at least two times the period of SSIClk on which the SSI operates. With respect to the SSIClk rising edge previous to this edge, SSIFss must have a hold of at least one SSIClk period.

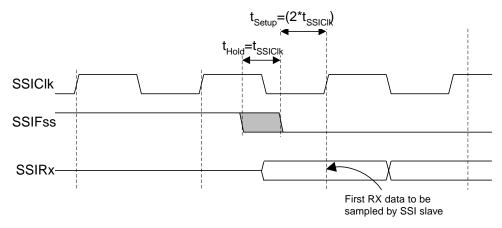



Figure 14-12. MICROWIRE Frame Format, SSIFss Input Setup and Hold Requirements

# 14.3 Initialization and Configuration

To use the SSI, its peripheral clock must be enabled by setting the SSI bit in the **RCGC1** register. For each of the frame formats, the SSI is configured using the following steps:

- 1. Ensure that the SSE bit in the **SSICR1** register is disabled before making any configuration changes.
- 2. Select whether the SSI is a master or slave:
  - a. For master operations, set the **SSICR1** register to 0x00000000.
  - b. For slave mode (output enabled), set the **SSICR1** register to 0x00000004.
  - c. For slave mode (output disabled), set the **SSICR1** register to 0x0000000C.
- 3. Configure the clock prescale divisor by writing the **SSICPSR** register.
- 4. Write the **SSICR0** register with the following configuration:
  - Serial clock rate (SCR)
  - Desired clock phase/polarity, if using Freescale SPI mode (SPH and SPO)
  - The protocol mode: Freescale SPI, TI SSF, MICROWIRE (FRF)
  - The data size (DSS)
- 5. Enable the SSI by setting the SSE bit in the **SSICR1** register.

As an example, assume the SSI must be configured to operate with the following parameters:

- Master operation
- Freescale SPI mode (SPO=1, SPH=1)
- 1 Mbps bit rate
- 8 data bits

Assuming the system clock is 20 MHz, the bit rate calculation would be:

```
FSSIClk = FSysClk / (CPSDVSR * (1 + SCR))
1x106 = 20x106 / (CPSDVSR * (1 + SCR))
```

In this case, if CPSDVSR=2, SCR must be 9.

The configuration sequence would be as follows:

- 1. Ensure that the SSE bit in the SSICR1 register is disabled.
- 2. Write the SSICR1 register with a value of 0x00000000.
- 3. Write the **SSICPSR** register with a value of 0x00000002.
- 4. Write the **SSICR0** register with a value of 0x000009C7.
- 5. The SSI is then enabled by setting the SSE bit in the SSICR1 register to 1.

## 14.4 Register Map

"Register Map" on page 339 lists the SSI registers. The offset listed is a hexadecimal increment to the register's address, relative to that SSI module's base address:

- SSI0: 0x4000.8000
- **Note:** The SSI must be disabled (see the SSE bit in the **SSICR1** register) before any of the control registers are reprogrammed.

| Offset | Name    | Туре | Reset       | Description                 | See<br>page |
|--------|---------|------|-------------|-----------------------------|-------------|
| 0x000  | SSICR0  | R/W  | 0x0000.0000 | SSI Control 0               | 341         |
| 0x004  | SSICR1  | R/W  | 0x0000.0000 | SSI Control 1               | 343         |
| 0x008  | SSIDR   | R/W  | 0x0000.0000 | SSI Data                    | 344         |
| 0x00C  | SSISR   | RO   | 0x0000.0003 | SSI Status                  | 345         |
| 0x010  | SSICPSR | R/W  | 0x0000.0000 | SSI Clock Prescale          | 346         |
| 0x014  | SSIIM   | R/W  | 0x0000.0000 | SSI Interrupt Mask          | 347         |
| 0x018  | SSIRIS  | RO   | 0x0000.0008 | SSI Raw Interrupt Status    | 348         |
| 0x01C  | SSIMIS  | RO   | 0x0000.0000 | SSI Masked Interrupt Status | 349         |
| 0x020  | SSIICR  | W1C  | 0x0000.0000 | SSI Interrupt Clear         | 350         |

### Table 14-1. SSI Register Map

| Offset | Name         | Туре | Reset       | Description                     | See<br>page |
|--------|--------------|------|-------------|---------------------------------|-------------|
| 0xFD0  | SSIPeriphID4 | RO   | 0x0000.0000 | SSI Peripheral Identification 4 | 351         |
| 0xFD4  | SSIPeriphID5 | RO   | 0x0000.0000 | SSI Peripheral Identification 5 | 352         |
| 0xFD8  | SSIPeriphID6 | RO   | 0x0000.0000 | SSI Peripheral Identification 6 | 353         |
| 0xFDC  | SSIPeriphID7 | RO   | 0x0000.0000 | SSI Peripheral Identification 7 | 354         |
| 0xFE0  | SSIPeriphID0 | RO   | 0x0000.0022 | SSI Peripheral Identification 0 | 355         |
| 0xFE4  | SSIPeriphID1 | RO   | 0x0000.0000 | SSI Peripheral Identification 1 | 356         |
| 0xFE8  | SSIPeriphID2 | RO   | 0x0000.0018 | SSI Peripheral Identification 2 | 357         |
| 0xFEC  | SSIPeriphID3 | RO   | 0x0000.0001 | SSI Peripheral Identification 3 | 358         |
| 0xFF0  | SSIPCelIID0  | RO   | 0x0000.000D | SSI PrimeCell Identification 0  | 359         |
| 0xFF4  | SSIPCelIID1  | RO   | 0x0000.00F0 | SSI PrimeCell Identification 1  | 360         |
| 0xFF8  | SSIPCelIID2  | RO   | 0x0000.0005 | SSI PrimeCell Identification 2  | 361         |
| 0xFFC  | SSIPCellID3  | RO   | 0x0000.00B1 | SSI PrimeCell Identification 3  | 362         |

# 14.5 Register Descriptions

The remainder of this section lists and describes the SSI registers, in numerical order by address offset.

# Register 1: SSI Control 0 (SSICR0), offset 0x000

**SSICR0** is control register 0 and contains bit fields that control various functions within the SSI module. Functionality such as protocol mode, clock rate and data size are configured in this register.

| SSI Co<br>SSI0 bas<br>Offset 0x | e: 0x40<br>000 | 00.80 | 000      |          |          |          |          |    |          |                   |                                              |            |           |                |            |            |          |           |
|---------------------------------|----------------|-------|----------|----------|----------|----------|----------|----|----------|-------------------|----------------------------------------------|------------|-----------|----------------|------------|------------|----------|-----------|
| Type R/V                        | 31 v, reset    | 0000  | 30       | 29       | 28       | 27       | 26       |    | 25       | 24                | 23                                           | 22         | 21        | 20             | 19         | 18         | 17       | 16        |
|                                 | 51             | 1     | 50       |          | 20       | 1        | 1        | 1  | 25       | 1                 | erved                                        | 1          | 1         | 1              |            | 10         | 1        | 10        |
| Туре                            | RO             |       | RO       | RO       | RO       | RO       | RC       | )  | RO       | RO                | RO                                           | RO         | RO        | RO             | RO         | RO         | RO       | RO        |
| Reset                           | 0              |       | 0        | 0        | 0        | 0        | 0        | •  | 0        | 0                 | 0                                            | 0          | 0         | 0              | 0          | 0          | 0        | 0         |
|                                 | 15             |       | 14       | 13       | 12       | 11       | 10       |    | 9        | 8                 | 7                                            | 6          | 5         | 4              | 3          | 2          | 1        | 0         |
|                                 |                | 1     |          | 1 1      | :        | SCR      | 1        | T  |          | 1                 | SPH                                          | SPO        | F         | <b>I</b><br>RF |            | D          | I<br>SS  | · _ ]     |
| Type<br>Reset                   | R/W<br>0       | I     | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/V<br>0 | V  | R/W<br>0 | R/W<br>0          | R/W<br>0                                     | R/W<br>0   | R/W<br>0  | R/W<br>0       | R/W<br>0   | R/W<br>0   | R/W<br>0 | R/W<br>0  |
| Bit/F                           | ield           |       |          | Name     |          | Тур      | be       | Re | eset     | Desc              | ription                                      |            |           |                |            |            |          |           |
| 31:                             | 31:16<br>15:8  |       | I        | reserved |          | R        | C        |    | 0        | comp              | vare shou<br>atibility v<br>erved acr        | vith futur | e produ   | cts, the v     | alue of a  | a reserv   |          |           |
| 15                              | :8             |       |          | SCR      |          | R/       | N        |    | 0        | SSI S             | Serial Clo                                   | ck Rate    |           |                |            |            |          |           |
|                                 | 15:8           |       |          |          |          |          |          |    |          |                   | alue SCE<br>SI. The b                        |            | -         | erate the      | transmit   | and re     | ceive bi | t rate of |
|                                 |                |       |          |          |          |          |          |    |          | BR=F              | SSIClk                                       | /(CPSD     | VSR *     | (1 + S         | CR))       |            |          |           |
|                                 |                |       |          |          |          |          |          |    |          |                   | e CPSDV:<br><b>PSR reg</b>                   |            |           |                | •          | -          | med in t | he        |
| 7                               | ,              |       |          | SPH      |          | R/       | N        |    | 0        | SSI S             | Serial Clo                                   | ck Phas    | e         |                |            |            |          |           |
|                                 |                |       |          |          |          |          |          |    |          | This I            | oit is only                                  | applica    | ble to th | ne Freeso      | cale SPI   | Format     |          |           |
|                                 |                |       |          |          |          |          |          |    |          | it to c<br>either | PH contr<br>hange st<br>allowing<br>re edge. | ate. It h  | as the m  | nost impa      | act on the | e first bi | t transm | nitted by |
|                                 |                |       |          |          |          |          |          |    |          |                   | n the <sub>SPH</sub><br>н is 1, da           |            |           | •              |            |            | -        |           |
| 6                               | 6              |       |          | SPO      |          | R/       | N        |    | 0        | SSI S             | Serial Clo                                   | ck Pola    | ity       |                |            |            |          |           |
|                                 |                |       |          |          |          |          |          |    |          | This I            | oit is only                                  | / applica  | ble to th | ne Freeso      | cale SPI   | Format     |          |           |
|                                 |                |       |          |          |          |          |          |    |          | SSIC              | n the SPC<br>lk pin. h<br>lk pin w           | f SPO is   | 1, a stea | ady state      | e High va  | lue is pl  |          |           |

| Bit/Field | Name | Туре | Reset | Description                                         |
|-----------|------|------|-------|-----------------------------------------------------|
| 5:4       | FRF  | R/W  | 0     | SSI Frame Format Select                             |
|           |      |      |       | The FRF values are defined as follows:              |
|           |      |      |       | FRF Value Frame Format                              |
|           |      |      |       | 00 Freescale SPI Frame Format                       |
|           |      |      |       | 01 Texas Intruments Synchronous Serial Frame Format |
|           |      |      |       | 10 MICROWIRE Frame Format                           |
|           |      |      |       | 11 Reserved                                         |
| 3:0       | DSS  | R/W  | 0     | SSI Data Size Select                                |
| 0.0       | 200  | 1000 | 0     | The DSS values are defined as follows:              |
|           |      |      |       | The DSS values are defined as follows.              |
|           |      |      |       | DSS Value Data Size                                 |
|           |      |      |       | 0000-0010 Reserved                                  |
|           |      |      |       | 0011 4-bit data                                     |
|           |      |      |       | 0100 5-bit data                                     |
|           |      |      |       | 0101 6-bit data                                     |
|           |      |      |       | 0110 7-bit data                                     |
|           |      |      |       | 0111 8-bit data                                     |
|           |      |      |       | 1000 9-bit data                                     |
|           |      |      |       | 1001 10-bit data                                    |
|           |      |      |       | 1010 11-bit data                                    |
|           |      |      |       | 1011 12-bit data                                    |
|           |      |      |       | 1100 13-bit data                                    |
|           |      |      |       | 1101 14-bit data                                    |
|           |      |      |       | 1110 15-bit data                                    |
|           |      |      |       | 1111 16-bit data                                    |

# Register 2: SSI Control 1 (SSICR1), offset 0x004

**SSICR1** is control register 1 and contains bit fields that control various functions within the SSI module. Master and slave mode functionality is controlled by this register.

|               | v, reset 0 | ×0000.00 | 00       |         |         |         |         |                                     |                                                   |                                                |                                             |                                              |                                                                           |                                                |                                                 |                           |
|---------------|------------|----------|----------|---------|---------|---------|---------|-------------------------------------|---------------------------------------------------|------------------------------------------------|---------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------|---------------------------|
| I             | 31         | 30       | 29       | 28      | 27      | 26      | 25      | 24                                  | 23                                                | 22                                             | 21                                          | 20                                           | 19<br>I                                                                   | 18                                             | 17                                              | 16                        |
| _             |            |          |          |         | L       |         |         | rese                                |                                                   |                                                |                                             |                                              | L                                                                         |                                                |                                                 |                           |
| Type<br>Reset | RO<br>0    | RO<br>0  | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                             | RO<br>0                                           | RO<br>0                                        | RO<br>0                                     | RO<br>0                                      | RO<br>0                                                                   | RO<br>0                                        | RO<br>0                                         | RO<br>0                   |
|               | 15         | 14       | 13       | 12      | 11      | 10      | 9       | 8                                   | 7                                                 | 6                                              | 5                                           | 4                                            | 3                                                                         | 2                                              | 1                                               | 0                         |
|               |            |          |          |         | · ·     | rese    | erved   | •                                   | 1                                                 |                                                |                                             | •                                            | SOD                                                                       | MS                                             | SSE                                             | LBN                       |
| Type<br>eset  | RO<br>0    | RO<br>0  | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                             | RO<br>0                                           | RO<br>0                                        | RO<br>0                                     | RO<br>0                                      | R/W<br>0                                                                  | R/W<br>0                                       | R/W<br>0                                        | R/W<br>0                  |
| Bit/F         | ield       |          | Name     |         | Туре    | I       | Reset   | Descr                               | iption                                            |                                                |                                             |                                              |                                                                           |                                                |                                                 |                           |
| 31            | :4         | I        | reserved |         | RO      |         | 0       | compa                               | atibility v                                       | vith futur                                     | e produ                                     | cts, the                                     | of a rese<br>value of<br>operatio                                         | a reserv                                       |                                                 |                           |
| 3             | 5          |          | SOD      |         | R/W     |         | 0       | SSI S                               | ave Mo                                            | de Outp                                        | ut Disab                                    | le                                           |                                                                           |                                                |                                                 |                           |
|               |            |          |          |         |         |         |         | syster<br>slaves<br>the se<br>could | ns, it is p<br>in the s<br>rial outp<br>be tied t | oossible<br>ystem w<br>ut line. Ir<br>ogether. | for the S<br>hile ens<br>such sy<br>To oper | SSI mas<br>uring tha<br>stems, f<br>ate in s | ode (MS<br>ter to bro<br>at only or<br>he TXD I<br>uch a sys<br>not drive | adcast a<br>ne slave<br>ines from<br>stem, the | a messa<br>drives da<br>n multiple<br>e SOD bit | ge to<br>ata or<br>e slav |
|               |            |          |          |         |         |         |         | 0: SSI                              | can driv                                          | ve ssit                                        | x output                                    | in Slav                                      | e Output                                                                  | mode.                                          |                                                 |                           |
|               |            |          |          |         |         |         |         | 1: SSI                              | must n                                            | ot drive 1                                     | the ssin                                    | רx outpıΩ                                    | ut in Slav                                                                | e mode                                         |                                                 |                           |
| 2             | 2          |          | MS       |         | R/W     |         | 0       | SSI M                               | aster/SI                                          | ave Sele                                       | ect                                         |                                              |                                                                           |                                                |                                                 |                           |
|               |            |          |          |         |         |         |         |                                     |                                                   | s Maste<br>d (SSE=                             |                                             | e mode                                       | and can                                                                   | be mod                                         | lified onl                                      | y whe                     |
|               |            |          |          |         |         |         |         | 0: Dev                              | vice con                                          | figured a                                      | as a mas                                    | ster.                                        |                                                                           |                                                |                                                 |                           |
|               |            |          |          |         |         |         |         | 1: Dev                              | vice con                                          | figured a                                      | as a slav                                   | e.                                           |                                                                           |                                                |                                                 |                           |
| 1             |            |          | SSE      |         | R/W     |         | 0       | SSI S                               | ynchron                                           | ous Seri                                       | al Port E                                   | Enable                                       |                                                                           |                                                |                                                 |                           |
|               |            |          |          |         |         |         |         | Settin                              | g this bit                                        | enable                                         | s SSI op                                    | eration.                                     |                                                                           |                                                |                                                 |                           |
|               |            |          |          |         |         |         |         | 0: SSI                              | operati                                           | on disab                                       | led.                                        |                                              |                                                                           |                                                |                                                 |                           |
|               |            |          |          |         |         |         |         | 1: SSI                              | operati                                           | on enab                                        | led.                                        |                                              |                                                                           |                                                |                                                 |                           |
|               |            |          |          |         |         |         |         | Note:                               |                                                   | s bit mus<br>ogramm                            |                                             | to 0 bet                                     | ore any                                                                   | control r                                      | egisters                                        | are                       |
| 0             | )          |          | LBM      |         | R/W     |         | 0       | SSI Lo                              | oopback                                           | Mode                                           |                                             |                                              |                                                                           |                                                |                                                 |                           |
|               |            |          |          |         |         |         |         | Settin                              | g this bit                                        | t enable:                                      | s Loopba                                    | ack Test                                     | mode.                                                                     |                                                |                                                 |                           |
|               |            |          |          |         |         |         |         | 0: Nor                              | mal seri                                          | al port o                                      | peratior                                    | enable                                       | d.                                                                        |                                                |                                                 |                           |
|               |            |          |          |         |         |         |         | 1· Out                              | out of th                                         | o traner                                       | nit corial                                  | l shift ro                                   | aistor is                                                                 | connect                                        | ed interr                                       | allv t                    |

## Register 3: SSI Data (SSIDR), offset 0x008

**SSIDR** is the data register and is 16-bits wide. When **SSIDR** is read, the entry in the receive FIFO (pointed to by the current FIFO read pointer) is accessed. As data values are removed by the SSI receive logic from the incoming data frame, they are placed into the entry in the receive FIFO (pointed to by the current FIFO write pointer).

When **SSIDR** is written to, the entry in the transmit FIFO (pointed to by the write pointer) is written to. Data values are removed from the transmit FIFO one value at a time by the transmit logic. It is loaded into the transmit serial shifter, then serially shifted out onto the SSITx pin at the programmed bit rate.

When a data size of less than 16 bits is selected, the user must right-justify data written to the transmit FIFO. The transmit logic ignores the unused bits. Received data less than 16 bits is automatically right-justified in the receive buffer.

When the SSI is programmed for MICROWIRE frame format, the default size for transmit data is eight bits (the most significant byte is ignored). The receive data size is controlled by the programmer. The transmit FIFO and the receive FIFO are not cleared even when the SSE bit in the **SSICR1** register is set to zero. This allows the software to fill the transmit FIFO before enabling the SSI.

#### SSI Data (SSIDR)

SSI0 base: 0x4000.8000 Offset 0x008 Type R/W, reset 0x0000.0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 reserved RO RC RO RO RO RO RO RO RO RC RO RC RC RC RO RO Туре Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 10 6 2 15 14 13 11 9 8 5 3 0 DATA R/W Туре 0 0 0 0 0 0 0 0 0 0 Reset 0 0 0 0 0 0 **Bit/Field** Reset Description Name Туре 31:16 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 15:0 DATA R/W 0 SSI Receive/Transmit Data A read operation reads the receive FIFO. A write operation writes the

> transmit FIFO. Software must right-justify data when the SSI is programmed for a data size that is less than 16 bits. Unused bits at the top are ignored by the

transmit logic. The receive logic automatically right-justifies the data.

Preliminary

# Register 4: SSI Status (SSISR), offset 0x00C

**SSISR** is a status register that contains bits that indicate the FIFO fill status and the SSI busy status.

| SSI Status (SSISR)                                                   |
|----------------------------------------------------------------------|
| SSI0 base: 0x4000.8000<br>Offset 0x00C<br>Type RO, reset 0x0000.0003 |

| _             | 31      | 30      | 29       | 28      | 27         | 26                      | 25      | 24                                                           | 23                                   | 22         | 21       | 20         | 19       | 18       | 17      | 16      |  |  |  |
|---------------|---------|---------|----------|---------|------------|-------------------------|---------|--------------------------------------------------------------|--------------------------------------|------------|----------|------------|----------|----------|---------|---------|--|--|--|
|               |         |         | 1        |         |            |                         |         | rese                                                         | erved                                |            |          | 1          |          | •        |         |         |  |  |  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0    | RO<br>0                 | RO<br>0 | RO<br>0                                                      | RO<br>0                              | RO<br>0    | RO<br>0  | RO<br>0    | RO<br>0  | RO<br>0  | RO<br>0 | RO<br>0 |  |  |  |
|               | 15      | 14      | 13       | 12      | 11         | 10                      | 9       | 8                                                            | 7                                    | 6          | 5        | 4          | 3        | 2        | 1       | 0       |  |  |  |
| ſ             |         | 1       | 1 1      |         | г <u>г</u> | reserved                | 1       | 1                                                            |                                      |            |          | BSY        | RFF      | RNE      | TNF     | TFE     |  |  |  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0    | RO<br>0                 | RO<br>0 | RO<br>0                                                      | RO<br>0                              | RO<br>0    | RO<br>0  | RO<br>0    | RO<br>0  | RO<br>0  | RO<br>1 | R0<br>1 |  |  |  |
| Bit/Fi        | eld     |         | Name     |         | Туре       | F                       | Reset   | Descr                                                        | iption                               |            |          |            |          |          |         |         |  |  |  |
| 31:           | 5       |         | reserved |         | RO         |                         | 0       | compa                                                        | are shou<br>atibility w<br>rved acre | ith futur/ | e produ  | cts, the v | value of | a reserv |         |         |  |  |  |
| 4             |         |         | BSY      |         | RO         |                         | 0       | usy Bit                                                      |                                      |            |          |            |          |          |         |         |  |  |  |
|               |         |         |          |         |            |                         |         | 0: SS                                                        | l is idle.                           |            |          |            |          |          |         |         |  |  |  |
|               |         |         |          |         |            | l is curre<br>is not en |         | smitting                                                     | and/or r                             | eceiving   | a frame  | , or the t | transmit |          |         |         |  |  |  |
| 3             |         |         | RFF      |         | RO         |                         | 0       | SSI R                                                        | eceive F                             | IFO Full   | I        |            |          |          |         |         |  |  |  |
|               |         |         |          |         |            |                         |         | 0: Red                                                       | ceive FIF                            | O is not   | t full.  |            |          |          |         |         |  |  |  |
|               |         |         |          |         |            |                         |         | 1: Red                                                       | ceive FIF                            | O is full  |          |            |          |          |         |         |  |  |  |
| 2             |         |         | RNE      |         | RO         |                         | 0       | SSI R                                                        | eceive F                             | IFO Not    | Empty    |            |          |          |         |         |  |  |  |
|               |         |         |          |         |            |                         |         |                                                              | ceive FIF                            |            |          |            |          |          |         |         |  |  |  |
|               |         |         |          |         |            |                         |         | 1: Red                                                       | ceive FIF                            | O is not   | t empty. |            |          |          |         |         |  |  |  |
| 1             |         |         | TNF      |         | RO         |                         | 1       | SSI T                                                        | ransmit I                            | FIFO No    | t Full   |            |          |          |         |         |  |  |  |
| •             |         |         |          |         | 110        |                         | •       |                                                              | nsmit Fl                             |            |          |            |          |          |         |         |  |  |  |
|               |         |         |          |         |            |                         |         |                                                              | nsmit Fl                             |            |          |            |          |          |         |         |  |  |  |
| 0             |         |         | TFE      |         | R0         |                         | 1       | 1 SSI Transmit FIFO Empty                                    |                                      |            |          |            |          |          |         |         |  |  |  |
| 0             |         |         | IFE      |         | Rυ         |                         | I       |                                                              |                                      |            |          |            |          |          |         |         |  |  |  |
|               |         |         |          |         |            |                         |         | 0: Transmit FIFO is not empty.<br>1: Transmit FIFO is empty. |                                      |            |          |            |          |          |         |         |  |  |  |
|               |         |         |          |         |            |                         |         | 1. IIa                                                       | namitT                               |            | ipty.    |            |          |          |         |         |  |  |  |

# Register 5: SSI Clock Prescale (SSICPSR), offset 0x010

**SSICPSR** is the clock prescale register and specifies the division factor by which the system clock must be internally divided before further use.

The value programmed into this register must be an even number between 2 and 254. The least-significant bit of the programmed number is hard-coded to zero. If an odd number is written to this register, data read back from this register has the least-significant bit as zero.

#### SSI Clock Prescale (SSICPSR) SSI0 base: 0x4000.8000 Offset 0x010 Type R/W, reset 0x0000.0000

|               | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24      | 23       | 22         | 21       | 20         | 19       | 18       | 17                    | 16       |
|---------------|---------|---------|----------|---------|---------|---------|---------|---------|----------|------------|----------|------------|----------|----------|-----------------------|----------|
|               |         | r       | , ,      |         | · · ·   |         | 1       | rese    | erved    |            |          | •          |          | 1        | 1                     |          |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0    | RO<br>0  | RO<br>0    | RO<br>0  | RO<br>0  | RO<br>0               | RO<br>0  |
| _             | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8       | 7        | 6          | 5        | 4          | 3        | 2        | 1                     | 0        |
|               |         | 1       |          | rese    | rved    |         | ı       | 1       |          | ſ          | ſ        | CPSE       | DVSR     | 1        | T                     |          |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | R/W<br>0 | R/W<br>0   | R/W<br>0 | R/W<br>0   | R/W<br>0 | R/W<br>0 | R/W<br>0              | R/W<br>0 |
| Bit/F         | ield    |         | Name     |         | Туре    | I       | Reset   | Descr   | iption   |            |          |            |          |          |                       |          |
| 31:           | :8      |         | reserved |         | RO      |         | 0       | compa   |          | vith futur | e produ  | cts, the v | alue of  | a reserv | To prov<br>ved bit sh |          |
| 7:0           | 0       | C       | PSDVSF   | २       | R/W     |         | 0       |         | lock Pre |            |          |            |          | _        |                       |          |
|               |         |         |          |         |         |         |         | This v  | alue mu  | st be an   | even nu  | umber fro  | om 2 to  | 254, de  | pending               | on the   |

This value must be an even number from 2 to 254, depending on the frequency of SSIC1k. The LSB always returns 0 on reads.

# Register 6: SSI Interrupt Mask (SSIIM), offset 0x014

The **SSIIM** register is the interrupt mask set or clear register. It is a read/write register and all bits are cleared to 0 on reset.

On a read, this register gives the current value of the mask on the relevant interrupt. A write of 1 to the particular bit sets the mask, enabling the interrupt to be read. A write of 0 clears the corresponding mask.

SSI Interrupt Mask (SSIIM) SSI0 base: 0x4000.8000 Offset 0x014 Type R/W, reset 0x0000.0000

|               | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24      | 23       | 22                      | 21        | 20         | 19         | 18          | 17        | 16       |
|---------------|---------|---------|----------|---------|---------|---------|---------|---------|----------|-------------------------|-----------|------------|------------|-------------|-----------|----------|
|               |         | 1       |          |         |         |         | 1       | rese    | rved     |                         |           | 1          |            |             | 1         | '        |
| Туре          | RO      | RO      | RO       | RO      | RO      | RO      | RO      | RO      | RO       | RO                      | RO        | RO         | RO         | RO          | RO        | RO       |
| Reset         | 0       | 0       | 0        | 0       | 0       | 0       | 0       | 0       | 0        | 0                       | 0         | 0          | 0          | 0           | 0         | 0        |
| 1             | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8       | 7        | 6                       | 5         | 4          | 3          | 2           | 1         | 0        |
|               |         | -       |          |         |         | res     | erved   |         |          |                         |           |            | TXIM       | RXIM        | RTIM      | RORIM    |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0                 | RO<br>0   | RO<br>0    | R/W<br>0   | R/W<br>0    | R/W<br>0  | R/W<br>0 |
| Reser         | 0       | 0       | 0        | U       | 0       | 0       | 0       | 0       | 0        | 0                       | 0         | U          | 0          | 0           | 0         | Ū        |
| Bit/F         | iold    |         | Name     |         | Tuno    |         | Reset   | Descr   | intion   |                         |           |            |            |             |           |          |
| DIVE          | leiu    |         | Name     |         | Туре    |         | Resel   | Desci   | ιριιοπ   |                         |           |            |            |             |           |          |
| 31:           | 4       | I       | reserved |         | RO      |         | 0       |         |          | uld not re              |           |            |            |             | •         |          |
|               |         |         |          |         |         |         |         | •       |          | vith futur<br>oss a rea | •         | -          |            |             | ed bit sh | nould be |
|               |         |         |          |         |         |         |         | prese   | veu aci  | 055 8 16                | au-moui   | iry-write  | operatio   |             |           |          |
| 3             |         |         | TXIM     |         | R/W     |         | 0       | SSI TI  | ransmit  | FIFO Inte               | errupt N  | lask       |            |             |           |          |
|               |         |         |          |         |         |         |         | 0: TX   | FIFO ha  | alf-full or             | less cor  | ndition ir | nterrupt i | s maske     | d.        |          |
|               |         |         |          |         |         |         |         | 1· TX   | FIFO ha  | alf-full or             | less cor  | ndition ir | Iterrunt i | s not ma    | sked      |          |
|               |         |         |          |         |         |         |         | 1. 17   |          |                         | 1000 001  |            | iten upt i | 0 1101 1110 | ioneu.    |          |
| 2             |         |         | RXIM     |         | R/W     |         | 0       | SSI R   | eceive F | FIFO Inte               | errupt M  | ask        |            |             |           |          |
|               |         |         |          |         |         |         |         | 0: RX   | FIFO ha  | alf-full or             | more co   | ondition   | interrupt  | is mask     | ed.       |          |
|               |         |         |          |         |         |         |         | 1: RX   | FIFO ha  | alf-full or             | more co   | ondition   | interrupt  | is not m    | nasked.   |          |
|               |         |         |          |         |         |         |         |         |          |                         |           |            | •          |             |           |          |
| 1             |         |         | RTIM     |         | R/W     |         | 0       | SSI R   | eceive 7 | Time-Out                | Interru   | pt Mask    |            |             |           |          |
|               |         |         |          |         |         |         |         | 0: RX   | FIFO tir | ne-out ir               | iterrupt  | is maske   | ed.        |             |           |          |
|               |         |         |          |         |         |         |         | 1: RX   | FIFO tir | ne-out ir               | terrupt   | is not m   | asked.     |             |           |          |
| ~             |         |         |          |         |         |         | 0       |         |          | )                       |           | Maali      |            |             |           |          |
| 0             |         |         | RORIM    |         | R/W     |         | 0       |         |          | Overrun                 |           |            |            |             |           |          |
|               |         |         |          |         |         |         |         | 0: RX   | FIFO ov  | errun in                | terrupt i | s maske    | ed.        |             |           |          |
|               |         |         |          |         |         |         |         | 1: RX   | FIFO ov  | errun in                | terrupt i | s not ma   | isked.     |             |           |          |

SSI Raw Interrupt Status (SSIRIS)

# Register 7: SSI Raw Interrupt Status (SSIRIS), offset 0x018

The **SSIRIS** register is the raw interrupt status register. On a read, this register gives the current raw status value of the corresponding interrupt prior to masking. A write has no effect.

| ffset 0x0<br>/pe RO, | )18  | 00.8000<br>x0000.000 | )8       |    |      |      |       |        |           |                      |           |           |              |          |         |        |
|----------------------|------|----------------------|----------|----|------|------|-------|--------|-----------|----------------------|-----------|-----------|--------------|----------|---------|--------|
|                      | 31   | 30                   | 29       | 28 | 27   | 26   | 25    | 24     | 23        | 22                   | 21        | 20        | 19           | 18       | 17      | 16     |
|                      |      | 1                    | 1        | 1  | ľ    |      | 1     | rese   | rved<br>I | 1                    | 1         | 1         | 1<br>1       | 1        | 1       | 1      |
| Туре                 | RO   | RO                   | RO       | RO | RO   | RO   | RO    | RO     | RO        | RO                   | RO        | RO        | RO           | RO       | RO      | RO     |
| Reset                | 0    | 0                    | 0        | 0  | 0    | 0    | 0     | 0      | 0         | 0                    | 0         | 0         | 0            | 0        | 0       | 0      |
|                      | 15   | 14                   | 13       | 12 | 11   | 10   | 9     | 8      | 7         | 6                    | 5         | 4         | 3            | 2        | 1       | 0      |
|                      |      | 1                    |          |    | · ·  | rese | erved | 1      |           | •                    | •         | •         | TXRIS        | RXRIS    | RTRIS   | RORRIS |
| Туре                 | RO   | RO                   | RO       | RO | RO   | RO   | RO    | RO     | RO        | RO                   | RO        | RO        | RO           | RO       | RO      | RO     |
| Reset                | 0    | 0                    | 0        | 0  | 0    | 0    | 0     | 0      | 0         | 0                    | 0         | 0         | 1            | 0        | 0       | 0      |
| Bit/Fi               | ield |                      | Name     |    | Туре | I    | Reset | Descr  | iption    |                      |           |           |              |          |         |        |
| 31:4                 | 4    |                      | reserved |    | RO   |      |       |        |           |                      |           |           |              |          |         |        |
| 3                    |      |                      | TXRIS    |    | RO   |      | 1     | SSI T  | ransmit   | FIFO Ra              | w Interr  | upt Stat  | us           |          |         |        |
|                      |      |                      |          |    |      |      |       | Indica | tes that  | the trans            | smit FIF  | O is hal  | f full or le | ess, whe | n set.  |        |
| 2                    |      |                      | RXRIS    |    | RO   |      | 0     | SSI R  | eceive F  | FIFO Ra              | w Interru | upt Statu | JS           |          |         |        |
|                      |      |                      |          |    |      |      |       | Indica | tes that  | the rece             | eive FIFC | ) is half | full or m    | ore, whe | en set. |        |
|                      |      |                      | RTRIS    |    | RO   |      | 0     | SSI R  | eceive 1  | Fime-Ou <sup>-</sup> | t Raw In  | terrupt S | Status       |          |         |        |
| 1                    |      |                      |          |    |      |      |       |        |           |                      |           |           |              |          |         |        |
| 1                    |      |                      |          |    |      |      |       | Indica | tes that  | the rece             | eive time | -out has  | s occurre    | ed, when | set.    |        |
| 1<br>0               |      |                      | RORRIS   |    | RO   |      | 0     |        |           | the rece<br>Overrun  |           |           |              | ed, when | set.    |        |

# Register 8: SSI Masked Interrupt Status (SSIMIS), offset 0x01C

The SSIMIS register is the masked interrupt status register. On a read, this register gives the current masked status value of the corresponding interrupt. A write has no effect.

| SSI Masked Interrupt Status ( | (SSIMIS) |
|-------------------------------|----------|
|-------------------------------|----------|

SSI0 base: 0x4000.8000 Offset 0x01C Type RO, reset 0x0000.0000

|               | 31      | 30                                                                                                                                                                                                         | 29      | 28      | 27      | 26      | 25      | 24      | 23       | 22                   | 21       | 20        | 19        | 18        | 17      | 16      |
|---------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|---------|---------|---------|----------|----------------------|----------|-----------|-----------|-----------|---------|---------|
|               |         | 1                                                                                                                                                                                                          |         |         |         |         | •       | resei   | rved     |                      |          | •         |           |           |         |         |
| Type<br>Reset | RO<br>0 | RO<br>0                                                                                                                                                                                                    | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0              | RO<br>0  | RO<br>0   | RO<br>0   | RO<br>0   | RO<br>0 | RO<br>0 |
|               | 15      | 14                                                                                                                                                                                                         | 13      | 12      | 11      | 10      | 9       | 8       | 7        | 6                    | 5        | 4         | 3         | 2         | 1       | 0       |
| [             |         | 1                                                                                                                                                                                                          |         |         | r r     |         | erved   | 1 1     |          | - 1                  | -        | 1         | TXMIS     | RXMIS     | RTMIS   | RORMIS  |
| Type<br>Reset | RO<br>0 | RO<br>0                                                                                                                                                                                                    | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0              | RO<br>0  | RO<br>0   | RO<br>0   | RO<br>0   | RO<br>0 | RO<br>0 |
| Bit/F         | ield    |                                                                                                                                                                                                            | Name    |         | Туре    |         | Reset   | Descri  | ption    |                      |          |           |           |           |         |         |
| 31:           | :4      | reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should b preserved across a read-modify-write operation. |         |         |         |         |         |         |          |                      |          |           |           |           |         |         |
| 3             |         |                                                                                                                                                                                                            | TXMIS   |         | RO      |         | 0       |         |          | FIFO Ma<br>the trans |          | •         |           | ess, whe  | n set.  |         |
| 2             |         |                                                                                                                                                                                                            | RXMIS   |         | RO      |         | 0       |         |          | FIFO Mas<br>the rece |          |           |           | ore, whe  | en set. |         |
| 1             |         |                                                                                                                                                                                                            | RTMIS   |         | RO      |         | 0       | SSI Re  | eceive 7 | īme-Out              | Maske    | d Interru | pt Status | 6         |         |         |
|               |         |                                                                                                                                                                                                            |         |         |         |         |         | Indicat | tes that | the rece             | ive time | -out has  | occurre   | d, when   | set.    |         |
| 0             |         |                                                                                                                                                                                                            | RORMIS  |         | RO      |         | 0       | SSI Re  | eceive ( | Overrun I            | Masked   | Interrup  | t Status  |           |         |         |
|               |         |                                                                                                                                                                                                            |         |         |         |         |         | Indicat | tes that | the rece             | ive FIFC | ) has ov  | erflowed  | l, when s | set.    |         |

# Register 9: SSI Interrupt Clear (SSIICR), offset 0x020

The **SSIICR** register is the interrupt clear register. On a write of 1, the corresponding interrupt is cleared. A write of 0 has no effect.

| SSI Inte                          | errupt C | Clear (S | SSIICR)  |         |          |         |            |                   |                                     |            |           |            |         |          |          |          |
|-----------------------------------|----------|----------|----------|---------|----------|---------|------------|-------------------|-------------------------------------|------------|-----------|------------|---------|----------|----------|----------|
| SSI0 bas<br>Offset 0x<br>Type W10 | 020      |          | 000      |         |          |         |            |                   |                                     |            |           |            |         |          |          |          |
|                                   | 31       | 30       | 29       | 28      | 27       | 26      | 25         | 24                | 23                                  | 22         | 21        | 20         | 19      | 18       | 17       | 16       |
|                                   |          |          |          |         |          |         | •          | rese              | erved                               |            |           | •          |         |          | •        |          |
| Туре                              | RO       | RO       | RO       | RO      | RO       | RO      | RO         | RO                | RO                                  | RO         | RO        | RO         | RO      | RO       | RO       | RO       |
| Reset                             | 0        | 0        | 0        | 0       | 0        | 0       | 0          | 0                 | 0                                   | 0          | 0         | 0          | 0       | 0        | 0        | 0        |
|                                   | 15       | 14       | 13       | 12      | 11       | 10      | 9          | 8                 | 7                                   | 6          | 5         | 4          | 3       | 2        | 1        | 0        |
|                                   |          |          |          |         |          |         | rese       | erved             |                                     | •          | •         | •          |         | •        | RTIC     | RORIC    |
| Type<br>Reset                     | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0    | RO<br>0           | RO<br>0                             | RO<br>0    | RO<br>0   | RO<br>0    | RO<br>0 | RO<br>0  | W1C<br>0 | W1C<br>0 |
| Reset                             | 0        | U        | U        | U       | U        | 0       | 0          | U                 | U                                   | 0          | 0         | U          | U       | 0        | U        | 0        |
|                                   | 9 - I -I |          | N        |         | <b>T</b> |         | <b>7</b> t | <b>D</b>          |                                     |            |           |            |         |          |          |          |
| Bit/F                             | ield     |          | Name     |         | Туре     | ł       | Reset      | Descr             | ription                             |            |           |            |         |          |          |          |
| 31                                | :2       |          | reserved |         | RO       |         | 0          | comp              | are shou<br>atibility v<br>rved acr | vith futur | e produ   | cts, the v | alue of | a reserv | •        |          |
| 1                                 |          |          | RTIC     |         | W1C      |         | 0          | SSI R             | eceive T                            | Time-Out   | t Interru | ot Clear   |         |          |          |          |
|                                   |          |          |          |         |          |         |            | 0 <sup>.</sup> No | effect or                           | n interru  | ot        |            |         |          |          |          |
|                                   |          |          |          |         |          |         |            |                   |                                     |            |           |            |         |          |          |          |
|                                   |          |          |          |         |          |         |            | T: Cle            | ars inter                           | rupt.      |           |            |         |          |          |          |
| 0                                 | )        |          | RORIC    |         | W1C      |         | 0          | SSI R             | eceive C                            | Overrun    | Interrupt | Clear      |         |          |          |          |
|                                   |          |          |          |         |          |         |            | 0: No             | effect or                           | n interru  | ot.       |            |         |          |          |          |
|                                   |          |          |          |         |          |         |            |                   | ars inter                           |            |           |            |         |          |          |          |
|                                   |          |          |          |         |          |         |            | 1. 016            |                                     | iupi.      |           |            |         |          |          |          |

# Register 10: SSI Peripheral Identification 4 (SSIPeriphID4), offset 0xFD0

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

### SSI Peripheral Identification 4 (SSIPeriphID4)

SSI0 base: 0x4000.8000 Offset 0xFD0 Type RO, reset 0x0000.0000

|               | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24      | 23                                   | 22         | 21        | 20         | 19       | 18         | 17       | 16      |
|---------------|---------|---------|----------|---------|---------|---------|---------|---------|--------------------------------------|------------|-----------|------------|----------|------------|----------|---------|
|               |         | •       |          |         | · ·     |         |         | rese    | erved                                | l          | •         | •          |          | •          |          |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                              | RO<br>0    | RO<br>0   | RO<br>0    | RO<br>0  | RO<br>0    | RO<br>0  | RO<br>0 |
|               | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8       | 7                                    | 6          | 5         | 4          | 3        | 2          | 1        | 0       |
|               |         | î       | 1 I      | rese    | rved    |         | ı       | 1       |                                      |            | 1         | PI         | D4       | r          | r        |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                              | RO<br>0    | RO<br>0   | RO<br>0    | RO<br>0  | RO<br>0    | RO<br>0  | RO<br>0 |
| Bit/F         | ield    |         | Name     |         | Туре    | F       | Reset   | Descr   | iption                               |            |           |            |          |            |          |         |
| 31            | :8      |         | reserved |         | RO      |         | 0       | compa   | are shou<br>atibility w<br>rved acro | ith futur/ | e produ   | cts, the v | alue of  | a reserv   |          |         |
|               |         |         |          |         |         |         |         |         | eriphera                             | 0          |           | -          |          |            |          |         |
|               |         |         |          |         |         |         |         | Can b   | e used b                             | by softwa  | are to id | entify the | e preser | ice of thi | s periph | eral.   |

# Register 11: SSI Peripheral Identification 5 (SSIPeriphID5), offset 0xFD4

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 5 (SSIPeriphID5)

SSI0 base: 0x4000.8000 Offset 0xFD4 Type RO, reset 0x0000.0000

|                                                  | 31               | 30      | 29       | 28      | 27      | 26      | 25      | 24      | 23                                   | 22         | 21         | 20         | 19       | 18         | 17       | 16      |
|--------------------------------------------------|------------------|---------|----------|---------|---------|---------|---------|---------|--------------------------------------|------------|------------|------------|----------|------------|----------|---------|
|                                                  |                  |         |          |         | · ·     |         | •       | rese    | rved                                 |            |            |            |          | •          |          |         |
| Type<br>Reset                                    | RO<br>0          | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                              | RO<br>0    | RO<br>0    | RO<br>0    | RO<br>0  | RO<br>0    | RO<br>0  | RO<br>0 |
| riccor                                           | 15               | 14      | 13       | 12      | 11      | 10      | 9       | 8       | 7                                    | 6          | 5          | 4          | 3        | 2          | 1        | 0       |
|                                                  |                  |         | 1        |         | rved    | 10      | 1       | 1       |                                      | r <u> </u> | , <u> </u> | PI         |          | 1          | · ·      |         |
| Type<br>Reset                                    | RO<br>0          | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                              | RO<br>0    | RO<br>0    | RO<br>0    | RO<br>0  | RO<br>0    | RO<br>0  | RO<br>0 |
| Reset                                            | 0                | 0       | 0        | 0       | 0       | 0       | 0       | 0       | 0                                    | 0          | 0          | 0          | 0        | 0          | 0        | 0       |
| Bit/F                                            | Bit/Field Name T |         |          |         |         |         | Reset   | Descr   | iption                               |            |            |            |          |            |          |         |
| 31                                               | :8               |         | reserved |         | RO      |         | 0       | compa   | are shou<br>atibility w<br>rved acro | vith futur | e produc   | cts, the v | alue of  | a reserv   | •        |         |
| 7:0 PID5 RO 0x00 SSI Peripheral ID Register[15:8 |                  |         |          |         |         |         |         |         |                                      |            | 8]         |            |          |            |          |         |
|                                                  |                  |         |          |         |         |         |         | Can b   | e used b                             | by softwa  | are to ide | entify the | e preser | nce of thi | s periph | eral.   |

# Register 12: SSI Peripheral Identification 6 (SSIPeriphID6), offset 0xFD8

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

### SSI Peripheral Identification 6 (SSIPeriphID6)

SSI0 base: 0x4000.8000 Offset 0xFD8 Type RO, reset 0x0000.0000

|                                      | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24      | 23                                   | 22         | 21        | 20         | 19       | 18         | 17       | 16      |
|--------------------------------------|---------|---------|----------|---------|---------|---------|---------|---------|--------------------------------------|------------|-----------|------------|----------|------------|----------|---------|
|                                      |         | •       |          |         |         |         | •       | rese    | erved                                |            |           |            | 1        |            |          |         |
| Type<br>Reset                        | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                              | RO<br>0    | RO<br>0   | RO<br>0    | RO<br>0  | RO<br>0    | RO<br>0  | RO<br>0 |
|                                      | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8       | 7                                    | 6          | 5         | 4          | 3        | 2          | 1        | 0       |
|                                      |         | 1       | 1 1      | rese    | rved    |         | 1       | 1       |                                      | r          | <b>r</b>  | PI         | D6       | r          | r        |         |
| Type<br>Reset                        | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                              | RO<br>0    | RO<br>0   | RO<br>0    | RO<br>0  | RO<br>0    | RO<br>0  | RO<br>0 |
| Bit/F                                | ield    |         | Name     |         | Туре    | F       | Reset   | Descr   | iption                               |            |           |            |          |            |          |         |
| 31                                   | :8      |         | reserved |         | RO      |         | 0       | comp    | are shou<br>atibility w<br>rved acro | /ith futur | e produ   | cts, the v | alue of  | a reserv   | •        |         |
| 7:0 PID6 RO 0x00 SSI Peripheral ID R |         |         |          |         |         |         |         |         |                                      |            | ister[23: | 16]        |          |            |          |         |
|                                      |         |         |          |         |         |         |         | Can b   | e used b                             | by softwa  | are to id | entify the | e preser | ice of thi | s periph | eral.   |

# Register 13: SSI Peripheral Identification 7 (SSIPeriphID7), offset 0xFDC

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 7 (SSIPeriphID7)

SSI0 base: 0x4000.8000 Offset 0xFDC Type RO, reset 0x0000.0000

| -             | 31      | 30      | 29       | 28      | 27      | 26                                                                                                                                                               | 25      | 24      | 23          | 22         | 21                                  | 20         | 19      | 18       | 17      | 16      |
|---------------|---------|---------|----------|---------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|-------------|------------|-------------------------------------|------------|---------|----------|---------|---------|
|               |         |         |          |         |         |                                                                                                                                                                  | •       | rese    | rved        |            |                                     |            |         | •        | •       |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                          | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0    | RO<br>0                             | RO<br>0    | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 |
| reser         | 15      | 14      | 13       | 12      | 11      | 10                                                                                                                                                               | 9       | 8       | 7           | 6          | 5                                   | 4          | 3       | 2        | 1       | 0       |
| [             | 15      | 1       | 1 1      |         | rved    | 10                                                                                                                                                               |         | 1       | ,<br>       |            | <b></b>                             | PII        |         | 1        | · ·     |         |
| Turne         | RO      | RO      | RO       | RO      | RO      | RO                                                                                                                                                               | RO      | RO      | RO          | RO         | RO                                  | RO         | RO      | RO       | RO      | RO      |
| Type<br>Reset | 0       | 0       | 0        | 0       | 0       | 0                                                                                                                                                                | 0       | 0       | 0           | 0          | 0                                   | 0          | 0       | 0        | 0       | 0       |
| Bit/F         | ield    |         | Name     |         | Туре    | F                                                                                                                                                                | Reset   | Descr   | iption      |            |                                     |            |         |          |         |         |
| 31:           | :8      |         | reserved |         | RO      |                                                                                                                                                                  | 0       | compa   | atibility w | /ith futur | ely on the<br>re produc<br>ad-modif | cts, the v | alue of | a reserv | •       |         |
| 7:0           | 0       |         | PID7     |         | RO      | preserved across a read-modify-write operation.<br>0x00 SSI Peripheral ID Register[31:24]<br>Can be used by software to identify the presence of this peripheral |         |         |             |            |                                     |            |         |          |         |         |

# Register 14: SSI Peripheral Identification 0 (SSIPeriphID0), offset 0xFE0

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

### SSI Peripheral Identification 0 (SSIPeriphID0)

SSI0 base: 0x4000.8000 Offset 0xFE0 Type RO, reset 0x0000.0022

|               | 31      | 30      | 29       | 28      | 27       | 26      | 25      | 24                                                                                                                     | 23          | 22        | 21       | 20         | 19      | 18       | 17      | 16      |  |  |  |
|---------------|---------|---------|----------|---------|----------|---------|---------|------------------------------------------------------------------------------------------------------------------------|-------------|-----------|----------|------------|---------|----------|---------|---------|--|--|--|
|               |         | •       |          |         | , ,<br>, |         | •       | rese                                                                                                                   | rved        |           |          |            |         |          |         |         |  |  |  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                | RO<br>0     | RO<br>0   | RO<br>0  | RO<br>0    | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 |  |  |  |
|               | 15      | 14      | 13       | 12      | 11       | 10      | 9       | 8                                                                                                                      | 7           | 6         | 5        | 4          | 3       | 2        | 1       | 0       |  |  |  |
|               |         | 1       | ı ı      | rese    | rved     |         | 1       | 1                                                                                                                      |             | 1         | r ı      | PI         | D0      | r        | r       |         |  |  |  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                | RO<br>0     | RO<br>0   | RO<br>1  | RO<br>0    | RO<br>0 | RO<br>0  | RO<br>1 | RO<br>0 |  |  |  |
| Bit/F         | ield    |         | Name     |         | Туре     | F       | Reset   | Descr                                                                                                                  | iption      |           |          |            |         |          |         |         |  |  |  |
| 31            | :8      | l       | reserved |         | RO       |         | 0       | compa                                                                                                                  | atibility w | ith futur | e produc | cts, the v | alue of | a reserv |         |         |  |  |  |
| 7:            | 0       |         | PID0     |         | RO       |         | 0x22    | compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation. |             |           |          |            |         |          |         |         |  |  |  |

# Register 15: SSI Peripheral Identification 1 (SSIPeriphID1), offset 0xFE4

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 1 (SSIPeriphID1)

SSI0 base: 0x4000.8000 Offset 0xFE4 Type RO, reset 0x0000.0000

| -                                             | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24      | 23          | 22         | 21                                | 20         | 19       | 18         | 17       | 16      |
|-----------------------------------------------|---------|---------|----------|---------|---------|---------|---------|---------|-------------|------------|-----------------------------------|------------|----------|------------|----------|---------|
|                                               |         | 1       |          |         |         |         | 1       | rese    | rved        |            |                                   |            |          |            |          |         |
| Type<br>Reset                                 | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0    | RO<br>0                           | RO<br>0    | RO<br>0  | RO<br>0    | RO<br>0  | RO<br>0 |
|                                               | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8       | 7           | 6          | 5                                 | 4          | 3        | 2          | 1        | 0       |
|                                               |         | ı       | · ·      | rese    | rved    |         | r       | 1       |             | r          | l I                               | PII        | D1       | 1          | r        |         |
| Type<br>Reset                                 | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0    | RO<br>0                           | RO<br>0    | RO<br>0  | RO<br>0    | RO<br>0  | RO<br>0 |
|                                               |         |         |          |         |         |         |         |         |             |            |                                   |            |          |            |          |         |
| Bit/F                                         | ield    |         | Name     |         | Туре    | F       | Reset   | Descr   | iption      |            |                                   |            |          |            |          |         |
| 31:                                           | :8      |         | reserved |         | RO      |         | 0       | compa   | atibility v | vith futur | ely on the<br>e produc<br>ad-modi | cts, the v | alue of  | a reserv   | •        |         |
| 7:0 PID1 RO 0x00 SSI Peripheral ID Register [ |         |         |          |         |         |         |         |         |             |            | ister [15                         | :8]        |          |            |          |         |
|                                               |         |         |          |         |         |         |         | Can b   | e used b    | by softwa  | are to id                         | entify the | e preser | nce of thi | s periph | eral.   |

# Register 16: SSI Peripheral Identification 2 (SSIPeriphID2), offset 0xFE8

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

### SSI Peripheral Identification 2 (SSIPeriphID2)

SSI0 base: 0x4000.8000 Offset 0xFE8 Type RO, reset 0x0000.0018

|               | 31        | 30       | 29       | 28      | 27         | 26      | 25                                                                                                         | 24       | 23                                                                                                                                                                                 | 22      | 21      | 20      | 19      | 18      | 17      | 16      |  |  |  |
|---------------|-----------|----------|----------|---------|------------|---------|------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|--|--|--|
|               |           | 1        |          |         |            |         | •                                                                                                          | reserved |                                                                                                                                                                                    |         |         |         |         |         |         |         |  |  |  |
| Type<br>Reset | RO<br>0   | RO<br>0  | RO<br>0  | RO<br>0 | RO<br>0    | RO<br>0 | RO<br>0                                                                                                    | RO<br>0  | RO<br>0                                                                                                                                                                            | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 |  |  |  |
|               | 15        | 14       | 13       | 12      | 11         | 10      | 9                                                                                                          | 8        | 7                                                                                                                                                                                  | 6       | 5       | 4       | 3       | 2       | 1       | 0       |  |  |  |
|               |           | reserved |          |         |            |         |                                                                                                            |          |                                                                                                                                                                                    | PID2    |         |         |         |         |         |         |  |  |  |
| Type<br>Reset | RO<br>0   | RO<br>0  | RO<br>0  | RO<br>0 | RO<br>0    | RO<br>0 | RO<br>0                                                                                                    | RO<br>0  | RO<br>0                                                                                                                                                                            | RO<br>0 | RO<br>0 | RO<br>1 | RO<br>1 | RO<br>0 | RO<br>0 | RO<br>0 |  |  |  |
| Bit/F         | Bit/Field |          | Name     |         | Type Reset |         | Descr                                                                                                      | iption   |                                                                                                                                                                                    |         |         |         |         |         |         |         |  |  |  |
| 31            | 31:8      |          | reserved |         |            |         | 0                                                                                                          | compa    | ware should not rely on the value of a reserved bit. To provide patibility with future products, the value of a reserved bit should be erved across a read-modify-write operation. |         |         |         |         |         |         |         |  |  |  |
| 7:0           |           | PID2     |          | RO      | 0x18       |         | SSI Peripheral ID Register [23:16]<br>Can be used by software to identify the presence of this peripheral. |          |                                                                                                                                                                                    |         |         |         |         |         |         |         |  |  |  |

# Register 17: SSI Peripheral Identification 3 (SSIPeriphID3), offset 0xFEC

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 3 (SSIPeriphID3)

SSI0 base: 0x4000.8000 Offset 0xFEC Type RO, reset 0x0000.0001

|               | 31        | 30       | 29      | 28      | 27      | 26         | 25      | 24                                 | 23                                                                                                                                                                                 | 22      | 21      | 20      | 19      | 18      | 17      | 16      |  |  |  |
|---------------|-----------|----------|---------|---------|---------|------------|---------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|--|--|--|
|               |           | 1        |         |         |         |            | 1       | rved                               |                                                                                                                                                                                    |         |         |         | 1       |         |         |         |  |  |  |
| Type<br>Reset | RO<br>0   | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0    | RO<br>0 | RO<br>0                            | RO<br>0                                                                                                                                                                            | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 |  |  |  |
| 10000         | 15        | 14       | 13      | 12      | 11      | 10         | 9       | 8                                  | 7                                                                                                                                                                                  | 6       | 5       | 4       | 3       | 2       | 1       | 0       |  |  |  |
|               |           | reserved |         |         |         |            |         |                                    |                                                                                                                                                                                    | PID3    |         |         |         |         |         |         |  |  |  |
| Type<br>Reset | RO<br>0   | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0    | RO<br>0 | RO<br>0                            | RO<br>0                                                                                                                                                                            | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>1 |  |  |  |
|               |           |          |         |         |         |            |         |                                    |                                                                                                                                                                                    |         |         |         |         |         |         |         |  |  |  |
| Bit/F         | Bit/Field |          | Name    |         | Туре    | Type Reset |         | Descr                              | iption                                                                                                                                                                             |         |         |         |         |         |         |         |  |  |  |
| 31:           | :8        | reserved |         |         | RO      |            | 0       | compa                              | ware should not rely on the value of a reserved bit. To provide patibility with future products, the value of a reserved bit should be erved across a read-modify-write operation. |         |         |         |         |         |         |         |  |  |  |
| 7:            | 0         | PID3     |         |         | RO      |            | 0x01    | SSI Peripheral ID Register [31:24] |                                                                                                                                                                                    |         |         |         |         |         |         |         |  |  |  |
|               |           |          |         |         |         |            |         | Can b                              | Can be used by software to identify the presence of this peripheral.                                                                                                               |         |         |         |         |         |         |         |  |  |  |

# Register 18: SSI PrimeCell Identification 0 (SSIPCellID0), offset 0xFF0

The SSIPCeIIIDn registers are hard-coded and the fields within the register determine the reset value.

### SSI PrimeCell Identification 0 (SSIPCelIID0)

SSI0 base: 0x4000.8000 Offset 0xFF0 Type RO, reset 0x0000.000D

|       | 31        | 30       | 29   | 28 | 27    | 26         | 25   | 24                              | 23                                                                   | 22                                                                                                                                                                           | 21 | 20 | 19 | 18 | 17 | 16 |  |  |  |
|-------|-----------|----------|------|----|-------|------------|------|---------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|----|----|----|----|--|--|--|
|       |           | 1        |      |    |       |            |      | reserved                        |                                                                      |                                                                                                                                                                              |    |    |    |    |    |    |  |  |  |
| Туре  | RO        | RO       | RO   | RO | RO    | RO         | RO   | RO                              | RO                                                                   | RO                                                                                                                                                                           | RO | RO | RO | RO | RO | RO |  |  |  |
| Reset | 0         | 0        | 0    | 0  | 0     | 0          | 0    | 0                               | 0                                                                    | 0                                                                                                                                                                            | 0  | 0  | 0  | 0  | 0  | 0  |  |  |  |
|       | 15        | 14       | 13   | 12 | 11    | 10         | 9    | 8                               | 7                                                                    | 6                                                                                                                                                                            | 5  | 4  | 3  | 2  | 1  | 0  |  |  |  |
|       | reserved  |          |      |    |       |            |      |                                 | CIDO                                                                 |                                                                                                                                                                              |    |    |    |    |    |    |  |  |  |
| Туре  | RO        | RO       | RO   | RO | RO    | RO         | RO   | RO                              | RO                                                                   | RO                                                                                                                                                                           | RO | RO | RO | RO | RO | RO |  |  |  |
| Reset | 0         | 0        | 0    | 0  | 0     | 0          | 0    | 0                               | 0                                                                    | 0                                                                                                                                                                            | 0  | 0  | 1  | 1  | 0  | 1  |  |  |  |
| Bit/F | Bit/Field |          | Name |    |       | Type Reset |      |                                 | Description                                                          |                                                                                                                                                                              |    |    |    |    |    |    |  |  |  |
| 31:8  |           | reserved |      |    | RO    |            | 0    | comp                            | atibility w                                                          | re should not rely on the value of a reserved bit. To provide tibility with future products, the value of a reserved bit should be ved across a read-modify-write operation. |    |    |    |    |    |    |  |  |  |
| 7:    | 0         | CID0     |      |    | RO 02 |            | 0x0D | SSI PrimeCell ID Register [7:0] |                                                                      |                                                                                                                                                                              |    |    |    |    |    |    |  |  |  |
|       |           |          |      |    |       |            |      | Provid                          | Provides software a standard cross-peripheral identification system. |                                                                                                                                                                              |    |    |    |    |    |    |  |  |  |

# Register 19: SSI PrimeCell Identification 1 (SSIPCelIID1), offset 0xFF4

The SSIPCeIIIDn registers are hard-coded and the fields within the register determine the reset value.

SSI PrimeCell Identification 1 (SSIPCelIID1)

SSI0 base: 0x4000.8000 Offset 0xFF4 Type RO, reset 0x0000.00F0

|           | 31            | 30     | 29 | 28   | 27   | 26        | 25   | 24     | 23                                                                                                                                                                                    | 22 | 21 | 20 | 19 | 18 | 17 | 16 |  |  |  |
|-----------|---------------|--------|----|------|------|-----------|------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|----|----|----|----|----|--|--|--|
|           | reserved      |        |    |      |      |           |      |        |                                                                                                                                                                                       |    |    |    |    | 1  |    |    |  |  |  |
| Туре      | RO            | RO     | RO | RO   | RO   | RO        | RO   | RO     | RO                                                                                                                                                                                    | RO | RO | RO | RO | RO | RO | RO |  |  |  |
| Reset     | 0             | 0      | 0  | 0    | 0    | 0         | 0    | 0      | 0                                                                                                                                                                                     | 0  | 0  | 0  | 0  | 0  | 0  | 0  |  |  |  |
|           | 15            | 14     | 13 | 12   | 11   | 10        | 9    | 8      | 7                                                                                                                                                                                     | 6  | 5  | 4  | 3  | 2  | 1  | 0  |  |  |  |
|           |               | 1      |    | rese | rved |           | 1    | 1      | CID1                                                                                                                                                                                  |    |    |    |    |    |    |    |  |  |  |
| Туре      | RO            | RO     | RO | RO   | RO   | RO        | RO   | RO     | RO                                                                                                                                                                                    | RO | RO | RO | RO | RO | RO | RO |  |  |  |
| Reset     | 0             | 0      | 0  | 0    | 0    | 0         | 0    | 0      | 1                                                                                                                                                                                     | 1  | 1  | 1  | 0  | 0  | 0  | 0  |  |  |  |
| Bit/Field |               | Name   |    |      | Туре | e Reset [ |      | Descr  | iption                                                                                                                                                                                |    |    |    |    |    |    |    |  |  |  |
| 31        | 31:8 reserved |        |    |      | RO   |           | 0    | compa  | are should not rely on the value of a reserved bit. To provide<br>atibility with future products, the value of a reserved bit should be<br>rved across a read-modify-write operation. |    |    |    |    |    |    |    |  |  |  |
| 7:        | 0             | ) CID1 |    |      | RO   |           | 0xF0 | SSI P  | SSI PrimeCell ID Register [15:8]                                                                                                                                                      |    |    |    |    |    |    |    |  |  |  |
|           |               |        |    |      |      |           |      | Provid | Provides software a standard cross-peripheral identification system.                                                                                                                  |    |    |    |    |    |    |    |  |  |  |

## Register 20: SSI PrimeCell Identification 2 (SSIPCelIID2), offset 0xFF8

The SSIPCeIIIDn registers are hard-coded and the fields within the register determine the reset value.

#### SSI PrimeCell Identification 2 (SSIPCelIID2)

SSI0 base: 0x4000.8000 Offset 0xFF8 Type RO, reset 0x0000.0005

| _     | 31   | 30              | 29      | 28   | 27   | 26 | 25    | 24                                                                                                                                                                                            | 23        | 22        | 21        | 20       | 19       | 18        | 17       | 16    |
|-------|------|-----------------|---------|------|------|----|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|----------|----------|-----------|----------|-------|
|       |      | 1               | г т<br> |      |      |    | I     | rese                                                                                                                                                                                          | rved      |           |           |          |          | 1         | 1        |       |
| Туре  | RO   | RO              | RO      | RO   | RO   | RO | RO    | RO                                                                                                                                                                                            | RO        | RO        | RO        | RO       | RO       | RO        | RO       | RO    |
| Reset | 0    | 0               | 0       | 0    | 0    | 0  | 0     | 0                                                                                                                                                                                             | 0         | 0         | 0         | 0        | 0        | 0         | 0        | 0     |
| _     | 15   | 14              | 13      | 12   | 11   | 10 | 9     | 8                                                                                                                                                                                             | 7         | 6         | 5         | 4        | 3        | 2         | 1        | 0     |
|       |      | T               | I I     | rese | rved |    | ſ     | I                                                                                                                                                                                             |           |           | [ ] ]     | CI       | D2       | 1         | I        |       |
| Туре  | RO   | RO              | RO      | RO   | RO   | RO | RO    | RO                                                                                                                                                                                            | RO        | RO        | RO        | RO       | RO       | RO        | RO       | RO    |
| Reset | 0    | 0               | 0       | 0    | 0    | 0  | 0     | 0                                                                                                                                                                                             | 0         | 0         | 0         | 0        | 0        | 1         | 0        | 1     |
| Bit/F | ield |                 | Name    |      | Туре | F  | Reset | Descr                                                                                                                                                                                         | iption    |           |           |          |          |           |          |       |
| 31    | :8   | reserved RO 0 S |         |      |      |    |       | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |           |           |           |          |          |           |          |       |
| 7:    | 0    |                 | CID2    |      | RO   |    | 0x05  | SSI P                                                                                                                                                                                         | rimeCell  | ID Regi   | ster [23: | 16]      |          |           |          |       |
|       |      |                 |         |      |      |    |       | Provid                                                                                                                                                                                        | les softw | vare a st | andard o  | cross-pe | ripheral | identific | ation sy | stem. |

## Register 21: SSI PrimeCell Identification 3 (SSIPCellID3), offset 0xFFC

The SSIPCeIIIDn registers are hard-coded and the fields within the register determine the reset value.

SSI PrimeCell Identification 3 (SSIPCelIID3)

SSI0 base: 0x4000.8000 Offset 0xFFC Type RO, reset 0x0000.00B1

|       | 31   | 30 | 29                             | 28   | 27   | 26 | 25    | 24     | 23                                                                                                                                                                                               | 22        | 21        | 20       | 19       | 18        | 17       | 16    |
|-------|------|----|--------------------------------|------|------|----|-------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|----------|----------|-----------|----------|-------|
|       |      | 1  | 1                              |      |      |    | I     | rese   | rved                                                                                                                                                                                             |           |           |          |          | 1         |          |       |
| Туре  | RO   | RO | RO                             | RO   | RO   | RO | RO    | RO     | RO                                                                                                                                                                                               | RO        | RO        | RO       | RO       | RO        | RO       | RO    |
| Reset | 0    | 0  | 0                              | 0    | 0    | 0  | 0     | 0      | 0                                                                                                                                                                                                | 0         | 0         | 0        | 0        | 0         | 0        | 0     |
|       | 15   | 14 | 13                             | 12   | 11   | 10 | 9     | 8      | 7                                                                                                                                                                                                | 6         | 5         | 4        | 3        | 2         | 1        | 0     |
|       |      | 1  |                                | rese | rved |    | •     | 1      |                                                                                                                                                                                                  |           |           |          | 03       | I         |          |       |
| Туре  | RO   | RO | RO                             | RO   | RO   | RO | RO    | RO     | RO                                                                                                                                                                                               | RO        | RO        | RO       | RO       | RO        | RO       | RO    |
| Reset | 0    | 0  | 0                              | 0    | 0    | 0  | 0     | 0      | 1                                                                                                                                                                                                | 0         | 1         | 1        | 0        | 0         | 0        | 1     |
| Bit/F | ield |    | Name                           |      | Туре | F  | Reset | Descr  | iption                                                                                                                                                                                           |           |           |          |          |           |          |       |
| 31    | :8   |    | Name Type Res<br>reserved RO 0 |      |      |    |       |        | Software should not rely on the value of a reserved bit. To provide<br>compatibility with future products, the value of a reserved bit should<br>preserved across a read-modify-write operation. |           |           |          |          |           |          |       |
| 7:    | 0    |    | CID3                           |      | RO   | (  | 0xB1  | SSI P  | rimeCell                                                                                                                                                                                         | ID Regi   | ster [31: | 24]      |          |           |          |       |
|       |      |    |                                |      |      |    |       | Provid | des softw                                                                                                                                                                                        | vare a st | andard    | cross-pe | ripheral | identific | ation sy | stem. |

# **15** Inter-Integrated Circuit (I<sup>2</sup>C) Interface

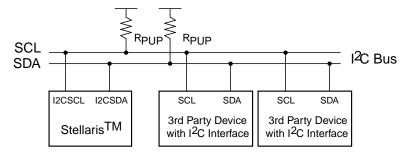
The Inter-Integrated Circuit ( $I^2C$ ) bus provides bi-directional data transfer through a two-wire design (a serial data line SDA and a serial clock line SCL), and interfaces to external  $I^2C$  devices such as serial memory (RAMs and ROMs), networking devices, LCDs, tone generators, and so on. The  $I^2C$  bus may also be used for system testing and diagnostic purposes in product development and manufacture. The LM3S6965 microcontroller includes <code>onetwoll2Cmodules</code>, providing the ability to interact (both send and receive) with other  $I^2C$  devices on the bus.

Devices on the I<sup>2</sup>C bus can be designated as either a master or a slave. TheEach Stellaris<sup>®</sup> I<sup>2</sup>C module supports both sending and receiving data as either a master or a slave, and also supports the simultaneous operation as both a master and a slave. There are a total of four I<sup>2</sup>C modes: Master Transmit, Master Receive, Slave Transmit, and Slave Receive. The Stellaris<sup>®</sup> I<sup>2</sup>C modulemodules can operate at two speeds: Standard (100 Kbps) and Fast (400 Kbps).

Both the  $I^2C$  master and slave can generate interrupts; the  $I^2C$  master generates interrupts when a transmit or receive operation completes (or aborts due to an error) and the  $I^2C$  slave generates interrupts when data has been sent or requested by a master.

## 15.1 Block Diagram

#### 12CSCI I<sup>2</sup>C Control I2CMSA I2CSOAR I<sup>2</sup>C Master Core I2CSDA I2CMCS I2CSCSR I2CMDR I2CSDR 12CSCL Interrupt I2CMTPR 12CSIM I<sup>2</sup>C I/O Select **I2CMIMR I2CSRIS** I2CSDA 12CMRIS 12CSMIS 12CSCL 12CMMIS 12CSICR **I2CMICR** I<sup>2</sup>C Slave Core 12CSDA I2CMCR


## Figure 15-1. I<sup>2</sup>C Block Diagram

## 15.2 Functional Description

The Each  $I^2C$  module is comprised of both master and slave functions which are implemented as separate peripherals. For proper operation, the SDA and SCL pins must be connected to bi-directional open-drain pads. A typical  $I^2C$  bus configuration is shown in Figure 15-2 on page 364.

See " $I^2C$ " on page 524 for  $I^2C$  timing diagrams.

## Figure 15-2. I<sup>2</sup>C Bus Configuration

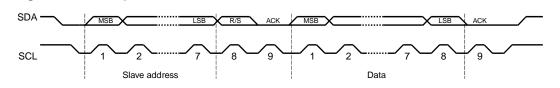


## 15.2.1 I<sup>2</sup>C Bus Functional Overview

The I<sup>2</sup>C bus uses only two signals: SDA and SCL, named I2CSDA and I2CSCL on Stellaris<sup>®</sup> microcontrollers. SDA is the bi-directional serial data line and SCL is the bi-directional serial clock line. The bus is considered idle when both lines are high.

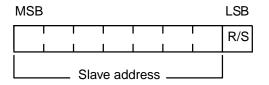
Every transaction on the I<sup>2</sup>C bus is nine bits long, consisting of eight data bits and a single acknowledge bit. The number of bytes per transfer (defined as the time between a valid START and STOP condition, described in "START and STOP Conditions" on page 364) is unrestricted, but each byte has to be followed by an acknowledge bit, and data must be transferred MSB first. When a receiver cannot receive another complete byte, it can hold the clock line SCL Low and force the transmitter into a wait state. The data transfer continues when the receiver releases the clock SCL.

## 15.2.1.1 START and STOP Conditions


The protocol of the  $I^2C$  bus defines two states to begin and end a transaction: START and STOP. A high-to-low transition on the SDA line while the SCL is high is defined as a START condition, and a low-to-high transition on the SDA line while SCL is high is defined as a STOP condition. The bus is considered busy after a START condition and free after a STOP condition. See Figure 15-3 on page 364.



### Figure 15-3. START and STOP Conditions

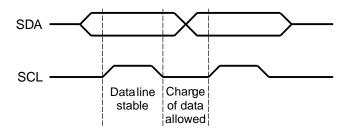

## 15.2.1.2 Data Format with 7-Bit Address

Data transfers follow the format shown in Figure 15-4 on page 365. After the START condition, a slave address is sent. This address is 7-bits long followed by an eighth bit, which is a data direction bit ( $\mathbb{R}/S$  bit in the **I2CMSA** register). A zero indicates a transmit operation (send), and a one indicates a request for data (receive). A data transfer is always terminated by a STOP condition generated by the master, however, a master can initiate communications with another device on the bus by generating a repeated START condition and addressing another slave without first generating a STOP condition. Various combinations of receive/send formats are then possible within a single transfer.



The first seven bits of the first byte make up the slave address (see Figure 15-5 on page 365). The eighth bit determines the direction of the message. A zero in the R/S position of the first byte means that the master will write (send) data to the selected slave, and a one in this position means that the master will receive data from the slave.

#### Figure 15-5. R/S Bit in First Byte




### 15.2.1.3 Data Validity

The data on the SDA line must be stable during the high period of the clock, and the data line can only change when SCL is low (see Figure 15-6 on page 365).

### Figure 15-6. Data Validity During Bit Transfer on the I<sup>2</sup>C Bus

Figure 15-4. Complete Data Transfer with a 7-Bit Address



### 15.2.1.4 Acknowledge

All bus transactions have a required acknowledge clock cycle that is generated by the master. During the acknowledge cycle, the transmitter (which can be the master or slave) releases the SDA line. To acknowledge the transaction, the receiver must pull down SDA during the acknowledge clock cycle. The data sent out by the receiver during the acknowledge cycle must comply with the data validity requirements described in "Data Validity" on page 365.

When a slave receiver does not acknowledge the slave address, SDA must be left high by the slave so that the master can generate a STOP condition and abort the current transfer. If the master device is acting as a receiver during a transfer, it is responsible for acknowledging each transfer made by the slave. Since the master controls the number of bytes in the transfer, it signals the end of data to the slave transmitter by not generating an acknowledge on the last data byte. The slave transmitter must then release SDA to allow the master to generate the STOP or a repeated START condition.

## 15.2.1.5 Arbitration

A master may start a transfer only if the bus is idle. Its possible for two or more masters to generate a START condition within minimum hold time of the START condition. In these situations, an arbitration scheme takes place on the SDA line, while SCL is high. During arbitration, the first of the competing master devices to place a '1' (high) on SDA while another master transmits a '0' (low) will switch off its data output stage and retire until the bus is idle again.

Arbitration can take place over several bits. Its first stage is a comparison of address bits, and if both masters are trying to address the same device, arbitration continues on to the comparison of data bits.

## 15.2.2 Available Speed Modes

The I<sup>2</sup>C clock rate is determined by the parameters: CLK\_PRD, TIMER\_PRD, SCL\_LP, and SCL\_HP.

where:

CLK\_PRD is the system clock period

SCL\_LP is the low phase of SCL (fixed at 6)

SCL\_HP is the high phase of SCL (fixed at 4)

TIMER\_PRD is the programmed value in the I<sup>2</sup>C Master Timer Period (I2CMTPR) register (see page 383).

The I<sup>2</sup>C clock period is calculated as follows:

SCL\_PERIOD = 2\*(1 + TIMER\_PRD)\*(SCL\_LP + SCL\_HP)\*CLK\_PRD

For example:

```
CLK_PRD = 50 ns
TIMER_PRD = 2
SCL_LP=6
SCL_HP=4
```

yields a SCL frequency of:

1/T = 333 Khz

Table 15-1 on page 366 gives examples of Timer period, system clock, and speed mode (Standard or Fast).

| System Clock | Timer Period | Standard Mode | Timer Period | Fast Mode |
|--------------|--------------|---------------|--------------|-----------|
| 4 Mhz        | 0x01         | 100 Kbps      | -            | -         |
| 6 Mhz        | 0x02         | 100 Kbps      | -            | -         |
| 12.5 Mhz     | 0x06         | 89 Kbps       | 0x01         | 312 Kbps  |
| 16.7 Mhz     | 0x08         | 93 Kbps       | 0x02         | 278 Kbps  |
| 20 Mhz       | 0x09         | 100 Kbps      | 0x02         | 333 Kbps  |
| 25 Mhz       | 0x0C         | 96.2 Kbps     | 0x03         | 312 Kbps  |
| 33Mhz        | 0x10         | 97.1 Kbps     | 0x04         | 330 Kbps  |
| 40Mhz        | 0x13         | 100 Kbps      | 0x04         | 400 Kbps  |

Table 15-1. Examples of I<sup>2</sup>C Master Timer Period versus Speed Mode

| System Clock | Timer Period | Standard Mode | Timer Period | Fast Mode |
|--------------|--------------|---------------|--------------|-----------|
| 50Mhz        | 0x18         | 100 Kbps      | 0x06         | 357 Kbps  |

### 15.2.3 Interrupts

The I<sup>2</sup>C can generate interrupts when the following conditions are observed:

- Master transaction completed
- Master transaction error
- Slave transaction received
- Slave transaction requested

There is a separate interrupt signal for the  $I^2C$  master and  $I^2C$  modules. While both modules can generate interrupts for multiple conditions, only a single interrupt signal is sent to the interrupt controller.

## 15.2.3.1 I<sup>2</sup>C Master Interrupts

The  $I^2C$  master module generates an interrupt when a transaction completes (either transmit or receive), or when an error occurs during a transaction. To enable the  $I^2C$  master interrupt, software must write a '1' to the  $I^2C$  **Master Interrupt Mask (I2CMIMR)** register. When an interrupt condition is met, software must check the ERROR bit in the  $I^2C$  **Master Control/Status (I2CMCS)** register to verify that an error didn't occur during the last transaction. An error condition is asserted if the last transaction wasn't acknowledge by the slave or if the master was forced to give up ownership of the bus due to a lost arbitration round with another master. If an error is not detected, the application can proceed with the transfer. The interrupt is cleared by writing a '1' to the  $I^2C$  **Master Interrupt Clear (I2CMICR)** register.

If the application doesn't require the use of interrupts, the raw interrupt status is always visible via the **I<sup>2</sup>C Master Raw Interrupt Status (I2CMRIS)** register.

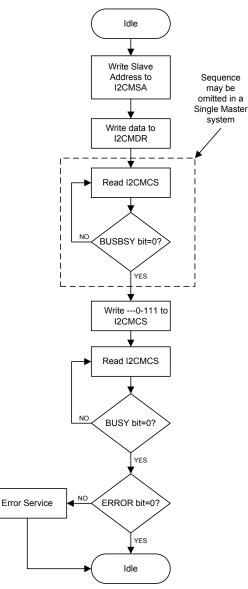
## 15.2.3.2 I<sup>2</sup>C Slave Interrupts

The slave module generates interrupts as it receives requests from an  $I^2C$  master. To enable the  $I^2C$  slave interrupt, write a '1' to the  $I^2C$  Slave Interrupt Mask (I2CSIMR) register. Software determines whether the module should write (transmit) or read (receive) data from the  $I^2C$  Slave Data (I2CSDR) register, by checking the RREQ and TREQ bits of the  $I^2C$  Slave Control/Status (I2CSCSR) register. If the slave module is in receive mode and the first byte of a transfer is received, the FBR bit is set along with the RREQ bit. The interrupt is cleared by writing a '1' to the  $I^2C$  Slave Interrupt Clear (I2CSICR) register.

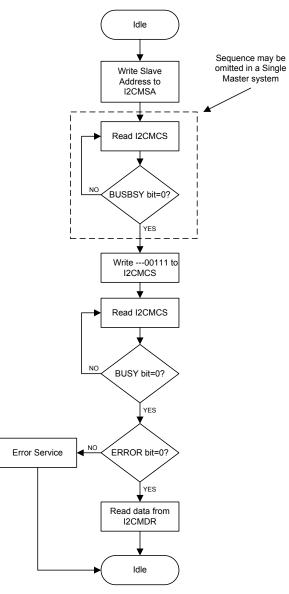
If the application doesn't require the use of interrupts, the raw interrupt status is always visible via the I<sup>2</sup>C Slave Raw Interrupt Status (I2CSRIS) register.

### 15.2.4 Loopback Operation

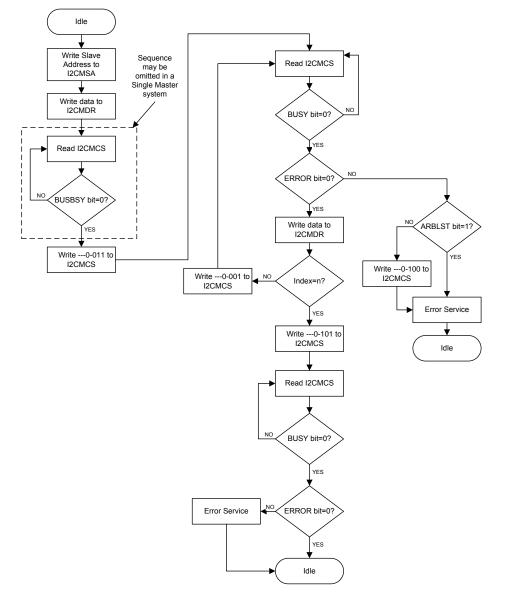
The  $I^2C$  modules can be placed into an internal loopback mode for diagnostic or debug work. This is accomplished by setting the LPBK bit in the  $I^2C$  Master Configuration (I2CMCR) register. In loopback mode, the SDA and SCL signals from the master and slave modules are tied together.


## 15.2.5 Command Sequence Flow Charts

This section details the steps required to perform the various  $I^2C$  transfer types in both master and slave mode.


## 15.2.5.1 I<sup>2</sup>C Master Command Sequences

The figures that follow show the command sequences available for the I<sup>2</sup>C master.













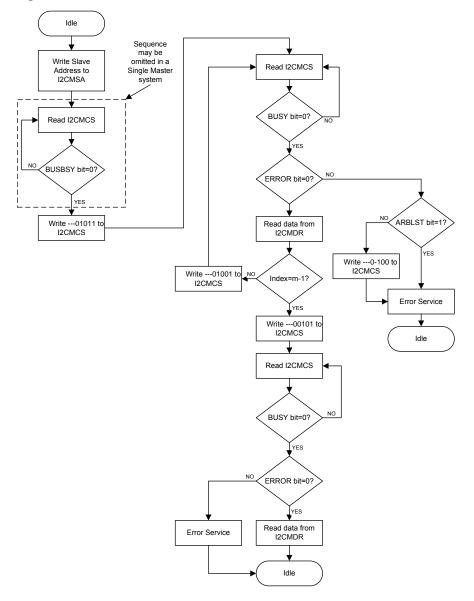




Figure 15-10. Master Burst RECEIVE

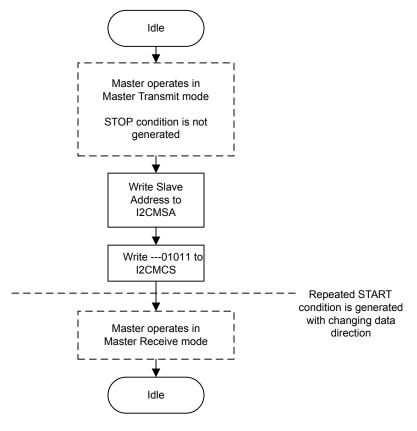



Figure 15-11. Master Burst RECEIVE after Burst SEND

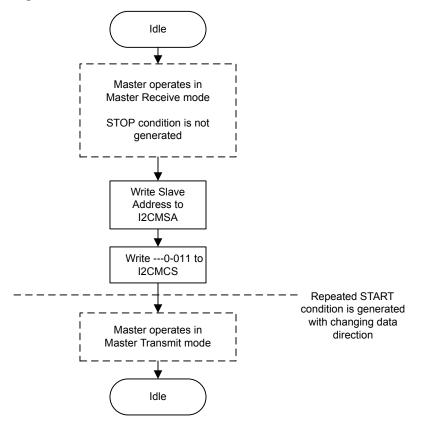
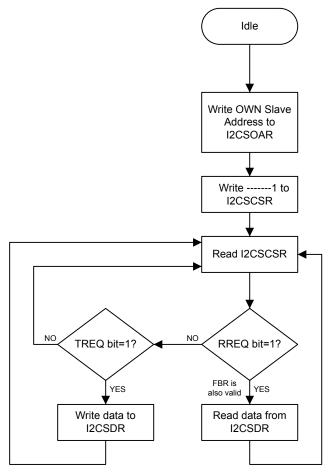




Figure 15-12. Master Burst SEND after Burst RECEIVE

## 15.2.5.2 I<sup>2</sup>C Slave Command Sequences

Figure 15-13 on page 374 presents the command sequence available for the  $I^2C$  slave.





## 15.3 Initialization and Configuration

The following example shows how to configure the  $I^2C$  module to send a single byte as a master. This assumes the system clock is 20 MHz.

- 1. Enable the I<sup>2</sup>C clock by writing a value of 0x0000.1000 to the **RCGC1** register in the System Control module.
- 2. Enable the clock to the appropriate GPIO module via the **RCGC2** register in the System Control module.
- 3. In the GPIO module, enable the appropriate pins for their alternate function using the **GPIOAFSEL** register. Also, be sure to enable the same pins for Open Drain operation.
- 4. Initialize the I<sup>2</sup>C Master by writing the I2CMCR register with a value of 0x0000.0020.
- 5. Set the desired SCL clock speed of 100 Kbps by writing the I2CMTPR register with the correct value. The value written to the I2CMTPR register represents the number of system clock periods in one SCL clock period. The TPR value is determined by the following equation:

TPR = (System Clock / (2 \* (SCL\_LP + SCL\_HP) \* SCL\_CLK)) - 1; TPR = (20MHz / (2 \* (6 + 4) \* 100000)) - 1; TPR = 9

Write the I2CMTPR register with the value of 0x0000.0009.

- 6. Specify the slave address of the master and that the next operation will be a Send by writing the **I2CMSA** register with a value of 0x0000.0076. This sets the slave address to 0x3B.
- 7. Place data (byte) to be sent in the data register by writing the **I2CMDR** register with the desired data.
- 8. Initiate a single byte send of the data from Master to Slave by writing the **I2CMCS** register with a value of 0x0000.0007 (STOP, START, RUN).
- 9. Wait until the transmission completes by polling the I2CMCS register's BUSBSY bit until it has been cleared.

## 15.4 I<sup>2</sup>C Register Map

"I<sup>2</sup>C Register Map" on page 375 lists the I<sup>2</sup>C registers. All addresses given are relative to the I<sup>2</sup>C base addresses for the master and slave:

- I<sup>2</sup>C Master 0: 0x4002.0000
- I<sup>2</sup>C Slave 0: 0x4002.0800
- I<sup>2</sup>C Master 1: 0x4002.1000
- I<sup>2</sup>C Slave 1: 0x4001.1800

### Table 15-2. Inter-Integrated Circuit (I<sup>2</sup>C) Interface Register Map

| Offset | Name    | Туре | Reset       | Description                    | See<br>page |
|--------|---------|------|-------------|--------------------------------|-------------|
| 0x000  | I2CMSA  | R/W  | 0x0000.0000 | I2C Master Slave Address       | 377         |
| 0x000  | I2CSOAR | R/W  | 0x0000.0000 | I2C Slave Own Address          | 390         |
| 0x004  | I2CMCS  | R/W  | 0x0000.0000 | I2C Master Control/Status      | 378         |
| 0x004  | I2CMCS  | R/W  | 0x0000.0000 | I2C Master Control/Status      | 378         |
| 0x004  | I2CSCSR | RO   | 0x0000.0000 | I2C Slave Control/Status       | 391         |
| 0x004  | I2CSCSR | RO   | 0x0000.0000 | I2C Slave Control/Status       | 391         |
| 0x008  | I2CMDR  | R/W  | 0x0000.0000 | I2C Master Data                | 382         |
| 0x008  | I2CSDR  | R/W  | 0x0000.0000 | I2C Slave Data                 | 393         |
| 0x00C  | I2CMTPR | R/W  | 0x0000.0001 | I2C Master Timer Period        | 383         |
| 0x00C  | I2CSIMR | R/W  | 0x0000.0000 | I2C Slave Interrupt Mask       | 394         |
| 0x010  | I2CMIMR | R/W  | 0x0000.0000 | I2C Master Interrupt Mask      | 384         |
| 0x010  | I2CSRIS | RO   | 0x0000.0000 | I2C Slave Raw Interrupt Status | 395         |

| Offset | Name    | Туре | Reset       | Description                        | See<br>page |
|--------|---------|------|-------------|------------------------------------|-------------|
| 0x014  | I2CMRIS | RO   | 0x0000.0000 | I2C Master Raw Interrupt Status    | 385         |
| 0x014  | I2CSMIS | RO   | 0x0000.0000 | I2C Slave Masked Interrupt Status  | 396         |
| 0x018  | I2CMMIS | RO   | 0x0000.0000 | I2C Master Masked Interrupt Status | 386         |
| 0x018  | I2CSICR | WO   | 0x0000.0000 | I2C Slave Interrupt Clear          | 397         |
| 0x01C  | I2CMICR | WO   | 0x0000.0000 | I2C Master Interrupt Clear         | 387         |
| 0x020  | I2CMCR  | R/W  | 0x0000.0000 | I2C Master Configuration           | 388         |

# 15.5 Register Descriptions (I<sup>2</sup>C Master)

The remainder of this section lists and describes the I<sup>2</sup>C master registers, in numerical order by address offset. See also "Register Descriptions (I2C Slave)" on page 389.

## Register 1: I<sup>2</sup>C Master Slave Address (I2CMSA), offset 0x000

This register consists of eight bits: seven address bits (A6-A0), and a Receive/Send bit, which determines if the next operation is a Receive (High), or Send (Low).

I2C Master Slave Address (I2CMSA)

I2C Master 0 base: 0x4002.0000 I2C Master 1 base: 0x4002.1000 Offset 0x000 Type R/W, reset 0x0000.0000

31 30 29 28 27 26 25 24 23 22 20 18 17 16 21 19 reserved RO Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 12 10 0 15 14 11 9 8 6 2 7 5 4 3 1 SA R/S reserved Туре RO RO RO RO RO RO RO RO R/W R/W R/W R/W R/W R/W R/W R/W Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bit/Field Name Reset Description Туре 31:8 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 7:1 SA R/W 0 I<sup>2</sup>C Slave Address This field specifies bits A6 through A0 of the slave address. 0 R/S R/W 0 Receive/Send The R/S bit specifies if the next operation is a Receive (High) or Send (Low). 0: Send

1: Receive

## Register 2: I<sup>2</sup>C Master Control/Status (I2CMCS), offset 0x004

This register accesses four control bits when written, and accesses seven status bits when read.

The status register consists of seven bits, which when read determine the state of the I<sup>2</sup>C bus controller.

The control register consists of four bits: the RUN, START, STOP, and ACK bits. The START bit causes the generation of the START, or REPEATED START condition.

The STOP bit determines if the cycle stops at the end of the data cycle, or continues on to a burst. To generate a single send cycle, the  $I^2C$  Master Slave Address (I2CMSA) register is written with the desired address, the R/S bit is set to 0, and the Control register is written with ACK=X (0 or 1), STOP=1, START=1, and RUN=1 to perform the operation and stop. When the operation is completed (or aborted due an error), the interrupt pin becomes active and the data may be read from the I2CMDR register. When the  $I^2C$  module operates in Master receiver mode, the ACK bit must be set normally to logic 1. This causes the  $I^2C$  bus controller to send an acknowledge automatically after each byte. This bit must be reset when the  $I^2C$  bus controller requires no further data to be sent from the slave transmitter.

### Read-Only Status Register

#### I2C Master Control/Status (I2CMCS)

I2C Master 0 base: 0x4002.0000 I2C Master 1 base: 0x4002.1000 Offset 0x004 Type R/W, reset 0x0000.0000

| 11    | ,       |         |          |         |          |         |         |         |           |                                         |         |          |            |           |            |         |
|-------|---------|---------|----------|---------|----------|---------|---------|---------|-----------|-----------------------------------------|---------|----------|------------|-----------|------------|---------|
|       | 31      | 30      | 29       | 28      | 27       | 26      | 25      | 24      | 23        | 22                                      | 21      | 20       | 19         | 18        | 17         | 16      |
|       |         | 1       | 1 1      |         | r r      |         | 1       | reser   | ved       | 1 1                                     |         | ì        | Î          | î         | Î I        |         |
|       |         |         |          |         | 1        |         |         |         |           |                                         |         |          |            |           |            |         |
| Type  | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0   | RO<br>0                                 | RO<br>0 | RO<br>0  | RO<br>0    | RO<br>0   | RO<br>0    | RO<br>0 |
| Reset | 0       | 0       | 0        | 0       | 0        | 0       | 0       | 0       | 0         | 0                                       | 0       | 0        | 0          | 0         | 0          | 0       |
|       | 15      | 14      | 13       | 12      | 11       | 10      | 9       | 8       | 7         | 6                                       | 5       | 4        | 3          | 2         | 1          | 0       |
|       |         | 1       |          |         | reserved |         | 1       | · · ·   |           | BUSBSY                                  | IDLE    | ARBLST   | DATACK     | ADRACK    | ERROR      | BUSY    |
| Туре  | RO      | RO      | RO       | RO      | RO       | RO      | RO      | RO      | RO        | R                                       | R       | R        | R          | R         | R          | R       |
| Reset | 0       | 0       | 0        | 0       | 0        | 0       | 0       | 0       | 0         | 0                                       | 0       | 0        | 0          | 0         | 0          | 0       |
| Bit/F | ield    |         | Name     |         | Туре     |         | Reset   | Descri  | ption     |                                         |         |          |            |           |            |         |
| 31    | :7      |         | reserved |         | RO       |         | 0       | compa   | atibility | uld not re<br>with future<br>ross a rea | e produ | cts, the | alue of    | a reserv  | •          |         |
| 6     | i       |         | BUSBSY   |         | R        |         | 0       | otherw  | •         | fies the st<br>e bus is id<br>ons.      |         |          |            |           | •          |         |
| 5     | i       |         | IDLE     |         | R 0      |         |         |         | •         | fies the I <sup>2</sup><br>controlle    |         |          | te. If set | , the con | troller is | idle;   |
| 4     |         |         | ARBLST   |         | R        |         | 0       |         |           | fies the re<br>herwise, t               |         |          |            | ,         | controll   | er lost |
| 3     | i       |         | DATACK   |         | R        |         | 0       | transm  | •         | fies the re<br>ata was n<br>d.          |         |          | •          |           |            |         |

| Bit/Field | Name   | Туре | Reset | Description                                                                                                                                                                                                                                                                                       |
|-----------|--------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2         | ADRACK | R    | 0     | This bit specifies the result of the last address operation. If set, the transmitted address was not acknowledged; otherwise, the address was acknowledged.                                                                                                                                       |
| 1         | ERROR  | R    | 0     | This bit specifies the result of the last bus operation. If set, an error occurred on the last operation; otherwise, no error was detected. The error can be from the slave address not being acknowledged, the transmit data not being acknowledged, or because the controller lost arbitration. |
| 0         | BUSY   | R    | 0     | This bit specifies the state of the controller. If set, the controller is busy; otherwise, the controller is idle. When the BUSY bit is set, the other status bits are not valid.                                                                                                                 |

### Write-Only Control Register

### I2C Master Control/Status (I2CMCS)

I2C Master 0 base: 0x4002.0000 I2C Master 1 base: 0x4002.1000 Offset 0x004 Type R/W, reset 0x0000.0000

|        | 31 | 30       | 29       | 28 | 27    | 26  | 25    | 24                                                                                               | 23          | 22                    | 21      | 20                                     | 19      | 18                       | 17        | 16  |  |           |
|--------|----|----------|----------|----|-------|-----|-------|--------------------------------------------------------------------------------------------------|-------------|-----------------------|---------|----------------------------------------|---------|--------------------------|-----------|-----|--|-----------|
|        |    | 1        | 1        | 1  | · · · |     | 1     | rese                                                                                             | rved        | 1 1                   |         | 1                                      | 1       | r                        | 1         |     |  |           |
| Туре   | RO | RO       | RO       | RO | RO    | RO  | RO    | RO                                                                                               | RO          | RO                    | RO      | RO                                     | RO      | RO                       | RO        | RO  |  |           |
| Reset  | 0  | 0        | 0        | 0  | 0     | 0   | 0     | 0                                                                                                | 0           | 0                     | 0       | 0                                      | 0       | 0                        | 0         | 0   |  |           |
| _      | 15 | 14       | 13       | 12 | 11    | 10  | 9     | 8                                                                                                | 7           | 6                     | 5       | 4                                      | 3       | 2                        | 1         | 0   |  |           |
|        |    | 1        | 1        | •  | · ·   | res | erved |                                                                                                  |             |                       |         | •                                      | ACK     | STOP                     | START     | RUN |  |           |
| Туре   | RO | RO       | RO       | RO | RO    | RO  | RO    | RO                                                                                               | RO          | RO                    | RO      | RO                                     | W       | W                        | W         | W   |  |           |
| Reset  | 0  | 0        | 0        | 0  | 0     | 0   | 0     | 0                                                                                                | 0           | 0                     | 0       | 0                                      | 0       | 0                        | 0         | 0   |  |           |
| Bit/Fi |    |          | Name     |    | Туре  | I   | Reset | Descri                                                                                           |             |                       |         |                                        |         |                          |           |     |  |           |
| 31:    | 4  | reserved |          | 1  | RO    |     | 0     | compa                                                                                            | atibility v | vith futur            | e produ | e value o<br>cts, the v<br>ify-write o | alue of | a reserv                 | •         |     |  |           |
| 3      |    |          | reserved |    | ACK   |     | W     |                                                                                                  | 0           |                       | -       |                                        |         | ta byte to<br>ling in Ta |           | •   |  | natically |
| 2      |    |          | STOP     |    | W     |     | 0     |                                                                                                  |             | uses the<br>able 15-3 |         | tion of the                            | e STOP  | conditio                 | n. See fi | eld |  |           |
| 1      |    |          | START    |    | W     | 0   |       |                                                                                                  | -           |                       | •       | ion of a in Table                      |         | •                        |           | RT  |  |           |
| 0      |    |          | RUN      |    | W     |     | 0     | When set, allows the master to send or receive data. See field dec<br>in Table 15-3 on page 380. |             |                       |         |                                        |         |                          | ecoding   |     |  |           |

| Current            | I2CMSA[0]    |            | I2CMC        | S[3:0]    |            | Description                                                                                                         |  |  |  |  |  |
|--------------------|--------------|------------|--------------|-----------|------------|---------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| State              | R/S          | ACK        | STOP         | START     | RUN        | 1                                                                                                                   |  |  |  |  |  |
| Idle               | 0            | Xa         | 0            | 1         | 1          | START condition followed by SEND (master goes to the Master Transmit state).                                        |  |  |  |  |  |
|                    | 0            | х          | 1            | 1         | 1          | START condition followed by a SEND and STOP condition (master remains in Idle state).                               |  |  |  |  |  |
|                    | 1            | 0          | 0            | 1         | 1          | START condition followed by RECEIVE operation with negative ACK (master goes to the Master Receive state).          |  |  |  |  |  |
|                    | 1            | 0          | 1            | 1         | 1          | START condition followed by RECEIVE and STOP condition (master remains in Idle state).                              |  |  |  |  |  |
|                    | 1            | 1          | 0            | 1         | 1          | START condition followed by RECEIVE (master goes to the Master Receive state).                                      |  |  |  |  |  |
|                    | 1            | 1          | 1            | 1         | 1          | Illegal.                                                                                                            |  |  |  |  |  |
|                    | All other co | mbinations | s not listed | are non-o | perations. | NOP.                                                                                                                |  |  |  |  |  |
| Master<br>Transmit | Х            | Х          | 0            | 0         | 1          | SEND operation (master remains in Master Transmit state).                                                           |  |  |  |  |  |
|                    | Х            | Х          | 1            | 0         | 0          | STOP condition (master goes to Idle state).                                                                         |  |  |  |  |  |
|                    | х            | х          | 1            | 0         | 1          | SEND followed by STOP condition (master goes to Idle state).                                                        |  |  |  |  |  |
|                    | 0            | х          | 0            | 1         | 1          | Repeated START condition followed by a SEND (master remains in Master Transmit state).                              |  |  |  |  |  |
|                    | 0            | х          | 1            | 1         | 1          | Repeated START condition followed by SEND and STOP condition (master goes to Idle state).                           |  |  |  |  |  |
|                    | 1            | 0          | 0            | 1         | 1          | Repeated START condition followed by a RECEIVE operation with a negative ACK (master goes to Master Receive state). |  |  |  |  |  |
|                    | 1            | 0          | 1            | 1         | 1          | Repeated START condition followed by a SEND and STOP condition (master goes to Idle state).                         |  |  |  |  |  |
|                    | 1            | 1          | 0            | 1         | 1          | Repeated START condition followed by RECEIVE (master goes to Master Receive state).                                 |  |  |  |  |  |
|                    | 1            | 1          | 1            | 1         | 1          | 1 Illegal.                                                                                                          |  |  |  |  |  |
|                    | All other co | mbinations | s not listed | are non-o | perations. | NOP.                                                                                                                |  |  |  |  |  |

## Table 15-3. Write Field Decoding for I2CMCS[3:0] Field (Sheet 1 of 3)

|                   | I2CMSA[0]    |           | I2CMC        | S[3:0]     |           | Description                                                                                                          |  |  |  |  |  |  |
|-------------------|--------------|-----------|--------------|------------|-----------|----------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| State             | R/S          | ACK       | STOP         | START      | RUN       |                                                                                                                      |  |  |  |  |  |  |
| Master<br>Receive | Х            | 0         | 0            | 0          | 1         | RECEIVE operation with negative ACK (master remains in Master Receive state).                                        |  |  |  |  |  |  |
|                   | Х            | Х         | 1            | 0          | 0         | STOP condition (master goes to Idle state). <sup>b</sup>                                                             |  |  |  |  |  |  |
|                   | Х            | 0         | 1            | 0          | 1         | RECEIVE followed by STOP condition (master goes to Idle state).                                                      |  |  |  |  |  |  |
|                   | Х            | 1         | 0            | 0          | 1         | RECEIVE operation (master remains in Master Receive state).                                                          |  |  |  |  |  |  |
|                   | X 1 1 0 1    |           |              |            |           | lllegal.                                                                                                             |  |  |  |  |  |  |
|                   | 1 0 0        |           | 0            | 1          | 1         | Repeated START condition followed by RECEIVE operation with a negative ACK (master remains in Master Receive state). |  |  |  |  |  |  |
|                   | 1            | 0         | 1            | 1          | 1         | Repeated START condition followed by RECEIVE and STOP condition (master goes to Idle state).                         |  |  |  |  |  |  |
|                   | 1            | 1         | 0            | 1          | 1         | Repeated START condition followed by RECEIVE (master remains in Master Receive state).                               |  |  |  |  |  |  |
|                   | 0 X 0 1 1    |           |              |            |           | Repeated START condition followed by SEND (master goes to Master Transmit state).                                    |  |  |  |  |  |  |
|                   | 0            | Х         | 1            | 1          | 1         | Repeated START condition followed by SEND and STOP condition (master goes to Idle state).                            |  |  |  |  |  |  |
|                   | All other co | mbination | s not listed | are non-op | erations. | NOP.                                                                                                                 |  |  |  |  |  |  |

a. An X in a table cell indicates the bit can be 0 or 1.

b. In Master Receive mode, a STOP condition should be generated only after a Data Negative Acknowledge executed by the master or an Address Negative Acknowledge executed by the slave.

# Register 3: I<sup>2</sup>C Master Data (I2CMDR), offset 0x008

This register contains the data to be transmitted when in the Master Transmit state, and the data received when in the Master Receive state.

I2C Master Data (I2CMDR) I2C Master 0 base: 0x4002.0000 I2C Master 1 base: 0x4002.1000 Offset 0x008 Type R/W, reset 0x000.0000

|       | 31   | 30 | 29      | 28   | 27      | 26 | 25    | 24    | 23          | 22         | 21        | 20                                      | 19       | 18       | 17  | 16  |
|-------|------|----|---------|------|---------|----|-------|-------|-------------|------------|-----------|-----------------------------------------|----------|----------|-----|-----|
|       |      | '  | 1       | 1    | · · · · |    | 1     | rese  | I<br>erved  | 1          | 1         | 1                                       | 1        | 1        | 1   | 1   |
| Туре  | RO   | RO | RO      | RO   | RO      | RO | RO    | RO    | RO          | RO         | RO        | RO                                      | RO       | RO       | RO  | RO  |
| Reset | 0    | 0  | 0       | 0    | 0       | 0  | 0     | 0     | 0           | 0          | 0         | 0                                       | 0        | 0        | 0   | 0   |
|       | 15   | 14 | 13      | 12   | 11      | 10 | 9     | 8     | 7           | 6          | 5         | 4                                       | 3        | 2        | 1   | 0   |
|       |      |    |         | rese | erved   |    |       |       |             | 1          | 1         | I<br>DA                                 | I<br>ATA | 1        | 1   | 1   |
| Туре  | RO   | RO | RO      | RO   | RO      | RO | RO    | RO    | R/W         | R/W        | R/W       | R/W                                     | R/W      | R/W      | R/W | R/W |
| Reset | 0    | 0  | 0       | 0    | 0       | 0  | 0     | 0     | 0           | 0          | 0         | 0                                       | 0        | 0        | 0   | 0   |
| Bit/F | ield |    | Name    |      | Туре    |    | Reset | Descr | ription     |            |           |                                         |          |          |     |     |
| 31    | :8   |    | reserve | d    | RO      |    | 0     | comp  | atibility v | vith futur | re produ  | e value o<br>icts, the v<br>ify-write o | alue of  | a reserv | •   |     |
| 7:    | 0    |    | DATA    |      | R/W     |    | 0x00  | Data  | transferr   | ed durin   | ig transa | action.                                 |          |          |     |     |
|       |      |    |         |      |         |    |       |       |             |            |           |                                         |          |          |     |     |

# Register 4: I<sup>2</sup>C Master Timer Period (I2CMTPR), offset 0x00C

This register specifies the period of the SCL clock.

I2C Master Timer Period (I2CMTPR) I2C Master 0 base: 0x4002.0000 I2C Master 1 base: 0x4002.1000 Offset 0x00C Type R/W, reset 0x0000.0001

|                                                                | 31                     | 30 | 29  | 28   | 27       | 26 | 25  | 24      | 23          | 22         | 21      | 20        | 19           | 18       | 17     | 16  |
|----------------------------------------------------------------|------------------------|----|-----|------|----------|----|-----|---------|-------------|------------|---------|-----------|--------------|----------|--------|-----|
|                                                                |                        | 1  | 1   |      | г г<br>1 |    | 1   | rese    | rved        | 1          |         | 1         |              | 1        | 1      |     |
| Туре                                                           | RO                     | RO | RO  | RO   | RO       | RO | RO  | RO      | RO          | RO         | RO      | RO        | RO           | RO       | RO     | RO  |
| Reset                                                          | 0                      | 0  | 0   | 0    | 0        | 0  | 0   | 0       | 0           | 0          | 0       | 0         | 0            | 0        | 0      | 0   |
| _                                                              | 15                     | 14 | 13  | 12   | 11       | 10 | 9   | 8       | 7           | 6          | 5       | 4         | 3            | 2        | 1      | 0   |
|                                                                |                        | 1  |     | rese | rved     |    |     | 1       |             | 1          |         | Т         | I<br>PR<br>I |          | 1      |     |
| Туре                                                           | RO                     | RO | RO  | RO   | RO       | RO | RO  | RO      | R/W         | R/W        | R/W     | R/W       | R/W          | R/W      | R/W    | R/W |
| Reset                                                          | 0                      | 0  | 0   | 0    | 0        | 0  | 0   | 0       | 0           | 0          | 0       | 0         | 0            | 0        | 0      | 1   |
| Bit/F                                                          | Bit/Field Name Type Re |    |     |      |          |    |     |         | iption      |            |         |           |              |          |        |     |
| 31:8 reserved RO 0 Software sh<br>compatibility<br>preserved a |                        |    |     |      |          |    |     |         | atibility v | vith futur | e produ | icts, the | value of     | a reserv | •      |     |
| 7:0                                                            | )                      |    | TPR |      | R/W      |    | 0x1 | This fi | eld spec    | cifies the | period  | of the So | CL clock     |          |        |     |
|                                                                |                        |    |     |      |          |    |     | SCL_P   | PRD =       | 2*(1 +     | TPR)*   | (SCL_L    | P + SC       | L_HP)*   | CLK_PR | D   |
|                                                                |                        |    |     |      |          |    |     | where   | :           |            |         |           |              |          |        |     |
| SCL_PRD is the SCL line period (I <sup>2</sup> C clo           |                        |    |     |      |          |    |     |         |             |            |         | lock).    |              |          |        |     |

TPR is the Timer Period register value (range of 1 to 255).

 $SCL_LP$  is the SCL Low period (fixed at 6).

 $\tt SCL\_HP$  is the SCL High period (fixed at 4).

# Register 5: I<sup>2</sup>C Master Interrupt Mask (I2CMIMR), offset 0x010

This register controls whether a raw interrupt is promoted to a controller interrupt.

I2C Master Interrupt Mask (I2CMIMR) I2C Master 0 base: 0x4002.0000 I2C Master 1 base: 0x4002.1000 Offset 0x010 Type R/W, reset 0x0000.0000

| 11            | ,       |         |          |         |         |                      |         |                                                                                                                                                                                         |             |            |         |          |         |         |                         |          |
|---------------|---------|---------|----------|---------|---------|----------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|---------|----------|---------|---------|-------------------------|----------|
|               | 31      | 30      | 29       | 28      | 27      | 26                   | 25      | 24                                                                                                                                                                                      | 23          | 22         | 21      | 20       | 19      | 18      | 17                      | 16       |
|               |         | 1       |          |         |         |                      | 1       | rese                                                                                                                                                                                    | rved        |            | 1 1     |          |         | 1       | 1                       | 1        |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0              | RO<br>0 | RO<br>0                                                                                                                                                                                 | RO<br>0     | RO<br>0    | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0                 | RO<br>0  |
|               | 15      | 14      | 13       | 12      | 11      | 10                   | 9       | 8                                                                                                                                                                                       | 7           | 6          | 5       | 4        | 3       | 2       | 1                       | 0        |
|               |         | 1       |          |         |         |                      | 1       | reserved                                                                                                                                                                                |             |            |         |          |         | 1       | 1                       | IM       |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0              | RO<br>0 | RO<br>0                                                                                                                                                                                 | RO<br>0     | RO<br>0    | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0                 | R/W<br>0 |
| Bit/F         | ield    |         | Name     |         | Туре    | be Reset Description |         |                                                                                                                                                                                         |             |            |         |          |         |         |                         |          |
| 31            | :1      |         | reserved |         | RO      |                      | 0       | Software should not rely on the value of a reserved bit. To pro<br>compatibility with future products, the value of a reserved bit s<br>preserved across a read-modify-write operation. |             |            |         |          |         |         | •                       |          |
| 0             | )       |         | IM       |         | R/W     |                      | 0       | interru                                                                                                                                                                                 | ipt. If set | , the inte |         | not mask | •       |         | o a contr<br>rupt is pr |          |

# Register 6: I<sup>2</sup>C Master Raw Interrupt Status (I2CMRIS), offset 0x014

This register specifies whether an interrupt is pending.

I2C Master Raw Interrupt Status (I2CMRIS)

I2C Master 0 base: 0x4002.0000 I2C Master 1 base: 0x4002.1000 Offset 0x014 Type RO, reset 0x0000.0000

|               | 31      | 30      | 29       | 28                        | 27      | 26      | 25      | 24                                                                                                                                                                                                                   | 23                                  | 22      | 21      | 20      | 19      | 18      | 17      | 16      |  |
|---------------|---------|---------|----------|---------------------------|---------|---------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------|---------|---------|---------|---------|---------|---------|--|
|               |         | 1       |          |                           |         |         | 1       | rese                                                                                                                                                                                                                 | rved<br>I                           |         |         |         |         | 1       |         |         |  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0                   | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                                              | RO<br>0                             | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 |  |
|               | 15      | 14      | 13       | 12                        | 11      | 10      | 9       | 8                                                                                                                                                                                                                    | 7                                   | 6       | 5       | 4       | 3       | 2       | 1       | 0       |  |
|               |         | ı       | r r      |                           | r r     |         | 1       | reserved                                                                                                                                                                                                             | r 1                                 |         |         |         |         | 1       | 1       | RIS     |  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0                   | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                                              | RO<br>0                             | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 |  |
| Bit/F         | ield    |         | Name     | me Type Reset Description |         |         |         |                                                                                                                                                                                                                      |                                     |         |         |         |         |         |         |         |  |
| 31            | :1      | I       | reserved |                           | RO      |         | 0       | Et Description<br>Software should not rely on the value of a reserved bit. To provide<br>compatibility with future products, the value of a reserved bit should b<br>preserved across a read-modify-write operation. |                                     |         |         |         |         |         |         |         |  |
| 0             |         |         | RIS      |                           | RO      |         | 0       | maste                                                                                                                                                                                                                | oit specifi<br>er block.<br>ending. |         |         | •       |         |         |         |         |  |

# Register 7: I<sup>2</sup>C Master Masked Interrupt Status (I2CMMIS), offset 0x018

This register specifies whether an interrupt was signaled.

I2C Master Masked Interrupt Status (I2CMMIS)

I2C Master 0 base: 0x4002.0000 I2C Master 1 base: 0x4002.1000 Offset 0x018 Type RO, reset 0x0000.0000

|               | 31      | 30      | 29       | 28      | 27                     | 26      | 25      | 24       | 23                                    | 22        | 21       | 20         | 19      | 18       | 17      | 16      |
|---------------|---------|---------|----------|---------|------------------------|---------|---------|----------|---------------------------------------|-----------|----------|------------|---------|----------|---------|---------|
|               |         |         |          |         |                        |         | •       | rese     | rved                                  | l         |          |            |         | •        | •       |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0                | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0                               | RO<br>0   | RO<br>0  | RO<br>0    | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 |
|               | 15      | 14      | 13       | 12      | 11                     | 10      | 9       | 8        | 7                                     | 6         | 5        | 4          | 3       | 2        | 1       | 0       |
|               |         |         |          |         |                        |         |         | reserved |                                       |           |          |            |         |          |         | MIS     |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0                | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0                               | RO<br>0   | RO<br>0  | RO<br>0    | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 |
| Bit/F         | ield    |         | Name     |         | Type Reset Description |         |         |          |                                       |           |          |            |         |          |         |         |
| 31            | :1      |         | reserved |         | RO                     |         | 0       | compa    | are shou<br>atibility w<br>rved acro  | ith futur | e produc | cts, the v | alue of | a reserv | •       |         |
| 0             | 1       |         | MIS      |         | RO                     |         | 0       | block.   | it specifie<br>If set, ar<br>generate | n interru | pt was s | ignaled;   | otherwi | •        |         |         |

June 04, 2007

# Register 8: I<sup>2</sup>C Master Interrupt Clear (I2CMICR), offset 0x01C

This register clears the raw interrupt.

| I2C Master Interrupt Clear (I2CMICR) |
|--------------------------------------|
| 12C Master 0 hass: 0x4002 0000       |

I2C Master 0 base: 0x4002.0000 I2C Master 1 base: 0x4002.1000 Offset 0x01C Type WO, reset 0x0000.0000

| _             | 31      | 30      | 29                          | 28      | 27      | 26      | 25      | 24                                                                                                                                                                                     | 23      | 22      | 21      | 20      | 19      | 18      | 17      | 16      |
|---------------|---------|---------|-----------------------------|---------|---------|---------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|
|               |         | 1       |                             |         |         |         | 1       | rese                                                                                                                                                                                   | rved    |         |         |         |         | 1       | 1       |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0                     | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 |
|               | 15      | 14      | 13                          | 12      | 11      | 10      | 9       | 8                                                                                                                                                                                      | 7       | 6       | 5       | 4       | 3       | 2       | 1       | 0       |
| [             |         | 1       | 1 1                         |         | r r     |         | r       | reserved                                                                                                                                                                               |         |         | r       |         |         | 1       | ı       | IC      |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0                     | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | WO<br>0 |
| Bit/Fi        | ield    |         | Name Type Reset Description |         |         |         |         |                                                                                                                                                                                        |         |         |         |         |         |         |         |         |
| 31:           | 1       |         | reserved                    |         | RO      |         | 0       | Software should not rely on the value of a reserved bit. To provid compatibility with future products, the value of a reserved bit sho preserved across a read-modify-write operation. |         |         |         |         |         |         |         |         |
| 0             |         |         | IC                          |         | WO      |         | 0       | Interrupt Clear                                                                                                                                                                        |         |         |         |         |         |         |         |         |

This bit controls the clearing of the raw interrupt. A write of 1 clears the interrupt; otherwise, a write of 0 has no affect on the interrupt state. A read of this register returns no meaningful data.

# Register 9: I<sup>2</sup>C Master Configuration (I2CMCR), offset 0x020

This register configures the mode (Master or Slave) and sets the interface for test mode loopback.

I2C Master Configuration (I2CMCR) I2C Master 0 base: 0x4002.0000 I2C Master 1 base: 0x4002.1000 Offset 0x020 Type R/W, reset 0x0000.0000

| .,    | ,    |    |          |    |       |     |       |                                                                                                                           |             |            |          |           |         |                                  |    |      |  |  |  |
|-------|------|----|----------|----|-------|-----|-------|---------------------------------------------------------------------------------------------------------------------------|-------------|------------|----------|-----------|---------|----------------------------------|----|------|--|--|--|
|       | 31   | 30 | 29       | 28 | 27    | 26  | 25    | 24                                                                                                                        | 23          | 22         | 21       | 20        | 19      | 18                               | 17 | 16   |  |  |  |
|       |      | 1  | 1 1      |    | · ·   |     | 1     | rese                                                                                                                      | rved        |            | 1        |           |         | 1 1                              |    | 1    |  |  |  |
| Туре  | RO   | RO | RO       | RO | RO    | RO  | RO    | RO                                                                                                                        | RO          | RO         | RO       | RO        | RO      | RO                               | RO | RO   |  |  |  |
| Reset | 0    | 0  | 0        | 0  | 0     | 0   | 0     | 0                                                                                                                         | 0           | 0          | 0        | 0         | 0       | 0                                | 0  | 0    |  |  |  |
|       | 15   | 14 | 13       | 12 | 11    | 10  | 9     | 8                                                                                                                         | 7           | 6          | 5        | 4         | 3       | 2                                | 1  | 0    |  |  |  |
|       |      | T  | 1 1      | 1  | reser | ved | 1     | 1                                                                                                                         | 1           |            | SFE      | MFE       |         | reserved                         |    | LPBK |  |  |  |
| Туре  | RO   | RO | RO       | RO | RO    | RO  | RO    | RO                                                                                                                        | RO          | RO         | R/W      | R/W       | RO      | RO                               | RO | R/W  |  |  |  |
| Reset | 0    | 0  | 0        | 0  | 0     | 0   | 0     | 0                                                                                                                         | 0           | 0          | 0        | 0         | 0       | 0                                | 0  | 0    |  |  |  |
|       |      |    |          |    |       |     |       |                                                                                                                           |             |            |          |           |         |                                  |    |      |  |  |  |
| Bit/F | ield |    | Name     |    | Туре  |     | Reset | Descr                                                                                                                     | iption      |            |          |           |         |                                  |    |      |  |  |  |
| 31    | :6   |    | reserved |    | RO    |     | 0     | compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |             |            |          |           |         |                                  |    |      |  |  |  |
| 5     | i    |    | SFE      |    | R/W   |     | 0     | I <sup>2</sup> C SI                                                                                                       | ave Fun     | ction En   | able     |           |         |                                  |    |      |  |  |  |
|       |      |    |          |    |       |     |       |                                                                                                                           | •           |            |          |           | -       | perate in a mode is c            |    |      |  |  |  |
| 4     |      |    | MFE      |    | R/W   |     | 0     | I <sup>2</sup> C M                                                                                                        | aster Fu    | nction E   | nable    |           |         |                                  |    |      |  |  |  |
|       |      |    |          |    |       |     |       | set, M                                                                                                                    | laster m    | ode is e   |          | otherwise |         | perate in I<br>er mode i         |    |      |  |  |  |
| 3:    | 1    |    | reserved |    | RO    |     | 0     | compa                                                                                                                     | atibility v | vith futur | re produ |           | alue of | erved bit.<br>f a reserve<br>on. | •  |      |  |  |  |
| 0     | 1    |    | LPBK     |    | R/W   |     | 0     | I <sup>2</sup> C Lo                                                                                                       | oopback     |            |          |           |         |                                  |    |      |  |  |  |
|       |      |    |          |    |       |     |       |                                                                                                                           |             |            |          |           |         | rating nor                       | ,  |      |  |  |  |

configuration; otherwise, the device operates normally.

# 15.6 Register Descriptions (I2C Slave)

The remainder of this section lists and describes the  $I^2C$  slave registers, in numerical order by address offset. See also "Register Descriptions ( $I^2C$  Master)" on page 376.

# Register 10: I<sup>2</sup>C Slave Own Address (I2CSOAR), offset 0x000

This register consists of seven address bits that identify the Stellaris<sup>®</sup>  $I^2C$  device on the  $I^2C$  bus.

| I2C Slave<br>I2C Slave<br>I2C Slave<br>Offset 0x0<br>Type R/W                                                 | e 0 base<br>e 1 base<br>000 | e: 0x4<br>e: 0x4 | 4002.<br>4001. | 0800<br>1800 | CSOAR   | )        |         |         |                     |             |            |          |          |            |          |                          |          |
|---------------------------------------------------------------------------------------------------------------|-----------------------------|------------------|----------------|--------------|---------|----------|---------|---------|---------------------|-------------|------------|----------|----------|------------|----------|--------------------------|----------|
|                                                                                                               | 31                          |                  | 30             | 29           | 28      | 27       | 26      | 25      | 24                  | 23          | 22         | 21       | 20       | 19         | 18       | 17                       | 16       |
|                                                                                                               |                             |                  |                | 1            | 1       | т т<br>1 |         | 1       | rese                | rved        |            |          | 1        |            | r        | 1                        | 1        |
| Type<br>Reset                                                                                                 | RO<br>0                     |                  | RO<br>0        | RO<br>0      | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0             | RO<br>0     | RO<br>0    | RO<br>0  | RO<br>0  | RO<br>0    | RO<br>0  | RO<br>0                  | RO<br>0  |
|                                                                                                               | 15                          |                  | 14             | 13           | 12      | 11       | 10      | 9       | 8                   | 7           | 6          | 5        | 4        | 3          | 2        | 1                        | 0        |
|                                                                                                               |                             | 1                |                | 1            | 1       | reserved |         |         |                     |             |            |          | 1        | OAR        | 1        | 1                        |          |
| Type<br>Reset                                                                                                 | RO<br>0                     |                  | RO<br>0        | RO<br>0      | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0             | RO<br>0     | R/W<br>0   | R/W<br>0 | R/W<br>0 | R/W<br>0   | R/W<br>0 | R/W<br>0                 | R/W<br>0 |
| Bit/F                                                                                                         | ield                        |                  |                | Name         |         | Туре     |         | Reset   | Descr               | iption      |            |          |          |            |          |                          |          |
| 31:                                                                                                           | 7                           |                  |                | reserve      | d       | RO       |         | 0       | compa               | atibility v | vith futur | e produ  |          | value of a | a reser  | t. To prov<br>ved bit sl |          |
| 6:0                                                                                                           | D                           |                  |                | OAR          |         | R/W      |         | 0       | I <sup>2</sup> C SI | ave Owr     | n Addres   | s        |          |            |          |                          |          |
| 6:0 OAR R/W 0 I <sup>2</sup> C Slave Own Address<br>This field specifies bits A6 through A0 of the slave addr |                             |                  |                |              |         |          |         |         |                     |             |            | dress.   |          |            |          |                          |          |

# Register 11: I<sup>2</sup>C Slave Control/Status (I2CSCSR), offset 0x004

This register accesses one control bit when written, and three status bits when read.

The read-only Status register consists of three bits: the FBR, RREQ, and TREQ bits. The First Byte Received (FBR) bit is set only after the Stellaris<sup>®</sup> device detects its own slave address and receives the first data byte from the  $I^2C$  master. The Receive Request (RREQ) bit indicates that the Stellaris<sup>®</sup>  $I^2C$  device has received a data byte from an  $I^2C$  master. Read one data byte from the  $I^2C$  Slave Data (I2CSDR) register to clear the RREQ bit. The Transmit Request (TREQ) bit indicates that the Stellaris<sup>®</sup>  $I^2C$  device is addressed as a Slave Transmitter. Write one data byte into the  $I^2C$  Slave Data (I2CSDR) register to clear the TREQ bit.

The write-only Control register consists of one bit: the DA bit. The DA bit enables and disables the Stellaris<sup>®</sup>  $I^2C$  slave operation.

### **Read-Only Status Register**

#### I2C Slave Control/Status (I2CSCSR)

I2C Slave 0 base: 0x4002.0800 I2C Slave 1 base: 0x4001.1800 Offset 0x004 Type RO, reset 0x0000.0000

| <i>.</i>      |         |         |          |         |          |         |          |                                                                                                                           |                     |                                           |                                     |                       |                       |                                                 |                       |                      |  |  |  |
|---------------|---------|---------|----------|---------|----------|---------|----------|---------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------|-------------------------------------|-----------------------|-----------------------|-------------------------------------------------|-----------------------|----------------------|--|--|--|
| _             | 31      | 30      | 29       | 28      | 27       | 26      | 25       | 24                                                                                                                        | 23                  | 22                                        | 21                                  | 20                    | 19                    | 18                                              | 17                    | 16                   |  |  |  |
|               |         | '       | •        | •       |          |         | •        | rese                                                                                                                      | rved                |                                           |                                     | •                     |                       |                                                 | •                     |                      |  |  |  |
| Туре          | RO      | RO      | RO       | RO      | RO       | RO      | RO       | RO                                                                                                                        | RO                  | RO                                        | RO                                  | RO                    | RO                    | RO                                              | RO                    | RO                   |  |  |  |
| Reset         | 0       | 0       | 0        | 0       | 0        | 0       | 0        | 0                                                                                                                         | 0                   | 0                                         | 0                                   | 0                     | 0                     | 0                                               | 0                     | 0                    |  |  |  |
|               | 15      | 14      | 13       | 12      | 11       | 10      | 9        | 8                                                                                                                         | 7                   | 6                                         | 5                                   | 4                     | 3                     | 2                                               | 1                     | 0                    |  |  |  |
|               |         | 1       | 1        | I       | 1 1<br>1 |         | reserved |                                                                                                                           | 1                   |                                           |                                     | I                     | 1                     | FBR                                             | TREQ                  | RREQ                 |  |  |  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0  | RO<br>0                                                                                                                   | RO<br>0             | RO<br>0                                   | RO<br>0                             | RO<br>0               | RO<br>0               | RO<br>0                                         | RO<br>0               | RO<br>0              |  |  |  |
| Reset         | U       | 0       | U        | U       | U        | 0       | 0        | 0                                                                                                                         | 0                   | U                                         | 0                                   | U                     | U                     | 0                                               | U                     | 0                    |  |  |  |
|               |         |         | N        |         | <b>T</b> |         | Deset    | D                                                                                                                         |                     |                                           |                                     |                       |                       |                                                 |                       |                      |  |  |  |
| Bit/F         | leid    |         | Name     |         | Туре     |         | Reset    | Descr                                                                                                                     | iption              |                                           |                                     |                       |                       |                                                 |                       |                      |  |  |  |
| 31:           | :3      |         | reserved |         | RO       |         | 0        | compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |                     |                                           |                                     |                       |                       |                                                 |                       |                      |  |  |  |
| 2             |         |         | FBR      |         | RO       |         | 0        |                                                                                                                           |                     |                                           |                                     |                       |                       |                                                 |                       |                      |  |  |  |
|               |         |         |          |         |          |         |          | Note:                                                                                                                     | This                | s bit is no                               | ot used t                           | for slave             | transm                | it operati                                      | ons.                  |                      |  |  |  |
| 1             |         |         | TREQ     |         | RO       |         | 0        | transr<br>transr<br>been                                                                                                  | nit reque           | ests. If se<br>d uses c<br>the <b>I2C</b> | et, the I <sup>2</sup><br>lock stre | C unit hat            | as been<br>o delay t  | n regards<br>address<br>the mast<br>e, there is | ed as a<br>er until c | slave<br>lata has    |  |  |  |
| 0             |         |         | RREQ     |         | RO       |         | 0        | Recei                                                                                                                     | ve Requ             | est                                       |                                     |                       |                       |                                                 |                       |                      |  |  |  |
|               |         |         |          |         |          |         |          | receiv<br>the I <sup>2</sup><br>data h                                                                                    | e reque:<br>C maste | sts. If se<br>r and use<br>read fro       | t, the I <sup>2</sup> (<br>es clock | C unit ha<br>stretchi | as outsta<br>ng to de | h regard<br>anding re<br>lay the r<br>Otherwi   | eceive da<br>naster u | ata from<br>ntil the |  |  |  |

## Write-Only Control Register

#### I2C Slave Control/Status (I2CSCSR)

I2C Slave 0 base: 0x4002.0800 I2C Slave 1 base: 0x4001.1800 Offset 0x004 Type RO, reset 0x0000.0000

|               | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24                                                                                                                                                                      | 23      | 22      | 21      | 20      | 19      | 18      | 17      | 16      |  |
|---------------|---------|---------|----------|---------|---------|---------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|--|
|               |         | •       |          |         | · ·     |         | 1       | rese                                                                                                                                                                    | erved   | l       |         |         |         | 1       |         |         |  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 |  |
|               | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8                                                                                                                                                                       | 7       | 6       | 5       | 4       | 3       | 2       | 1       | 0       |  |
|               |         |         |          |         |         |         | •       | reserved                                                                                                                                                                |         |         |         |         |         |         |         | DA      |  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | WO<br>0 |  |
|               |         |         |          |         |         |         |         |                                                                                                                                                                         |         |         |         |         |         |         |         |         |  |
| Bit/F         | ield    |         | Name     |         | Туре    | F       | Reset   | Descr                                                                                                                                                                   | iption  |         |         |         |         |         |         |         |  |
| 31            | :1      |         | reserved |         | RO      |         | 0       | Software should not rely on the value of a reserved bit. To compatibility with future products, the value of a reserved preserved across a read-modify-write operation. |         |         |         |         |         |         |         |         |  |
| 0             | 1       |         | DA       |         | WO      |         | 0       | Device Active                                                                                                                                                           |         |         |         |         |         |         |         |         |  |
|               |         |         |          |         |         |         |         | 1=Enables the I <sup>2</sup> C slave operation.                                                                                                                         |         |         |         |         |         |         |         |         |  |

0=Disables the  $I^2C$  slave operation.

# Register 12: I<sup>2</sup>C Slave Data (I2CSDR), offset 0x008

This register contains the data to be transmitted when in the Slave Transmit state, and the data received when in the Slave Receive state.

#### I2C Slave Data (I2CSDR) I2C Slave 0 base: 0x4002.0800 I2C Slave 1 base: 0x4001.1800 Offset 0x008 Type R/W, reset 0x0000.0000

|               | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24                                                                                                                                                                                             | 23       | 22         | 21       | 20         | 19       | 18       | 17       | 16       |
|---------------|---------|---------|----------|---------|---------|---------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|----------|------------|----------|----------|----------|----------|
|               |         | 1       | 1 1      |         |         |         | 1       | rese                                                                                                                                                                                           | rved     |            |          | •          |          |          | 1        |          |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                        | RO<br>0  | RO<br>0    | RO<br>0  | RO<br>0    | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0  |
| 10000         | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8                                                                                                                                                                                              | 7        | 6          | 5        | 4          | 3        | 2        | 1        | 0        |
|               |         | 1       | 1 1      |         | rved    |         | 1       | 1                                                                                                                                                                                              |          |            |          |            | TA       | ·        | 1        |          |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                        | R/W<br>0 | R/W<br>0   | R/W<br>0 | R/W<br>0   | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 |
|               |         |         |          |         |         |         |         |                                                                                                                                                                                                |          |            |          |            |          |          |          |          |
| Bit/F         | ield    |         | Name     |         | Туре    |         | Reset   | Descr                                                                                                                                                                                          | iption   |            |          |            |          |          |          |          |
| 31            | :8      |         | reserved |         | RO      |         | 0       | Software should not rely on the value of a reserved bit. To provide<br>compatibility with future products, the value of a reserved bit shoup<br>reserved across a read-modify-write operation. |          |            |          |            |          |          |          |          |
| 7:            | 0       |         | DATA     |         | R/W     |         | 0x0     | This fi<br>opera                                                                                                                                                                               |          | ains the o | data for | transfer o | during a | slave re | ceive or | transmit |

# Register 13: I<sup>2</sup>C Slave Interrupt Mask (I2CSIMR), offset 0x00C

This register controls whether a raw interrupt is promoted to a controller interrupt.

| I2C Sla                                                                                                                                                                                                    | ve Inte | errupt N | /lask (l2 | CSIMR   | )       |         |         |          |         |         |         |         |         |         |         |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|-----------|---------|---------|---------|---------|----------|---------|---------|---------|---------|---------|---------|---------|----------|
| I2C Slave<br>I2C Slave<br>Offset 0x0<br>Type R/W                                                                                                                                                           | 1 base  | : 0x4001 | 1800      |         |         |         |         |          |         |         |         |         |         |         |         |          |
|                                                                                                                                                                                                            | 31      | 30       | 29        | 28      | 27      | 26      | 25      | 24       | 23      | 22      | 21      | 20      | 19      | 18      | 17      | 16       |
|                                                                                                                                                                                                            |         | 1        | 1         | 1       | ı ı     |         | 1       | rese     | rved    |         |         | 1       | 1       | 1       | 1       | 1        |
| Type<br>Reset                                                                                                                                                                                              | RO<br>0 | RO<br>0  | RO<br>0   | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0  |
|                                                                                                                                                                                                            | 15      | 14       | 13        | 12      | 11      | 10      | 9       | 8        | 7       | 6       | 5       | 4       | 3       | 2       | 1       | 0        |
|                                                                                                                                                                                                            |         | 1        | 1         | 1       | · ·     |         | 1       | reserved |         |         |         | 1       | 1       |         | 1       | ІМ       |
| Type<br>Reset                                                                                                                                                                                              | RO<br>0 | RO<br>0  | RO<br>0   | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | R/W<br>0 |
| Bit/F                                                                                                                                                                                                      | ield    |          | Name      |         | Туре    |         | Reset   | Descr    | iption  |         |         |         |         |         |         |          |
| 31:1 reserved RO 0 Software should not rely on the value of a reserved bit. To pro<br>compatibility with future products, the value of a reserved bit s<br>preserved across a read-modify-write operation. |         |          |           |         |         |         |         |          |         |         |         | •       |         |         |         |          |
| 0 IM R/W 0 This bit controls whether a raw interrupt is promoted to a interrupt. If set, the interrupt is not masked and the interrup otherwise, the interrupt is masked.                                  |         |          |           |         |         |         |         |          |         |         |         |         |         |         |         |          |

# Register 14: I<sup>2</sup>C Slave Raw Interrupt Status (I2CSRIS), offset 0x010

This register specifies whether an interrupt is pending.

I2C Slave Raw Interrupt Status (I2CSRIS)

I2C Slave 0 base: 0x4002.0800 I2C Slave 1 base: 0x4001.1800 Offset 0x010 Type RO, reset 0x0000.0000

|               | 31       | 30       | 29      | 28      | 27      | 26      | 25      | 24                                                                                                                                                                                            | 23      | 22      | 21      | 20      | 19      | 18      | 17      | 16      |  |
|---------------|----------|----------|---------|---------|---------|---------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|--|
|               | reserved |          |         |         |         |         |         |                                                                                                                                                                                               |         |         |         |         |         |         |         |         |  |
| Type<br>Reset | RO<br>0  | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                       | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 |  |
|               | 15       | 14       | 13      | 12      | 11      | 10      | 9       | 8                                                                                                                                                                                             | 7       | 6       | 5       | 4       | 3       | 2       | 1       | 0       |  |
|               |          | 1        | 1 1     |         | · · ·   |         | 1       | reserved                                                                                                                                                                                      |         |         |         |         | 1       | 1       | 1       | RIS     |  |
| Type<br>Reset | RO<br>0  | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                       | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 |  |
| Bit/Field     |          | Name     |         | Туре    | F       | Reset   | Descr   | escription                                                                                                                                                                                    |         |         |         |         |         |         |         |         |  |
| 31:1          |          | reserved |         | RO      | 0       |         | compa   | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |         |         |         |         |         |         |         |         |  |
| 0             |          | RIS      |         | RO      | 0       |         | slave   | This bit specifies the raw interrupt state (prior to masking) of the I <sup>2</sup> C slave block. If set, an interrupt is pending; otherwise, an interrupt is not pending.                   |         |         |         |         |         |         |         |         |  |

# Register 15: I<sup>2</sup>C Slave Masked Interrupt Status (I2CSMIS), offset 0x014

This register specifies whether an interrupt was signaled.

#### I2C Slave Masked Interrupt Status (I2CSMIS)

I2C Slave 0 base: 0x4002.0800 I2C Slave 1 base: 0x4001.1800 Offset 0x014 Type RO, reset 0x0000.0000

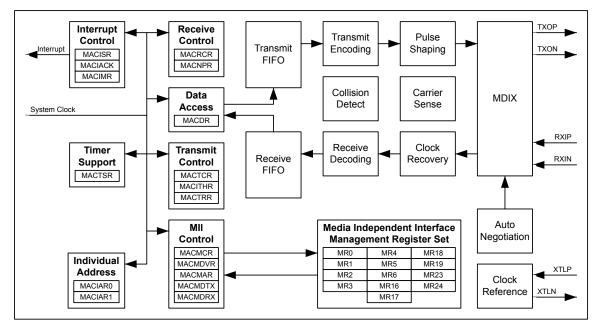
|               | 31       | 30       | 29      | 28      | 27      | 26      | 25      | 24                                                                                                                                                                                                                | 23      | 22      | 21      | 20      | 19      | 18      | 17      | 16      |  |
|---------------|----------|----------|---------|---------|---------|---------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|--|
|               | reserved |          |         |         |         |         |         |                                                                                                                                                                                                                   |         |         |         |         |         |         |         |         |  |
| Type<br>Reset | RO<br>0  | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                                           | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 |  |
|               | 15       | 14       | 13      | 12      | 11      | 10      | 9       | 8                                                                                                                                                                                                                 | 7       | 6       | 5       | 4       | 3       | 2       | 1       | 0       |  |
|               |          | reserved |         |         |         |         |         |                                                                                                                                                                                                                   |         |         |         |         |         |         |         | MIS     |  |
| Type<br>Reset | RO<br>0  | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                                           | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 |  |
| Bit/Field     |          | Name     |         | Туре    | F       | Reset   | Descr   | iption                                                                                                                                                                                                            |         |         |         |         |         |         |         |         |  |
| 31:1          |          | reserved |         | RO      |         | 0       | compa   | Software should not rely on the value of a reserved bit.<br>compatibility with future products, the value of a reserve<br>preserved across a read-modify-write operation.                                         |         |         |         |         | •       |         |         |         |  |
| 0             |          | MIS      |         | RO      | 0       |         | block.  | This bit specifies the raw interrupt state (after masking) of the I <sup>2</sup> C slave block. If set, an interrupt was signaled; otherwise, an interrupt has not been generated since the bit was last cleared. |         |         |         |         |         |         |         |         |  |

# Register 16: I<sup>2</sup>C Slave Interrupt Clear (I2CSICR), offset 0x018

This register clears the raw interrupt.

I2C Slave Interrupt Clear (I2CSICR)

| I2C Slave<br>I2C Slave<br>Offset 0x0<br>Type WO, | 1 base<br>)18 | : 0x4001 | .1800     |         |           |         |            |              |            |            |          |          |                                     |           |         |         |
|--------------------------------------------------|---------------|----------|-----------|---------|-----------|---------|------------|--------------|------------|------------|----------|----------|-------------------------------------|-----------|---------|---------|
|                                                  | 31            | 30       | 29        | 28      | 27        | 26      | 25         | 24           | 23         | 22         | 21       | 20       | 19                                  | 18        | 17      | 16      |
|                                                  |               | T        | 1         | Î       | i i<br>I  |         | Î          | i i<br>reser |            | Ì          |          | 1        | 1                                   | ſ         | ì       | î       |
| Type<br>Reset                                    | RO<br>0       | RO<br>0  | RO<br>0   | RO<br>0 | RO<br>0   | RO<br>0 | RO<br>0    | RO<br>0      | RO<br>0    | RO<br>0    | RO<br>0  | RO<br>0  | RO<br>0                             | RO<br>0   | RO<br>0 | RO<br>0 |
|                                                  | 15            | 14       | 13        | 12      | 11        | 10      | 9          | 8            | 7          | 6          | 5        | 4        | 3                                   | 2         | 1       | 0       |
|                                                  |               | 1        | l         | I       | r r<br>L  |         | Ĩ          | reserved     |            | Ì          |          | 1        | 1                                   |           | 1       | IC      |
| Туре                                             | RO            | RO       | RO        | RO      | RO        | RO      | RO         | RO           | RO         | RO         | RO       | RO       | RO                                  | RO        | RO      | WO      |
| Reset<br>Bit/Fi                                  | 0<br>eld      | 0        | 0<br>Name | 0       | о<br>Туре | 0       | 0<br>Reset | 0<br>Descri  | 0<br>ption | 0          | 0        | 0        | 0                                   | 0         | 0       | 0       |
| 31:                                              | 1             |          | reserved  | t       | RO        |         | 0          | compa        | tibility v | vith futur | e produ  | cts, the | of a rese<br>value of<br>operation  | a reserv  | •       |         |
| 0                                                |               |          | IC        |         | WO        |         | 0          | interru      | pt; othe   | rwise a v  | write of | 0 has no | / interrup<br>affect o<br>gful data | n the inf |         |         |

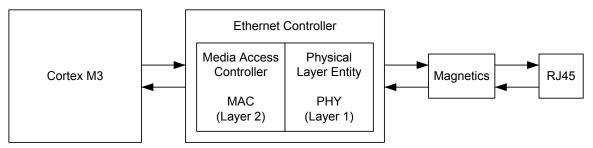

# **16 Ethernet Controller**

The Stellaris<sup>®</sup> Ethernet Controller consists of a fully integrated media access controller (MAC) and network physical (PHY) interface device. The Ethernet controller conforms to *IEE 802.3* specifications and fully supports 10BASE-T and 100BASE-TX standards.

The Ethernet controller module has the following features:

- Conforms to the IEEE 802.3-2002 specification
  - 10BASE-T/100BASE-TX IEEE-802.3 compliant. Requires only a dual 1:1 isolation transformer interface to the line.
  - 10BASE-T/100BASE-TX ENDEC, 100BASE-TX scrambler/descrambler
  - Full-featured auto-negotiation
- Multiple operational modes
  - Full- and half-duplex 100 Mbps
  - Full- and half-duplex 10 Mbps
  - Power-saving and power-down modes
- Highly configurable
  - Programmable MAC address
  - LED activity selection
  - Promiscuous mode support
  - CRC error-rejection control
  - User-configurable interrupts
- Physical media manipulation
  - Automatic MDI/MDI-X cross-over correction
  - Register-programmable transmit amplitude
  - Automatic polarity correction and 10BASE-T signal reception

## 16.1 Block Diagram




#### Figure 16-1. Ethernet Controller Block Diagram

## 16.2 Functional Description

As illustrated in Figure 16-2 on page 399, the Ethernet Controller is functionally divided into two layers or modules - the Media Access Controller (MAC) layer and Network Physical (PHY) layer. These correspond to the OSI model layers 2 and 1. The primary interface to the Ethernet controller is a simple bus interface to the MAC layer. The MAC layer provides transmit and receive processing for ethernet frames. The MAC layer also provides the interface to the PHY module via an internal Media Independent Interface (MII).

#### Figure 16-2. Ethernet Controller



#### 16.2.1 Internal MII Operation

For the MII management interface to function properly, the MDIO signal must be connected through a 10k  $\Omega$  pull-up resistor to the +3.3V supply. Failure to connect this pull-up resistor will prevent management transactions on this internal MII to function. Note that it is possible for data transmission across the MII to still function since the PHY layer will auto-negotiate the link parameters by default.

For the MII management interface to function properly, the internal clock must be divided down from the system clock to a frequency no greater than 2.5 MHz. The MACMDV register contains the divider used for scaling down the system clock. See page 417 for more details about the use of this register.

## 16.2.2 PHY Configuration/Operation

The Physical Layer (PHY) in the Ethernet controller includes integrated ENDECs, scrambler/descrambler, dual-speed clock recovery, and full-featured auto-negotiation functions. The transmitter includes an on-chip pulse shaper and a low-power line driver. The receiver has an adaptive equalizer and a baseline restoration circuit required for accurate clock and data recovery. The transceiver interfaces to Category-5 unshielded twisted pair (Cat-5 UTP) cabling for 100BASE-TX applications, and Category-3 unshielded twisted pair (Cat-3 UTP) for 10BASE-T applications. The Ethernet Controller is connected to the line media via dual 1:1 isolation transformers. No external filter is required.

#### 16.2.2.1 Clock Selection

The PHY has an on-chip crystal oscillator which can also be driven by an external oscillator. In this mode of operation, a 25-MHz crystal should be connected between the XTLPPHY and XTLNPHY pins. Alternatively, an external 25-MHz clock input can be connected to the XTLP pin. In this mode of operation, a crystal is not required and the XTLN pin must be tied to ground.

#### 16.2.2.2 Auto-Negotation

The PHY supports the auto-negotiation functions of Clause 28 of the *IEEE 802.3* standard for 10/100 Mbps operation over copper wiring. This function can be enabled via register settings. The autonegotiation function defaults to On and bit 12 (ANEGEN) in the **MR0** register is High after reset. Software can disable the auto-negotiation function by writing to the ANEGEN bit. The contents of the **MR4** register are sent to the PHY's link partner during auto-negotiation via fast-link pulse coding.

Once auto-negotiation is complete, bits 11:10 (DPLX and RATE) in the **MR18** register reflect the actual speed and duplex that was chosen. If auto-negotiation fails to establish a link for any reason, bit 12 (ANEGF) in the **MR18** register reflects this and auto-negotiation restarts from the beginning. Writing a 1 to bit 9 (RANEG) in the **MR0** register also causes auto-negotiation to restart.

#### 16.2.2.3 Polarity Correction

The PHY is capable of either automatic or manual polarity reversal for 10BASE-T and auto-negotiation functions. Bits 4 and 5 (RVSPOL and APOL) in the **MR16** register control this feature. The default is automatic mode, where APOL is Low and RVSPOL indicates if the detection circuitry has inverted the input signal. To enter manual mode, APOL should be set High and RVSPOL then controls the signal polarity.

#### 16.2.2.4 MDI/MDI-X Configuration

The PHY supports the automatic MDI/MDI-X configuration as defined in IEEE 802.3 2002. This eliminates the need for cross-over cables when connecting to another devices, such as a hub. The algorithm is controlled via settings in the **MR24** register. Refer to page 441 for additional details about these settings.

#### 16.2.2.5 LED Indicators

The PHY supports two LED signals that can be used to indicate various states of operation of the Ethernet Controller. These signals are mapped to the LED0 and LED1 pins. By default, these pins are configured as GPIO signals (PF3 and PF2). For the PHY layer to drive these signals, they must be reconfigured to their hardware function. Refer to the GIPO chapter for additional details. The

function of these pins is programmable via the PHY layer MR23 register. Refer to page 440 for additonal details on how to program these LED functions.

#### 16.2.3 MAC Configuration/Operation

#### **16.2.3.1** Ethernet Frame Format

Ethernet data is carried by Ethernet frames. The basic frame format is shown in Figure 16-3 on page 401.

#### Figure 16-3. Ethernet Frame

| Preamble | SFD  | Destination Address | Source Address | Length/<br>Type | Data      | FCS   |
|----------|------|---------------------|----------------|-----------------|-----------|-------|
| 7        | 1    | 6                   | 6              | 2               | 46 - 1500 | 4     |
| Bytes    | Byte | Bytes               | Bytes          | Bytes           | Bytes     | Bytes |

The seven fields of the frame are transmitted from left to right. The bits within the frame are transmitted from least to most significant bit.

Preamble

The Preamble field is used by the physical layer signaling circuitry to synchronize with the received frame's timing. The preamble is 7 octets long.

Start Frame Delimiter (SFD)

The SFD field follows the preamble pattern and indicates the start of the frame. Its value is 1010.1011.

Destination Address (DA)

This field specifies destination addresses for which the frame is intended. The LSB of the DA determines whether the address is an individual (0), or group/multicast (1) address.

Source Address (SA)

The source address field identifies the station from which the frame was initiated.

Length/Type Field

The meaning of this field depends on its numeric value. The first of two octets is most significant. This field can be interpreted as length or type code. The maximum length of the data field is 1500 octets. If the value of the Length/Type field is less than or equal to 1500 decimal, it indicates the number of MAC client data octets. If the value of this field is greater than or equal to 1536 decimal, then it is type interpretation. The meaning of the Length/Type field when the value is between 1500 and 1536 decimal is unspecified by the standard. The MAC module assumes type interpretation if the value of the Length/Type field is greater than 1500 decimal.

Data

The data field is a sequence of 0 to 1500 octets. Full data transparency is provided so any values can appear in this field. A minimum frame size is required to properly meet the IEEE standard. If necessary, the data field is extended by appending extra bits (a pad). The pad field can have a size of 0 to 46 octets. The sum of the data and pad lengths must be a minimum of 46 octets. The MAC module automatically inserts pads if required, though it can be disabled by a register

write. For the MAC module core, data sent/received can be larger than 1500 bytes, and no Frame Too Long error is reported. Instead, a FIFO Overrun error is reported when the frame received is too large to fit into the Ethernet controller's RAM.

Frame Check Sequence (FCS)

The frame check sequence carries the CRC (cyclic redundancy check value). The value of this field is computed over destination address, source address, length/type, data, and pad fields using the CRC-32 algorithm. The MAC module computes the FCS value one nibble at a time. For transmitted frames, this field is automatically inserted by the MAC layer, unless disabled by the CRC bit in the MACTCTL register. For received frames, this field is automatically checked. If the FCS does not pass, the frame will not be placed in the RX FIFO, unless the FCS check is disabled by the BADCRC bit in the MACRCTL register.

#### 16.2.3.2 MAC Layer FIFOs

For Ethernet frame transmission, a 2K Byte TX FIFO is provided that can be used to store a single frame. While the IEEE 802.3 specification limits the size of an Ethernet frame's payload section to 1500 Bytes, the Ethernet controller places no such limit. The full buffer can be used, for a payload of up to 2032 bytes.

For ethernet frame reception, a 2K Byte RX FIFO is provided that can be used to store multiple frames, up to a maximum of 31 frames. If a frame is received and there is insufficient space in the RX FIFO, an overflow error will be indicated.

For details regarding the TX and RX FIFO layout, refer to Table 16-1 on page 402. Please note the following difference between TX and RX FIFO layout. For the TX FIFO, the Data Length field in the first FIFO word refers to the Ethernet frame data payload, as shown in the 5th to nth FIFO positions. For the RX FIFO, the Frame Lenth field is the total length of the received ethernet frame, including the FCS and Frame Length bytes. Also note that if FCS generation is disabled with the CRC bit in the MACTCTL register, the last word in the FIFO must be the FCS bytes for the frame that has been written to the FIFO.

Also note that if the length of the data payload section is not a multiple of 4, the FCS field will overlap words in the FIFO. However, for the RX FIFO, the beginning of the next frame will always be on a word boundary.

| FIFO Word Read/Write<br>Sequence | Word Bit Fields | TX FIFO (Write) | RX FIFO (Read)   |
|----------------------------------|-----------------|-----------------|------------------|
| 1st                              | 7:0             | Data Length LSB | Frame Length LSB |
|                                  | 15:8            | Data Length MSB | Frame Length MSB |
|                                  | 23:16           |                 | DA oct 1         |
|                                  | 31:24           |                 | DA oct 2         |
| 2nd                              | 7:0             |                 | DA oct 3         |
|                                  | 15:8            |                 | DA oct 4         |
|                                  | 23:16           |                 | DA oct 5         |
|                                  | 31:24           |                 | DA oct 6         |
| 3rd                              | 7:0             |                 | SA oct 1         |
|                                  | 15:8            |                 | SA oct 2         |
|                                  | 23:16           |                 | SA oct 3         |
|                                  | 31:24           |                 | SA oct 4         |

#### Table 16-1. TX & RX FIFO Organization

| FIFO Word Read/Write<br>Sequence | Word Bit Fields | TX FIFO (Write)                                  | RX FIFO (Read) |  |  |  |  |  |  |
|----------------------------------|-----------------|--------------------------------------------------|----------------|--|--|--|--|--|--|
| 4th                              | 7:0             | SA                                               | oct 5          |  |  |  |  |  |  |
|                                  | 15:8            | SA                                               | oct 6          |  |  |  |  |  |  |
|                                  | 23:16           | Len/Ty                                           | ype MSB        |  |  |  |  |  |  |
|                                  | 31:24           | Len/T                                            | ype LSB        |  |  |  |  |  |  |
| 5th to nth                       | 7:0             | data                                             | a oct n        |  |  |  |  |  |  |
|                                  | 15:8            | data                                             | oct n+1        |  |  |  |  |  |  |
|                                  | 23:16           | data                                             | oct n+2        |  |  |  |  |  |  |
|                                  | 31:24           | 31:24 data oct n+3                               |                |  |  |  |  |  |  |
| last                             | 7:0             | FCS 1 (if CRC generation is disabled in MACTCTL) | FCS 1          |  |  |  |  |  |  |
|                                  | 15:8            | FCS 2 (if CRC generation is disabled in MACTCTL) | FCS 2          |  |  |  |  |  |  |
|                                  | 23:16           | FCS 3 (if CRC generation is disabled in MACTCTL) | FCS 3          |  |  |  |  |  |  |
|                                  | 31:24           | FCS 4 (if CRC generation is disabled in MACTCTL) | FCS 4          |  |  |  |  |  |  |

#### 16.2.3.3 Ethernet Transmission Options

The ethernet controller can automatically generate and insert the Frame Check Sequence (FCS) at the end of the transmit frame. This is controlled by the CRC bit in the MACTCTL register. For test purposes, in order to generate a frame with an invalid CRC, this feature can be disabled.

The IEEE 802.3 specification requires that the ethernet frame payload section be a minimum of 46 bytes. The ethernet controller can be configured to automatically pad the data section if the payload data section loaded into the FIFO is less than the minimum 46 bytes. This feature is controlled by the PADEN bit in the MACTCTL register.

At the MAC layer, the transmitter can be configured for both full-duplex and half-duplex operation by using the DUPLEX bit in the MACTCTL register.

#### 16.2.3.4 Ethernet Reception Options

Using the BADCRC bit in the MACRCTL register, the ethernet controller can be configured to reject incoming ethernet frames with an invalid Frame Check Sequence field.

The ethernet receiver can also be configured for Promiscuous and Multicast modes using the PRMS and AMUL fields in the MACRCTL register. If these modes are not enabled, only ethernet frames with a broadcast address, or frames matching the MAC address programmed into the MACIA0 and MACIA1 register will be placed into the RX FIFO.

#### 16.2.4 Interrupts

The ethernet controller can generate an interrupt for one or more of the following conditions.

- A frame has been received into an empty RX FIFO.
- A frame transmission error has occurred
- A frame has been transmitted successfully.
- A frame has been received with no room in the RX FIFO (overrun).

- A frame has been received with one or more error conditions (e.g. FCS failed).
- An MII management transaction between the MAC and PHY layers has completed.
- One or more of the following PHY layer conditions occurs.
  - Auto Negotiate Complete
  - Remote Fault
  - Link Status Change
  - Link Partner Acknowledge
  - Parallel Detect Fault
  - Page Received
  - Receive Error
  - Jabber Event Detected

## **16.3** Initialization and Configuration

To use the Ethernet Controller, the peripheral must be enabled by setting the ETH bits in the RCGC2 register. The following steps can then be used to configure the ethernet controller for basic operation.

- 1. Program the MACDIV register to obtain a 2.5 MHz clock (or less) on the internal MII. Assuming a 20 MHz system clock, the MACDIV value would be 4.
- 2. Program the MACIA0 and MACIA1 register for address filtering.
- **3.** Program the MACTCTL register for Auto CRC generation, padding, and full duplex operation using a value of 0x16.
- 4. Program the MACRCTL register to reject frames with bad FCS using a value of 0x08.
- 5. Enable both the Transmitter and Receive by setting the LSB in both the MACTCTL and MACRCTL register.
- 6. To transmit a frame, write the frame into the TX FIFO using the MACDATA register. Then set the NEWTX bit in the MACTR register to initiate the transmit process. When the NEWTX bit has been cleared, the TX FIFO will be available for the next transmit frame.
- 7. To receive a frame, wait for the NPR field in the MACNP register to be non-zero. Then begin reading the frame from the RX FIFO by using the MACDATA register. When the frame (including the FCS field) has been read, the NPR field should decrement by one. When there are no more frames in the RX FIFO, the NPR field will read 0.

## 16.4 Ethernet MAC Register Map

Table 16-2 on page 405 lists the Ethernet MAC registers. All addresses given are relative to the Ethernet MAC base address of 0x4004.8000.

| Offset | Name    | Reset       | Туре | Description              | See page |
|--------|---------|-------------|------|--------------------------|----------|
| 0x000  | MACRIS  | 0x0000.0000 | RO   | Raw Interrupt Status     | page 406 |
|        | MACIACK |             | W1C  | Interrupt Acknowledge    |          |
| 0x004  | MACIM   | 0x0000.007F | R/W  | Interrupt Mask           | page 409 |
| 0x008  | MACRCTL | 0x0000.0008 | R/W  | Receive Control          | page 410 |
| 0x00C  | MACTCTL | 0x0000.0000 | R/W  | Transmit Control         | page 411 |
| 0x010  | MACDATA | 0x0000.0000 | R/W  | Data                     | page 412 |
| 0x014  | MACIA0  | 0x0000.0000 | R/W  | Individual Address 0     | page 413 |
| 0x018  | MACIA1  | 0x0000.0000 | R/W  | Individual Address 1     | page 414 |
| 0x01C  | MACTHR  | 0x0000.003F | R/W  | Threshold                | page 415 |
| 0x020  | MACMCTL | 0x0000.0000 | R/W  | Management Control       | page 416 |
| 0x024  | MACMDV  | 0x0000.0080 | R/W  | Management Divider       | page 417 |
| 0x028  | MACMADD | 0x0000.0000 | RO   | Management Address       | page 418 |
| 0x02C  | MACMTXD | 0x0000.0000 | R/W  | Management Transmit Data | page 419 |
| 0x030  | MACMRXD | 0x0000.0000 | R/W  | Management Receive Data  | page 420 |
| 0x034  | MACNP   | 0x0000.0000 | RO   | Number of Packets        | page 421 |
| 0x038  | MACTR   | 0x0000.0000 | R/W  | Transmission Request     | page 422 |

Table 16-2. Ethernet MAC Register Map

## 16.5 Ethernet MAC Register Descriptions

The remainder of this section lists and describes the Ethernet MAC registers, in numerical order by address offset.

## Register 1: Ethernet MAC Raw Interrupt Status (MACRIS), offset 0x000

The MACRIS register is the interrupt status register. On a read, this register gives the current status value of the corresponding interrupt prior to masking.

#### Ethernet MAC Raw Interrupt Status (MACRIS)

Base 0x4004.8000 Offset 0x000 Type RO, reset 0x0000.0000

| Type NO.      | 16361 07 | .0000.000                                                                                                                                                            |          |         |          |         |         |                                                                                              |                       |                         |           |                                                    |           |                                 |            |          |  |
|---------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|----------|---------|---------|----------------------------------------------------------------------------------------------|-----------------------|-------------------------|-----------|----------------------------------------------------|-----------|---------------------------------|------------|----------|--|
|               | 31       | 30                                                                                                                                                                   | 29       | 28      | 27       | 26      | 25      | 24                                                                                           | 23                    | 22                      | 21        | 20                                                 | 19        | 18                              | 17         | 16       |  |
|               |          |                                                                                                                                                                      |          |         |          |         |         | rese                                                                                         | rved                  |                         |           |                                                    |           |                                 |            |          |  |
| Type<br>Reset | RO<br>0  | RO<br>0                                                                                                                                                              | RO<br>0  | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0                                                                                      | RO<br>0               | RO<br>0                 | RO<br>0   | RO<br>0                                            | RO<br>0   | RO<br>0                         | RO<br>0    | RO<br>0  |  |
| 10000         | 15       | 14                                                                                                                                                                   | 13       | 12      | 11       | 10      | 9       | 8                                                                                            | 7                     | 6                       | 5         | 4                                                  | 3         | 2                               | 1          | 0        |  |
|               | 15       | 1                                                                                                                                                                    | 13       | 12      | reserved | 10      | 1       | 1                                                                                            |                       | PHYINT                  | MDINT     | RXER                                               | FOV       | TXEMP                           | TXER       | RXINT    |  |
| Type<br>Reset | RO<br>0  | RO<br>0                                                                                                                                                              | RO<br>0  | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0                                                                                      | RO<br>0               | RO<br>0                 | RO<br>0   | RO<br>0                                            | RO<br>0   | RO<br>0                         | RO<br>0    | RO<br>0  |  |
| Bit/F         | ield     |                                                                                                                                                                      | Name     |         | Туре     |         | Reset   | Descr                                                                                        | iption                |                         |           |                                                    |           |                                 |            |          |  |
| 31            | :7       | r                                                                                                                                                                    | reserved |         | RO       |         | 0x0     | compa                                                                                        | atibility w           | vith futur              | e produc  |                                                    | alue of   | erved bit.<br>a reserven.<br>n. |            |          |  |
| 6             |          | I                                                                                                                                                                    | PHYINT   |         | RO       |         | 0x0     | occure                                                                                       | ed. MR1               |                         | PHY mu    | st be rea                                          |           | n the PH<br>ermine t            |            |          |  |
| 5             |          |                                                                                                                                                                      | MDINT    |         | RO       |         | 0x0     |                                                                                              |                       | cates that<br>succes    |           | saction (r                                         | ead or v  | vrite) on                       | the MII ii | nterface |  |
| 4             |          | RXER       RO       0x0       This bit indicates that an error was encountered on the receiver. The possible errors that can cause this interrupt bit to be set are: |          |         |          |         |         |                                                                                              |                       |                         |           |                                                    |           | r. The                          |            |          |  |
|               |          |                                                                                                                                                                      |          |         |          |         |         | <ul> <li>A receive error occurs during the reception of a frame (100 N<br/>only).</li> </ul> |                       |                         |           |                                                    |           |                                 |            |          |  |
|               |          |                                                                                                                                                                      |          |         |          |         |         |                                                                                              | ne frame<br>ignment   |                         | n integei | r numbei                                           | r of byte | s (dribble                      | e bits) di | ue to an |  |
|               |          |                                                                                                                                                                      |          |         |          |         |         | Tł                                                                                           | ne CRC                | of the fra              | ame doe   | es not pa                                          | ss the F  | CS che                          | ck.        |          |  |
|               |          |                                                                                                                                                                      |          |         |          |         |         |                                                                                              | -                     | n/type fie<br>d as a le |           |                                                    | t with th | e frame                         | data siz   | e when   |  |
| 3             |          | FOV RO 0x0 When set, indicates the FIFO.                                                                                                                             |          |         |          |         |         |                                                                                              |                       |                         |           | tes that an overrun was encountered on the receive |           |                                 |            |          |  |
| 2             |          |                                                                                                                                                                      | TXEMP    |         | RO       |         | 0x0     |                                                                                              | set, indi<br>is empty |                         | at the pa | acket wa                                           | s transr  | nitted an                       | id that th | ie TX    |  |
| 1             |          |                                                                                                                                                                      | TXER     |         | RO       |         | 0x0     |                                                                                              | ,                     |                         |           |                                                    |           | ered on t<br>ot bit to b        |            |          |  |
|               |          |                                                                                                                                                                      |          |         |          |         |         |                                                                                              |                       | -                       |           | d in the<br>s error o                              |           | ) exceed                        | ls 2032.   | The      |  |
|               |          |                                                                                                                                                                      |          |         |          |         |         |                                                                                              |                       |                         |           | ots during<br>mit of 16                            |           | ckoff pro                       | ocess ha   | ive      |  |

| Bit/Field | Name  | Туре | Reset | Description                                                                                        |
|-----------|-------|------|-------|----------------------------------------------------------------------------------------------------|
| 0         | RXINT | RO   | 0x0   | When set, indicates that at least one packet has been received and is stored in the receiver FIFO. |

## Register 2: Ethernet MAC Interrupt Acknowledge (MACIACK), offset 0x000

A write of a 1 to any bit position of this register clears the corresponding interrupt bit in the Ethernet MAC Raw Interrupt Status (MACRIS) register.

Ethernet MAC Interrupt Acknowledge (MACIACK)

Base 0x4004.8000 Offset 0x000 Type W1C, reset 0x0000.0000

| .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | -,   | 0/10000.0 |          |    |       |     |       |                                                 |            |           |            |           |          |                        |           |         |  |  |
|-----------------------------------------|------|-----------|----------|----|-------|-----|-------|-------------------------------------------------|------------|-----------|------------|-----------|----------|------------------------|-----------|---------|--|--|
|                                         | 31   | 30        | 29       | 28 | 27    | 26  | 25    | 24                                              | 23         | 22        | 21         | 20        | 19       | 18                     | 17        | 16      |  |  |
|                                         |      | 1         | 1 1      | 1  | r r   |     | 1     | rese                                            | rved       | 1         | 1          |           |          | I I                    |           |         |  |  |
| Туре                                    | RO   | RO        | RO       | RO | RO    | RO  | RO    | RO                                              | RO         | RO        | RO         | RO        | RO       | RO                     | RO        | RO      |  |  |
| Reset                                   | 0    | 0         | 0        | 0  | 0     | 0   | 0     | 0                                               | 0          | 0         | 0          | 0         | 0        | 0                      | 0         | 0       |  |  |
|                                         | 15   | 14        | 13       | 12 | 11    | 10  | 9     | 8                                               | 7          | 6         | 5          | 4         | 3        | 2                      | 1         | 0       |  |  |
|                                         |      | 1         | 1 1      |    | reser | ved | 1     | 1                                               | 1          |           | MDINT      | RXER      | FOV      | TXEMP                  | TXER      | RXINT   |  |  |
| Туре                                    | RO   | RO        | RO       | RO | RO    | RO  | RO    | RO                                              | RO         | RO        | W1C        | W1C       | W1C      | W1C                    | W1C       | W1C     |  |  |
| Reset                                   | 0    | 0         | 0        | 0  | 0     | 0   | 0     | 0                                               | 0          | 0         | 0          | 0         | 0        | 0                      | 0         | 0       |  |  |
|                                         |      |           |          |    |       |     |       |                                                 |            |           |            |           |          |                        |           |         |  |  |
| Bit/F                                   | ield |           | Name     |    | Туре  |     | Reset | Descr                                           | iption     |           |            |           |          |                        |           |         |  |  |
| 31:                                     | c    |           | record   |    | RO    |     | 0x0   | Coffu                                           | ara ahai   | ld not r  | alv on th  |           | of a raa | an and hit             | To prov   | ida     |  |  |
| 31.                                     | 0    |           | reserved |    | RU    |     | UXU   |                                                 |            |           |            |           |          | erved bit.<br>a reserv | •         |         |  |  |
|                                         |      |           |          |    |       |     |       | •                                               | ,          |           | •          | -         |          |                        |           |         |  |  |
|                                         |      |           |          |    |       |     |       | preserved across a read-modify-write operation. |            |           |            |           |          |                        |           |         |  |  |
| 6                                       |      |           | PHYINT   |    | W1C   |     | 0x0   | A write                                         | e of a 1   | to the PI | HYINT b    | it clears | the PH   | YINT inte              | errupt re | ad from |  |  |
|                                         |      |           |          |    |       |     |       | the M                                           | ACRIS r    | egister.  |            |           |          |                        |           |         |  |  |
|                                         |      |           |          |    |       |     |       |                                                 |            | •         |            |           |          |                        |           |         |  |  |
| 5                                       |      |           | MDINT    |    | W1C   |     | 0x0   |                                                 |            |           | DINT bit   | clears th | e MDIN   | T interru              | pt read f | rom the |  |  |
|                                         |      |           |          |    |       |     |       | MACE                                            | RIS regis  | ster.     |            |           |          |                        |           |         |  |  |
|                                         |      |           |          |    | 1440  |     | 00    | A                                               |            |           |            | 1 41      |          |                        |           |         |  |  |
| 4                                       |      |           | RXER     |    | W1C   |     | 0x0   |                                                 |            |           | XER DIT C  | lears the | e RXER   | interrup               | read fro  | om the  |  |  |
|                                         |      |           |          |    |       |     |       | MACH                                            | RIS regis  | ster.     |            |           |          |                        |           |         |  |  |
| 3                                       |      |           | FOV      |    | W1C   |     | 0x0   | A write                                         | e of a 1   | to the F  | ow hit cle | ars the   | FOV int  | errupt re              | ad from   | the     |  |  |
| U                                       |      |           | 101      |    |       |     | 0/10  |                                                 | RIS regis  |           |            |           |          | onaptio                |           |         |  |  |
|                                         |      |           |          |    |       |     |       |                                                 |            |           |            |           |          |                        |           |         |  |  |
| 2                                       |      |           | TXEMP    |    | W1C   |     | 0x0   | A write                                         | e of a 1   | to the T  | XEMP bit   | clears th | he TXE   | MP interr              | upt read  | l from  |  |  |
|                                         |      |           |          |    |       |     |       | the M                                           | ACRIS r    | egister.  |            |           |          |                        |           |         |  |  |
|                                         |      |           |          |    |       |     |       |                                                 |            |           |            |           |          |                        |           |         |  |  |
| 1                                       |      |           | TXER     |    | W1C   |     | 0x0   |                                                 |            |           |            |           |          | interrupt              |           | om the  |  |  |
|                                         |      |           |          |    |       |     |       | MACH                                            | KIS regis  | ster and  | resets th  | INTEL     | FO write | e pointer.             |           |         |  |  |
| 0                                       |      |           | RXINT    |    | W1C   |     | 0x0   | A write                                         | e of a 1 f | o the P3  | KTNT bit   | clears th | ne RXIN  | T interru              | nt read f | rom the |  |  |
| 0                                       |      |           |          |    |       |     | 570   |                                                 | RIS regis  |           |            |           |          | . monu                 |           |         |  |  |
|                                         |      |           |          |    |       |     |       |                                                 | 9.0        |           |            |           |          |                        |           |         |  |  |

## Register 3: Ethernet MAC Interrupt Mask (MACIM), offset 0x004

This register allows software to enable/disable Ethernet MAC interrupts. Writing a 0 disables the interrupt, while writing a 1 enables it.

#### Ethernet MAC Interrupt Mask (MACIM)

Base 0x4004.8000 Offset 0x004 Type R/W, reset 0x0000.007F

|        | 31  | 30                                                                                                                     | 29       | 28 | 27       | 26 | 25    | 24                                                                                 | 23             | 22         | 21         | 20                                          | 19        | 18         | 17         | 16      |
|--------|-----|------------------------------------------------------------------------------------------------------------------------|----------|----|----------|----|-------|------------------------------------------------------------------------------------|----------------|------------|------------|---------------------------------------------|-----------|------------|------------|---------|
|        |     | 1                                                                                                                      | 1 1      |    | 1 1      |    | 1     | rese                                                                               | rved           | Î I        |            |                                             |           | 1          |            | •       |
| Туре   | RO  | RO                                                                                                                     | RO       | RO | RO       | RO | RO    | RO                                                                                 | RO             | RO         | RO         | RO                                          | RO        | RO         | RO         | RO      |
| Reset  | 0   | 0                                                                                                                      | 0        | 0  | 0        | 0  | 0     | 0                                                                                  | 0              | 0          | 0          | 0                                           | 0         | 0          | 0          | 0       |
|        | 15  | 14                                                                                                                     | 13       | 12 | 11       | 10 | 9     | 8                                                                                  | 7              | 6          | 5          | 4                                           | 3         | 2          | 1          | 0       |
| [      |     | ı                                                                                                                      | 1 1      |    | reserved |    | 1     | 1 1                                                                                |                | PHYINTM    | MDINTM     | RXERM                                       | FOVM      | TXEMPM     | TXERM      | RXINTM  |
| Туре   | RO  | RO                                                                                                                     | RO       | RO | RO       | RO | RO    | RO                                                                                 | RO             | R/W        | R/W        | R/W                                         | R/W       | R/W        | R/W        | R/W     |
| Reset  | 0   | 0                                                                                                                      | 0        | 0  | 0        | 0  | 0     | 0                                                                                  | 0              | 1          | 1          | 1                                           | 1         | 1          | 1          | 1       |
| Bit/Fi | eld |                                                                                                                        | Name     |    | Туре     |    | Reset | Descri                                                                             | iption         |            |            |                                             |           |            |            |         |
| 31:    | 7   | r                                                                                                                      | reserved |    | RO       |    | 0x0   | Softwa                                                                             | are shou       | uld not re | elv on the | e value o                                   | of a rese | erved bit. | To prov    | vide    |
|        |     | compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation. |          |    |          |    |       |                                                                                    |                |            |            |                                             |           |            |            |         |
| 6      |     | P                                                                                                                      | PHYINTM  | I  | R/W      |    | 1     | 1 The PHYINTM bit masks the PHYINT bit in the MACRIS register fro                  |                |            |            |                                             |           |            |            |         |
|        |     |                                                                                                                        |          |    |          |    |       | being                                                                              | asserte        | d.         |            |                                             |           |            |            |         |
| 5      |     | ſ                                                                                                                      | MDINTM   |    | R/W      |    | 1     | The m<br>assert                                                                    |                | it masks   | the MDI    | NT bit in                                   | the MA    | CRIS reg   | jister fro | m being |
| 4      |     |                                                                                                                        | RXERM    |    | R/W      |    | 1     |                                                                                    |                | t masks    | the RXE    | R bit in t                                  | ne MAC    | RIS regi   | ster fron  | n being |
|        |     |                                                                                                                        |          |    |          |    |       | assert                                                                             | ed.            |            |            |                                             |           |            |            |         |
| 3      |     |                                                                                                                        | FOVM     |    | R/W      |    | 1     | The For assert                                                                     |                | masks th   | e FOV b    | it in the                                   | MACRI     | S registe  | r from b   | eing    |
| 2      |     | Т                                                                                                                      | XEMPM    |    | R/W      |    | 1     | The T                                                                              | XEMPM <b>k</b> | oit masks  | the TXE    | IXEMP bit in the MACRIS register from being |           |            |            |         |
|        |     |                                                                                                                        |          |    |          |    |       | assert                                                                             | ed.            |            |            |                                             |           |            |            |         |
| 1      |     |                                                                                                                        | TXERM    |    | R/W      |    | 1     | The T<br>assert                                                                    |                | t masks    | the TXE    | R bit in th                                 | ne MAC    | RIS regi   | ster fron  | n being |
| 0      |     | I                                                                                                                      | RXINTM   |    | R/W      |    | 1     | The RXINTM bit masks the RXINT bit in the <b>MACRIS</b> register from be asserted. |                |            |            |                                             |           |            |            |         |

## Register 4: Ethernet MAC Receive Control (MACRCTL), offset 0x008

This register enables software to configure the receive module and control the types of frames that are received from the physical medium. It is important to note that when the receive module is enabled, all valid frames with a broadcast address of FF-FF-FF-FF-FF-FF in the Destination Address field will be received and stored in the RX FIFO, even if the AMUL bit is not set.

| 19001011      | , 10001 0                                                                                                             |                                                                                                              |         |         |                                                                                                                    |          |         |                 |             |          |           |            |                        |                        |           |          |
|---------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------|---------|--------------------------------------------------------------------------------------------------------------------|----------|---------|-----------------|-------------|----------|-----------|------------|------------------------|------------------------|-----------|----------|
|               | 31                                                                                                                    | 30                                                                                                           | 29      | 28      | 27                                                                                                                 | 26       | 25      | 24              | 23          | 22       | 21        | 20         | 19                     | 18                     | 17        | 16       |
|               |                                                                                                                       |                                                                                                              |         |         |                                                                                                                    |          |         | rese            | rved        |          |           |            |                        |                        |           |          |
| Туре          | RO                                                                                                                    | RO                                                                                                           | RO      | RO      | RO                                                                                                                 | RO       | RO      | RO              | RO          | RO       | RO        | RO         | RO                     | RO                     | RO        | RO       |
| Reset         | 0                                                                                                                     | 0                                                                                                            | 0       | 0       | 0                                                                                                                  | 0        | 0       | 0               | 0           | 0        | 0         | 0          | 0                      | 0                      | 0         | 0        |
| г             | 15                                                                                                                    | 14                                                                                                           | 13      | 12      | 11                                                                                                                 | 10       | 9       | 8               | 7           | 6        | 5         | 4          | 3                      | 2                      | 1         | 0        |
|               |                                                                                                                       |                                                                                                              |         |         |                                                                                                                    | reserved |         |                 |             |          |           | RSTFIFO    | BADCRC                 | PRMS                   | AMUL      | RXEN     |
| Type<br>Reset | RO<br>0                                                                                                               | RO<br>0                                                                                                      | RO<br>0 | RO<br>0 | RO<br>0                                                                                                            | RO<br>0  | RO<br>0 | RO<br>0         | RO<br>0     | RO<br>0  | RO<br>0   | R/W<br>0   | R/W<br>1               | R/W<br>0               | R/W<br>0  | R/W<br>0 |
| Bit/Fi        | ield                                                                                                                  |                                                                                                              | Name    |         | Туре                                                                                                               |          | Reset   | Descr           | iption      |          |           |            |                        |                        |           |          |
| 31:           | compatibility with future products, the value of a reserved bit sl<br>preserved across a read-modify-write operation. |                                                                                                              |         |         |                                                                                                                    |          |         |                 |             |          |           |            |                        |                        |           |          |
| 4             |                                                                                                                       | RSTFIFO R/W 0x0 When set, clears the receive FIFO. This should be done when sof initialization is performed. |         |         |                                                                                                                    |          |         |                 |             |          |           |            | oftware                |                        |           |          |
|               |                                                                                                                       |                                                                                                              |         |         |                                                                                                                    |          |         |                 | set initiat |          |           |            | e disableo<br>sequenco | `                      |           |          |
| 3             |                                                                                                                       | E                                                                                                            | ADCRC   | ;       | R/W                                                                                                                |          | 0x1     |                 | ADCRC b     |          | es the re | ejection   | of frames              | s with ar              | n incorre | ctly     |
| 2             |                                                                                                                       |                                                                                                              | PRMS    |         | R/W         0x0         The PRMS bit enables Promiscuous mode, which acc<br>regardless of the Destination Address. |          |         |                 |             |          |           |            | accepts                | epts all valid frames, |           |          |
| 1             |                                                                                                                       |                                                                                                              | AMUL    |         | R/W                                                                                                                |          | 0x0     | The Al<br>mediu |             | nables t | he recep  | otion of n | nulticast f            | rames f                | rom the j | ohysical |
| 0             |                                                                                                                       |                                                                                                              | RXEN    |         | R/W                                                                                                                |          | 0x0     |                 |             |          |           |            | eiver. Wi<br>he physic |                        |           | ,        |

Ethernet MAC Receive Control (MACRCTL)

Base 0x4004.8000

Offset 0x008 Type R/W, reset 0x0000.0008

## Register 5: Ethernet MAC Transmit Control (MACTCTL), offset 0x00C

This register enables software to configure the transmit module, and control frames are placed onto the physical medium.

#### Ethernet MAC Transmit Control (MACTCTL)

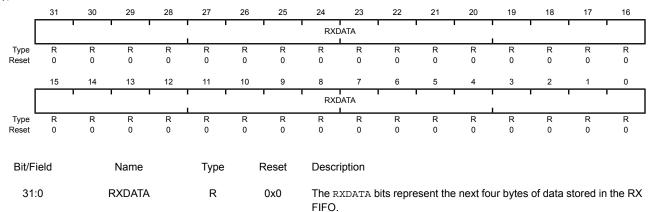
Base 0x4004.8000 Offset 0x00C Type R/W, reset 0x0000.0000

|               | 31      | 30      | 29       | 28      | 27      | 26       | 25      | 24                                                                                                                                                                                                                      | 23                                                                                                                                                                                            | 22       | 21         | 20        | 19          | 18        | 17        | 16       |  |  |
|---------------|---------|---------|----------|---------|---------|----------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|-----------|-------------|-----------|-----------|----------|--|--|
|               |         |         |          |         |         |          | 1       | rese                                                                                                                                                                                                                    | rved                                                                                                                                                                                          |          | 1          | 1         |             |           |           |          |  |  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0                                                                                                                                                                                                                 | RO<br>0                                                                                                                                                                                       | RO<br>0  | RO<br>0    | RO<br>0   | RO<br>0     | RO<br>0   | RO<br>0   | RO<br>0  |  |  |
|               | 15      | 14      | 13       | 12      | 11      | 10       | 9       | 8                                                                                                                                                                                                                       | 7                                                                                                                                                                                             | 6        | 5          | 4         | 3           | 2         | 1         | 0        |  |  |
|               |         | 1       |          |         | . I     | reserved | 1       |                                                                                                                                                                                                                         |                                                                                                                                                                                               |          | 1          | DUPLEX    | reserved    | CRC       | PADEN     | TXEN     |  |  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0                                                                                                                                                                                                                 | RO<br>0                                                                                                                                                                                       | RO<br>0  | RO<br>0    | R/W<br>0  | RO<br>0     | R/W<br>0  | R/W<br>0  | R/W<br>0 |  |  |
| Bit/F         | ield    |         | Name     |         | Туре    | I        | Reset   | Descr                                                                                                                                                                                                                   | iption                                                                                                                                                                                        |          |            |           |             |           |           |          |  |  |
| 31:           | :5      | r       | reserved |         | RO      |          | 0x0     | compa                                                                                                                                                                                                                   | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |          |            |           |             |           |           |          |  |  |
| 4             |         | [       | DUPLEX   |         | R/W     |          | 0x0     | When set, enables Duplex mode, allowing simultaneous transmission and reception.                                                                                                                                        |                                                                                                                                                                                               |          |            |           |             |           |           |          |  |  |
| 3             |         | r       | reserved |         | RO      |          | 0x0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                           |                                                                                                                                                                                               |          |            |           |             |           |           |          |  |  |
| 2             |         |         | CRC      |         | R/W     |          | 0x0     | When set, enables the automatic generation of the CRC and the<br>placement at the end of the packet. If this bit is not set, the frames place<br>in the TX FIFO will be sent exactly as they are written into the FIFO. |                                                                                                                                                                                               |          |            |           |             |           |           | placed   |  |  |
| 1             |         |         | PADEN    |         | R/W     |          | 0x0     | When set, enables the automatic padding of packets that do the minimum frame size.                                                                                                                                      |                                                                                                                                                                                               |          |            |           |             |           | nat do no | ot meet  |  |  |
| 0             |         |         | TXEN     |         | R/W     |          | 0x0     | When<br>disabl                                                                                                                                                                                                          | ,                                                                                                                                                                                             | bles the | nitter. Wh | en this b | it is 0, tl | he transi | nitter is |          |  |  |

## Register 6: Ethernet MAC Data (MACDATA), offset 0x010

This register enables software to access the TX and RX FIFOs.

Reads from this register return the data stored in the RX FIFO from the location indicated by the read pointer.


Writes to this register store the data in the TX FIFO at the location indicated by the write pointer. The write pointer is then auto-incremented to the next TX FIFO location.

There is no mechanism for randomly accessing bytes in either the RX or TX FIFOs. Data must be read from the RX FIFO sequentially and stored in a buffer for further processing. Once a read has been performed, the data in the FIFO cannot be re-read. Data must be written to the TX FIFO sequentially. If an error is made in placing the frame into the TX FIFO, the write pointer can be reset to the start of the TX FIFO by writing the TXER bit of the **MACIACK** register and the data re-written.

#### Ethernet MAC Data (MACDATA)

Base 0x4004.8000 Offset 0x010

Type R/W, reset 0x0000.0000



#### Ethernet MAC Data (MACDATA)

TXDATA

W

0x0

Base 0x4004.8000

31:0

Offset 0x010 Type R/W, reset 0x0000.0000

|               | <i>.</i> |        |        |        |        |        |        |        |           |        |        |        |        |        |        |        |
|---------------|----------|--------|--------|--------|--------|--------|--------|--------|-----------|--------|--------|--------|--------|--------|--------|--------|
|               | 31       | 30     | 29     | 28     | 27     | 26     | 25     | 24     | 23        | 22     | 21     | 20     | 19     | 18     | 17     | 16     |
|               |          | 1      | 1      | 1      |        |        | I      | TXE    | i<br>Data |        | 1      |        |        |        |        | 1      |
| Type<br>Reset | W<br>0   | W<br>0 | W<br>0 | W<br>0 | W<br>0 | W<br>0 | W<br>0 | W<br>0 | W<br>0    | W<br>0 | W<br>0 | W<br>0 | W<br>0 | W<br>0 | W<br>0 | W<br>0 |
|               | 15       | 14     | 13     | 12     | 11     | 10     | 9      | 8      | 7         | 6      | 5      | 4      | 3      | 2      | 1      | 0      |
|               |          | •      | •      | •      | · ·    |        | 1      | TXE    | DATA      |        |        |        |        |        |        | •      |
| Туре          | W        | W      | W      | W      | w      | W      | W      | W      | w         | W      | W      | W      | W      | W      | W      | W      |
| Reset         | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0         | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| Bit/F         | ield     |        | Name   |        | Туре   | F      | Reset  | Descr  | iption    |        |        |        |        |        |        |        |

The  $\ensuremath{\mathsf{TXDATA}}$  bits represent the next four bytes of data to place in the TX FIFO for transmission.

## Register 7: Ethernet MAC Individual Address 0 (MACIA0), offset 0x014

This register enables software to program the first four bytes of the hardware MAC Address of the Network Interface Card (NIC). The 6-byte IAR is compared against the incoming Destination Address fields to determine whether the frame should be received.

#### Ethernet MAC Individual Address 0 (MACIA0)

Base 0x4004.8000 Offset 0x014 Type R/W, reset 0x0000.0000

|       | 31                                                                        | 30  | 29     | 28  | 27   | 26  | 25    | 24    | 23     | 22                    | 21  | 20  | 19                     | 18       | 17      | 16      |
|-------|---------------------------------------------------------------------------|-----|--------|-----|------|-----|-------|-------|--------|-----------------------|-----|-----|------------------------|----------|---------|---------|
|       |                                                                           | 1   | T      | MAC | OCT4 |     | I     | 1     |        | 1                     |     | MAC | OCT3                   |          | 1       |         |
| Туре  | R/W                                                                       | R/W | R/W    | R/W | R/W  | R/W | R/W   | R/W   | R/W    | R/W                   | R/W | R/W | R/W                    | R/W      | R/W     | R/W     |
| Reset | 0                                                                         | 0   | 0      | 0   | 0    | 0   | 0     | 0     | 0      | 0                     | 0   | 0   | 0                      | 0        | 0       | 0       |
|       | 15                                                                        | 14  | 13     | 12  | 11   | 10  | 9     | 8     | 7      | 6                     | 5   | 4   | 3                      | 2        | 1       | 0       |
|       |                                                                           | 1   | 1      | MAC | OCT2 |     | 1     | '     |        | 1                     | 1   | MAC | OCT1                   | I        | 1       | '       |
| Туре  | R/W                                                                       | R/W | R/W    | R/W | R/W  | R/W | R/W   | R/W   | R/W    | R/W                   | R/W | R/W | R/W                    | R/W      | R/W     | R/W     |
| Reset | 0                                                                         | 0   | 0      | 0   | 0    | 0   | 0     | 0     | 0      | 0                     | 0   | 0   | 0                      | 0        | 0       | 0       |
| Bit/F | ield                                                                      |     | Name   |     | Туре | I   | Reset | Descr | iption |                       |     |     |                        |          |         |         |
| 31:   | 24                                                                        | N   | IACOCT | 4   | R/W  |     | 0x0   |       |        | bits rep<br>entify ea |     |     | n octet of<br>troller. | the MA   | C addre | ss used |
| 23:   | 16                                                                        | Ν   | IACOCT | 3   | R/W  |     | 0x0   |       |        | bits rep<br>entify ea |     |     | octet of t<br>troller. | he MAC   | addres  | s used  |
| 15    | 15:8 MACOCT2 R/W 0x0 The MACOCT2 bits repretout to uniquely identify each |     |        |     |      |     |       |       |        |                       |     |     |                        | f the MA | C addre | ss used |
| 7:    | 0                                                                         | Ν   | IACOCT | 1   | R/W  |     | 0x0   |       |        | bits rep<br>ify each  |     |     | ctet of th<br>oller.   | e MAC :  | address | used to |

## **Register 8: Ethernet MAC Individual Address 1 (MACIA1), offset 0x018**

This register enables software to program the last two bytes of the hardware MAC Address of the Network Interface Card (NIC). The 6-byte IAR is compared against the incoming Destination Address fields to determine whether the frame should be received.

#### Ethernet MAC Individual Address 1 (MACIA1)

Base 0x4004.8000 Offset 0x018 Type R/W, reset 0x0000.0000

|       | 31                        | 30  | 29       | 28  | 27   | 26  | 25    | 24    | 23          | 22                                    | 21      | 20         | 19      | 18       | 17       | 16      |
|-------|---------------------------|-----|----------|-----|------|-----|-------|-------|-------------|---------------------------------------|---------|------------|---------|----------|----------|---------|
|       |                           | 1   |          |     |      |     | 1     | rese  | rved        | 1                                     |         | 1          |         | 1        | 1        |         |
| Туре  | RO                        | RO  | RO       | RO  | RO   | RO  | RO    | RO    | RO          | RO                                    | RO      | RO         | RO      | RO       | RO       | RO      |
| Reset | 0                         | 0   | 0        | 0   | 0    | 0   | 0     | 0     | 0           | 0                                     | 0       | 0          | 0       | 0        | 0        | 0       |
|       | 15                        | 14  | 13       | 12  | 11   | 10  | 9     | 8     | 7           | 6                                     | 5       | 4          | 3       | 2        | 1        | 0       |
|       |                           | 1   | 1 1      | MAC | DCT6 |     | •     | 1     |             | 1                                     |         | MAC        | DCT5    | 1        | 1        | '       |
| Туре  | R/W                       | R/W | R/W      | R/W | R/W  | R/W | R/W   | R/W   | R/W         | R/W                                   | R/W     | R/W        | R/W     | R/W      | R/W      | R/W     |
| Reset | 0                         | 0   | 0        | 0   | 0    | 0   | 0     | 0     | 0           | 0                                     | 0       | 0          | 0       | 0        | 0        | 0       |
|       | Bit/Field Name Type Reset |     |          |     |      |     |       |       |             |                                       |         |            |         |          |          |         |
| Bit/F | ield                      |     | Name     |     | Туре |     | Reset | Descr | iption      |                                       |         |            |         |          |          |         |
| 31:   | 16                        |     | reserved |     | RO   |     | 0x0   | compa | atibility v | uld not re<br>vith futur<br>oss a rea | e produ | cts, the v | alue of | a reserv | •        |         |
| 15    | 15:8 MACOCT6 R/W          |     |          |     |      |     | 0x0   |       |             | bits rep<br>entify ea                 |         |            |         | the MAC  | C addres | s used  |
| 7:    | 7:0 MACOCT5 RJ            |     |          |     | R/W  |     | 0x0   |       |             | bits rep<br>ify each                  |         |            |         | ne MAC   | address  | used to |

## Register 9: Ethernet MAC Threshold (MACTHR), offset 0x01C

This register enables software to set the threshold level at which the transmission of the frame begins. If the THRESH bits are set to 0x3F, which is the reset value, transmission does not start until the NEWTX bit is set in the **MACTR** register. This effectively disables the early transmission feature.

Writing the THRESH bits to any value besides all 1s enables the early transmission feature. Once the byte count of data in the TX FIFO reaches this level, transmission of the frame begins. When THRESH is set to all 0s, transmission of the frame begins after 4 bytes (a single write) are stored in the TX FIFO. Each increment of the THRESH bit field waits for an additional 32 bytes of data (eight writes) to be stored in the TX FIFO. Therefore, a value of 0x01 would wait for 36 bytes of data to be written while a value of 0x02 would wait for 68 bytes to be written. In general, early transmission starts when:

```
Number of Bytes \geq 4 (THRESH x 8 + 1)
```

Reaching the threshold level has the same effect as setting the NEWTX bit in the **MACTR** register. Transmission of the frame begins and then the number of bytes indicated by the Data Length field is sent out on the physical medium. Because under-run checking is not performed, it is possible that the tail pointer may reach and pass the write pointer in the TX FIFO. This causes indeterminate values to be written to the physical medium rather than the end of the frame. Therefore, sufficient bus bandwidth for writing to the TX FIFO must be guaranteed by the software.

If a frame smaller than the threshold level needs to be sent, the NEWTX bit in the **MACTR** register must be set with an explicit write. This initiates the transmission of the frame even though the threshold limit has not been reached.

If the threshold level is set too small, it is possible for the transmitter to underrun. If this occurs, the transmit frame will be aborted, and a transmit error will be indicated.

| Offset 0x4<br>Type R/W | 01C     |         | 3F       |         |         |         |         |         |                                         |           |         |            |         |          |         |     |
|------------------------|---------|---------|----------|---------|---------|---------|---------|---------|-----------------------------------------|-----------|---------|------------|---------|----------|---------|-----|
|                        | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24      | 23                                      | 22        | 21      | 20         | 19      | 18       | 17      | 16  |
|                        |         | 1       | 1        |         |         |         | 1       | rese    | erved                                   |           |         |            |         | I        |         | 1   |
| Type                   | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                 | RO<br>0   | RO      | RO<br>0    | RO<br>0 | RO<br>0  | RO<br>0 | RO  |
| Reset                  | 0       | 0       | U        | 0       | 0       | 0       | 0       | U       | U                                       | 0         | 0       | 0          | U       | U        | 0       | 0   |
|                        | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8       | 7                                       | 6         | 5       | 4          | 3       | 2        | 1       | 0   |
|                        |         | 1       | 1        |         | resen   | ved     | I       | I       | 1                                       |           |         |            | THR     | ESH      | I       |     |
| Туре                   | RO      | RO      | RO       | RO      | RO      | RO      | RO      | RO      | RO                                      | RO        | R/W     | R/W        | R/W     | R/W      | R/W     | R/W |
| Reset                  | 0       | 0       | 0        | 0       | 0       | 0       | 0       | 0       | 0                                       | 0         | 1       | 1          | 1       | 1        | 1       | 1   |
|                        |         |         |          |         |         |         |         |         |                                         |           |         |            |         |          |         |     |
| Bit/F                  | ield    |         | Name     |         | Туре    |         | Reset   | Descr   | ription                                 |           |         |            |         |          |         |     |
| 31                     | :6      | I       | reserved |         | RO      |         | 0x0     | compa   | are shou<br>atibility w<br>rved acro    | ith futur | e produ | cts, the v | alue of | a reserv | •       |     |
| 5:                     | 0       | ٦       | THRESH   | ł       | R/W     |         | 0x3F    |         | HRESH bi<br>a in the <sup>-</sup><br>s. | •         |         | ,          |         |          |         |     |

#### Ethernet MAC Threshold (MACTHR)

Base 0x4004.8000

Base 0x4004.8000

## Register 10: Ethernet MAC Management Control (MACMCTL), offset 0x020

This register enables software to control the transfer of data to and from the MII Management Registers in the Ethernet PHY. The address, name, type, reset configuration, and functional description of each of these registers can be found in Table 16-3 on page 422 and "MII Management Register Descriptions" on page 423.

In order to initiate a *read* transaction from the MII Management registers, the WRITE bit must be written with a 0 during the same cycle that the START bit is written with a 1.

In order to initiate a *write* transaction to the MII Management registers, the WRITE bit must be written with a 1 during the same cycle that the START bit is written with a 1.

| Diffset 0x4<br>Diffset 0x0<br>Type R/W                                                                                                                                                                                                                                                      | 020     |   | 00.00   | 00       |         |         |         |         |         |                     |           |          |           |           |                                         |           |          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---|---------|----------|---------|---------|---------|---------|---------|---------------------|-----------|----------|-----------|-----------|-----------------------------------------|-----------|----------|
|                                                                                                                                                                                                                                                                                             | 31      |   | 30      | 29       | 28      | 27      | 26      | 25      | 24      | 23                  | 22        | 21       | 20        | 19        | 18                                      | 17        | 16       |
|                                                                                                                                                                                                                                                                                             |         | 1 |         | 1        | 1       | т т     |         | 1       | rese    | erved               |           | 1        | 1         | 1         | 1                                       | 1         | 1        |
| Type<br>Reset                                                                                                                                                                                                                                                                               | RO<br>0 |   | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0             | RO<br>0   | RO<br>0  | RO<br>0   | RO<br>0   | RO<br>0                                 | RO<br>0   | RO<br>0  |
|                                                                                                                                                                                                                                                                                             | 15      |   | 14      | 13       | 12      | 11      | 10      | 9       | 8       | 7                   | 6         | 5        | 4         | 3         | 2                                       | 1         | 0        |
|                                                                                                                                                                                                                                                                                             |         |   |         | 1        | res     | erved   |         | 1       | T       |                     |           | REGADR   | 1         | 1         | reserved                                | WRITE     | START    |
| Type<br>Reset                                                                                                                                                                                                                                                                               | RO<br>0 |   | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | R/W<br>0            | R/W<br>0  | R/W<br>0 | R/W<br>0  | R/W<br>0  | RO<br>0                                 | R/W<br>0  | R/W<br>0 |
| Bit/F                                                                                                                                                                                                                                                                                       | ield    |   |         | Name     |         | Туре    |         | Reset   | Descr   | iption              |           |          |           |           |                                         |           |          |
| Bit/Field     Name     Type     Reset     Description       31:8     reserved     RO     0x0     Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation. |         |   |         |          |         |         |         |         |         |                     |           |          |           |           |                                         |           |          |
| 7:                                                                                                                                                                                                                                                                                          | 3       |   | F       | REGADF   | R       | R/W     |         | 0x0     |         | EGADR b<br>e next M |           | •        |           |           | gement r                                | egister a | address  |
| 2                                                                                                                                                                                                                                                                                           | !       |   | I       | reserved | I       | RO      |         | 0x0     | comp    |                     | ith futu/ | re produ | cts, the  | value of  | erved bit.<br>a reserv<br>on.           |           |          |
| 1                                                                                                                                                                                                                                                                                           |         |   |         | WRITE    |         | R/W     |         | 0x0     | interfa |                     | action.   | If WRITE | •         |           | next MII<br>operation                   | •         |          |
| 0                                                                                                                                                                                                                                                                                           | )       |   |         | START    |         | R/W     |         | 0x0     | interfa | ace trans           | action.   | When a   | 1 is writ | ten to th | next MII r<br>is bit, the<br>written (w | e MII reg | ister    |

Ethernet MAC Management Control (MACMCTL)

## Register 11: Ethernet MAC Management Divider (MACMDV), offset 0x024

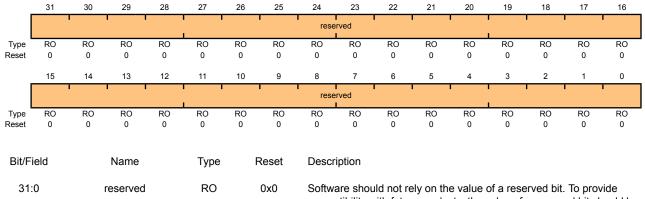
This register enables software to set the clock divider for the Management Data Clock (MDC). This clock is used to synchronize read and write transactions between the system and the MII Management registers. The frequency of the MDC clock can be calculated from the following formula:

 $F_{mdc} = F_{ipclk} / (2 * (MACMDVR + 1))$ 

The clock divider must be written with a value that ensures that the MDC clock will not exceed a frequency of 2.5 MHz.

| Type R/W | /, reset 0 | x0000.00 | 80       |      |          |    |       |       |                                     |            |         |            |         |          |     |     |
|----------|------------|----------|----------|------|----------|----|-------|-------|-------------------------------------|------------|---------|------------|---------|----------|-----|-----|
|          | 31         | 30       | 29       | 28   | 27       | 26 | 25    | 24    | 23                                  | 22         | 21      | 20         | 19      | 18       | 17  | 16  |
|          |            | 1        | 1        | 1    |          |    | 1     | rese  | rved                                | 1          | 1       | I          |         | 1        | 1   |     |
| Туре     | RO         | RO       | RO       | RO   | RO       | RO | RO    | RO    | RO                                  | RO         | RO      | RO         | RO      | RO       | RO  | RO  |
| Reset    | 0          | 0        | 0        | 0    | 0        | 0  | 0     | 0     | 0                                   | 0          | 0       | 0          | 0       | 0        | 0   | 0   |
|          | 15         | 14       | 13       | 12   | 11       | 10 | 9     | 8     | 7                                   | 6          | 5       | 4          | 3       | 2        | 1   | 0   |
|          |            | •        | •        | rese | rved     |    | •     | •     |                                     | 1          | 1       | D          | IV      | 1        | 1   |     |
| Туре     | RO         | RO       | RO       | RO   | RO       | RO | RO    | RO    | R/W                                 | R/W        | R/W     | R/W        | R/W     | R/W      | R/W | R/W |
| Reset    | 0          | 0        | 0        | 0    | 0        | 0  | 0     | 0     | 1                                   | 0          | 0       | 0          | 0       | 0        | 0   | 0   |
|          |            |          | N        |      | <b>T</b> |    | Decet | Deere | · · · • · · · ·                     |            |         |            |         |          |     |     |
| Bit/F    | ield       |          | Name     |      | Туре     |    | Reset | Descr | iption                              |            |         |            |         |          |     |     |
| 31:      | :8         | I        | reserved | l    | RO       |    | 0x0   | comp  | are shou<br>atibility v<br>rved acr | vith futur | e produ | cts, the v | alue of | a reserv | •   |     |
| 7:       | 0          |          | DIV      |      | R/W      |    | 0x80  |       | uv bits a<br>nsmit dat              |            |         |            |         |          |     |     |

Ethernet MAC Management Divider (MACMDV)


Base 0x4004.8000 Offset 0x024

## Register 12: Ethernet MAC Management Address (MACMADD), offset 0x028

This register enables software to choose the address of the PHY for the next MII Management register transaction.

#### Ethernet MAC Management Address (MACMADD)

Base 0x4004.8000 Offset 0x028 Type RO, reset 0x0000.0000



compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

#### Register 13: Ethernet MAC Management Transmit Data (MACMTXD), offset 0x02C

This register holds the next value to be written to the MII Management registers.

#### Ethernet MAC Management Transmit Data (MACMTXD)

Base 0x4004.8000 Offset 0x02C Type R/W, reset 0x0000.0000

|               | 31       | 30       | 29       | 28       | 27       | 26       | 25       | 24       | 23          | 22                                    | 21       | 20         | 19        | 18         | 17       | 16       |
|---------------|----------|----------|----------|----------|----------|----------|----------|----------|-------------|---------------------------------------|----------|------------|-----------|------------|----------|----------|
|               |          | 1        | 1        |          | l l      |          | Ì        | rese     | rved        | 1                                     | l        |            |           | I          | I        |          |
| Type<br>Reset | RO<br>0     | RO<br>0                               | RO<br>0  | RO<br>0    | RO<br>0   | RO<br>0    | RO<br>0  | RO<br>0  |
|               | 15       | 14       | 13       | 12       | 11       | 10       | 9        | 8        | 7           | 6                                     | 5        | 4          | 3         | 2          | 1        | 0        |
|               |          | •        |          |          |          |          | •        | MD       | ТХ          |                                       |          |            |           |            | 1        | '        |
| Type<br>Reset | R/W<br>0    | R/W<br>0                              | R/W<br>0 | R/W<br>0   | R/W<br>0  | R/W<br>0   | R/W<br>0 | R/W<br>0 |
| Bit/F         | ield     |          | Name     |          | Туре     | F        | Reset    | Descr    | iption      |                                       |          |            |           |            |          |          |
| 31:           | 16       |          | reserved |          | RO       |          | 0x0      | compa    | atibility v | uld not re<br>with futur<br>oss a rea | e produ  | cts, the v | alue of   | a reserv   | •        |          |
| 15            | :0       |          | MDTX     |          | R/W      |          | 0x0      |          |             | s represe<br>transacti                |          | ata that v | will be v | vritten in | the next | t MII    |

## Register 14: Ethernet MAC Management Receive Data (MACMRXD), offset 0x030

This register holds the last value read from the MII Management registers.

#### Ethernet MAC Management Receive Data (MACMRXD)

Base 0x4004.8000 Offset 0x030 Type R/W, reset 0x0000.0000

|       | 31   | 30  | 29       | 28  | 27       | 26  | 25    | 24                                                                                                                                                                                                              | 23     | 22                     | 21  | 20       | 19      | 18       | 17      | 16    |
|-------|------|-----|----------|-----|----------|-----|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------|-----|----------|---------|----------|---------|-------|
|       |      | 1   | 1        | i   | , ,<br>, |     | ì     | rese                                                                                                                                                                                                            | rved   | i i                    |     |          |         | I        | 1       | 1     |
| Туре  | RO   | RO  | RO       | RO  | RO       | RO  | RO    | RO                                                                                                                                                                                                              | RO     | RO                     | RO  | RO       | RO      | RO       | RO      | RO    |
| Reset | 0    | 0   | 0        | 0   | 0        | 0   | 0     | 0                                                                                                                                                                                                               | 0      | 0                      | 0   | 0        | 0       | 0        | 0       | 0     |
|       | 15   | 14  | 13       | 12  | 11       | 10  | 9     | 8                                                                                                                                                                                                               | 7      | 6                      | 5   | 4        | 3       | 2        | 1       | 0     |
|       |      | •   | •        |     | · ·      |     | •     | MD                                                                                                                                                                                                              | RX     | •                      |     |          |         |          | •       |       |
| Туре  | R/W  | R/W | R/W      | R/W | R/W      | R/W | R/W   | R/W                                                                                                                                                                                                             | R/W    | R/W                    | R/W | R/W      | R/W     | R/W      | R/W     | R/W   |
| Reset | 0    | 0   | 0        | 0   | 0        | 0   | 0     | 0                                                                                                                                                                                                               | 0      | 0                      | 0   | 0        | 0       | 0        | 0       | 0     |
| Bit/F | ield |     | Name     |     | Туре     | I   | Reset | Descr                                                                                                                                                                                                           | iption |                        |     |          |         |          |         |       |
| 31:   | 16   |     | reserved |     | RO       |     | 0x0   | Description<br>Software should not rely on the value of a reserved bit. To provide<br>compatibility with future products, the value of a reserved bit should<br>preserved across a read-modify-write operation. |        |                        |     |          |         |          |         |       |
| 15    | :0   |     | MDRX     |     | R/W      |     | 0x0   |                                                                                                                                                                                                                 |        | s represe<br>transacti |     | ata that | was rea | d in the | previou | s MII |

## **Register 15: Ethernet MAC Number of Packets (MACNP), offset 0x034**

This register holds the number of frames that are currently in the RX FIFO. When NPR is all 0s, there are no frames in the RX FIFO and the RXINT bit is not set. When NPR is any other value, there is at least one frame in the RX FIFO and the RXINT bit is set.

#### Ethernet MAC Number of Packets (MACNP)

Base 0x4004.8000 Offset 0x034 Type RO, reset 0x0000.0000

|       | 31   | 30 | 29       | 28 | 27                                                                | 26  | 25    | 24    | 23          | 22                                    | 21      | 20         | 19      | 18       | 17 | 16 |
|-------|------|----|----------|----|-------------------------------------------------------------------|-----|-------|-------|-------------|---------------------------------------|---------|------------|---------|----------|----|----|
|       |      |    |          |    | · ·                                                               |     | 1     | rese  | rved        |                                       |         |            |         |          |    | •  |
| Туре  | RO   | RO | RO       | RO | RO                                                                | RO  | RO    | RO    | RO          | RO                                    | RO      | RO         | RO      | RO       | RO | RO |
| Reset | 0    | 0  | 0        | 0  | 0                                                                 | 0   | 0     | 0     | 0           | 0                                     | 0       | 0          | 0       | 0        | 0  | 0  |
|       | 15   | 14 | 13       | 12 | 11                                                                | 10  | 9     | 8     | 7           | 6                                     | 5       | 4          | 3       | 2        | 1  | 0  |
|       |      | 1  |          |    | reser                                                             | ved | 1     |       |             |                                       |         |            | NF      | PR       | 1  |    |
| Туре  | RO   | RO | RO       | RO | RO                                                                | RO  | RO    | RO    | RO          | RO                                    | RO      | RO         | RO      | RO       | RO | RO |
| Reset | 0    | 0  | 0        | 0  | 0                                                                 | 0   | 0     | 0     | 0           | 0                                     | 0       | 0          | 0       | 0        | 0  | 0  |
| Bit/F | ield |    | Name     |    | Туре                                                              |     | Reset | Descr | iption      |                                       |         |            |         |          |    |    |
| 31:   | :6   |    | reserved |    | RO                                                                |     | 0x0   | compa | atibility v | ild not re<br>vith futur<br>oss a rea | e produ | cts, the v | alue of | a reserv | •  |    |
| 5:0   | 0    |    | NPR      |    | Preserved across<br>RO 0x0 The NPR bits repr<br>While NPR is grea |     |       |       |             | •                                     |         |            | •       |          |    |    |

## Register 16: Ethernet MAC Transmission Request (MACTR), offset 0x038

This register enables software to initiate the transmission of the frame currently located in the TX FIFO to the physical medium. Once the frame has been transmitted to the medium from the TX FIFO or a transmission error has been encountered, the NEWTX bit is auto-cleared by the hardware.

| Base 0x4<br>Offset 0x<br>Type R/W | 038  | 00<br>0x0000.00 | 000      | ·  | ·        | ·  |       |                 |                       |                      |           |                                                 |                        |                        |                       |                  |
|-----------------------------------|------|-----------------|----------|----|----------|----|-------|-----------------|-----------------------|----------------------|-----------|-------------------------------------------------|------------------------|------------------------|-----------------------|------------------|
|                                   | 31   | 30              | 29       | 28 | 27       | 26 | 25    | 24              | 23                    | 22                   | 21        | 20                                              | 19                     | 18                     | 17                    | 16               |
|                                   |      | 1               | 1        | ſ  | r r<br>1 |    | 1     | rese            | rved                  | 1                    | 1         | T                                               | 1                      | 1                      | 1                     |                  |
| Туре                              | RO   | RO              | RO       | RO | RO       | RO | RO    | RO              | RO                    | RO                   | RO        | RO                                              | RO                     | RO                     | RO                    | RO               |
| Reset                             | 0    | 0               | 0        | 0  | 0        | 0  | 0     | 0               | 0                     | 0                    | 0         | 0                                               | 0                      | 0                      | 0                     | 0                |
|                                   | 15   | 14              | 13       | 12 | 11       | 10 | 9     | 8               | 7                     | 6                    | 5         | 4                                               | 3                      | 2                      | 1                     | 0                |
|                                   |      | 1               | 1        | 1  | · · ·    |    | 1     | reserved        |                       | 1                    | 1         | 1                                               | 1                      | 1                      | 1                     | NEWTX            |
| Туре                              | RO   | RO              | RO       | RO | RO       | RO | RO    | RO              | RO                    | RO                   | RO        | RO                                              | RO                     | RO                     | RO                    | R/W              |
| Reset                             | 0    | 0               | 0        | 0  | 0        | 0  | 0     | 0               | 0                     | 0                    | 0         | 0                                               | 0                      | 0                      | 0                     | 0                |
| Bit/F                             | ield |                 | Name     |    | Туре     |    | Reset | Descr           | iption                |                      |           |                                                 |                        |                        |                       |                  |
| 31                                | :1   |                 | reserved | l  | RO       |    | 0x0   | compa           | atibility v           | vith futur           | e produ   | e value<br>cts, the<br>ify-write                | value of               | a reserv               | •                     | vide<br>nould be |
| 0 NEWTX R/W 0x0                   |      |                 |          |    |          |    | 0x0   | packe<br>transn | t has be<br>nission l | en place<br>nas beer | ed in the | tes an E<br>TX FIF(<br>eted. If e<br>his bit do | O. This t<br>arly tran | oit is clea<br>smissio | ared ond<br>n is bein | e the            |

#### Ethernet MAC Transmission Request (MACTR)

## 16.6 MII Management Register Map

The *IEEE 802.3* standard specifies a register set for controlling and gathering status from the PHY. The registers are collectively known as the MII Management registers and are detailed in Section 22.2.4 of the *IEEE 802.3* specification. Table 16-3 on page 422 lists the MII Management registers. All addresses given are absolute and are written directly to the REGADR field of the **MACMCTL** register. The format of registers 0 to 15 are defined by the IEEE specification and are common to all PHY implementations. The only variance allowed is for features that may or may not be supported by a specific PHY. Registers 16 to 31 are vendor-specific registers, used to support features that are specific to a vendors PHY implementation. Vendor-specific registers not listed are reserved.

| Absolute Address | Name | Reset  | Туре | Description                                     | See page |
|------------------|------|--------|------|-------------------------------------------------|----------|
| 0x00             | MR0  | 0x3100 | R/W  | Control                                         | page 424 |
| 0x01             | MR1  | 0x7849 | R/W  | Status                                          | page 426 |
| 0x02             | MR2  | 0x000E | R/W  | PHY Identifier 1                                | page 428 |
| 0x03             | MR3  | 0x7237 | R/W  | PHY Identifier 2                                | page 429 |
| 0x04             | MR4  | 0x01E1 | R/W  | Auto-Negotiation Advertisement                  | page 430 |
| 0x05             | MR5  | 0x0000 | R/W  | Auto-Negotiation Link Partner Base Page Ability | page 432 |
| 0x06             | MR6  | 0x0000 | R/W  | Auto-Negotiation Expansion                      | page 433 |
| 0x10             | MR16 | 0x0140 | R/W  | Vendor-Specific                                 | page 434 |
| 0x11             | MR17 | 0x0000 | R/W  | Interrupt Control/Status                        | page 436 |

Table 16-3. MII Management Register Map

| Absolute Address | Name | Reset  | Туре | Description         | See page |
|------------------|------|--------|------|---------------------|----------|
| 0x12             | MR18 | 0x0000 | R/W  | Diagnostic          | page 438 |
| 0x13             | MR19 | 0x4000 | R/W  | Transceiver Control | page 439 |
| 0x17             | MR23 | 0x0010 | R/W  | LED Configuration   | page 440 |
| 0x18             | MR24 | 0x00C0 | R/W  | MDI/MDIX Control    | page 441 |

## 16.7 MII Management Register Descriptions

The *IEEE 802.3 standard* specifies a register set for controlling and gathering status from the PHY. The registers are collectively known as the MII Management registers. All addresses given are absolute. Addresses not listed are reserved.

# Register 17: Ethernet PHY Management Register 0 – Control (MR0), offset 0x00

This register enables software to configure the operation of the PHY. The default settings of these registers are designed to initialize the PHY to a normal operational mode without configuration.

#### Ethernet PHY Management Register 0 – Control (MR0)

Base 0x4004.8000 Offset 0x00 Type R/W, reset 0x3100

|               | ,<br>    |          |          |          | 07       |          | 05       | ~ ~                                                                                                                                                                       |             |                          |          |          | 10                                   | 40       |           | 10       |  |  |  |
|---------------|----------|----------|----------|----------|----------|----------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------|----------|----------|--------------------------------------|----------|-----------|----------|--|--|--|
| I             | 31       | 30       | 29       | 28       | 27       | 26       | 25       | 24                                                                                                                                                                        | 23          | 22                       | 21       | 20       | 19                                   | 18       | 17        | 16       |  |  |  |
|               |          |          |          |          |          |          |          | rese                                                                                                                                                                      |             |                          |          |          |                                      |          |           |          |  |  |  |
| Type<br>Reset | RO<br>0                                                                                                                                                                   | RO<br>0     | RO<br>0                  | RO<br>0  | RO<br>0  | RO<br>0                              | RO<br>0  | RO<br>0   | RO<br>0  |  |  |  |
|               | 15       | 14       | 13       | 12       | 11       | 10       | 9        | 8                                                                                                                                                                         | 7           | 6                        | 5        | 4        | 3                                    | 2        | 1         | 0        |  |  |  |
|               | RESET    | LOOPBK   | SPEEDSL  | ANEGEN   | PWRDN    | ISO      | RANEG    | DUPLEX                                                                                                                                                                    | COLT        |                          |          |          | reserved                             |          |           |          |  |  |  |
| Type<br>Reset | R/W<br>0 | R/W<br>0 | R/W<br>1 | R/W<br>1 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>1                                                                                                                                                                  | R/W<br>0    | R/W<br>0                 | R/W<br>0 | R/W<br>0 | R/W<br>0                             | R/W<br>0 | R/W<br>0  | R/W<br>0 |  |  |  |
| Bit/F         | ield     |          | Name     |          | Туре     | I        | Reset    | Descri                                                                                                                                                                    | ption       |                          |          |          |                                      |          |           |          |  |  |  |
| 31:           | 16       | I        | reserved | 1        | RO       |          | 0        | compa                                                                                                                                                                     | atibility w | ith futur                | e produ  | cts, the | of a rese<br>value of a<br>operatior | a reserv | •         |          |  |  |  |
| 15            | 5        |          | RESET    |          | R/W      |          | 0        | Reset                                                                                                                                                                     | Registe     | rs                       |          |          |                                      |          |           |          |  |  |  |
|               |          |          |          |          |          |          |          | When set, resets the registers to their default state and reinitializes internal state machines. Once the reset operation has completed, this bit is cleared by hardware. |             |                          |          |          |                                      |          |           |          |  |  |  |
| 14            | 1        | L        |          | K        | R/W      |          | 0        | Loopb                                                                                                                                                                     | ack Moo     | de                       |          |          |                                      |          |           |          |  |  |  |
|               |          |          |          |          |          |          |          | is isola                                                                                                                                                                  | ated fror   | n the ph                 | ysical m | edium a  | of operat<br>and trans<br>f the med  | mission  |           | •        |  |  |  |
| 13            | 3        | S        | PEEDS    | L        | R/W      |          | 1        | Speed                                                                                                                                                                     | l Select    |                          |          |          |                                      |          |           |          |  |  |  |
|               |          |          |          |          |          |          |          | 1: Ena                                                                                                                                                                    | bles the    | e 100 Mb                 | /s mode  | e of ope | ration (10                           | 00BASE   | -TX).     |          |  |  |  |
|               |          |          |          |          |          |          |          | 0: Ena                                                                                                                                                                    | bles the    | e 10 Mb/s                | s mode   | of opera | ation (10E                           | BASE-T   | ).        |          |  |  |  |
| 12            | 2        | Þ        | NEGEN    | ١        | R/W      |          | 1        | Auto-N                                                                                                                                                                    | legotiati   | ion Enat                 | ole      |          |                                      |          |           |          |  |  |  |
|               |          |          |          |          |          |          |          | When                                                                                                                                                                      | set, ena    | ables the                | Auto-N   | egotiati | on proces                            | SS.      |           |          |  |  |  |
| 11            | l        | I        | PWRDN    | l        | R/W      |          | 0        | Power                                                                                                                                                                     | Down        |                          |          |          |                                      |          |           |          |  |  |  |
|               |          |          |          |          |          |          |          | When                                                                                                                                                                      | set, pla    | ces the F                | PHY into | a low-p  | power co                             | nsuming  | g state.  |          |  |  |  |
| 10            | )        |          | ISO      |          | R/W      |          | 0        | Isolate                                                                                                                                                                   | 9           |                          |          |          |                                      |          |           |          |  |  |  |
|               |          |          |          |          |          |          |          |                                                                                                                                                                           | -           | ates trar<br>lese bus    |          | d receiv | ve data pa                           | aths and | d ignores | s all    |  |  |  |
| 9             |          |          | RANEG    |          | R/W      |          | 0        | Resta                                                                                                                                                                     | rt Auto-N   | Vegotiati                | on       |          |                                      |          |           |          |  |  |  |
|               |          |          |          |          |          |          |          |                                                                                                                                                                           | -           | tarts the<br>bit is clea |          | 0        | on proces<br>e.                      | s. Once  | the res   | tart has |  |  |  |

| Bit/Field | Name     | Туре | Reset | Description                                                                                                                                                         |
|-----------|----------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8         | DUPLEX   | R/W  | 1     | Set Duplex Mode                                                                                                                                                     |
|           |          |      |       | 1: Enables the Full-Duplex mode of operation. This bit can be set by software in a manual configuration process or by the Auto-Negotiation process.                 |
|           |          |      |       | 0: Enables the Half-Duplex mode of operation.                                                                                                                       |
| 7         | COLT     | R/W  | 0     | Collision Test                                                                                                                                                      |
|           |          |      |       | When set, enables the Collision Test mode of operation. The COLT bit asserts after the initiation of a transmission and de-asserts once the transmission is halted. |
| 6:0       | reserved | R/W  | 0x00  | Write as 0, ignore on read.                                                                                                                                         |

## Register 18: Ethernet PHY Management Register 1 – Status (MR1), offset 0x01

This register enables software to determine the capabilities of the PHY and perform its initialization and operation appropriately.

Ethernet PHY Management Register 1 – Status (MR1)

Base 0x4004.8000 Offset 0x01 Type RO, reset 0x7849

| Type ICO      | , 10301 04 | 10-10                                                                                     |          |                                      |         |         |         |            |                      |            |           |            |                                      |          |          |         |  |
|---------------|------------|-------------------------------------------------------------------------------------------|----------|--------------------------------------|---------|---------|---------|------------|----------------------|------------|-----------|------------|--------------------------------------|----------|----------|---------|--|
|               | 31         | 30                                                                                        | 29       | 28                                   | 27      | 26      | 25      | 24         | 23                   | 22         | 21        | 20         | 19                                   | 18       | 17       | 16      |  |
|               |            |                                                                                           |          |                                      |         |         |         | rese       | rved                 |            |           |            |                                      |          |          |         |  |
| Type<br>Reset | RO<br>0    | RO<br>0                                                                                   | RO<br>0  | RO<br>0                              | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0    | RO<br>0              | RO<br>0    | RO<br>0   | RO<br>0    | RO<br>0                              | RO<br>0  | RO<br>0  | RO<br>0 |  |
|               | 15         | 14                                                                                        | 13       | 12                                   | 11      | 10      | 9       | 8          | 7                    | 6          | 5         | 4          | 3                                    | 2        | 1        | 0       |  |
|               | reserved   | 100X_F                                                                                    | 100X_H   | 10T_F                                | 10T_H   |         | rese    | erved      |                      | MFPS       | ANEGC     | RFAULT     | ANEGA                                | LINK     | JAB      | EXTD    |  |
| Type<br>Reset | RO<br>0    | RO<br>1                                                                                   | RO<br>1  | RO<br>1                              | RO<br>1 | RO<br>0 | RO<br>0 | RO<br>0    | RO<br>0              | RO<br>1    | RO<br>0   | RC<br>0    | RO<br>1                              | RO<br>0  | RC<br>0  | RO<br>1 |  |
| Bit/F         | ield       |                                                                                           | Name     |                                      | Туре    |         | Reset   | Descri     | iption               |            |           |            |                                      |          |          |         |  |
| 31:           | 15         | I                                                                                         | reserved |                                      | RO      |         | 0       | compa      | atibility v          | vith futur | e produ   | cts, the v | of a rese<br>value of a<br>operation | a reserv | •        |         |  |
| 1             | 4          |                                                                                           | 100X_F   |                                      | RO      |         | 1       | 100BA      | SE-TX                | Full-Dup   | olex Moo  | le         |                                      |          |          |         |  |
|               |            | When set, indicates that the PHY is capable of supporting 100BASE-TX<br>Full Duplex mode. |          |                                      |         |         |         |            |                      |            |           |            |                                      |          | ASE-TX   |         |  |
| 1             | 3          |                                                                                           | 100X_H   | X_H RO 1 100BASE-TX Half-Duplex Mode |         |         |         |            |                      |            |           |            |                                      |          |          |         |  |
|               |            |                                                                                           |          |                                      |         |         |         |            | set, indi<br>uplex m |            | at the PH | IY is cap  | able of s                            | upportir | ig 100B/ | ASE-TX  |  |
| 1             | 2          |                                                                                           | 10T_F    |                                      | RO      |         | 1       | 10BA\$     | SE-T Fu              | II-Duple>  | k Mode    |            |                                      |          |          |         |  |
|               |            |                                                                                           |          |                                      |         |         |         | When mode. |                      | icates th  | at the P  | HY is ca   | pable of                             | 10BASI   | E-T Full | -Duplex |  |
| 1             | 1          |                                                                                           | 10T_H    |                                      | RO      |         | 1       | 10BA\$     | SE-T Ha              | lf-Duple   | x Mode    |            |                                      |          |          |         |  |
|               |            |                                                                                           |          |                                      |         |         |         |            | set, ind<br>uplex m  |            | at the P  | HY is ca   | pable of                             | support  | ing 10B  | ASE-T   |  |
| 10            | :7         | I                                                                                         | reserved |                                      | RO      |         | 0       | compa      | atibility v          | vith futur | e produ   | cts, the v | of a rese<br>value of a<br>operation | a reserv | •        |         |  |
| 6             | 5          |                                                                                           | MFPS     |                                      | RO      |         | 1       | Mana       | gement               | Frames     | with Pre  | amble S    | uppress                              | ed       |          |         |  |
|               |            |                                                                                           |          |                                      |         |         |         |            |                      |            |           | -          | ient Intei<br>e preamb               |          | •        | of      |  |
| 5             | 5          |                                                                                           | ANEGC    |                                      | RO      |         | 0       | Auto-N     | Vegotiat             | ion Com    | plete     |            |                                      |          |          |         |  |
|               |            |                                                                                           |          |                                      |         |         |         | compl      | eted and             |            | e extend  | led regis  | otiation p<br>ters defi              |          |          | n       |  |

| Bit/Field | Name   | Туре | Reset | Description                                                                                                                                                     |
|-----------|--------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4         | RFAULT | RC   | 0     | Remote Fault                                                                                                                                                    |
|           |        |      |       | When set, indicates that a remote fault condition has been detected.<br>This bit remains set until it is read, even if the condition no longer exists.          |
| 3         | ANEGA  | RO   | 1     | Auto-Negotiation                                                                                                                                                |
|           |        |      |       | When set, indicates that the PHY has the ability to perform Auto-Negotiation.                                                                                   |
| 2         | LINK   | RO   | 0     | Link Made                                                                                                                                                       |
|           |        |      |       | When set, indicates that a valid link has been established by the PHY.                                                                                          |
| 1         | JAB    | RC   | 0     | Jabber Condition                                                                                                                                                |
|           |        |      |       | When set, indicates that a jabber condition has been detected by the PHY. This bit remains set until it is read, even if the jabber condition no longer exists. |
| 0         | EXTD   | RO   | 1     | Extended Capabilities                                                                                                                                           |
|           |        |      |       | When set, indicates that the PHY provides an extended set of capabilities that can be accessed through the extended register set.                               |

### Register 19: Ethernet PHY Management Register 2 – PHY Identifier 1 (MR2), offset 0x02

This register, along with Management Register 3, provides a 32-bit value indicating the manufacturer, model, and revision information.

#### Ethernet PHY Management Register 2 – PHY Identifier 1 (MR2)

Base 0x4004.8000 Offset 0x02 Type RO, reset 0x000E

|               | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24      | 23          | 22         | 21       | 20                                      | 19      | 18       | 17      | 16      |
|---------------|---------|---------|----------|---------|---------|---------|---------|---------|-------------|------------|----------|-----------------------------------------|---------|----------|---------|---------|
|               |         | 1       | 1        |         | · · ·   |         | 1       | rese    | rved        | 1          |          | , , , , , , , , , , , , , , , , , , ,   |         | I        | 1       |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0    | RO<br>0  | RO<br>0                                 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 |
|               | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8       | 7           | 6          | 5        | 4                                       | 3       | 2        | 1       | 0       |
|               |         | 1       | 1        | <b></b> | r r     |         | 1       | OUI     | 21:6]       | 1          | r        | <del>، ،</del>                          |         | I        | 1       | $\Box$  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0    | RO<br>0  | RO<br>0                                 | RO<br>1 | RO<br>1  | RO<br>1 | RO<br>0 |
| Bit/F         | ield    |         | Name     |         | Туре    | F       | Reset   | Descr   | iption      |            |          |                                         |         |          |         |         |
| 31:           | 16      |         | reserved |         | RO      |         | 0       | compa   | atibility v | vith futur | e produ  | e value o<br>icts, the v<br>ify-write o | alue of | a reserv |         |         |
| 15            | :0      | (       | OUI[21:6 | ]       | RO      | 0       | x000E   | Organ   | izationa    | ılly Uniqu | le Ident | ifier[21:6]                             | ]       |          |         |         |
|               |         |         |          |         |         |         |         |         |             | •          |          | [5:0] fie                               |         | •        | •       | -       |

makes up the Organizationally Unique Identifier indicating the PHY manufacturer.

#### Register 20: Ethernet PHY Management Register 3 – PHY Identifier 2 (MR3), offset 0x03

This register, along with Management Register 2, provides a 32-bit value indicating the manufacturer, model, and revision information.

#### Ethernet PHY Management Register 3 – PHY Identifier 2 (MR3)

Base 0x4004.8000 Offset 0x03 Type RO, reset 0x7237

|       | 31   | 30                        | 29       | 28    | 27       | 26                                                                                                            | 25    | 24                                                                                                                                                          | 23         | 22       | 21       | 20       | 19        | 18        | 17  | 16 |  |  |  |
|-------|------|---------------------------|----------|-------|----------|---------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|----------|----------|-----------|-----------|-----|----|--|--|--|
|       |      | 1                         |          |       | · ·      |                                                                                                               | 1     | rese                                                                                                                                                        | rved       |          |          |          |           |           |     | '  |  |  |  |
| Туре  | RO   | RO                        | RO       | RO    | RO       | RO                                                                                                            | RO    | RO                                                                                                                                                          | RO         | RO       | RO       | RO       | RO        | RO        | RO  | RO |  |  |  |
| Reset | 0    | 0                         | 0        | 0     | 0        | 0                                                                                                             | 0     | 0                                                                                                                                                           | 0          | 0        | 0        | 0        | 0         | 0         | 0   | 0  |  |  |  |
|       | 15   | 14                        | 13       | 12    | 11       | 10                                                                                                            | 9     | 8                                                                                                                                                           | 7          | 6        | 5        | 4        | 3         | 2         | 1   | 0  |  |  |  |
|       |      |                           | OUI      | [5:0] | , ,<br>, |                                                                                                               |       |                                                                                                                                                             | М          | N        |          |          |           | R         | N   | 1  |  |  |  |
| Туре  | RO   | RO                        | RO       | RO    | RO       | RO                                                                                                            | RO    | RO                                                                                                                                                          | RO         | RO       | RO       | RO       | RO        | RO        | RO  | RO |  |  |  |
| Reset | 0    | 1                         | 1        | 1     | 0        | 0                                                                                                             | 1     | 0                                                                                                                                                           | 0          | 0        | 1        | 1        | 0         | 1         | 1   | 1  |  |  |  |
| Bit/F | ield |                           | Name     |       | Туре     | F                                                                                                             | Reset | Description                                                                                                                                                 |            |          |          |          |           |           |     |    |  |  |  |
| 31:   | 16   | r                         | eserved  |       | RO       | RO 0 Software should not rely on the<br>compatibility with future products<br>preserved across a read-modify- |       |                                                                                                                                                             |            |          |          |          | alue of   | a reserv  |     |    |  |  |  |
| 15:   | 10   | (                         | OUI[5:0] |       | RO       |                                                                                                               | 0x1C  | Organizationally Unique Identifier[5:0]                                                                                                                     |            |          |          |          |           |           |     |    |  |  |  |
|       |      |                           |          |       |          |                                                                                                               |       | This field, along with the OUI[21:6] field in <b>Management Register 2</b> makes up the Organizationally Unique Identifier indicating the PHY manufacturer. |            |          |          |          |           |           |     |    |  |  |  |
| 9:4   | 4    | MN RO 0x23 Model Number   |          |       |          |                                                                                                               |       |                                                                                                                                                             |            |          |          |          |           |           |     |    |  |  |  |
|       |      | The MN field rep          |          |       |          |                                                                                                               |       |                                                                                                                                                             |            |          | s the Mo | odel Nun | nber of t | he PHY.   |     |    |  |  |  |
| 3:0   | D    | RN RO 0x7 Revision Number |          |       |          |                                                                                                               |       |                                                                                                                                                             |            |          |          |          |           |           |     |    |  |  |  |
|       |      |                           |          |       |          |                                                                                                               |       | The R                                                                                                                                                       | N field re | epresent | s the Re | vision N | lumber o  | of the PH | IY. |    |  |  |  |

# Register 21: Ethernet PHY Management Register 4 – Auto-Negotiation Advertisement (MR4), offset 0x04

This register provides the advertised abilities of the PHY used during Auto-Negotiation. Bits 12:5 represent the Technology Ability Field bits, A[7:0]. This field can be overwritten by software to Auto-Negotiate to an alternate common technology. Writing to this register has no effect until Auto-Negotiation is re-initiated.

Ethernet PHY Management Register 4 – Auto-Negotiation Advertisement (MR4) Base 0x4004.8000

Offset 0x04 Type R/W, reset 0x01E1

| 71    | ,       |                                                                                                                                                                                                                                           |          |         |         |         |         |        |                       |             |           |            |           |                                      |          |          |
|-------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|---------|---------|---------|--------|-----------------------|-------------|-----------|------------|-----------|--------------------------------------|----------|----------|
|       | 31      | 30                                                                                                                                                                                                                                        | 29       | 28      | 27      | 26      | 25      | 24     | 23                    | 22          | 21        | 20         | 19        | 18                                   | 17       | 16       |
|       |         |                                                                                                                                                                                                                                           |          |         | . I     |         |         | rese   | erved                 | •           | •         |            |           |                                      |          |          |
| Туре  | RO      | RO                                                                                                                                                                                                                                        | RO       | RO      | RO      | RO      | RO      | RO     | RO                    | RO          | RO        | RO         | RO        | RO                                   | RO       | RO       |
| Reset | 0       | 0                                                                                                                                                                                                                                         | 0        | 0       | 0       | 0       | 0       | 0      | 0                     | 0           | 0         | 0          | 0         | 0                                    | 0        | 0        |
| _     | 15      | 14                                                                                                                                                                                                                                        | 13       | 12      | 11      | 10      | 9       | 8      | 7                     | 6           | 5         | 4          | 3         | 2                                    | 1        | 0        |
|       | NP      | reserved                                                                                                                                                                                                                                  | RF       |         | resei   | rved    | I       | A3     | A2                    | A1          | A0        |            |           | S[4:0]                               |          |          |
| Type  | RO<br>0 | RO<br>0                                                                                                                                                                                                                                   | R/W<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | R/W    | R/W                   | R/W         | R/W       | RO<br>0    | RO<br>0   | RO<br>0                              | RO<br>0  | RO<br>1  |
| Reset | 0       | 0                                                                                                                                                                                                                                         | U        | 0       | 0       | 0       | 0       | I      |                       |             | I         | 0          | 0         | 0                                    | 0        | I        |
| Bit/F | ield    |                                                                                                                                                                                                                                           | Name     |         | Туре    |         | Reset   | Descr  | iption                |             |           |            |           |                                      |          |          |
| 31:'  | 16      | r                                                                                                                                                                                                                                         | eserved  |         | RO      |         | 0       | comp   | atibility v           | vith futur  |           | cts, the v | alue of   | erved bit.<br>a reserve<br>n.        |          |          |
| 15    | 5       |                                                                                                                                                                                                                                           | NP       |         | RO      |         | 0       | Next I | Page                  |             |           |            |           |                                      |          |          |
|       |         | when set, indicates the PHY is capable of Next Page exchanges to provide more detailed information on the PHY's capabilities.         reserved       RO       0       Software should not rely on the value of a reserved bit. To provide |          |         |         |         |         |        |                       |             |           |            |           |                                      |          | es to    |
| 14    | Ļ       | r                                                                                                                                                                                                                                         | eserved  |         | RO      |         | 0       | comp   | atibility v           | vith futur  |           | cts, the v | alue of   | a reserve                            |          |          |
| 13    | 3       |                                                                                                                                                                                                                                           | RF       |         | R/W     |         | 0       | Remo   | te Fault              |             |           |            |           |                                      |          |          |
|       |         |                                                                                                                                                                                                                                           |          |         |         |         |         |        | set, ind<br>een enc   |             |           | partner    | that a R  | emote F                              | ault con | dition   |
| 12:   | 9       | r                                                                                                                                                                                                                                         | eserved  |         | RO      |         | 0       | comp   | atibility v           | vith futur  |           | cts, the v | alue of   | erved bit.<br>a reserve<br>n.        |          |          |
| 8     |         |                                                                                                                                                                                                                                           | A3       |         | R/W     |         | 1       | Techn  | ology A               | bility Fie  | ld[3]     |            |           |                                      |          |          |
|       |         |                                                                                                                                                                                                                                           |          |         |         |         |         | signal | ing proto<br>t can be | ocol. If so | oftware w | ants to e  | ensure th | 100Base<br>nat this m<br>n re-initia | ode is n | ot used, |
| 7     |         |                                                                                                                                                                                                                                           | A2       |         | R/W     |         | 1       | Techn  | ology A               | bility Fie  | ld[2]     |            |           |                                      |          |          |
|       |         |                                                                                                                                                                                                                                           |          |         |         |         |         | signal | ing proto             | ocol. If so | oftware w | ants to e  | ensure th | 100Base<br>nat this m<br>n re-initia | ode is n | •        |

| Bit/Field | Name   | Туре | Reset | Description                                                                                                                                                                                                    |
|-----------|--------|------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6         | A1     | R/W  | 1     | Technology Ability Field[1]                                                                                                                                                                                    |
|           |        |      |       | When set, indicates that the PHY supports the 10Base-T Full-Duplex signaling protocol. If software wants to ensure that this mode is not used, this bit can be written to 0 and Auto-Negotiation re-initiated. |
| 5         | A0     | R/W  | 1     | Technology Ability Field[0]                                                                                                                                                                                    |
|           |        |      |       | When set, indicates that the PHY supports the 10Base-T half-duplex signaling protocol. If software wants to ensure that this mode is not used, this bit can be written to 0 and Auto-Negotiation re-initiated. |
| 4:0       | S[4:0] | RO   | 0x01  | Selector Field                                                                                                                                                                                                 |
|           |        |      |       | The S[4:0] field encodes 32 possible messages for communicating between PHYs. This field is hard-coded to 0x01, indicating that the Stellaris <sup>®</sup> PHY is <i>IEEE 802.3</i> compliant.                 |

#### Register 22: Ethernet PHY Management Register 5 – Auto-Negotiation Link Partner Base Page Ability (MR5), offset 0x05

This register provides the advertised abilities of the link partner's PHY that are received and stored during Auto-Negotiation.

Ethernet PHY Management Register 5 – Auto-Negotiation Link Partner Base Page Ability (MR5)

Base 0x4004.8000

Offset 0x05 Type RO, reset 0x0000

| Type         Ro         R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -      | 31   | 30  | 29       | 28 | 27   | 26 | 25    | 24               | 23          | 22          | 21        | 20         | 19        | 18        | 17        | 16       |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|-----|----------|----|------|----|-------|------------------|-------------|-------------|-----------|------------|-----------|-----------|-----------|----------|--|--|--|
| Reiet         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>. I</td> <td></td> <td></td> <td>rese</td> <td>erved</td> <td></td> <td>l</td> <td>•</td> <td>1</td> <td></td> <td>l</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                           |        |      | 1   |          |    | . I  |    |       | rese             | erved       |             | l         | •          | 1         |           | l         |          |  |  |  |
| NP         ACK         RF         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I <td></td> <td>RO<br/>0</td>                                                                                                                                                                                                                                                                                                                                                                                                    |        |      |     |          |    |      |    |       |                  |             |             |           |            |           |           |           | RO<br>0  |  |  |  |
| Type         R0         R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | 15   | 14  | 13       | 12 | 11   | 10 | 9     | 8                | 7           | 6           | 5         | 4          | 3         | 2         | 1         | 0        |  |  |  |
| Reset       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <td></td> <td>NP</td> <td>ACK</td> <td>RF</td> <td></td> <td>r r</td> <td></td> <td>A[</td> <td><b>1</b><br/>7:0]</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>S[4:0]</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | NP   | ACK | RF       |    | r r  |    | A[    | <b>1</b><br>7:0] |             |             |           |            |           | S[4:0]    |           |          |  |  |  |
| 31:16       reserved       RO       0       Software should not rely on the value of a reserved bit. To procompatibility with future products, the value of a reserved bit si preserved across a read-modify-write operation.         15       NP       RO       0       Next Page         When set, indicates that the link partner's PHY is capable of N exchanges to provide more detailed information on the PHY's capabilities.       14       ACK       RO       0       Acknowledge         14       ACK       RO       0       Acknowledge       When set, indicates that the device has successfully received partner's advertised abilities during Auto-Negotiation.         13       RF       RO       0       Remote Fault         12:5       A[7:0]       RO       0x00       Technology Ability Field         The A field encodes individual technologies that are supported PHY. See the MR4 register.       The s field encodes possible messages for communicating be PHYs.         4:0       S[4:0]       RO       0x00       Selector Field         The s field encodes possible messages for communicating be PHYs.       Value       Meaning         0x00       Reserved       0x01       IEEE Std 802.3         0x02       IEEE Std 802.5       Std 802.5       Std 802.5                                                                                                                                                                                                                                                                                                                                                                                                |        |      |     |          |    |      |    |       |                  |             |             |           |            |           |           |           | RO<br>0  |  |  |  |
| <ul> <li>compatibility with future products, the value of a reserved bit si preserved across a read-modify-write operation.</li> <li>NP</li> <li>RO</li> <li>NP</li> <li>RO</li> <li>ACK</li> <li>RO</li> <li>Acknowledge<br/>When set, indicates that the link partner's PHY is capable of N exchanges to provide more detailed information on the PHY's capabilities.</li> <li>ACK</li> <li>ACK</li></ul> | Bit/Fi | ield |     | Name     |    | Туре | I  | Reset | Descr            | iption      |             |           |            |           |           |           |          |  |  |  |
| <ul> <li>When set, indicates that the link partner's PHY is capable of N exchanges to provide more detailed information on the PHY's capabilities.</li> <li>ACK RO 0 Acknowledge<br/>When set, indicates that the device has successfully received partner's advertised abilities during Auto-Negotiation.</li> <li>RF RO 0 Remote Fault<br/>Used as a standard transport mechanism for transmitting simp information.</li> <li>A[7:0] RO 0x00 Technology Ability Field<br/>The A field encodes individual technologies that are supported PHY. See the MR4 register.</li> <li>S[4:0] RO 0x00 Selector Field<br/>The s field encodes possible messages for communicating be PHYs.</li> <li>Value Meaning<br/>0x00 Reserved<br/>0x01 IEEE Std 802.3<br/>0x02 IEEE Std 802.9 ISLAN-16T<br/>0x03 IEEE Std 802.5</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31:′   | 16   | r   | reserved |    | RO   |    | 0     | comp             | atibility w | vith futur  | e produ   | cts, the v | alue of   | a reserve |           |          |  |  |  |
| exchanges to provide more detailed information on the PHY's<br>capabilities.<br>14 ACK RO 0 Acknowledge<br>When set, indicates that the device has successfully received<br>partner's advertised abilities during Auto-Negotiation.<br>13 RF RO 0 Remote Fault<br>Used as a standard transport mechanism for transmitting simp<br>information.<br>12:5 A[7:0] RO 0x00 Technology Ability Field<br>The A field encodes individual technologies that are supported<br>PHY. See the MR4 register.<br>4:0 S[4:0] RO 0x00 Selector Field<br>The s field encodes possible messages for communicating be<br>PHY's.<br>Value Meaning<br>0x00 Reserved<br>0x01 IEEE Std 802.3<br>0x02 IEEE Std 802.9 ISLAN-16T<br>0x03 IEEE Std 802.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15     | 5    |     | NP       |    | RO   |    | 0     | Next I           | ⊃age        |             |           |            |           |           |           |          |  |  |  |
| When set, indicates that the device has successfully received partner's advertised abilities during Auto-Negotiation.         13       RF       RO       0       Remote Fault Used as a standard transport mechanism for transmitting simplinformation.         12:5       A[7:0]       RO       0x00       Technology Ability Field The A field encodes individual technologies that are supported PHY. See the MR4 register.         4:0       S[4:0]       RO       0x00       Selector Field The s field encodes possible messages for communicating be PHYs.         4:0       S[4:0]       RO       0x00       Selector Field The s field encodes possible messages for communicating be PHYs.         4:0       S[4:0]       RO       0x00       Selector Field The s field encodes possible messages for communicating be PHYs.         4:0       S[4:0]       RO       0x00       Selector Field The s field encodes possible messages for communicating be PHYs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |      |     |          |    |      |    |       |                  |             |             |           |            |           |           |           |          |  |  |  |
| 13       RF       RO       0       Remote Fault         13       RF       RO       0       Remote Fault         Used as a standard transport mechanism for transmitting simplinformation.       Used as a standard transport mechanism for transmitting simplinformation.         12:5       A[7:0]       RO       0x00       Technology Ability Field         12:5       A[7:0]       RO       0x00       Technology Ability Field         14:0       S[4:0]       RO       0x00       Selector Field         4:0       S[4:0]       RO       0x00       Selector Field         4:0       S[4:0]       RO       0x00       Selector Field         Value       Meaning       0x00       Reserved         0x01       IEEE Std 802.3       0x02       IEEE Std 802.9 ISLAN-16T         0x03       IEEE Std 802.5       Sta 802.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14     | Ļ    |     | ACK      |    | RO   |    | 0     | Ackno            | wledge      |             |           |            |           |           |           |          |  |  |  |
| <ul> <li>Used as a standard transport mechanism for transmitting simpliformation.</li> <li>12:5 A[7:0] RO 0x00 Technology Ability Field<br/>The A field encodes individual technologies that are supported<br/>PHY. See the MR4 register.</li> <li>4:0 S[4:0] RO 0x00 Selector Field<br/>The S field encodes possible messages for communicating be<br/>PHYs.</li> <li>Value Meaning<br/>0x00 Reserved<br/>0x01 IEEE Std 802.3<br/>0x02 IEEE Std 802.9 ISLAN-16T<br/>0x03 IEEE Std 802.5</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |      |     |          |    |      |    |       |                  | ceived 1    | he link     |           |            |           |           |           |          |  |  |  |
| <ul> <li>12:5 A[7:0] RO 0x00 Technology Ability Field<br/>The A field encodes individual technologies that are supported<br/>PHY. See the MR4 register.</li> <li>4:0 S[4:0] RO 0x00 Selector Field<br/>The S field encodes possible messages for communicating be<br/>PHYs.</li> <li>Value Meaning<br/>0x00 Reserved<br/>0x01 IEEE Std 802.3<br/>0x02 IEEE Std 802.9 ISLAN-16T<br/>0x03 IEEE Std 802.5</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13     | 3    |     | RF       |    | RO   |    | 0     | Remo             | te Fault    |             |           |            |           |           |           |          |  |  |  |
| 4:0       S[4:0]       RO       0x00       Selector Field         4:0       S[4:0]       RO       0x00       Selector Field         The s field encodes possible messages for communicating be PHYs.         Value       Meaning         0x00       Reserved       0x01       IEEE Std 802.3         0x02       IEEE Std 802.9 ISLAN-16T       0x03       IEEE Std 802.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |      |     |          |    |      |    |       |                  |             | ndard tra   | ansport i | mechani    | sm for t  | ransmitti | ng simp   | le fault |  |  |  |
| <ul> <li>4:0 S[4:0] RO 0x00 Selector Field</li> <li>The s field encodes possible messages for communicating be PHYs.</li> <li>Value Meaning</li> <li>0x00 Reserved</li> <li>0x01 IEEE Std 802.3</li> <li>0x02 IEEE Std 802.9 ISLAN-16T</li> <li>0x03 IEEE Std 802.5</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12:    | 5    |     | A[7:0]   |    | RO   |    | 0x00  | Techn            | ology Al    | oility Fiel | d         |            |           |           |           |          |  |  |  |
| The s field encodes possible messages for communicating be PHYs.         Value       Meaning         0x00       Reserved         0x01       IEEE Std 802.3         0x02       IEEE Std 802.9 ISLAN-16T         0x03       IEEE Std 802.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |      |     |          |    |      |    |       |                  |             |             |           | technolo   | ogies tha | at are su | pported   | by the   |  |  |  |
| Value       Meaning         0x00       Reserved         0x01       IEEE Std 802.3         0x02       IEEE Std 802.9 ISLAN-16T         0x03       IEEE Std 802.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4:(    | )    |     | S[4:0]   |    | RO   |    | 0x00  | Selec            | tor Field   |             |           |            |           |           |           |          |  |  |  |
| 0x00         Reserved           0x01         IEEE Std 802.3           0x02         IEEE Std 802.9 ISLAN-16T           0x03         IEEE Std 802.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |      |     |          |    |      |    |       |                  |             | codes po    | ossible r | nessage    | es for co | mmunica   | ating bet | ween     |  |  |  |
| 0x01       IEEE Std 802.3         0x02       IEEE Std 802.9 ISLAN-16T         0x03       IEEE Std 802.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |      |     |          |    |      |    |       | Value            | 9           | Meanin      | g         |            |           |           |           |          |  |  |  |
| 0x02 IEEE Std 802.9 ISLAN-16T<br>0x03 IEEE Std 802.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |      |     |          |    |      |    |       | 0x00             |             | Reserve     | ed        |            |           |           |           |          |  |  |  |
| 0x03 IEEE Std 802.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |      |     |          |    |      |    |       | 0x01             |             | IEEE St     | d 802.3   |            |           |           |           |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |      |     |          |    |      |    |       | 0x02             |             | IEEE St     | d 802.9   | ISLAN-1    | 16T       |           |           |          |  |  |  |
| 0x04 IEEE Std 1394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |      |     |          |    |      |    |       | 0x03             |             | IEEE St     | d 802.5   |            |           |           |           |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |      |     |          |    |      |    |       | 0x04             |             | IEEE St     | d 1394    |            |           |           |           |          |  |  |  |
| 0x05-0x1F Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |      |     |          |    |      |    |       | 0x05             | – 0x1F      | Reserve     | ed        |            |           |           |           |          |  |  |  |

### Register 23: Ethernet PHY Management Register 6 – Auto-Negotiation Expansion (MR6), offset 0x06

This register enables software to determine the Auto-Negotiation and Next Page capabilities of the PHY and the link partner after Auto-Negotiation.

Ethernet PHY Management Register 6 – Auto-Negotiation Expansion (MR6)

Base 0x4004.8000

Offset 0x06 Type RO, reset 0x0000

|               | 31      | 30      | 29       | 28      | 27      | 26       | 25      | 24                                                           | 23                     | 22                      | 21        | 20         | 19        | 18          | 17        | 16        |  |
|---------------|---------|---------|----------|---------|---------|----------|---------|--------------------------------------------------------------|------------------------|-------------------------|-----------|------------|-----------|-------------|-----------|-----------|--|
|               |         | 1       |          |         |         |          | 1       | rese                                                         | rved                   |                         |           |            |           |             |           |           |  |
| Type          | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0                                                      | RO<br>0                | RO<br>0                 | RO<br>0   | RO<br>0    | RO<br>0   | RO<br>0     | RO<br>0   | RO<br>0   |  |
| Reset         |         | -       |          |         |         |          |         |                                                              |                        |                         |           |            |           |             | 0         |           |  |
| г             | 15      | 14      | 13       | 12      | 11      | 10       | 9       | 8                                                            | 7                      | 6                       | 5         | 4          | 3         | 2           | 1         |           |  |
|               |         |         |          |         | 1       | reserved |         |                                                              |                        |                         |           | PDF        | LPNPA     | reserved    | PRX       | LPANEGA   |  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0                                                      | RO<br>0                | RO<br>0                 | RO<br>0   | RC<br>0    | RO<br>0   | RO<br>0     | RC<br>0   | RO<br>0   |  |
| Reser         | U       | 0       | Ū        | Ū       | Ū       | Ū        | 0       | 0                                                            | 0                      | Ū                       | 0         | 0          | U         | 0           | 0         | 0         |  |
| Bit/Fi        | أماط    |         | Name     |         | Туре    | 6        | Reset   | Descr                                                        | intion                 |                         |           |            |           |             |           |           |  |
| DIVI          | ieiu    |         | Name     |         | Type    | 1        | 10301   | Desci                                                        | puon                   |                         |           |            |           |             |           |           |  |
| 31:           | 5       | r       | reserved |         | RO      |          | 0       |                                                              |                        |                         |           |            |           | erved bit.  | •         |           |  |
|               |         |         |          |         |         |          |         |                                                              |                        | vith futur<br>oss a rea |           |            |           |             | ed bit s  | hould be  |  |
|               |         |         |          |         |         |          |         | preser                                                       |                        | 000 0 100               |           | ly white   | operatio  |             |           |           |  |
| 4             |         |         | PDF      |         | RC      |          | 0       | Paralle                                                      | el Detec               | tion Fau                | lt        |            |           |             |           |           |  |
|               |         |         |          |         |         |          |         |                                                              | -                      |                         |           |            |           | ology has   | s been (  | detected  |  |
|               |         |         |          |         |         |          |         | at link                                                      | up. Thi                | s bit is cl             | eared w   | hen rea    | d.        |             |           |           |  |
| 3             |         |         | LPNPA    |         | RO      |          | 0       | Link P                                                       | artner is              | s Next Pa               | age Able  | 9          |           |             |           |           |  |
|               |         |         |          |         |         |          |         | When set, indicates that the link partner is Next Page Able. |                        |                         |           |            |           |             |           |           |  |
|               |         |         |          |         |         |          |         | , mon                                                        | 000, 110               |                         |           | in parti   |           | ar ago /    |           |           |  |
| 2             |         | r       | reserved |         | RO      | 0        | )x000   |                                                              |                        |                         |           |            |           | erved bit.  | •         |           |  |
|               |         |         |          |         |         |          |         |                                                              | -                      | oss a rea               | •         |            |           |             | eu bit si | hould be  |  |
|               |         |         |          |         |         |          |         |                                                              |                        |                         |           | ,          | •         |             |           |           |  |
| 1             |         |         | PRX      |         | RC      |          | 0       | New F                                                        | Page Re                | ceived                  |           |            |           |             |           |           |  |
|               |         |         |          |         |         |          |         |                                                              |                        |                         |           |            |           | n receive   |           |           |  |
|               |         |         |          |         |         |          |         | •                                                            | er and st<br>gister is |                         | ne appro  | opriate le | ocation.  | I his bit r | emains    | set until |  |
|               |         |         |          |         |         |          |         |                                                              | -                      |                         |           |            |           |             |           |           |  |
| 0             |         | L       | PANEGA   | ٩       | RO      |          | 0       | Link P                                                       | artner is              | s Auto-N                | egotiatio | on Able    |           |             |           |           |  |
|               |         |         |          |         |         |          |         | When                                                         | set, ind               | icates th               | at the Li | nk partr   | ner is Au | to-Negot    | iation A  | Able.     |  |
|               |         |         |          |         |         |          |         |                                                              |                        |                         |           |            |           |             |           |           |  |

### Register 24: Ethernet PHY Management Register 16 - Vendor-Specific (MR16), offset 0x10

This register enables software to configure the operation of vendor specific modes of the PHY.

#### Ethernet PHY Management Register 16 – Vendor-Specific (MR16)

Base 0x4004.8000 Offset 0x10 Type R/W, reset 0x0140

| <b>7</b> 1* * | ,    |       |          |       |      |          |                                                                                                                                                                               |         |             |            |           |                                         |          |           |           |         |
|---------------|------|-------|----------|-------|------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------|------------|-----------|-----------------------------------------|----------|-----------|-----------|---------|
| 1             | 31   | 30    | 29       | 28    | 27   | 26       | 25                                                                                                                                                                            | 24      | 23          | 22         | 21        | 20                                      | 19       | 18        | 17        | 16      |
|               |      | •     |          |       |      |          |                                                                                                                                                                               | rese    | rved        |            |           |                                         |          |           |           |         |
| Туре          | RO   | RO    | RO       | RO    | RO   | RO       | RO                                                                                                                                                                            | RO      | RO          | RO         | RO        | RO                                      | RO       | RO        | RO        | RO      |
| Reset         | 0    | 0     | 0        | 0     | 0    | 0        | 0                                                                                                                                                                             | 0       | 0           | 0          | 0         | 0                                       | 0        | 0         | 0         | 0       |
|               | 15   | 14    | 13       | 12    | 11   | 10       | 9                                                                                                                                                                             | 8       | 7           | 6          | 5         | 4                                       | 3        | 2         | 1         | 0       |
|               | RPTR | INPOL | reserved | тхнім | SQEI | NL10     |                                                                                                                                                                               | rese    | rved        |            | APOL      | RVSPOL                                  | rese     | rved      | PCSBP     | RXCC    |
| Туре          | R/W  | R/W   | RO       | R/W   | R/W  | R/W<br>0 | RO<br>0                                                                                                                                                                       | RO<br>1 | RO          | RO         | R/W       | R/W<br>0                                | RO       | RO<br>0   | R/W       | R/W     |
| Reset         | 0    | 0     | 0        | 0     | 0    | U        | U                                                                                                                                                                             | I.      | 0           | 1          | 0         | 0                                       | 0        | U         | 0         | 0       |
| Bit/F         | ield |       | Name     |       | Туре | F        | Reset                                                                                                                                                                         | Descr   | iption      |            |           |                                         |          |           |           |         |
| 31:           | 16   | ,     | reserved |       | RO   |          | 0                                                                                                                                                                             | Softw   | are shoi    | ild not re | alv on th | e value o                               | f a rese | arved hit |           | ride    |
| 51.           | 10   | ·     |          |       | NO   |          | 0                                                                                                                                                                             | compa   | atibility v | vith futur | e produ   | cts, the v<br>ify-write c               | alue of  | a reserv  | •         |         |
| 1             | 5    |       | RPTR     |       | R/W  |          | 0                                                                                                                                                                             | Repea   | ater Mod    | le         |           |                                         |          |           |           |         |
|               |      |       |          |       |      |          |                                                                                                                                                                               | When    | set, ena    | ables the  | e repeat  | er mode o                               | of opera | ation. In | this mod  | e,      |
|               |      |       |          |       |      |          | full-duplex is not allowed and the Carrier Sense signal only responds<br>to receive activity. If the PHY is configured to 10Base-T mode, the SQ<br>test function is disabled. |         |             |            |           |                                         |          |           |           |         |
|               |      |       |          |       |      |          |                                                                                                                                                                               | iesi iu |             |            | u.        |                                         |          |           |           |         |
| 14            | 4    |       | INPOL    |       | R/W  |          | 0                                                                                                                                                                             | Interru | upt Polai   | ity        |           |                                         |          |           |           |         |
|               |      |       |          |       |      |          |                                                                                                                                                                               | 1: Set  | s the po    | larity of  | the PH    | / interrup                              | to be a  | active Hi | gh.       |         |
|               |      |       |          |       |      |          |                                                                                                                                                                               | 0: Set  | s the po    | larity of  | the PH    | / interrup                              | to activ | ve Low.   |           |         |
|               |      |       |          |       |      |          |                                                                                                                                                                               | Impo    | ortant:     | Low in     | terrupts  | ledia Acc<br>from the<br>) to ensur     | PHY, th  | is bit m  | ust alway |         |
| 1:            | 3    | I     | reserved |       | RO   |          | 0                                                                                                                                                                             | compa   | atibility v | vith futur | e produ   | e value o<br>cts, the v<br>ify-write c  | alue of  | a reserv  | •         |         |
| 12            | 2    |       | ТХНІМ    |       | R/W  |          | 0                                                                                                                                                                             | Trans   | mit High    | Impeda     | nce Mo    | de                                      |          |           |           |         |
|               |      |       |          |       |      |          |                                                                                                                                                                               | the TX  | OP and      | TXON tra   | nsmitte   | itter High<br>r pins are<br>ain fully f | put into | a high i  |           | -       |
| 1'            | 1    |       | SQEI     |       | R/W  |          | 0                                                                                                                                                                             | SQE I   | nhibit Te   | esting     |           |                                         |          |           |           |         |
|               |      |       |          |       |      |          |                                                                                                                                                                               | When    | set, pro    | hibits 10  | )Base-T   | SQE tes                                 | ting.    |           |           |         |
|               |      |       |          |       |      |          |                                                                                                                                                                               |         |             |            | - ·       | erformed<br>e transmis                  |          | -         |           | n pulse |
|               |      |       |          |       |      |          |                                                                                                                                                                               |         |             |            |           |                                         |          |           |           |         |

| Bit/Field | Name     | Туре | Reset | Description                                                                                                                                                                                                                                                                                                                                                      |
|-----------|----------|------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10        | NL10     | R/W  | 0     | Natural Loopback Mode                                                                                                                                                                                                                                                                                                                                            |
|           |          |      |       | When set, enables the 10Base-T Natural Loopback mode. This causes the transmission data received by the PHY to be looped back onto the receive data path when 10Base-T mode is enabled.                                                                                                                                                                          |
| 9:6       | reserved | RO   | 0x05  | Software should not rely on the value of a reserved bit. To provide<br>compatibility with future products, the value of a reserved bit should be<br>preserved across a read-modify-write operation.                                                                                                                                                              |
| 5         | APOL     | R/W  | 0     | Auto-Polarity Disable                                                                                                                                                                                                                                                                                                                                            |
|           |          |      |       | When set, disables the PHY's auto-polarity function.                                                                                                                                                                                                                                                                                                             |
|           |          |      |       | If this bit is 0, the PHY automatically inverts the received signal due to a wrong polarity connection during Auto-Negotiation if the PHY is in 10Base-T mode.                                                                                                                                                                                                   |
| 4         | RVSPOL   | R/W  | 0     | Receive Data Polarity                                                                                                                                                                                                                                                                                                                                            |
|           |          |      |       | This bit indicates whether the receive data pulses are being inverted.                                                                                                                                                                                                                                                                                           |
|           |          |      |       | If the APOL bit is 0, then the RVSPOL bit is read-only and indicates<br>whether the auto polarity circuitry is reversing the polarity. In this case,<br>a 1 in the RVSPOL bit indicates that the receive data is inverted while a<br>0 indicates that the receive data is not inverted.                                                                          |
|           |          |      |       | If the APOL bit is set, then the RVSPOL bit is writable and software can force the receive data to be inverted. Setting RVSPOL to 1 forces the receive data to be inverted while a 0 does not invert the receive data.                                                                                                                                           |
| 3:2       | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                                                                                                                                    |
| 1         | PCSBP    | R/W  | 0     | PCS Bypass                                                                                                                                                                                                                                                                                                                                                       |
|           |          |      |       | When set, enables the bypass of the PCS and scrambling/descrambling functions in 100Base-TX mode. This mode is only valid when Auto-Negotiation is disabled and 100Base-T mode is enabled.                                                                                                                                                                       |
| 0         | RXCC     | R/W  | 0     | Receive Clock Control                                                                                                                                                                                                                                                                                                                                            |
|           |          |      |       | When set, enables the Receive Clock Control power saving mode if the PHY is configured in 100Base-TX mode. This mode shuts down the receive clock when no data is being received from the physical medium to save power. This mode should not be used when PCSBP is enabled and is automatically disabled when the LOOPBK bit in the <b>MR0</b> register is set. |

# Register 25: Ethernet PHY Management Register 17 – Interrupt Control/Status (MR17), offset 0x11

This register provides the means for controlling and observing the events, which trigger a PHY interrupt in the **MACRIS** register. This register can also be used in a polling mode via the MII Serial Interface as a means to observe key events within the PHY via one register address. Bits 0 through 7 are status bits, which are each set to logic 1 based on an event. These bits are cleared after the register is read. Bits 8 through 15 of this register, when set to logic 1, enable their corresponding bit in the lower byte to signal a PHY interrupt in the **MACRIS** register.

Ethernet PHY Management Register 17 – Interrupt Control/Status (MR17)

Offset 0x11

| Type R/W, | reset 0x0000 |
|-----------|--------------|
|-----------|--------------|

|               | 31        | 30                         | 29       | 28       | 27       | 26                   | 25        | 24             | 23                                                                   | 22                      | 21         | 20        | 19        | 18             | 17          | 16          |
|---------------|-----------|----------------------------|----------|----------|----------|----------------------|-----------|----------------|----------------------------------------------------------------------|-------------------------|------------|-----------|-----------|----------------|-------------|-------------|
|               |           | 1                          | 1        | 1        | 1 1      | -                    | 1         | 1              | erved                                                                | <b>i</b> ,              | I          | · · ·     | 1         | 1              | I           | 1           |
| Туре          | RO        | RO                         | RO       | RO       | RO       | RO                   | RO        | RO             | RO                                                                   | RO                      | RO         | RO        | RO        | RO             | RO          | RO          |
| Reset         | 0         | 0                          | 0        | 0        | 0        | 0                    | 0         | 0              | 0                                                                    | 0                       | 0          | 0         | 0         | 0              | 0           | 0           |
|               | 15        | 14                         | 13       | 12       | 11       | 10                   | 9         | 8              | 7                                                                    | 6                       | 5          | 4         | 3         | 2              | 1           | 0           |
|               | JABBER_IE | RXER_IE                    | PRX_IE   | PDF_IE   | LPACK_IE | LSCHG_IE             | RFAULT_IE | ANEGCOMP_E     | JABBER_NT                                                            | RXER_INT                | PRX_INT    | PDF_INT   | LPACK_INT | LSCHG_INT      | RFAULT_INT  | ANEGCOMPINT |
| Type<br>Reset | R/W<br>0  | R/W<br>0                   | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0             | R/W<br>0  | R/W<br>0       | RC<br>0                                                              | RC<br>0                 | RC<br>0    | RC<br>0   | RC<br>0   | RC<br>0        | RC<br>0     | RC<br>0     |
| Reber         | 0         | 0                          | 0        | Ū        | Ū        | Ũ                    | Ū         | Ū              | Ū                                                                    | Ū                       | Ŭ          | Ŭ         | Ŭ         | Ū              | Ū           | Ū           |
| Bit/F         | ield      |                            | Name     |          | Туре     | I                    | Reset     | Descr          | iption                                                               |                         |            |           |           |                |             |             |
| 31:           | 16        | I                          | reserved | 1        | RO       |                      | 0         | Softw          | are shou                                                             | ıld not re              | ely on the | e value ( | of a rese | erved bit.     | To prov     | /ide        |
|               |           |                            |          |          |          |                      |           |                |                                                                      | vith futur<br>oss a rea |            |           |           | a reserv<br>n. | ed bit sł   | nould be    |
| 1             | 5         | JA                         | BBER_    | IE       | R/W      |                      | 0         |                |                                                                      | pt Enabl                |            |           |           |                |             |             |
|               |           |                            |          |          |          |                      |           |                |                                                                      |                         |            | runts wh  | en a lah  | ber cond       | tition is ( | detected    |
|               |           |                            |          |          |          |                      |           |                | PHY.                                                                 | bico oyo                |            | rupto wi  |           |                |             |             |
| 1             | 4         | F                          | RXER_IE  | Ξ        | R/W      |                      | 0         | Recei          | ve Error                                                             | Interrup                | t Enable   | ;         |           |                |             |             |
|               |           |                            |          |          |          |                      |           |                | set, ena<br>PHY.                                                     | ables sys               | stem inte  | errupts v | when a re | eceive e       | rror is d   | etected     |
|               |           |                            |          |          |          |                      |           |                |                                                                      |                         |            |           |           |                |             |             |
| 1             | 3         |                            | PRX_IE   |          | R/W      |                      | 0         | Page           | Receive                                                              | d Interru               | ipt Enab   | le        |           |                |             |             |
|               |           |                            |          |          |          |                      |           | When<br>the Pl |                                                                      | ables sys               | stem inte  | errupts v | vhen a n  | ew page        | e is rece   | ived by     |
| 1:            | 2         |                            | PDF_IE   |          | R/W      |                      | 0         | Parall         | el Detec                                                             | tion Fau                | lt Interru | ıpt Enab  | le        |                |             |             |
|               |           | When set, e<br>detected by |          |          |          |                      |           |                | en set, enables system interrupts when a Parallel Detection Fault is |                         |            |           |           |                |             |             |
|               |           |                            |          |          |          |                      |           | uelec          | ieu by ii                                                            |                         |            |           |           |                |             |             |
| 1             | 1         | L                          | PACK_I   | E        | R/W      |                      | 0         | LP Ac          | knowled                                                              | lge Inter               | rupt Ena   | ble       |           |                |             |             |
|               |           |                            |          |          |          |                      |           |                |                                                                      | bles sys<br>dge bit d   |            |           |           | bursts a       | ire recei   | ved with    |
| 1             | 0         | L                          | SCHG_I   | E        | R/W      |                      | 0         | Link S         | Status Cl                                                            | nange In                | terrupt E  | Enable    |           |                |             |             |
|               |           |                            |          |          |          | set, ena<br>OK to FA | •         | stem inte      | errupts v                                                            | when the                | Link Sta   | atus cha  | inges     |                |             |             |

Base 0x4004.8000

#### LM3S6965 Microcontroller

| Bit/Field | Name         | Туре | Reset | Description                                                                                                           |
|-----------|--------------|------|-------|-----------------------------------------------------------------------------------------------------------------------|
| 9         | RFAULT_IE    | R/W  | 0     | Remote Fault Interrupt Enable                                                                                         |
|           |              |      |       | When set, enables system interrupts when a Remote Fault condition is signaled by the link partner.                    |
| 8         | ANEGCOMP_IE  | R/W  | 0     | Auto-Negotiation Complete Interrupt Enable                                                                            |
|           |              |      |       | When set, enables system interrupts when the Auto-Negotiation sequence has completed successfully.                    |
| 7         | JABBER_INT   | RC   | 0     | Jabber Event Interrupt                                                                                                |
|           |              |      |       | When set, indicates that a Jabber event has been detected by the 10Base-T circuitry.                                  |
| 6         | RXER_INT     | RC   | 0     | Receive Error Interrupt                                                                                               |
|           |              |      |       | When set, indicates that a receive error has been detected by the PHY.                                                |
| 5         | PRX_INT      | RC   | 0     | Page Receive Interrupt                                                                                                |
|           |              |      |       | When set, indicates that a new page has been received from the link partner during Auto-Negotiation.                  |
| 4         | PDF_INT      | RC   | 0     | Parallel Detection Fault Interrupt                                                                                    |
|           |              |      |       | When set, indicates that a Parallel Detection Fault has been detected by the PHY during the Auto-Negotiation process. |
| 3         | LPACK_INT    | RC   | 0     | LP Acknowledge Interrupt                                                                                              |
|           |              |      |       | When set, indicates that an FLP burst has been received with the Acknowledge bit set during Auto-Negotiation.         |
| 2         | LSCHG_INT    | RC   | 0     | Link Status Change Interrupt                                                                                          |
|           |              |      |       | When set, indicates that the link status has changed from OK to FAIL.                                                 |
| 1         | RFAULT_INT   | RC   | 0     | Remote Fault Interrupt                                                                                                |
|           |              |      |       | When set, indicates that a Remote Fault condition has been signaled by the link partner.                              |
| 0         | ANEGCOMP_INT | RC   | 0     | Auto-Negotiation Complete Interrupt                                                                                   |
|           |              |      |       | When set, indicates that the Auto-Negotiation sequence has completed successfully.                                    |

### Register 26: Ethernet PHY Management Register 18 – Diagnostic (MR18), offset 0x12

This register enables software to diagnose the results of the previous Auto-Negotiation.

#### Ethernet PHY Management Register 18 – Diagnostic (MR18)

Base 0x4004.8000 Offset 0x12 Type RO, reset 0x0000

| .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 31      | 30       | 29       | 28      | 27      | 26      | 25      | 24                                                                                                                                                                                               | 23          | 22         | 21       | 20         | 19                                   | 18       | 17       | 16      |
|-----------------------------------------|---------|----------|----------|---------|---------|---------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|----------|------------|--------------------------------------|----------|----------|---------|
|                                         |         | 1 1      | ľ        | 1       |         |         | 1       | rese                                                                                                                                                                                             | rved        |            | 1        | 1          |                                      |          |          |         |
| Type<br>Reset                           | RO<br>0 | RO<br>0  | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                          | RO<br>0     | RO<br>0    | RO<br>0  | RO<br>0    | RO<br>0                              | RO<br>0  | RO<br>0  | RO<br>0 |
| ,                                       | 15      | 14       | 13       | 12      | 11      | 10      | 9       | 8                                                                                                                                                                                                | 7           | 6          | 5        | 4          | 3                                    | 2        | 1        | 0       |
|                                         |         | reserved |          | ANEGF   | DPLX    | RATE    | RXSD    | RX_LOCK                                                                                                                                                                                          |             |            |          | rese       | rved                                 |          |          |         |
| Type<br>Reset                           | RO<br>0 | RO<br>0  | RO<br>0  | RC<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                          | RO<br>0     | RO<br>0    | RO<br>0  | RO<br>0    | RO<br>0                              | RO<br>0  | RO<br>0  | RO<br>0 |
| Bit/F                                   | ield    |          | Name     |         | Туре    | F       | Reset   | Descr                                                                                                                                                                                            | iption      |            |          |            |                                      |          |          |         |
| 31:'                                    | 13      | r        | reserved | 1       | RO      |         | 0       | compa                                                                                                                                                                                            | atibility w | /ith futur | e produ  | cts, the v | of a rese<br>/alue of a<br>operatior | a reserv | •        |         |
| 12                                      | 2       |          | ANEGF    |         | RC      |         | 0       | Auto-N                                                                                                                                                                                           | Vegotiati   | ion Failu  | ire      |            |                                      |          |          |         |
|                                         |         |          |          |         |         |         |         |                                                                                                                                                                                                  | -           |            |          |            | echnolog<br>pit remai                |          |          | •       |
| 11                                      |         |          | DPLX     |         | RO      |         | 0       | Duple                                                                                                                                                                                            | x Mode      |            |          |            |                                      |          |          |         |
|                                         |         |          |          |         |         |         |         | denon                                                                                                                                                                                            | ninator f   | ound du    | ring the | Auto-Ne    | as the h<br>gotiation<br>denomin     | proces   | s. Other | wise,   |
| 10                                      | )       |          | RATE     |         | RO      |         | 0       | Rate                                                                                                                                                                                             |             |            |          |            |                                      |          |          |         |
|                                         |         |          |          |         |         |         |         | denon                                                                                                                                                                                            | ninator f   | ound du    | ring the | Auto-Ne    | was the l<br>gotiation<br>denomina   | proces   | s. Other |         |
| 9                                       |         |          | RXSD     |         | RO      |         | 0       | Recei                                                                                                                                                                                            | ve Deteo    | ction      |          |            |                                      |          |          |         |
|                                         |         |          |          |         |         |         |         | 100Ba                                                                                                                                                                                            | -           | node) or   |          | •          | l detectio<br>encoded                |          |          | •       |
| 8                                       |         | R        | X_LOC    | к       | RO      |         | 0       | Receiv                                                                                                                                                                                           | ve PLL l    | ₋ock       |          |            |                                      |          |          |         |
|                                         |         |          |          |         |         |         |         |                                                                                                                                                                                                  |             |            |          |            | PLL has l<br>ion (10B                |          |          |         |
| 7:0                                     | )       | r        | reserved | 1       | RO      |         | 00      | 00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |             |            |          |            |                                      |          |          |         |

## Register 27: Ethernet PHY Management Register 19 – Transceiver Control (MR19), offset 0x13

This register enables software to set the gain of the transmit output to compensate for transformer loss.

#### Ethernet PHY Management Register 19 – Transceiver Control (MR19)

Base 0x4004.8000

Offset 0x13 Type R/W, reset 0x4XXX

|       | 31   | 30     | 29       | 28 | 27         | 26 | 25    | 24    | 23          | 22                     | 21        | 20                                    | 19        | 18       | 17       | 16       |
|-------|------|--------|----------|----|------------|----|-------|-------|-------------|------------------------|-----------|---------------------------------------|-----------|----------|----------|----------|
|       |      | 1      |          |    | г <u>г</u> |    | 1     | rese  | rved        |                        |           | · · ·                                 |           |          | 1        |          |
| Туре  | RO   | RO     | RO       | RO | RO         | RO | RO    | RO    | RO          | RO                     | RO        | RO                                    | RO        | RO       | RO       | RO       |
| Reset | 0    | 0      | 0        | 0  | 0          | 0  | 0     | 0     | 0           | 0                      | 0         | 0                                     | 0         | 0        | 0        | 0        |
|       | 15   | 14     | 13       | 12 | 11         | 10 | 9     | 8     | 7           | 6                      | 5         | 4                                     | 3         | 2        | 1        | 0        |
|       | тхо  | D[1:0] | <br>     |    | r r<br>1   |    | 1     | ĩ     | rese        | rved                   |           | · · ·                                 |           |          | 1        | 1        |
| Туре  | R/W  | R/W    | RO       | RO | RO         | RO | RO    | RO    | RO          | RO                     | RO        | RO                                    | RO        | RO       | RO       | RO       |
| Reset | 0    | 1      | 0        | 0  | 0          | 0  | 0     | 0     | 0           | 0                      | 0         | 0                                     | 0         | 0        | 0        | 0        |
| Bit/F | ield |        | Name     |    | Туре       |    | Reset | Descr | iption      |                        |           |                                       |           |          |          |          |
| 31:   | 16   | I      | reserved |    | RO         |    | 0     | compa | atibility v | vith futur             | e produ   | e value c<br>cts, the v<br>fy-write c | alue of a | a reserv | •        |          |
| 15:   | 14   | -      | TXO[1:0] |    | R/W        |    | 1     | Trans | mit Amp     | litude Se              | election  |                                       |           |          |          |          |
|       |      |        |          |    |            |    |       |       |             | sets the<br>sertion lo |           | output a                              | mplitude  | e to acc | ount for | transmit |
|       |      |        |          |    |            |    |       | Value | Meani       | ng                     |           |                                       |           |          |          |          |
|       |      |        |          |    |            |    |       | 00    | Gain s      | et for 0.              | 0dB of ii | nsertion I                            | oss       |          |          |          |
|       |      |        |          |    |            |    |       | 01    | Gain s      | et for 0.4             | 4dB of ii | nsertion I                            | oss       |          |          |          |
|       |      |        |          |    |            |    |       | 10    | Gain s      | et for 0.8             | 8dB of i  | nsertion I                            | oss       |          |          |          |
|       |      |        |          |    |            |    |       | 11    | Gain s      | et for 1.2             | 2dB of ir | nsertion I                            | oss       |          |          |          |
| 13:   | :0   | I      | reserved |    | RO         |    | 0x0   | compa | atibility v | vith futur             | e produ   | e value c<br>cts, the v<br>fy-write c | alue of a | a reserv | •        |          |

### Register 28: Ethernet PHY Management Register 23 – LED Configuration (MR23), offset 0x17

This register enables software to select the source that will cause the LEDs to toggle.

#### Ethernet PHY Management Register 23 – LED Configuration (MR23)

Base 0x4004.8000 Offset 0x17 Type R/W, reset 0x0010

31 20

| -             | 31      | 30      | 29        | 28      | 27       | 26      | 25      | 24      | 23         | 22                                    | 21         | 20         | 19        | 18            | 17       | 16      |
|---------------|---------|---------|-----------|---------|----------|---------|---------|---------|------------|---------------------------------------|------------|------------|-----------|---------------|----------|---------|
|               |         | 1       |           |         | <b> </b> |         | 1       | reser   | ved        | •                                     |            |            |           |               | 1        |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0   | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0    | RO<br>0                               | RO<br>0    | RO<br>0    | RO<br>0   | RO<br>0       | RO<br>0  | RO<br>0 |
|               | 15      | 14      | 13        | 12      | 11       | 10      | 9       | 8       | 7          | 6                                     | 5          | 4          | 3         | 2             | 1        | 0       |
|               |         | ı –     | · · ·     | rese    | rved     |         | 1       | '       |            | LED'                                  | 1[3:0]     |            |           | LED           | 0[3:0]   |         |
| Туре          | RO      | RO      | RO        | RO      | RO       | RO      | RO      | RO      | R/W        | R/W                                   | R/W        | R/W        | R/W       | R/W           | R/W      | R/W     |
| Reset         | 0       | 0       | 0         | 0       | 0        | 0       | 0       | 0       | 0          | 0                                     | 0          | 1          | 0         | 0             | 0        | 0       |
| Bit/F         | ield    |         | Name      |         | Туре     |         | Reset   | Descri  | ption      |                                       |            |            |           |               |          |         |
| 31:           | :8      |         | reserved  |         | RO       |         | 0       | compa   | tibility v | uld not re<br>vith futur<br>oss a rea | e produo   | cts, the v | alue of   | a reserv      |          |         |
| 7:4           | 4       | L       | _ED1[3:0] | l       | R/W      |         | 1       | The LI  | ED1 fiel   | d selects                             | the sou    | rce that   | will togg | le the $\Box$ | ED1 sigr | nal.    |
|               |         |         |           |         |          |         |         | Value   | Mean       | ing                                   |            |            |           |               |          |         |
|               |         |         |           |         |          |         |         | 0000    | Link C     | Ж                                     |            |            |           |               |          |         |
|               |         |         |           |         |          |         |         | 0001    | RX or      | TX Activ                              | vity (Defa | ault LED   | 1)        |               |          |         |
|               |         |         |           |         |          |         |         | 0010    | TX Ac      | tivity                                |            |            |           |               |          |         |
|               |         |         |           |         |          |         |         | 0011    | RX Ac      | tivity                                |            |            |           |               |          |         |
|               |         |         |           |         |          |         |         | 0100    | Collisi    | on                                    |            |            |           |               |          |         |
|               |         |         |           |         |          |         |         | 0101    | 100BA      | SE-TX I                               | mode       |            |           |               |          |         |
|               |         |         |           |         |          |         |         | 0110    | 10BA       | SE-T mo                               | de         |            |           |               |          |         |
|               |         |         |           |         |          |         |         | 0111    | Full D     | uplex                                 |            |            |           |               |          |         |
|               |         |         |           |         |          |         |         | 1000    | Link C     | K & Blin                              | k=RX or    | TX Acti    | vity      |               |          |         |
| 3:0           | 0       | L       | _ED0[3:0] | l       | R/W      |         | 0       | The LI  | ED0 fiel   | d selects                             | the sou    | rce that   | will togg | le the ⊥      | ED0 sigr | nal.    |
|               |         |         |           |         |          |         |         | Value   | Mean       | ing                                   |            |            |           |               |          |         |
|               |         |         |           |         |          |         |         | 0000    | Link C     | K (Defa                               | ult LEDC   | ))         |           |               |          |         |
|               |         |         |           |         |          |         |         | 0001    | RX or      | TX Activ                              | vity       |            |           |               |          |         |
|               |         |         |           |         |          |         |         | 0010    | TX Ac      | tivity                                |            |            |           |               |          |         |
|               |         |         |           |         |          |         |         | 0011    | RX Ac      | tivity                                |            |            |           |               |          |         |
|               |         |         |           |         |          |         |         | 0100    | Collisi    | on                                    |            |            |           |               |          |         |
|               |         |         |           |         |          |         |         | 0101    | 100BA      | SE-TX I                               | node       |            |           |               |          |         |
|               |         |         |           |         |          |         |         | 0110    | 10BA       | SE-T mo                               | de         |            |           |               |          |         |
|               |         |         |           |         |          |         |         | 0111    | Full D     | uplex                                 |            |            |           |               |          |         |
|               |         |         |           |         |          |         |         | 1000    | Link C     | K & Blin                              | k=RX or    | TX Acti    | vity      |               |          |         |
|               |         |         |           |         |          |         |         |         |            |                                       |            |            |           |               |          |         |

### Register 29: Ethernet PHY Management Register 24 – MDI/MDIX Control (MR24), offset 0x18

This register enables software to control the behavior of the MDI/MDIX mux and its switching capabilities.

#### Ethernet PHY Management Register 24 – MDI/MDIX Control (MR24)

Base 0x4004.8000

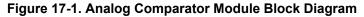
Offset 0x18 Type R/W, reset 0x00C0

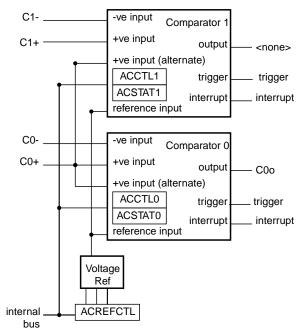
|               | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24       | 23                     | 22         | 21       | 20                                    | 19        | 18                                      | 17       | 16       |
|---------------|---------|---------|----------|---------|---------|---------|---------|----------|------------------------|------------|----------|---------------------------------------|-----------|-----------------------------------------|----------|----------|
|               |         | •       |          |         |         |         | •       | rese     | rved                   |            |          | · ·                                   |           | l i i i i i i i i i i i i i i i i i i i | •        |          |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0                | RO<br>0    | RO<br>0  | RO<br>0                               | RO<br>0   | RO<br>0                                 | RO<br>0  | RO<br>0  |
|               | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8        | 7                      | 6          | 5        | 4                                     | 3         | 2                                       | 1        | 0        |
|               |         | 1       |          | rese    | rved    |         | 1       | r        | PD_MODE                | AUTO_SW    | MDIX     | MDIX_CM                               | r         | MDIX                                    | (_SD     |          |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0  | R/W<br>0               | R/W<br>0   | R/W<br>0 | RO<br>0                               | R/W<br>0  | R/W<br>0                                | R/W<br>0 | R/W<br>0 |
| Bit/F         | ield    |         | Name     |         | Туре    | I       | Reset   | Descr    | iption                 |            |          |                                       |           |                                         |          |          |
| 31            | :8      | r       | reserved |         | RO      |         | 0       | compa    | atibility w            | ith future | e produ  | e value o<br>cts, the v<br>fy-write o | alue of a | a reserv                                |          |          |
| 7             |         | P       | D_MODI   | E       | R/W     |         | 0       | Parall   | el Detec               | tion Mod   | е        |                                       |           |                                         |          |          |
|               |         |         |          |         |         |         |         |          | -                      |            |          | Detection<br>n is not e               |           | nd allow                                | s auto-s | witching |
| 6             |         | A       | UTO_SV   | V       | R/W     |         | 0       | Auto-    | Switching              | g Enable   |          |                                       |           |                                         |          |          |
|               |         |         |          |         |         |         |         | When     | set, ena               | ables Aut  | o-Switc  | hing of th                            | ne MDI/N  | MDIX m                                  | ux.      |          |
| 5             |         |         | MDIX     |         | R/W     |         | 0       | Auto-    | Switching              | g Config   | uration  |                                       |           |                                         |          |          |
|               |         |         |          |         |         |         |         |          | set, indi<br>uration.  | cates that | at the N | IDI/MDIX                              | mux is i  | in the cr                               | ossover  | (MDIX)   |
|               |         |         |          |         |         |         |         |          | 0, it indi<br>uration. | cates the  | at the m | ux is in tl                           | he pass   | -through                                | n (MDI)  |          |
|               |         |         |          |         |         |         |         |          | _SW bit is             |            |          | e MDIX b<br>is read/v                 |           |                                         |          |          |
| 4             |         | Ν       | IDIX_CN  | 1       | RO      |         | 0       | Auto-    | Switching              | g Comple   | ete      |                                       |           |                                         |          |          |
|               |         |         |          |         |         |         |         | lf 0, it | indicate               |            | e seque  | uto-switcl<br>nce has r               | -         | •                                       |          | pleted.  |
| 3:            | D       | N       | IDIX_SC  | )       | R/W     |         | 0       | Auto-    | Switching              | g Seed     |          |                                       |           |                                         |          |          |
|               |         |         |          |         |         |         |         |          | •                      |            |          | ed for the attempts                   |           |                                         |          |          |
|               |         |         |          |         |         |         |         | A 0 se   | ets the se             | eed to 0>  | (5.      |                                       |           |                                         |          |          |
|               |         |         |          |         |         |         |         |          |                        |            |          |                                       |           |                                         |          |          |

## 17 Analog Comparators

An analog comparator is a peripheral that compares two analog voltages, and provides a logical output that signals the comparison result.

The LM3S6965 controller provides two independent integrated analog comparators that can be configured to drive an output or generate an interrupt or ADC event.


**Note:** Not all comparators have the option to drive an output pin. See the Comparator Operating Mode tables for more information.


A comparator can compare a test voltage against any one of these voltages:

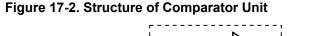
- An individual external reference voltage
- A shared single external reference voltage
- A shared internal reference voltage

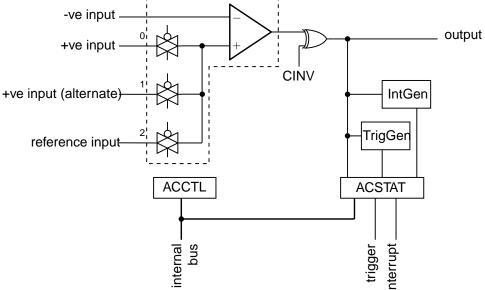
The comparator can provide its output to a device pin, acting as a replacement for an analog comparator on the board, or it can be used to signal the application via interrupts or triggers to the ADC to cause it to start capturing a sample sequence. The interrupt generation and ADC triggering logic is separate. This means, for example, that an interrupt can be generated on a rising edge and the ADC triggered on a falling edge.

### 17.1 Block Diagram






### 17.2 Functional Description


Important: It is recommended that the Digital-Input enable (the GPIODEN bit in the GPIO module) for the analog input pin be disabled to prevent excessive current draw from the I/O pads.

The comparator compares the VIN- and VIN+ inputs to produce an output, VOUT.

VIN- < VIN+, VOUT = 1 VIN- > VIN+, VOUT = 0

As shown in Figure 17-2 on page 443, the input source for VIN- is an external input. In addition to an external input, input sources for VIN+ can be the +ve input of comparator 0 or an internal reference.





A comparator is configured through two status/control registers (ACCTL and ACSTAT). The internal reference is configured through one control register (ACREFCTL). Interrupt status and control is configured through three registers (ACMIS, ACRIS, and ACINTEN). The operating modes of the comparators are shown in the Comparator Operating Mode tables.

Typically, the comparator output is used internally to generate controller interrupts. It may also be used to drive an external pin or generate an analog-to-digital converter (ADC) trigger.

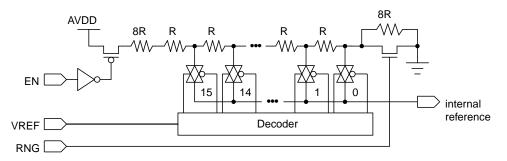
Important: Certain register bit values must be set before using the analog comparators. The proper pad configuration for the comparator input and output pins are described in the Comparator Operating Mode tables.

 Table 17-1. Comparator 0 Operating Modes

| ACCNTL0 | Com  | parator 0 |         |           |             |
|---------|------|-----------|---------|-----------|-------------|
| ASRCP   | VIN- | VIN+      | Output  | Interrupt | ADC Trigger |
| 00      | C0-  | C0+       | C0o/C1+ | yes       | yes         |
| 01      | C0-  | C0+       | C0o/C1+ | yes       | yes         |

| ACCNTL0 | Com  | parator 0 |         |           |             |
|---------|------|-----------|---------|-----------|-------------|
| ASRCP   | VIN- | VIN+      | Output  | Interrupt | ADC Trigger |
| 10      | C0-  | Vref      | C0o/C1+ | yes       | yes         |
| 11      | C0-  | reserved  | C0o/C1+ | yes       | yes         |

#### Table 17-2. Comparator 1 Operating Modes


| ACCNTL1 | Com  | parator 1            |        |           |             |
|---------|------|----------------------|--------|-----------|-------------|
| ASRCP   | VIN- | VIN+                 | Output | Interrupt | ADC Trigger |
| 00      | C1-  | C0o/C1+ <sup>a</sup> | n/a    | yes       | yes         |
| 01      | C1-  | C0+                  | n/a    | yes       | yes         |
| 10      | C1-  | Vref                 | n/a    | yes       | yes         |
| 11      | C1-  | reserved             | n/a    | yes       | yes         |

a. C0o and C1+ signals share a single pin and may only be used as one or the other.

### 17.2.1 Internal Reference Programming

The structure of the internal reference is shown in Figure 17-3 on page 444. This is controlled by a single configuration register (**ACREFCTL**). Table 17-3 on page 444 shows the programming options to develop specific internal reference values, to compare an external voltage against a particular voltage generated internally.

#### Figure 17-3. Comparator Internal Reference Structure



#### Table 17-3. Internal Reference Voltage and ACREFCTL Field Values

|              | Register      | Output Reference Voltage Based on VREF Field Value                                                                      |
|--------------|---------------|-------------------------------------------------------------------------------------------------------------------------|
| EN Bit Value | RNG Bit Value |                                                                                                                         |
| EN=0         |               | 0 V (GND) for any value of VREF; however, it is recommended that RNG=1 and VREF=0 for the least noisy ground reference. |

| ACREFCTL R   | egister       | Output Reference Voltage Based on VREF Field Value             |
|--------------|---------------|----------------------------------------------------------------|
| EN Bit Value | RNG Bit Value |                                                                |
| EN=1         | RNG=0         | Total resistance in ladder is 32 R.                            |
|              |               | $V_{REF} = AV_{DD} \times \frac{R_{VREF}}{R_{T}}$              |
|              |               | $V_{REF} = AV_{DD} \times \frac{(VREF + 8)}{32}$               |
|              |               | V <sub>REF</sub> = 0.825+0.103 VREF                            |
|              |               | The range of internal reference in this mode is 0.825-2.37 V.  |
|              | RNG=1         | Total resistance in ladder is 24 R.                            |
|              |               | $V_{REF} = AV_{DD} \times \frac{R_{VREF}}{R_{T}}$              |
|              |               | $V_{REF} = AV_{DD} \times \frac{(VREF)}{24}$                   |
|              |               | $V_{REF}$ = 0.1375 x $V_{REF}$                                 |
|              |               | The range of internal reference for this mode is 0.0-2.0625 V. |

### 17.3 Initialization and Configuration

The following example shows how to configure an analog comparator to read back its output value from an internal register.

- 1. Enable the analog comparator 0 clock by writing a value of 0x0010.0000 to the **RCGC1** register in the System Control module.
- 2. In the GPIO module, enable the GPIO port/pin associated with co- as a GPIO input.
- **3.** Configure the internal voltage reference to 1.65 V by writing the **ACREFCTL** register with the value 0x0000.030C.
- 4. Configure comparator 0 to use the internal voltage reference and to *not* invert the output on the C0o pin by writing the **ACCTL0** register with the value of 0x0000.040C.
- 5. Delay for some time.
- 6. Read the comparator output value by reading the **ACSTAT0** register's OVAL value.

Change the level of the signal input on CO- to see the OVAL value change.

### 17.4 Register Map

"Register Map" on page 446 lists the comparator registers. The offset listed is a hexadecimal increment to the register's address, relative to the Analog Comparator base address of 0x4003.C000.

| Offset | Name     | Туре  | Reset       | Description                                 | See<br>page |
|--------|----------|-------|-------------|---------------------------------------------|-------------|
| 0x00   | ACMIS    | R/W1C | 0x0000.0000 | Analog Comparator Masked Interrupt Status   | 447         |
| 0x04   | ACRIS    | RO    | 0x0000.0000 | Analog Comparator Raw Interrupt Status      | 448         |
| 0x08   | ACINTEN  | R/W   | 0x0000.0000 | Analog Comparator Interrupt Enable          | 449         |
| 0x10   | ACREFCTL | R/W   | 0x0000.0000 | Analog Comparator Reference Voltage Control | 450         |
| 0x20   | ACSTAT0  | RO    | 0x0000.0000 | Analog Comparator Status 0                  | 451         |
| 0x24   | ACCTL0   | R/W   | 0x0000.0000 | Analog Comparator Control 0                 | 452         |
| 0x40   | ACSTAT1  | RO    | 0x0000.0000 | Analog Comparator Status 1                  | 451         |
| 0x44   | ACCTL1   | R/W   | 0x0000.0000 | Analog Comparator Control 1                 | 452         |

#### Table 17-4. Analog Comparators Register Map

### 17.5 Register Descriptions

The remainder of this section lists and describes the Analog Comparator registers, in numerical order by address offset.

### Register 1: Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00

This register provides a summary of the interrupt status (masked) of the comparators.

| Analog Comparato | r Masked Interrup | t Status (ACMIS) |
|------------------|-------------------|------------------|
|------------------|-------------------|------------------|

Base 0x4003.C000

Offset 0x00 Type R/W1C, reset 0x0000.0000

|               | 31      | 30      | 29      | 28      | 27       | 26                     | 25                   | 24                     | 23                   | 22                                  | 21                   | 20         | 19         | 18        | 17         | 16       |
|---------------|---------|---------|---------|---------|----------|------------------------|----------------------|------------------------|----------------------|-------------------------------------|----------------------|------------|------------|-----------|------------|----------|
|               |         | 1       | 1       | 1       |          |                        | •                    | rese                   | l<br>erved           | 1                                   | 1                    | 1          | 1          | 1         | 1          |          |
| Ture          |         |         |         |         | L        | <b>D</b> O             | <b>D</b> 0           |                        |                      |                                     | DO                   |            | L          |           |            | - DO     |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0                | RO<br>0              | RO<br>0                | RO<br>0              | RO<br>0                             | RO<br>0              | RO<br>0    | RO<br>0    | RO<br>0   | RO<br>0    | RO<br>0  |
| Reset         | 0       | 0       | 0       | 0       | 0        | U                      | 0                    | 0                      | 0                    | 0                                   | 0                    | 0          | 0          | 0         | 0          | 0        |
|               | 15      | 14      | 13      | 12      | 11       | 10                     | 9                    | 8                      | 7                    | 6                                   | 5                    | 4          | 3          | 2         | 1          | 0        |
|               |         | '       | -       | 1       | т т<br>1 |                        | res                  | served                 | 1                    | 1                                   | 1                    | 1          | 1          | 1         | IN1        | IN0      |
| Туре          | RO      | RO      | RO      | RO      | RO       | RO                     | RO                   | RO                     | RO                   | RO                                  | RO                   | RO         | RO         | RO        | R/W1C      | R/W1C    |
| Reset         | 0       | 0       | 0       | 0       | 0        | 0                      | 0                    | 0                      | 0                    | 0                                   | 0                    | 0          | 0          | 0         | 0          | 0        |
| Bit/F<br>31   |         |         | Name    |         |          | Softw<br>comp<br>prese | atibility<br>rved ac | with futu<br>ross a re | ure produ<br>ead-mod | he value<br>ucts, the<br>dify-write | value of<br>operatio | a reser    | •          |           |            |          |
| 1             |         |         | IN1     |         | R/W1C    | ;                      | 0                    | Comp                   | parator 1            | l Maske                             | d Interru            | upt Status | S          |           |            |          |
|               |         |         |         |         |          |                        |                      |                        |                      | sked int<br>ding inte               | •                    | tate of th | is interru | upt. Writ | e 1 to thi | s bit to |
| 0             | )       |         | IN0     |         | R/W1C    | ;                      | 0                    | Comp                   | oarator (            | ) Maske                             | d Interru            | upt Status | S          |           |            |          |
|               |         |         |         |         |          |                        |                      |                        |                      | sked int<br>ding inte               | •                    | tate of th | is interru | upt. Writ | e 1 to thi | s bit to |

### Register 2: Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04

This register provides a summary of the interrupt status (raw) of the comparators.

Analog Comparator Raw Interrupt Status (ACRIS)

Base 0x4003.C000 Offset 0x04 Type RO, reset 0x0000.0000

|               | 31      | 30            | 29      | 28      | 27      | 26      | 25      | 24                                                                                                                                                                                        | 23        | 22        | 21         | 20        | 19       | 18      | 17       | 16       |
|---------------|---------|---------------|---------|---------|---------|---------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|------------|-----------|----------|---------|----------|----------|
|               |         | 1             | 1       |         | · · ·   |         | 1       | rese                                                                                                                                                                                      | rved      | 1         |            |           |          |         | r        |          |
| Type<br>Reset | RO<br>0 | RO<br>0       | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                   | RO<br>0   | RO<br>0   | RO<br>0    | RO<br>0   | RO<br>0  | RO<br>0 | RO<br>0  | RO<br>0  |
|               | 15      | 14            | 13      | 12      | 11      | 10      | 9       | 8                                                                                                                                                                                         | 7         | 6         | 5          | 4         | 3        | 2       | 1        | 0        |
|               |         | 1             | 1       |         | r r     |         | rese    | erved                                                                                                                                                                                     |           | r i       |            |           |          |         | IN1      | IN0      |
| Type<br>Reset | RO<br>0 | RO<br>0       | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                   | RO<br>0   | RO<br>0   | RO<br>0    | RO<br>0   | RO<br>0  | RO<br>0 | RO<br>0  | RO<br>0  |
| Bit/F         | ield    |               | Name    |         | Туре    | I       | Reset   | Descr                                                                                                                                                                                     | iption    |           |            |           |          |         |          |          |
| 31            | :2      | reserved RO 0 |         |         |         |         | 0       | Software should not rely on the value of a reserved bit. To pro-<br>compatibility with future products, the value of a reserved bit of<br>preserved across a read-modify-write operation. |           |           |            |           |          |         | •        |          |
| 1             |         |               | IN1     |         | RO      |         | 0       | When<br>1.                                                                                                                                                                                | set, indi | cates tha | at an inte | errupt ha | s been g | enerate | d by con | nparator |
| 0             | )       |               | IN0     |         | RO      |         | 0       | When<br>0.                                                                                                                                                                                | set, indi | cates tha | at an inte | errupt ha | s been g | enerate | d by con | nparator |

### Register 3: Analog Comparator Interrupt Enable (ACINTEN), offset 0x08

This register provides the interrupt enable for the comparators.

| Analog | Comparator | Interrupt | Enable | (ACINTEN) |
|--------|------------|-----------|--------|-----------|
|--------|------------|-----------|--------|-----------|

Base 0x4003.C000 Offset 0x08 Type R/W, reset 0x0000.0000

|               | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24      | 23          | 22         | 21        | 20         | 19                                 | 18       | 17        | 16       |
|---------------|---------|---------|----------|---------|---------|---------|---------|---------|-------------|------------|-----------|------------|------------------------------------|----------|-----------|----------|
|               |         | '       |          |         |         |         | •       | rese    | erved       |            |           |            |                                    |          | •         |          |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0    | RO<br>0   | RO<br>0    | RO<br>0                            | RO<br>0  | RO<br>0   | RO<br>0  |
|               | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8       | 7           | 6          | 5         | 4          | 3                                  | 2        | 1         | 0        |
|               |         | 1       |          |         | r       |         | rese    | erved   | 1           | 1          |           |            |                                    |          | IN1       | IN0      |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0    | RO<br>0   | RO<br>0    | RO<br>0                            | RO<br>0  | R/W<br>0  | R/W<br>0 |
| Bit/F         | ield    |         | Name     |         | Туре    | F       | Reset   | Descr   | iption      |            |           |            |                                    |          |           |          |
| 31:           | :2      | l       | reserved |         | RO      |         | 0       | compa   | atibility v | vith futur | e produ   | cts, the v | of a rese<br>value of<br>operation | a reserv | •         |          |
| 1             |         |         | IN1      |         | R/W     |         | 0       | When    | set, ena    | bles the   | controlle | er interru | upt from t                         | the com  | parator 1 | output.  |
| 0             |         |         | IN0      |         | R/W     |         | 0       | When    | set, ena    | bles the   | controlle | er interru | upt from t                         | the com  | parator 0 | output.  |

### Register 4: Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x10

This register specifies whether the resistor ladder is powered on as well as the range and tap.

#### Analog Comparator Reference Voltage Control (ACREFCTL)

Base 0x4003.C000 Offset 0x10 Type R/W, reset 0x0000.0000

|       | 31   | 30 | 29       | 28    | 27    | 26 | 25                                                                                                                                                                                           | 24                                                                                                                                                                                        | 23                  | 22                     | 21                 | 20                                              | 19                   | 18                     | 17                   | 16                |  |  |
|-------|------|----|----------|-------|-------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------|--------------------|-------------------------------------------------|----------------------|------------------------|----------------------|-------------------|--|--|
|       |      | 1  | 1        | 1     |       |    | 1                                                                                                                                                                                            | rese                                                                                                                                                                                      | rved                |                        |                    |                                                 |                      | 1                      | 1                    | •                 |  |  |
| Туре  | RO   | RO | RO       | RO    | RO    | RO | RO                                                                                                                                                                                           | RO                                                                                                                                                                                        | RO                  | RO                     | RO                 | RO                                              | RO                   | RO                     | RO                   | RO                |  |  |
| Reset | 0    | 0  | 0        | 0     | 0     | 0  | 0                                                                                                                                                                                            | 0                                                                                                                                                                                         | 0                   | 0                      | 0                  | 0                                               | 0                    | 0                      | 0                    | 0                 |  |  |
| -     | 15   | 14 | 13       | 12    | 11    | 10 | 9                                                                                                                                                                                            | 8                                                                                                                                                                                         | 7                   | 6                      | 5                  | 4                                               | 3                    | 2                      | 1                    | 0                 |  |  |
|       |      | 1  | rese     | erved | · · · |    | EN                                                                                                                                                                                           | RNG                                                                                                                                                                                       |                     | rese                   | rved               | -                                               |                      | I<br>VF                | REF                  |                   |  |  |
| Туре  | RO   | RO | RO       | RO    | RO    | RO | R/W                                                                                                                                                                                          | R/W                                                                                                                                                                                       | RO                  | RO                     | RO                 | RO                                              | R/W                  | R/W                    | R/W                  | R/W               |  |  |
| Reset | 0    | 0  | 0        | 0     | 0     | 0  | 0                                                                                                                                                                                            | 0                                                                                                                                                                                         | 0                   | 0                      | 0                  | 0                                               | 0                    | 0                      | 0                    | 0                 |  |  |
|       |      |    |          |       |       |    |                                                                                                                                                                                              |                                                                                                                                                                                           |                     |                        |                    |                                                 |                      |                        |                      |                   |  |  |
| Bit/F | ield |    | Name     |       | Туре  | F  | Reset                                                                                                                                                                                        | Descr                                                                                                                                                                                     | iption              |                        |                    |                                                 |                      |                        |                      |                   |  |  |
| 31:′  | 10   | l  | reserved | 1     | RO    |    | 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation. |                                                                                                                                                                                           |                     |                        |                    |                                                 |                      |                        |                      |                   |  |  |
| 9     |      |    | EN       |       | R/W   |    | 0                                                                                                                                                                                            | The EN bit specifies whether the resistor ladder is powered on. If ( resistor ladder is unpowered. If 1, the resistor ladder is connected the analog $V_{DD}$ .                           |                     |                        |                    |                                                 |                      |                        |                      |                   |  |  |
|       |      |    |          |       |       |    |                                                                                                                                                                                              |                                                                                                                                                                                           |                     |                        |                    | e interna<br>nd progra                          |                      |                        | umes th              | e least           |  |  |
| 8     |      |    | RNG      |       | R/W   |    | 0                                                                                                                                                                                            | ladder                                                                                                                                                                                    | •                   | otal resis             | 0                  | e of the i<br>f 32 R. If                        |                      |                        |                      |                   |  |  |
| 7:4   | 4    | I  | reserved | I     | RO    |    | 0                                                                                                                                                                                            | Software should not rely on the value of a reserved bit. To pro-<br>compatibility with future products, the value of a reserved bit sl<br>preserved across a read-modify-write operation. |                     |                        |                    |                                                 |                      |                        |                      |                   |  |  |
| 3:0   | 0    |    | VREF     |       | R/W   |    | 0                                                                                                                                                                                            | an ana<br>the int                                                                                                                                                                         | alog mu<br>ernal re | tiplexer.<br>ference v | The vol<br>voltage | resistor<br>tage cor<br>available<br>itput refe | respond<br>e for con | ling to th<br>nparison | e tap po<br>. See Ta | sition is<br>able |  |  |

### Register 5: Analog Comparator Status 0 (ACSTAT0), offset 0x20 Register 6: Analog Comparator Status 1 (ACSTAT1), offset 0x40

These registers specify the current output value of the comparator.

#### Analog Comparator Status 0 (ACSTAT0)

Base 0x4003.C000 Offset 0x20 Type RO, reset 0x0000.0000

|       | 31   | 30 | 29       | 28 | 27    | 26 | 25    | 24                                                                                                                                                                                             | 23          | 22                                    | 21      | 20       | 19       | 18       | 17 | 16    |  |
|-------|------|----|----------|----|-------|----|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------|---------|----------|----------|----------|----|-------|--|
|       |      | 1  |          |    | · · · |    | 1     | rese                                                                                                                                                                                           | rved        |                                       |         | 1        | 1        | 1        | 1  | 1     |  |
| Туре  | RO   | RO | RO       | RO | RO    | RO | RO    | RO                                                                                                                                                                                             | RO          | RO                                    | RO      | RO       | RO       | RO       | RO | RO    |  |
| Reset | 0    | 0  | 0        | 0  | 0     | 0  | 0     | 0                                                                                                                                                                                              | 0           | 0                                     | 0       | 0        | 0        | 0        | 0  | 0     |  |
|       | 15   | 14 | 13       | 12 | 11    | 10 | 9     | 8                                                                                                                                                                                              | 7           | 6                                     | 5       | 4        | 3        | 2        | 1  | 0     |  |
|       |      | •  |          |    | , ,   |    | rese  | eserved OVAL r                                                                                                                                                                                 |             |                                       |         |          |          |          |    |       |  |
| Туре  | RO   | RO | RO       | RO | RO    | RO | RO    | RO                                                                                                                                                                                             | RO          | RO                                    | RO      | RO       | RO       | RO       | RO | RO    |  |
| Reset | 0    | 0  | 0        | 0  | 0     | 0  | 0     | 0                                                                                                                                                                                              | 0           | 0                                     | 0       | 0        | 0        | 0        | 0  | 0     |  |
|       |      |    |          |    |       |    |       |                                                                                                                                                                                                |             |                                       |         |          |          |          |    |       |  |
| Bit/F | ield |    | Name     |    | Туре  |    | Reset | Descr                                                                                                                                                                                          | iption      |                                       |         |          |          |          |    |       |  |
| 31    | :2   |    | reserved |    | RO    |    | 0     | compa                                                                                                                                                                                          | atibility v | ild not re<br>vith futur<br>oss a rea | e produ | cts, the | value of | a reserv | •  |       |  |
| 1     |      |    | OVAL     |    | RO    |    | 0     | The OVAL bit specifies the current output value of the compara                                                                                                                                 |             |                                       |         |          |          |          |    | itor. |  |
| 0     |      |    | reserved |    | RO    |    | 0     | Software should not rely on the value of a reserved bit. To provide<br>compatibility with future products, the value of a reserved bit shou<br>preserved across a read-modify-write operation. |             |                                       |         |          |          |          |    |       |  |

### Register 7: Analog Comparator Control 0 (ACCTL0), offset 0x24 Register 8: Analog Comparator Control 1 (ACCTL1), offset 0x44

These registers configure the comparator's input and output.

Analog Comparator Control 0 (ACCTL0)

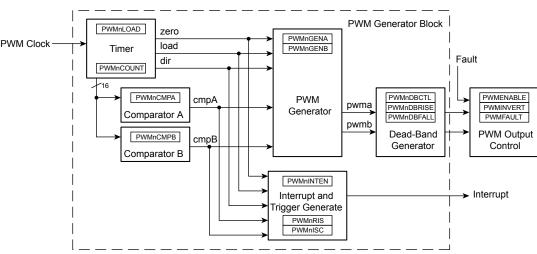
Base 0x4003.C000 Offset 0x24 Type R/W, reset 0x0000.0000

| -             | 31      | 30      | 29       | 28      | 27      | 26      | 25       | 24                                                                                                                                                            | 23          | 22                    | 21                    | 20                                       | 19                | 18       | 17        | 16       |  |  |  |
|---------------|---------|---------|----------|---------|---------|---------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------|-----------------------|------------------------------------------|-------------------|----------|-----------|----------|--|--|--|
|               |         | •       |          |         | , i     |         | 1        | rese                                                                                                                                                          | rved        | l                     | 1                     |                                          | l                 |          | 1         | •        |  |  |  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0                                                                                                                                                       | RO<br>0     | RO<br>0               | RO<br>0               | RO<br>0                                  | RO<br>0           | RO<br>0  | RO<br>0   | RO<br>0  |  |  |  |
|               | 15      | 14      | 13       | 12      | 11      | 10      | 9        | 8                                                                                                                                                             | 7           | 6                     | 5                     | 4                                        | 3                 | 2        | 1         | 0        |  |  |  |
| [             |         | rese    | erved    |         | TOEN    | AS      | I<br>RCP | reserved                                                                                                                                                      | TSLVAL      | TS                    | EN                    | ISLVAL                                   | ISI               | EN       | CINV      | reserved |  |  |  |
| Туре          | RO      | RO      | RO       | RO      | R/W     | R/W     | R/W      | RO                                                                                                                                                            | R/W         | R/W                   | R/W                   | R/W                                      | R/W               | R/W      | R/W       | RO       |  |  |  |
| Reset         | 0       | 0       | 0        | 0       | 0       | 0       | 0        | 0                                                                                                                                                             | 0           | 0                     | 0                     | 0                                        | 0                 | 0        | 0         | 0        |  |  |  |
| Bit/Fi        | ield    |         | Name     |         | Туре    | F       | Reset    | Descr                                                                                                                                                         | iption      |                       |                       |                                          |                   |          |           |          |  |  |  |
| 31:1          | 12      | I       | reserved |         | RO      |         | 0        | comp                                                                                                                                                          | atibility w | ith futur             | e produ               | e value o<br>cts, the v<br>fy-write o    | alue of a         | a reserv | •         |          |  |  |  |
| 11            |         |         | TOEN     |         | R/W     |         | 0        | The TOEN bit enables the ADC event transmission to the ADC. If 0, the event is suppressed and not sent to the ADC. If 1, the event is transmitted to the ADC. |             |                       |                       |                                          |                   |          |           |          |  |  |  |
| 10:           | 9       |         | ASRCP    |         | R/W     |         | 0        | The ASRCP field specifies the source of input voltage to the VIN+ termin of the comparator. The encodings for this field are as follows:                      |             |                       |                       |                                          |                   |          |           |          |  |  |  |
|               |         |         |          |         |         |         |          | ASR                                                                                                                                                           | CP Fund     | ction                 |                       |                                          |                   |          |           |          |  |  |  |
|               |         |         |          |         |         |         |          | 00                                                                                                                                                            | Pin v       | alue                  |                       |                                          |                   |          |           |          |  |  |  |
|               |         |         |          |         |         |         |          | 01                                                                                                                                                            | Pin \       | alue of               | C0+                   |                                          |                   |          |           |          |  |  |  |
|               |         |         |          |         |         |         |          | 10                                                                                                                                                            | Inter       | nal volta             | age refe              | rence                                    |                   |          |           |          |  |  |  |
|               |         |         |          |         |         |         |          | 11                                                                                                                                                            | Rese        | erved                 |                       |                                          |                   |          |           |          |  |  |  |
|               |         |         |          |         |         |         |          |                                                                                                                                                               |             |                       |                       |                                          |                   |          |           |          |  |  |  |
| 8             |         | I       | reserved |         | RO      |         | 0        | comp                                                                                                                                                          | atibility w | ith futur             | e produ               | e value o<br>cts, the v<br>ify-write o   | alue of a         | a reserv |           |          |  |  |  |
| 7             |         |         | TSLVAL   |         | R/W     |         | 0        | an AD                                                                                                                                                         | C event     | if in Lev<br>tor outp | vel Sens<br>ut is Lov | sense val<br>e mode.<br>v. Otherw<br>lh. | lf 0, an <i>i</i> | ADC eve  | ent is ge | nerated  |  |  |  |
| 6:5           | 5       |         | TSEN     |         | R/W     |         | 0        |                                                                                                                                                               |             |                       |                       | ense of th<br>sense co                   |                   |          |           |          |  |  |  |
|               |         |         |          |         |         |         |          | TSE                                                                                                                                                           | I Functi    | on                    |                       |                                          |                   |          |           |          |  |  |  |
|               |         |         |          |         |         |         |          | 00                                                                                                                                                            | Levels      | sense, s              | ee TSL                | VAL                                      |                   |          |           |          |  |  |  |
|               |         |         |          |         |         |         |          | 01                                                                                                                                                            | Falling     | edge                  |                       |                                          |                   |          |           |          |  |  |  |
|               |         |         |          |         |         |         |          | 10                                                                                                                                                            | Rising      | edge                  |                       |                                          |                   |          |           |          |  |  |  |
|               |         |         |          |         |         |         |          | 11                                                                                                                                                            | Either      | edge                  |                       |                                          |                   |          |           |          |  |  |  |
|               |         |         |          |         |         |         |          |                                                                                                                                                               |             |                       |                       |                                          |                   |          |           |          |  |  |  |

| Bit/Field | Name     | Туре | Reset | Description                                                                                                                                                                                                                                                |
|-----------|----------|------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4         | ISLVAL   | R/W  | 0     | The ISLVAL bit specifies the sense value of the input that generates<br>an interrupt if in Level Sense mode. If 0, an interrupt is generated if the<br>comparator output is Low. Otherwise, an interrupt is generated if the<br>comparator output is High. |
| 3:2       | ISEN     | R/W  | 0     | The ISEN field specifies the sense of the comparator output that generates an interrupt. The sense conditioning is as follows:                                                                                                                             |
|           |          |      |       | ISEN Function                                                                                                                                                                                                                                              |
|           |          |      |       | 00 Level sense, see ISLVAL                                                                                                                                                                                                                                 |
|           |          |      |       | 01 Falling edge                                                                                                                                                                                                                                            |
|           |          |      |       | 10 Rising edge                                                                                                                                                                                                                                             |
|           |          |      |       | 11 Either edge                                                                                                                                                                                                                                             |
| 1         | CINV     | R/W  | 0     | The CINV bit conditionally inverts the output of the comparator. If 0, the output of the comparator is unchanged. If 1, the output of the comparator is inverted prior to being processed by hardware.                                                     |
| 0         | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                              |

### **18 Pulse Width Modulator (PWM)**

Pulse width modulation (PWM) is a powerful technique for digitally encoding analog signal levels. High-resolution counters are used to generate a square wave, and the duty cycle of the square wave is modulated to encode an analog signal. Typical applications include switching power supplies and motor control.


The Stellaris<sup>®</sup> PWM module consists of three PWM generator blocks and a control block. Each PWM generator block contains one timer (16-bit down or up/down counter), two PWM comparators, a PWM signal generator, a dead-band generator, and an interrupt/ADC-trigger selector. The control block determines the polarity of the PWM signals, and which signals are passed through to the pins.

Each PWM generator block produces two PWM signals that can either be independent signals (other than being based on the same timer and therefore having the same frequency) or a single pair of complementary signals with dead-band delays inserted. The output of the PWM generation blocks are managed by the output control block before being passed to the device pins.

The Stellaris<sup>®</sup> PWM module provides a great deal of flexibility. It can generate simple PWM signals, such as those required by a simple charge pump. It can also generate paired PWM signals with dead-band delays, such as those required by a half-H bridge driver. It can also generate the full six channels of gate controls required by a 3-Phase inverter bridge.

### 18.1 Block Diagram

Figure 18-1 on page 454 provides a block diagram of a Stellaris<sup>®</sup> PWM module. The LM3S6965 controller contains three generator blocks (PWM0, PWM1, and PWM2) and generates six independent PWM signals or three paired PWM signals with dead-band delays inserted.

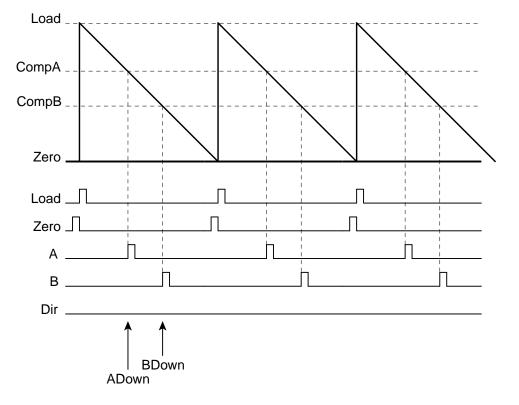




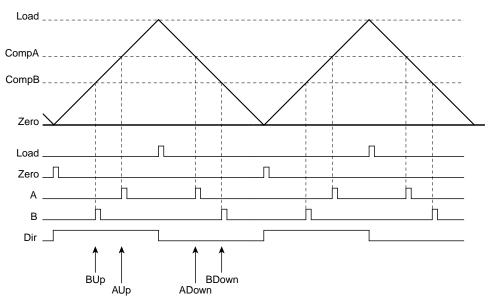
### 18.2 Functional Description

### 18.2.1 PWM Timer

The timer in each PWM generator runs in one of two modes: Count-Down mode or Count-Up/Down mode. In Count-Down mode, the timer counts from the load value to zero, goes back to the load value, and continues counting down. In Count-Up/Down mode, the timer counts from zero up to the


load value, back down to zero, back up to the load value, and so on. Generally, Count-Down mode is used for generating left- or right-aligned PWM signals, while the Count-Up/Down mode is used for generating center-aligned PWM signals.

The timers output three signals that are used in the PWM generation process: the direction signal (this is always Low in Count-Down mode, but alternates between Low and High in Count-Up/Down mode), a single-clock-cycle-width High pulse when the counter is zero, and a single-clock-cycle-width High pulse when the counter is zero, and a single-clock-cycle-width High pulse when the counter is equal to the load value. Note that in Count-Down mode, the zero pulse is immediately followed by the load pulse.

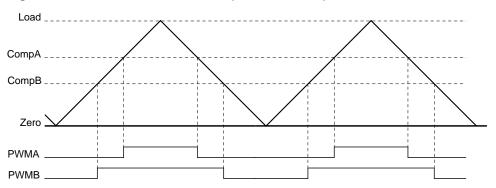

#### 18.2.2 **PWM** Comparators

There are two comparators in each PWM generator that monitor the value of the counter; when either match the counter, they output a single-clock-cycle-width High pulse. When in Count-Up/Down mode, these comparators match both when counting up and when counting down; they are therefore qualified by the counter direction signal. These qualified pulses are used in the PWM generation process. If either comparator match value is greater than the counter load value, then that comparator never outputs a High pulse.

Figure 18-2 on page 455 shows the behavior of the counter and the relationship of these pulses when the counter is in Count-Down mode. Figure 18-3 on page 456 shows the behavior of the counter and the relationship of these pulses when the counter is in Count-Up/Down mode.



#### Figure 18-2. PWM Count-Down Mode




#### Figure 18-3. PWM Count-Up/Down Mode

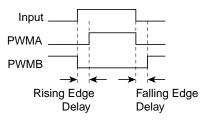
#### 18.2.3 PWM Signal Generator

The PWM generator takes these pulses (qualified by the direction signal), and generates two PWM signals. In Count-Down mode, there are four events that can affect the PWM signal: zero, load, match A down, and match B down. In Count-Up/Down mode, there are six events that can affect the PWM signal: zero, load, match A down, match A up, match B down, and match B up. The match A or match B events are ignored when they coincide with the zero or load events. If the match A and match B events coincide, the first signal, PWMA, is generated based only on the match A event, and the second signal, PWMB, is generated based only on the match B event.

For each event, the effect on each output PWM signal is programmable: it can be left alone (ignoring the event), it can be toggled, it can be driven Low, or it can be driven High. These actions can be used to generate a pair of PWM signals of various positions and duty cycles, which do or do not overlap. Figure 18-4 on page 456 shows the use of Count-Up/Down mode to generate a pair of center-aligned, overlapped PWM signals that have different duty cycles.



#### Figure 18-4. PWM Generation Example In Count-Up/Down Mode


In this example, the first generator is set to drive High on match A up, drive Low on match A down, and ignore the other four events. The second generator is set to drive High on match B up, drive Low on match B down, and ignore the other four events. Changing the value of comparator A

changes the duty cycle of the PWMA signal, and changing the value of comparator B changes the duty cycle of the PWMB signal.

#### 18.2.4 Dead-Band Generator

The two PWM signals produced by the PWM generator are passed to the dead-band generator. If disabled, the PWM signals simply pass through unmodified. If enabled, the second PWM signal is lost and two PWM signals are generated based on the first PWM signal. The first output PWM signal is the input signal with the rising edge delayed by a programmable amount. The second output PWM signal is the inversion of the input signal with a programmable delay added between the falling edge of the input signal and the rising edge of this new signal.

This is therefore a pair of active High signals where one is always High, except for a programmable amount of time at transitions where both are Low. These signals are therefore suitable for driving a half-H bridge, with the dead-band delays preventing shoot-through current from damaging the power electronics. Figure 18-5 on page 457 shows the effect of the dead-band generator on an input PWM signal.



#### Figure 18-5. PWM Dead-Band Generator

#### 18.2.5 Interrupt/ADC-Trigger Selector

The PWM generator also takes the same four (or six) counter events and uses them to generate an interrupt or an ADC trigger. Any of these events or a set of these events can be selected as a source for an interrupt; when any of the selected events occur, an interrupt is generated. Additionally, the same event, a different event, the same set of events, or a different set of events can be selected as a source for an ADC trigger; when any of these selected events occur, an ADC trigger pulse is generated. The selection of events allows the interrupt or ADC trigger to occur at a specific position within the PWM signal. Note that interrupts and ADC triggers are based on the raw events; delays in the PWM signal edges caused by the dead-band generator are not taken into account.

#### 18.2.6 Synchronization Methods

There is a global reset capability that can synchronously reset any or all of the counters in the PWM generators. If multiple PWM generators are configured with the same counter load value, this can be used to guarantee that they also have the same count value (this does imply that the PWM generators must be configured before they are synchronized). With this, more than two PWM signals can be produced with a known relationship between the edges of those signals since the counters always have the same values.

The counter load values and comparator match values of the PWM generator can be updated in two ways. The first is immediate update mode, where a new value is used as soon as the counter reaches zero. By waiting for the counter to reach zero, a guaranteed behavior is defined, and overly short or overly long output PWM pulses are prevented.

The other update method is synchronous, where the new value is not used until a global synchronized update signal is asserted, at which point the new value is used as soon as the counter reaches zero. This second mode allows multiple items in multiple PWM generators to be updated

simultaneously without odd effects during the update; everything runs from the old values until a point at which they all run from the new values. The Update mode of the load and comparator match values can be individually configured in each PWM generator block. It typically makes sense to use the synchronous update mechanism across PWM generator blocks when the timers in those blocks are synchronized, though this is not required in order for this mechanism to function properly.

### 18.2.7 Fault Conditions

There are two external conditions that affect the PWM block; the signal input on the Fault pin and the stalling of the controller by a debugger. There are two mechanisms available to handle such conditions: the output signals can be forced into an inactive state and/or the PWM timers can be stopped.

Each output signal has a fault bit. If set, a fault input signal causes the corresponding output signal to go into the inactive state. If the inactive state is a safe condition for the signal to be in for an extended period of time, this keeps the output signal from driving the outside world in a dangerous manner during the fault condition. A fault condition can also generate a controller interrupt.

Each PWM generator can also be configured to stop counting during a stall condition. The user can select for the counters to run until they reach zero then stop, or to continue counting and reloading. A stall condition does not generate a controller interrupt.

### 18.2.8 Output Control Block

With each PWM generator block producing two raw PWM signals, the output control block takes care of the final conditioning of the PWM signals before they go to the pins. Via a single register, the set of PWM signals that are actually enabled to the pins can be modified; this can be used, for example, to perform commutation of a brushless DC motor with a single register write (and without modifying the individual PWM generators, which are modified by the feedback control loop). Similarly, fault control can disable any of the PWM signals as well. A final inversion can be applied to any of the PWM signals, making them active Low instead of the default active High.

### 18.3 Initialization and Configuration

The following example shows how to initialize the PWM Generator 0 with a 25-KHz frequency, and with a 25% duty cycle on the PWM0 pin and a 75% duty cycle on the PWM1 pin. This example assumes the system clock is 20 MHz.

- 1. Enable the PWM clock by writing a value of 0x00100000 to the **RCGC0** register in the System Control module.
- 2. Enable the clock to the appropriate GPIO module via the **RCGC2** register in the System Control module.
- 3. In the GPIO module, enable the appropriate pins for their alternate function using the **GPIOAFSEL** register.
- 4. Configure the **Run-Mode Clock Configuration (RCC)** register in the System Control module to use the PWM divide (USEPWMDIV) and set the divider (PWMDIV) to divide by 2 (000).
- 5. Configure the PWM generator for countdown mode with immediate updates to the parameters.
  - Write the **PWM0CTL** register with a value of 0x0000.0000.
  - Write the **PWM0GENA** register with a value of 0x0000.008C.

- Write the **PWM0GENB** register with a value of 0x0000.080C.
- 6. Set the period. For a 25-KHz frequency, the period = 1/25,000, or 40 microseconds. The PWM clock source is 10 MHz; the system clock divided by 2. This translates to 400 clock ticks per period. Use this value to set the **PWM0LOAD** register. In Count-Down mode, set the Load field in the **PWM0LOAD** register to the requested period minus one.
  - Write the **PWM0LOAD** register with a value of 0x0000.018F.
- 7. Set the pulse width of the PWM0 pin for a 25% duty cycle.
  - Write the **PWM0CMPA** register with a value of 0x0000.012B.
- 8. Set the pulse width of the PWM1 pin for a 75% duty cycle.
  - Write the **PWM0CMPB** register with a value of 0x0000.0063.
- 9. Start the timers in PWM generator 0.
  - Write the **PWM0CTL** register with a value of 0x0000.0001.
- 10. Enable PWM outputs.
  - Write the **PWMENABLE** register with a value of 0x0000.0003.

### 18.4 Register Map

"Register Map" on page 459 lists the PWM registers. The offset listed is a hexadecimal increment to the register's address, relative to the PWM base address of 0x4002.8000.

| Offset | Name      | Туре  | Reset       | Description                     | See<br>page |
|--------|-----------|-------|-------------|---------------------------------|-------------|
|        |           | R/W   | 0x0000.0000 |                                 | 471         |
| 0x000  | PWMCTL    | R/W   | 0x0000.0000 | PWM Master Control              | 461         |
| 0x004  | PWMSYNC   | R/W   | 0x0000.0000 | PWM Time Base Sync              | 462         |
| 0x008  | PWMENABLE | R/W   | 0x0000.0000 | PWM Output Enable               | 463         |
| 0x00C  | PWMINVERT | R/W   | 0x0000.0000 | PWM Output Inversion            | 464         |
| 0x010  | PWMFAULT  | R/W   | 0x0000.0000 | PWM Output Fault                | 465         |
| 0x014  | PWMINTEN  | R/W   | 0x0000.0000 | PWM Interrupt Enable            | 466         |
| 0x018  | PWMRIS    | RO    | 0x0000.0000 | PWM Raw Interrupt Status        | 467         |
| 0x01C  | PWMISC    | R/W1C | 0x0000.0000 | PWM Interrupt Status and Clear  | 468         |
| 0x020  | PWMSTATUS | RO    | 0x0000.0000 | PWM Status                      | 469         |
| 0x040  | PWM0CTL   | R/W   | 0x0000.0000 | PWM0 Control                    | 470         |
| 0x048  | PWM0RIS   | RO    | 0x0000.0000 | PWM0 Raw Interrupt Status       | 473         |
| 0x04C  | PWM0ISC   | R/W1C | 0x0000.0000 | PWM0 Interrupt Status and Clear | 474         |

#### Table 18-1. PWM Register Map

| Offset | Name       | Туре  | Reset       | Description                       | See<br>page |
|--------|------------|-------|-------------|-----------------------------------|-------------|
| 0x050  | PWM0LOAD   | R/W   | 0x0000.0000 | PWM0 Load                         | 475         |
| 0x054  | PWM0COUNT  | RO    | 0x0000.0000 | PWM0 Counter                      | 476         |
| 0x058  | PWM0CMPA   | R/W   | 0x0000.0000 | PWM0 Compare A                    | 477         |
| 0x05C  | PWM0CMPB   | R/W   | 0x0000.0000 | PWM0 Compare B                    | 478         |
| 0x060  | PWM0GENA   | R/W   | 0x0000.0000 | PWM0 Generator A Control          | 479         |
| 0x064  | PWM0GENB   | R/W   | 0x0000.0000 | PWM0 Generator B Control          | 481         |
| 0x068  | PWM0DBCTL  | R/W   | 0x0000.0000 | PWM0 Dead-Band Control            | 482         |
| 0x06C  | PWM0DBRISE | R/W   | 0x0000.0000 | PWM0 Dead-Band Rising-Edge Delay  | 483         |
| 0x070  | PWM0DBFALL | R/W   | 0x0000.0000 | PWM0 Dead-Band Falling-Edge-Delay | 484         |
| 0x080  | PWM1CTL    | R/W   | 0x0000.0000 | PWM1 Control                      | 470         |
| 0x084  | PWM1INTEN  | R/W   | 0x0000.0000 | PWM1 Interrupt and Trigger Enable | 471         |
| 0x088  | PWM1RIS    | RO    | 0x0000.0000 | PWM1 Raw Interrupt Status         | 473         |
| 0x08C  | PWM1ISC    | R/W1C | 0x0000.0000 | PWM1 Interrupt Status and Clear   | 474         |
| 0x090  | PWM1LOAD   | R/W   | 0x0000.0000 | PWM1 Load                         | 475         |
| 0x094  | PWM1COUNT  | RO    | 0x0000.0000 | PWM1 Counter                      | 476         |
| 0x098  | PWM1CMPA   | R/W   | 0x0000.0000 | PWM1 Compare A                    | 477         |
| 0x09C  | PWM1CMPB   | R/W   | 0x0000.0000 | PWM1 Compare B                    | 478         |
| 0x0A0  | PWM1GENA   | R/W   | 0x0000.0000 | PWM1 Generator A Control          | 479         |
| 0x0A4  | PWM1GENB   | R/W   | 0x0000.0000 | PWM1 Generator B Control          | 481         |
| 0x0A8  | PWM1DBCTL  | R/W   | 0x0000.0000 | PWM1 Dead-Band Control            | 482         |
| 0x0AC  | PWM1DBRISE | R/W   | 0x0000.0000 | PWM1 Dead-Band Rising-Edge Delay  | 483         |
| 0x0B0  | PWM1DBFALL | R/W   | 0x0000.0000 | PWM1 Dead-Band Falling-Edge-Delay | 484         |

### 18.5 Register Descriptions

The remainder of this section lists and describes the PWM registers, in numerical order by address offset.

### Register 1: PWM Master Control (PWMCTL), offset 0x000

This register provides master control over the PWM generation blocks.

PWM Master Control (PWMCTL)

#### Base 0x4002.8000 Offset 0x000 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 reserved RO Туре Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 15 14 13 12 11 9 8 7 6 5 4 3 2 1 0 reserved GlobalSyr GlobalSync GlobalSyncC Туре RO R/W R/W R/W Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bit/Field Name Туре Reset Description 31:3 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 2 Same as GlobalSync0 but for PWM generator 2. GlobalSync2 R/W 0 1 GlobalSync1 R/W 0 Same as GlobalSync0 but for PWM generator 1. 0 GlobalSync0 R/W 0 Setting this bit causes any queued update to a load or comparator register in PWM generator 0 to be applied the next time the corresponding counter becomes zero. This bit automatically clears when the updates have completed; it cannot be cleared by software.

### Register 2: PWM Time Base Sync (PWMSYNC), offset 0x004

This register provides a method to perform synchronization of the counters in the PWM generation blocks. Writing a bit in this register to 1 causes the specified counter to reset back to 0; writing multiple bits resets multiple counters simultaneously. The bits auto-clear after the reset has occurred; reading them back as zero indicates that the synchronization has completed.

#### PWM Time Base Sync (PWMSYNC)

Base 0x4002.8000 Offset 0x004 Type R/W, reset 0x0000.0000

|        | 31 | 30                                                                                                                          | 29    | 28 | 27       | 26 | 25                                                 | 24                                               | 23      | 22         | 21      | 20          | 19        | 18       | 17    | 16    |  |
|--------|----|-----------------------------------------------------------------------------------------------------------------------------|-------|----|----------|----|----------------------------------------------------|--------------------------------------------------|---------|------------|---------|-------------|-----------|----------|-------|-------|--|
|        |    | 1                                                                                                                           | 1     |    | <b> </b> |    | 1 1                                                | rese                                             | rved    |            |         | 1           |           | r        | r     |       |  |
| Туре   | RO | RO                                                                                                                          | RO    | RO | RO       | RO | RO                                                 | RO                                               | RO      | RO         | RO      | RO          | RO        | RO       | RO    | RO    |  |
| Reset  | 0  | 0                                                                                                                           | 0     | 0  | 0        | 0  | 0                                                  | 0                                                | 0       | 0          | 0       | 0           | 0         | 0        | 0     | 0     |  |
|        | 15 | 14                                                                                                                          | 13    | 12 | 11       | 10 | 9                                                  | 8                                                | 7       | 6          | 5       | 4           | 3         | 2        | 1     | 0     |  |
|        |    | 1                                                                                                                           | T     | 1  |          |    | reserved                                           |                                                  |         |            |         | 1           |           | Sync2    | Sync1 | Sync0 |  |
| Туре   | RO | RO                                                                                                                          | RO    | RO | RO       | RO | RO                                                 | RO                                               | RO      | RO         | RO      | RO          | RO        | R/W      | R/W   | R/W   |  |
| Reset  | 0  | 0                                                                                                                           | 0     | 0  | 0        | 0  | 0                                                  | 0                                                | 0       | 0          | 0       | 0           | 0         | 0        | 0     | 0     |  |
| Bit/Fi |    | Name     Type     Reset     Description       reserved     RO     0     Software should not rely on the value of a reserved |       |    |          |    |                                                    |                                                  |         |            |         |             |           |          |       |       |  |
| 31:    | 3  | reserved RO 0 Software shou<br>compatibility v<br>preserved acr                                                             |       |    |          |    |                                                    |                                                  |         | vith futur | e produ | ucts, the v | alue of   | a reserv | •     |       |  |
| 2      |    |                                                                                                                             | Sync2 |    | R/W      |    | 0                                                  | Performs a reset of the PWM generator 2 counter. |         |            |         |             |           |          |       |       |  |
| 1      |    |                                                                                                                             | Sync1 |    | R/W      |    | 0                                                  | Perfor                                           | ms a re | set of the | e PWM   | generato    | or 1 cour | nter.    |       |       |  |
| 0      |    |                                                                                                                             | Sync0 |    | R/W      |    | 0 Performs a reset of the PWM generator 0 counter. |                                                  |         |            |         |             |           |          |       |       |  |

### Register 3: PWM Output Enable (PWMENABLE), offset 0x008

This register provides a master control of which generated PWM signals are output to device pins. By disabling a PWM output, the generation process can continue (for example, when the time bases are synchronized) without driving PWM signals to the pins. When bits in this register are set, the corresponding PWM signal is passed through to the output stage, which is controlled by the **PWMINVERT** register. When bits are not set, the PWM signal is replaced by a zero value which is also passed to the output stage.

#### PWM Output Enable (PWMENABLE)

Base 0x4002.8000 Offset 0x008

Type R/W, reset 0x0000.0000

| 11            | ,       |         |          |         |         |         |         |                                                                                                                                                                                            |           |          |          |          |           |          |            |          |
|---------------|---------|---------|----------|---------|---------|---------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|----------|----------|-----------|----------|------------|----------|
|               | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24                                                                                                                                                                                         | 23        | 22       | 21       | 20       | 19        | 18       | 17         | 16       |
|               |         |         | 1        |         |         |         | 1       | rese                                                                                                                                                                                       | rved      |          | •        |          |           | •        | •          |          |
| Туре          | RO      | RO      | RO       | RO      | RO      | RO      | RO      | RO                                                                                                                                                                                         | RO        | RO       | RO       | RO       | RO        | RO       | RO         | RO       |
| Reset         | 0       | 0       | 0        | 0       | 0       | 0       | 0       | 0                                                                                                                                                                                          | 0         | 0        | 0        | 0        | 0         | 0        | 0          | 0        |
|               | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8                                                                                                                                                                                          | 7         | 6        | 5        | 4        | 3         | 2        | 1          | 0        |
|               |         |         |          |         | resei   | rved    |         |                                                                                                                                                                                            |           |          | PWM5En   | PWM4En   | PWM3En    | PWM2En   | PWM1En     | PWM0En   |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                    | RO<br>0   | RO<br>0  | R/W<br>0 | R/W<br>0 | R/W<br>0  | R/W<br>0 | R/W<br>0   | R/W<br>0 |
|               |         |         |          |         |         |         |         |                                                                                                                                                                                            |           |          |          |          |           |          |            |          |
| Bit/F         | ield    |         | Name     |         | Туре    |         | Reset   | Descr                                                                                                                                                                                      | iption    |          |          |          |           |          |            |          |
| 31            | :6      |         | reserved |         | RO      |         | 0       | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation. |           |          |          |          |           |          |            |          |
| 5             | 5       | I       | PWM5Er   | 1       | R/W     |         | 0       | When<br>pin.                                                                                                                                                                               | set, allo | ws the g | enerated | PWM5     | signal to | be pass  | sed to the | e device |
| 4             |         | I       | PWM4Er   | 1       | R/W     |         | 0       | When<br>pin.                                                                                                                                                                               | set, allo | ws the g | enerated | PWM4     | signal to | be pass  | sed to the | e device |
| 3             | 5       | ł       | PWM3Er   | 1       | R/W     |         | 0       | When<br>pin.                                                                                                                                                                               | set, allo | ws the g | enerated | PWM3     | signal to | be pass  | sed to the | e device |
| 2             | 2       | ł       | PWM2Er   | 1       | R/W     |         | 0       | When set, allows the generated PWM2 signal to be passed to the dev pin.                                                                                                                    |           |          |          |          |           |          |            | e device |
| 1             |         | I       | PWM1Er   | 1       | R/W     |         | 0       | When<br>pin.                                                                                                                                                                               | set, allo | ws the g | enerated | PWM1     | signal to | be pass  | sed to the | e device |
| 0             | )       | I       | PWM0Er   | 1       | R/W     |         | 0       | When set, allows the generated PWM0 signal to be passed to the device pin.                                                                                                                 |           |          |          |          |           |          |            |          |

### Register 4: PWM Output Inversion (PWMINVERT), offset 0x00C

This register provides a master control of the polarity of the PWM signals on the device pins. The PWM signals generated by the PWM generator are active High; they can optionally be made active Low via this register. Disabled PWM channels are also passed through the output inverter (if so configured) so that inactive channels maintain the correct polarity.

#### PWM Output Inversion (PWMINVERT)

Base 0x4002.8000 Offset 0x00C Type R/W, reset 0x0000.0000

|        | 31   | 30                                                                                                                                                                                                     | 29             | 28 | 27    | 26  | 25    | 24                                               | 23       | 22      | 21      | 20       | 19         | 18      | 17      | 16      |  |
|--------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----|-------|-----|-------|--------------------------------------------------|----------|---------|---------|----------|------------|---------|---------|---------|--|
|        |      | 1                                                                                                                                                                                                      | <del>г г</del> |    | r 1   |     | 1     | reser                                            | ved      | i I     |         | I        |            |         | 1       |         |  |
| Туре   | RO   | RO                                                                                                                                                                                                     | RO             | RO | RO    | RO  | RO    | RO                                               | RO       | RO      | RO      | RO       | RO         | RO      | RO      | RO      |  |
| Reset  | 0    | 0                                                                                                                                                                                                      | 0              | 0  | 0     | 0   | 0     | 0                                                | 0        | 0       | 0       | 0        | 0          | 0       | 0       | 0       |  |
|        | 15   | 14                                                                                                                                                                                                     | 13             | 12 | 11    | 10  | 9     | 8                                                | 7        | 6       | 5       | 4        | 3          | 2       | 1       | 0       |  |
|        |      | 1                                                                                                                                                                                                      |                |    | reser | ved | 1     |                                                  |          | 1       | PWM5Inv | PWM4Inv  | PWM3Inv    | PWM2Inv | PWM1Inv | PWM0Inv |  |
| Туре   | RO   | RO                                                                                                                                                                                                     | RO             | RO | RO    | RO  | RO    | RO                                               | RO       | RO      | R/W     | R/W      | R/W        | R/W     | R/W     | R/W     |  |
| Reset  | 0    | 0                                                                                                                                                                                                      | 0              | 0  | 0     | 0   | 0     | 0 0 0 0 0 0 0 0                                  |          |         |         |          |            |         |         |         |  |
| Bit/Fi | ield |                                                                                                                                                                                                        | Name           |    | Туре  | I   | Reset | •                                                |          |         |         |          |            |         |         |         |  |
| 31:    | 6    | reserved RO 0 Software should not rely on the value of a reserved bit. To pro<br>compatibility with future products, the value of a reserved bit so<br>preserved across a read-modify-write operation. |                |    |       |     |       |                                                  |          |         | •       |          |            |         |         |         |  |
| 5      |      | I                                                                                                                                                                                                      | ⊃WM5Inv        |    | R/W   |     | 0     | When                                             | set, the | generat | ed PWN  | 15 signa | l is inver | ted.    |         |         |  |
| 4      |      | I                                                                                                                                                                                                      | ⊃WM4Inv        |    | R/W   |     | 0     | When                                             | set, the | generat | ed PWN  | 14 signa | l is inver | ted.    |         |         |  |
| 3      |      | I                                                                                                                                                                                                      | PWM3Inv        |    | R/W   |     | 0     | When set, the generated PWM3 signal is inverted. |          |         |         |          |            |         |         |         |  |
| 2      |      | I                                                                                                                                                                                                      | PWM2Inv        |    | R/W   |     | 0     | When set, the generated PWM2 signal is inverted. |          |         |         |          |            |         |         |         |  |
| 1      |      | I                                                                                                                                                                                                      | ⊃WM1Inv        |    | R/W   |     | 0     | When                                             | set, the | generat | ed PWN  | 11 signa | l is inver | ted.    |         |         |  |
| 0      |      | I                                                                                                                                                                                                      | >WM0Inv        |    | R/W   |     | 0     | When set, the generated PWM0 signal is inverted. |          |         |         |          |            |         |         |         |  |

### Register 5: PWM Output Fault (PWMFAULT), offset 0x010

This register controls the behavior of the PWM outputs in the presence of fault conditions. Both the fault input and debug events are considered fault conditions. On a fault condition, each PWM signal can either be passed through unmodified or driven Low. For outputs that are configured for pass-through, the debug event handling on the corresponding PWM generator also determines if the PWM signal continues to be generated.

Fault condition control happens before the output inverter, so PWM signals driven Low on fault are inverted if the channel is configured for inversion (therefore, the pin is driven High on a fault condition).

| PWM C<br>Base 0x4<br>Offset 0x0<br>Type R/W | 002.8000<br>010     | )       | WMFAU    | JLT)    |         |         |         |                                                                      |                                      |            |          |                                            |           |          |           |          |
|---------------------------------------------|---------------------|---------|----------|---------|---------|---------|---------|----------------------------------------------------------------------|--------------------------------------|------------|----------|--------------------------------------------|-----------|----------|-----------|----------|
|                                             | 31                  | 30      | 29       | 28      | 27      | 26      | 25      | 24                                                                   | 23                                   | 22         | 21       | 20                                         | 19        | 18       | 17        | 16       |
|                                             |                     |         |          |         |         |         |         | rese                                                                 | rved                                 |            |          |                                            |           |          |           |          |
| Type<br>Reset                               | RO<br>0             | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                              | RO<br>0                              | RO<br>0    | RO<br>0  | RO<br>0                                    | RO<br>0   | RO<br>0  | RO<br>0   | RO<br>0  |
|                                             | 15                  | 14      | 13       | 12      | 11      | 10      | 9       | 8                                                                    | 7                                    | 6          | 5        | 4                                          | 3         | 2        | 1         | 0        |
|                                             |                     |         |          |         | reser   | ved     |         |                                                                      |                                      |            | Fault5   | Fault4                                     | Fault3    | Fault2   | Fault1    | Fault0   |
| Type<br>Reset                               | RO<br>0             | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                              | RO<br>0                              | RO<br>0    | R/W<br>0 | R/W<br>0                                   | R/W<br>0  | R/W<br>0 | R/W<br>0  | R/W<br>0 |
| Bit/F                                       | ield                | Name    |          |         | Туре    |         | Reset   | Descr                                                                | iption                               |            |          |                                            |           |          |           |          |
| 31:                                         | :6                  | I       | reserved |         | RO      |         | 0       | compa                                                                | are shou<br>atibility w<br>rved acro | ith futur/ | e produ  | cts, the v                                 | alue of   | a reserv | •         |          |
| 5                                           |                     |         | Fault5   |         | R/W     |         | 0       | When                                                                 | set, the                             | PWM5       | output s | ignal is o                                 | driven Lo | ow on a  | fault con | dition.  |
| 4                                           |                     |         | Fault4   |         | R/W     |         | 0       | When                                                                 | set, the                             | PWM4       | output s | ignal is c                                 | driven Lo | ow on a  | fault con | dition.  |
| 3                                           |                     |         | Fault3   |         | R/W     |         | 0       | When                                                                 | set, the                             | PWM3       | output s | ignal is c                                 | driven Lo | ow on a  | fault con | dition.  |
| 2                                           |                     |         | Fault2   |         | R/W     |         | 0       | When                                                                 | set, the                             | PWM2       | output s | ignal is c                                 | driven Lo | ow on a  | fault con | dition.  |
| 1                                           | 1 Fault1 R/W 0 When |         |          |         |         |         |         | When set, the PWM1 output signal is driven Low on a fault condition. |                                      |            |          |                                            |           |          |           |          |
| 0                                           |                     |         | Fault0   |         | R/W     |         | 0       | When                                                                 | set, the                             | PWM0       | output s | signal is driven Low on a fault condition. |           |          |           |          |

### **Register 6: PWM Interrupt Enable (PWMINTEN), offset 0x014**

This register controls the global interrupt generation capabilities of the PWM module. The events that can cause an interrupt are the fault input and the individual interrupts from the PWM generators.

#### PWM Interrupt Enable (PWMINTEN)

Base 0x4002.8000 Offset 0x014 Type R/W, reset 0x0000.0000

| 11    | ,    |                                                                                                                                                                       |          |    |      |    |          |                                                                             |             |                                       |         |            |           |           |         |          |
|-------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----|------|----|----------|-----------------------------------------------------------------------------|-------------|---------------------------------------|---------|------------|-----------|-----------|---------|----------|
| _     | 31   | 30                                                                                                                                                                    | 29       | 28 | 27   | 26 | 25       | 24                                                                          | 23          | 22                                    | 21      | 20         | 19        | 18        | 17      | 16       |
|       |      | 1                                                                                                                                                                     | 1 1      |    | · ·  |    |          | reserved                                                                    | 1           |                                       |         | 1          |           | 1         |         | IntFault |
| Туре  | RO   | RO                                                                                                                                                                    | RO       | RO | RO   | RO | RO       | RO                                                                          | RO          | RO                                    | RO      | RO         | RO        | RO        | RO      | R/W      |
| Reset | 0    | 0                                                                                                                                                                     | 0        | 0  | 0    | 0  | 0        | 0                                                                           | 0           | 0                                     | 0       | 0          | 0         | 0         | 0       | 0        |
|       | 15   | 14                                                                                                                                                                    | 13       | 12 | 11   | 10 | 9        | 8                                                                           | 7           | 6                                     | 5       | 4          | 3         | 2         | 1       | 0        |
|       |      | î                                                                                                                                                                     | r r      |    | r r  |    | reserved | Ì                                                                           |             | 1 1                                   |         | 1          | î<br>I    | IntPWM2   | IntPWM1 | IntPWM0  |
| Туре  | RO   | RO                                                                                                                                                                    | RO       | RO | RO   | RO | RO       | RO                                                                          | RO          | RO                                    | RO      | RO         | RO        | R/W       | R/W     | R/W      |
| Reset | 0    | 0                                                                                                                                                                     | 0        | 0  | 0    | 0  | 0        | 0                                                                           | 0           | 0                                     | 0       | 0          | 0         | 0         | 0       | 0        |
| Bit/F | ield |                                                                                                                                                                       | Name     |    | Туре |    | Reset    | Descri                                                                      | iption      |                                       |         |            |           |           |         |          |
| 31:   | 17   | reserved RO 0 Software should not rely on the value of a reserved I compatibility with future products, the value of a reserved across a read-modify-write operation. |          |    |      |    |          |                                                                             |             |                                       |         | a reserv   |           |           |         |          |
| 16    | 6    |                                                                                                                                                                       | IntFault |    | R/W  |    | 0        | When                                                                        | 1, an in    | terrupt o                             | ccurs w | hen the    | fault inp | ut is ass | erted.  |          |
| 15:   | :3   |                                                                                                                                                                       | reserved |    | RO   |    | 0        | compa                                                                       | atibility v | uld not re<br>vith futur<br>oss a rea | e produ | cts, the v | alue of   | a reserv  | •       |          |
| 2     |      |                                                                                                                                                                       | IntPWM2  |    | R/W  |    | 0        | When 1, an interrupt occurs when the PWM generator 2 block an interrupt.    |             |                                       |         |            |           |           |         |          |
| 1     |      |                                                                                                                                                                       | IntPWM1  |    | R/W  |    | 0        | When 1, an interrupt occurs when the PWM generator 1 block as an interrupt. |             |                                       |         |            |           |           |         |          |
| 0     |      |                                                                                                                                                                       | IntPWM0  |    | R/W  |    | 0        | When 1, an interrupt occurs when the PWM generator 0 block an interrupt.    |             |                                       |         |            |           |           |         | asserts  |

### Register 7: PWM Raw Interrupt Status (PWMRIS), offset 0x018

This register provides the current set of interrupt sources that are asserted, regardless of whether they cause an interrupt to be asserted to the controller. The fault interrupt is latched on detection; it must be cleared through the **PWM Interrupt Status and Clear (PWMISC)** register (see page 468). The PWM generator interrupts simply reflect the status of the PWM generators; they are cleared via the interrupt status register in the PWM generator blocks. Bits set to 1 indicate the events that are active; a zero bit indicates that the event in question is not active.

#### PWM Raw Interrupt Status (PWMRIS)

Base 0x4002.8000

Offset 0x018 Type RO, reset 0x0000.0000

| .,,                |    |    |                              |    |                  |    |                 |                                                                                                                                                                                               |                                    |                        |                   |                                                       |                  |                 |           |          |
|--------------------|----|----|------------------------------|----|------------------|----|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------|-------------------|-------------------------------------------------------|------------------|-----------------|-----------|----------|
|                    | 31 | 30 | 29                           | 28 | 27               | 26 | 25              | 24                                                                                                                                                                                            | 23                                 | 22                     | 21                | 20                                                    | 19               | 18              | 17        | 16       |
|                    |    | 1  |                              | 1  | · ·              |    | ,               | reserved                                                                                                                                                                                      |                                    | 1                      | 1                 |                                                       |                  | 1               |           | IntFault |
| Туре               | RO | RO | RO                           | RO | RO               | RO | RO              | RO                                                                                                                                                                                            | RO                                 | RO                     | RO                | RO                                                    | RO               | RO              | RO        | RO       |
| Reset              | 0  | 0  | 0                            | 0  | 0                | 0  | 0               | 0                                                                                                                                                                                             | 0                                  | 0                      | 0                 | 0                                                     | 0                | 0               | 0         | 0        |
|                    | 15 | 14 | 13                           | 12 | 11               | 10 | 9               | 8                                                                                                                                                                                             | 7                                  | 6                      | 5                 | 4                                                     | 3                | 2               | 1         | 0        |
|                    |    | 1  | •                            | 1  |                  |    | reserved        |                                                                                                                                                                                               |                                    | 1                      | 1                 |                                                       |                  | IntPWM2         | IntPWM1   | IntPWM0  |
| Туре               | RO | RO | RO                           | RO | RO               | RO | RO              | RO                                                                                                                                                                                            | RO                                 | RO                     | RO                | RO                                                    | RO               | RO              | RO        | RO       |
| Reset              | 0  | 0  | 0                            | 0  | 0                | 0  | 0               | 0                                                                                                                                                                                             | 0                                  | 0                      | 0                 | 0                                                     | 0                | 0               | 0         | 0        |
| Bit/F<br>31:<br>16 | 17 |    | Name<br>reservec<br>IntFault |    | Type<br>RO<br>RO |    | Reset<br>0<br>0 | compa<br>preser                                                                                                                                                                               | are shou<br>atibility v<br>ved acr | vith futur<br>oss a re | e produ<br>ad-mod | ne value o<br>ucts, the v<br>ify-write o<br>as been a | alue of operatio | a reservo<br>n. | •         |          |
| 15                 | :3 |    | reserved                     | i  | RO               |    | 0               | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |                                    |                        |                   |                                                       |                  |                 |           |          |
| 2                  |    |    | IntPWM2                      | 2  | RO               |    | 0               | Indicates that the PWM generator 2 block is asserting its interru                                                                                                                             |                                    |                        |                   |                                                       |                  |                 | upt.      |          |
| 1                  |    |    | IntPWM                       | 1  | RO               |    | 0               | Indica                                                                                                                                                                                        | tes that                           | the PWI                | M gene            | rator 1 blo                                           | ock is a         | sserting i      | ts interr | upt.     |
| 0                  |    |    | IntPWM                       | D  | RO               |    | 0               | Indicates that the PWM generator 0 block is asserting its interrupt.                                                                                                                          |                                    |                        |                   |                                                       |                  |                 |           |          |

### **Register 8: PWM Interrupt Status and Clear (PWMISC), offset 0x01C**

This register provides a summary of the interrupt status of the individual PWM generator blocks. A bit set to 1 indicates that the corresponding generator block is asserting an interrupt. The individual interrupt status registers in each block must be consulted to determine the reason for the interrupt, and used to clear the interrupt. For the fault interrupt, a write of 1 to that bit position clears the latched interrupt status.

PWM Interrupt Status and Clear (PWMISC)

Offset 0x01C

Type R/W1C, reset 0x0000.0000

| _              | 31 | 30 | 29            | 28 | 27              | 26                                                                                                                                                                                                                                                                         | 25       | 24       | 23          | 22                                    | 21       | 20        | 19        | 18        | 17       | 16       |
|----------------|----|----|---------------|----|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|-------------|---------------------------------------|----------|-----------|-----------|-----------|----------|----------|
| ſ              |    | 1  | 1             | 1  | · · ·           |                                                                                                                                                                                                                                                                            |          | reserved |             | 1                                     |          |           |           | 1         | 1        | IntFault |
| Туре           | RO | RO | RO            | RO | RO              | RO                                                                                                                                                                                                                                                                         | RO       | RO       | RO          | RO                                    | RO       | RO        | RO        | RO        | RO       | R/W1C    |
| Reset          | 0  | 0  | 0             | 0  | 0               | 0                                                                                                                                                                                                                                                                          | 0        | 0        | 0           | 0                                     | 0        | 0         | 0         | 0         | 0        | 0        |
| _              | 15 | 14 | 13            | 12 | 11              | 10                                                                                                                                                                                                                                                                         | 9        | 8        | 7           | 6                                     | 5        | 4         | 3         | 2         | 1        | 0        |
|                |    | 1  | •             |    |                 |                                                                                                                                                                                                                                                                            | reserved |          |             |                                       |          |           |           | IntPWM2   | IntPWM1  | IntPWM0  |
| Туре           | RO | RO | RO            | RO | RO              | RO                                                                                                                                                                                                                                                                         | RO       | RO       | RO          | RO                                    | RO       | RO        | RO        | RO        | RO       | RO       |
| Reset          | 0  | 0  | 0             | 0  | 0               | 0                                                                                                                                                                                                                                                                          | 0        | 0        | 0           | 0                                     | 0        | 0         | 0         | 0         | 0        | 0        |
| Bit/Fi<br>31:1 | 17 |    | reserved RO 0 |    | Reset<br>0<br>0 | Description<br>Software should not rely on the value of a reserved bit. To provide<br>compatibility with future products, the value of a reserved bit should<br>preserved across a read-modify-write operation.<br>Indicates if the fault input is asserting an interrupt. |          |          |             |                                       |          |           |           |           |          |          |
| 15:            | 3  |    | reserved      | l  | RO              |                                                                                                                                                                                                                                                                            | 0        | compa    | atibility v | uld not re<br>vith futur<br>oss a rea | e produc | ts, the v | alue of   | a reserv  | •        |          |
| 2              |    | I  | IntPWM2       | 2  | RO              |                                                                                                                                                                                                                                                                            | 0        | Indica   | tes if the  | e PWM g                               | jenerato | r 2 blocł | c is asse | erting an | interrup | t.       |
| 1              |    | I  | IntPWM1       |    | RO              |                                                                                                                                                                                                                                                                            | 0        | Indica   | tes if the  | e PWM g                               | jenerato | r 1 block | c is asse | erting an | interrup | t.       |
| 0              |    | I  | IntPWMC       | )  | RO              |                                                                                                                                                                                                                                                                            | 0        | Indica   | tes if the  | e PWM g                               | jenerato | r 0 blocł | c is asse | erting an | interrup | t.       |

Base 0x4002.8000

### Register 9: PWM Status (PWMSTATUS), offset 0x020

This register provides the status of the Fault input signal.

PWM Status (PWMSTATUS)

#### Base 0x4002.8000 Offset 0x020 Type RO, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 reserved RO Туре Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 10 9 6 14 13 12 11 8 7 5 4 3 2 1 0 Fault reserved Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bit/Field Reset Description Name Туре 31:1 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 0 Fault RO 0 When set to 1, indicates the fault input is asserted.

# Register 10: PWM0 Control (PWM0CTL), offset 0x040 Register 11: PWM1 Control (PWM1CTL), offset 0x080 Register 12: PWM2 Control (PWM2CTL), offset 0x0C0

The PWM0 block produces the PWM0 and PWM1 outputs, the PWM1 block produces the PWM2 and PWM3 outputs, and the PWM2 block produces the PWM4 and PWM5 outputs.

PWM0 Control (PWM0CTL)

Base 0x4002.8000 Offset 0x040 Type R/W, reset 0x0000.0000

|               | 31                                          | 30            | 29       | 28      | 27      | 26                            | 25                                  | 24                                                                                                                                                                                        | 23                                                                | 22                              | 21                                                           | 20                                  | 19                   | 18                    | 17                    | 16              |
|---------------|---------------------------------------------|---------------|----------|---------|---------|-------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------|-------------------------------------|----------------------|-----------------------|-----------------------|-----------------|
|               |                                             |               | 1 1      |         |         |                               | 1                                   | rese                                                                                                                                                                                      | rved                                                              |                                 | 1                                                            |                                     |                      |                       |                       | •               |
| Type<br>Reset | RO<br>0                                     | RO<br>0       | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0                       | RO<br>0                             | RO<br>0                                                                                                                                                                                   | RO<br>0                                                           | RO<br>0                         | RO<br>0                                                      | RO<br>0                             | RO<br>0              | RO<br>0               | RO<br>0               | RO<br>0         |
|               | 15                                          | 14            | 13       | 12      | 11      | 10                            | 9                                   | 8                                                                                                                                                                                         | 7                                                                 | 6                               | 5                                                            | 4                                   | 3                    | 2                     | 1                     | 0               |
|               |                                             |               | 1 1      |         | resei   | rved                          | 1                                   | 1                                                                                                                                                                                         |                                                                   |                                 | CmpBUpd                                                      | CmpAUpd                             | LoadUpd              | Debug                 | Mode                  | Enable          |
| Type<br>Reset | RO<br>0                                     | RO<br>0       | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0                       | RO<br>0                             | RO<br>0                                                                                                                                                                                   | RO<br>0                                                           | RO<br>0                         | R/W<br>0                                                     | R/W<br>0                            | R/W<br>0             | R/W<br>0              | R/W<br>0              | R/W<br>0        |
| Bit/Fi        | ield                                        |               | Name     |         | Туре    |                               | Reset                               | Descr                                                                                                                                                                                     | iption                                                            |                                 |                                                              |                                     |                      |                       |                       |                 |
| 31:           | 6                                           | r             | reserved |         | RO      |                               | 0                                   | compa                                                                                                                                                                                     | atibility v                                                       | vith futu                       | ely on the<br>re produc<br>ead-modi                          | cts, the v                          | alue of a            | a reserve             | •                     |                 |
| 5             |                                             | С             | mpBUp    | ł       | R/W     |                               | 0                                   | Same                                                                                                                                                                                      | as Cmp                                                            | AUpd <b>b</b> ı                 | ut for the                                                   | compar                              | ator B re            | gister.               |                       |                 |
| 4             | 4 CmpAUpd R/W 0 Th<br>reg<br>If<br>is<br>Ma |               |          |         |         | registe<br>If 1, u<br>is 0 af | er are re<br>pdates to<br>ter a syr | flected<br>o the re<br>nchrono                                                                                                                                                            | the com<br>to the co<br>gister are<br>us updat<br><b>MCTL)</b> re | mparato<br>delaye<br>e has be   | r the nex<br>d until th<br>een requ                          | kt time th<br>e next ti<br>ested th | ne count<br>me the   | er is 0.<br>counter   |                       |                 |
| 3             |                                             | LoadUpd R/W 0 |          |         |         |                               | 0                                   | reflect<br>the re<br>synch                                                                                                                                                                | ted to the gister ar                                              | e counte<br>e delay<br>update l | the load<br>er the ne<br>ed until th<br>nas been<br>egister. | xt time t<br>ne next f              | he count<br>time the | er is 0. I<br>counter | f 1, upd<br>is 0 afte | ates to<br>er a |
| 2             |                                             |               | Debug    |         | R/W     |                               | 0                                   | runnir                                                                                                                                                                                    | ng when                                                           | it next r                       | ounter in<br>reaches (<br>e. If 1, the                       | ), and co                           | ontinues             | running               |                       | •               |
| 1             |                                             |               | Mode     |         | R/W     |                               | 0                                   | The mode for the counter. If 0, the counter coun value to 0 and then wraps back to the load value If 1, the counter counts up from 0 to the load value then repeats (Count-Up/Down mode). |                                                                   |                                 |                                                              |                                     |                      |                       | nt-Down               | mode).          |
| 0             |                                             |               | Enable   |         | R/W     |                               | 0                                   |                                                                                                                                                                                           | entire bl                                                         | ock is<br>es PWM                |                                                              |                                     |                      |                       |                       |                 |

## Register 13: PWM0 Interrupt and Trigger Enable (PWM0INTEN), offset 0x044 Register 14: PWM1 Interrupt and Trigger Enable (PWM1INTEN), offset 0x084 Register 15: PWM2 Interrupt and Trigger Enable (PWM2INTEN), offset 0x0C4

These registers control the interrupt and ADC trigger generation capabilities of the PWM generators (**PWM0INTEN** controls the PWM generator 0 block, and so on). The events that can cause an interrupt or an ADC trigger are:

- The counter being equal to the load register
- The counter being equal to zero
- The counter being equal to the comparator A register while counting up
- The counter being equal to the comparator A register while counting down
- The counter being equal to the comparator B register while counting up
- The counter being equal to the comparator B register while counting down

Any combination of these events can generate either an interrupt or an ADC trigger, though no determination can be made as to the actual event that caused an ADC trigger if more than one is specified.

| ()<br>Base 0x4<br>Offset<br>Type R/W                                                                                                   |         |         | 000      |          |          |          |            |                        |             |           |                                     |            |          |          |            |            |
|----------------------------------------------------------------------------------------------------------------------------------------|---------|---------|----------|----------|----------|----------|------------|------------------------|-------------|-----------|-------------------------------------|------------|----------|----------|------------|------------|
|                                                                                                                                        | 31      | 30      | 29       | 28       | 27       | 26       | 25         | 24                     | 23          | 22        | 21                                  | 20         | 19       | 18       | 17         | 16         |
|                                                                                                                                        |         | 1       | 1        | 1        |          |          | 1          | reser                  | rved        |           |                                     |            |          |          |            |            |
| Type<br>Reset                                                                                                                          | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0    | RO<br>0                | RO<br>0     | RO<br>0   | RO<br>0                             | RO<br>0    | RO<br>0  | RO<br>0  | RO<br>0    | RO<br>0    |
|                                                                                                                                        | 15      | 14      | 13       | 12       | 11       | 10       | 9          | 8                      | 7           | 6         | 5                                   | 4          | 3        | 2        | 1          | 0          |
|                                                                                                                                        | rese    | erved   | TrCmpBD  | TrCmpBU  | TrCmpAD  | TrCmpAL  | JTrCntLoad | TrCntZero              | rese        | rved      | IntCmpBD                            | IntCmpBU   | IntCmpAD | IntCmpAU | IntCntLoad | IntCntZero |
| Type<br>Reset                                                                                                                          | RO<br>0 | RO<br>0 | R/W      | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W        | R/W<br>0               | RO<br>0     | RO<br>0   | R/W<br>0                            | R/W<br>0   | R/W<br>0 | R/W<br>0 | R/W<br>0   | R/W<br>0   |
|                                                                                                                                        |         |         |          |          |          |          |            |                        |             |           |                                     |            |          |          |            |            |
| Bit/Field Name Type Reset Description                                                                                                  |         |         |          |          |          |          |            |                        |             |           |                                     |            |          |          |            |            |
| 31:                                                                                                                                    | 14      |         | reserved |          | RO       |          | 0          | compa                  | atibility w | ith futu  | ely on the<br>re produc<br>ad-modif | cts, the v | alue of  | a reserv |            |            |
| 13       TrCmpBD       R/W       0       When 1, a trigger pulse is output when the cou comparator B value and the counter is counting |         |         |          |          |          |          |            |                        |             | tches the | 9                                   |            |          |          |            |            |
| 12 TrCmpBU R/W 0                                                                                                                       |         |         |          |          |          |          | •••        | e is outp<br>nd the co |             |           |                                     | tches the  | 9        |          |            |            |
| 11 TrCmpAD R/W 0 When 1, a comparator                                                                                                  |         |         |          |          | •••      |          |            |                        |             | tches the | Э                                   |            |          |          |            |            |
| 10 TrCmpAU R/W 0 When 1, a comparato                                                                                                   |         |         |          |          |          |          | •••        |                        |             |           |                                     | tches the  | Э        |          |            |            |

Δ

| Bit/Field | Name       | Туре | Reset | Description                                                                                                                                                                                   |
|-----------|------------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9         | TrCntLoad  | R/W  | 0     | When 1, a trigger pulse is output when the counter matches the <b>PWMnLOAD</b> register.                                                                                                      |
| 8         | TrCntZero  | R/W  | 0     | When 1, a trigger pulse is output when the counter is 0.                                                                                                                                      |
| 7:6       | reserved   | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |
| 5         | IntCmpBD   | R/W  | 0     | When 1, an interrupt occurs when the counter matches the comparator B value and the counter is counting down.                                                                                 |
| 4         | IntCmpBU   | R/W  | 0     | When 1, an interrupt occurs when the counter matches the comparator B value and the counter is counting up.                                                                                   |
| 3         | IntCmpAD   | R/W  | 0     | When 1, an interrupt occurs when the counter matches the comparator A value and the counter is counting down.                                                                                 |
| 2         | IntCmpAU   | R/W  | 0     | When 1, an interrupt occurs when the counter matches the comparator A value and the counter is counting up.                                                                                   |
| 1         | IntCntLoad | R/W  | 0     | When 1, an interrupt occurs when the counter matches the <b>PWMnLOAD</b> register.                                                                                                            |
| 0         | IntCntZero | R/W  | 0     | When 1, an interrupt occurs when the counter is 0.                                                                                                                                            |

## Register 16: PWM0 Raw Interrupt Status (PWM0RIS), offset 0x048 Register 17: PWM1 Raw Interrupt Status (PWM1RIS), offset 0x088 Register 18: PWM2 Raw Interrupt Status (PWM2RIS), offset 0x0C8

These registers provide the current set of interrupt sources that are asserted, regardless of whether they cause an interrupt to be asserted to the controller (**PWM0RIS** controls the PWM generator 0 block, and so on). Bits set to 1 indicate the latched events that have occurred; a 0 bit indicates that the event in question has not occurred.

PWM0 Raw Interrupt Status (PWM0RIS)

Base 0x4002.8000

Offset 0x048 Type RO, reset 0x0000.0000

| Type ite,      | 10301 07                                                    | 0000.000      | 0         |    |           |     |            |                  |                     |            |                                    |            |                 |          |            |            |
|----------------|-------------------------------------------------------------|---------------|-----------|----|-----------|-----|------------|------------------|---------------------|------------|------------------------------------|------------|-----------------|----------|------------|------------|
|                | 31                                                          | 30            | 29        | 28 | 27        | 26  | 25         | 24               | 23                  | 22         | 21                                 | 20         | 19              | 18       | 17         | 16         |
|                |                                                             | 1             |           |    | r r<br>1  |     | Î          | rese             | rved                | Î          | î                                  | Ì          | 1               |          | 1          | 1          |
| Туре           | RO                                                          | RO            | RO        | RO | RO        | RO  | RO         | RO               | RO                  | RO         | RO                                 | RO         | RO              | RO       | RO         | RO         |
| Reset          | 0                                                           | 0             | 0         | 0  | 0         | 0   | 0          | 0                | 0                   | 0          | 0                                  | 0          | 0               | 0        | 0          | 0          |
|                | 15                                                          | 14            | 13        | 12 | 11        | 10  | 9          | 8                | 7                   | 6          | 5                                  | 4          | 3               | 2        | 1          | 0          |
|                |                                                             |               |           |    | reser     | ved | I          | •                |                     | 1          | IntCmpBD                           |            | IntCmpAD        | IntCmpAU | IntCntLoad | IntCntZero |
| Туре           | RO                                                          | RO            | RO        | RO | RO        | RO  | RO         | RO               | RO                  | RO         | RO                                 | RO         | RO              | RO       | RO         | RO         |
| Reset<br>Bit/F | 0                                                           | 0             | 0<br>Name | 0  | 0<br>Type | 0   | 0<br>Reset | 0<br>Descr       | 0                   | 0          | 0                                  | 0          | 0               | 0        | 0          | 0          |
| DIVE           | leiu                                                        |               | Name      |    |           |     |            |                  |                     |            |                                    |            |                 |          |            |            |
| 31:6           |                                                             | r             | reserved  |    | RO        |     | 0          | compa            | atibility v         | vith futur | ely on the<br>re produe<br>ad-modi | cts, the v | value of        | a reserv | •          |            |
| 5              |                                                             | In            | ntCmpBE   | )  | RO        |     | 0          |                  | tes that<br>ng dowr |            | nter has                           | matcheo    | d the cor       | mparato  | r B value  | e while    |
| 4              |                                                             | Ir            | ntCmpBL   | J  | RO        |     | 0          | Indica<br>counti |                     | the cour   | nter has                           | matcheo    | d the cor       | mparato  | r B value  | e while    |
| 3              | 3 IntCmpAD                                                  |               |           |    | RO        |     | 0          |                  | tes that<br>ng dowr |            | nter has                           | matcheo    | d the cor       | nparato  | r A value  | e while    |
| 2              |                                                             | IntCmpAU RO 0 |           |    |           |     | 0          | Indica<br>counti |                     | the cour   | nter has                           | matcheo    | d the cor       | mparato  | r A value  | e while    |
| 1              |                                                             | In            | tCntLoa   | d  | RO        |     | 0          | Indica           | tes that            | the cour   | nter has                           | matcheo    | d the <b>PW</b> | /MnLOA   | D regis    | ter.       |
| 0              | 0 IntCntZero RO 0 Indicates that the counter has matched 0. |               |           |    |           |     |            |                  |                     |            |                                    |            |                 |          |            |            |

## Register 19: PWM0 Interrupt Status and Clear (PWM0ISC), offset 0x04C Register 20: PWM1 Interrupt Status and Clear (PWM1ISC), offset 0x08C Register 21: PWM2 Interrupt Status and Clear (PWM2ISC), offset 0x0CC

These registers provide the current set of interrupt sources that are asserted to the controller (**PWM0ISC** controls the PWM generator 0 block, and so on). Bits set to 1 indicate the latched events that have occurred; a 0 bit indicates that the event in question has not occurred. These are R/W1C registers; writing a 1 to a bit position clears the corresponding interrupt reason.

PWM0 Interrupt Status and Clear (PWM0ISC)

Base 0x4002.8000

| Offset 0x04C |                   |
|--------------|-------------------|
| Type R/W1C,  | reset 0x0000.0000 |

| Type R/W | ype R/WTC, reset 0x0000.0000<br>31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 |                  |          |       |       |                   |       |                     |             |           |                                  |            |                 |           |            |            |
|----------|---------------------------------------------------------------------------------|------------------|----------|-------|-------|-------------------|-------|---------------------|-------------|-----------|----------------------------------|------------|-----------------|-----------|------------|------------|
|          | 31                                                                              | 30               | 29       | 28    | 27    | 26                | 25    | 24                  | 23          | 22        | 21                               | 20         | 19              | 18        | 17         | 16         |
|          |                                                                                 | 1                | 1        |       | · ·   |                   | 1     | rese                | rved        |           | 1                                |            | 1               |           |            |            |
| Туре     | RO                                                                              | RO               | RO       | RO    | RO    | RO                | RO    | RO                  | RO          | RO        | RO                               | RO         | RO              | RO        | RO         | RO         |
| Reset    | 0                                                                               | 0                | 0        | 0     | 0     | 0                 | 0     | 0                   | 0           | 0         | 0                                | 0          | 0               | 0         | 0          | 0          |
|          | 15                                                                              | 14               | 13       | 12    | 11    | 10                | 9     | 8                   | 7           | 6         | 5                                | 4          | 3               | 2         | 1          | 0          |
|          |                                                                                 |                  | •        | •     | reser | ved               | •     |                     |             | •         | IntCmpBD                         | IntCmpBU   | IntCmpAD        | IntCmpAU  | IntCntLoad | IntCntZero |
| Туре     | RO                                                                              | RO               | RO       | RO    | RO    | RO                | RO    | RO                  | RO          | RO        | R/W1C                            | R/W1C      | R/W1C           | R/W1C     | R/W1C      | R/W1C      |
| Reset    | 0                                                                               | 0                | 0        | 0     | 0     | 0                 | 0     | 0                   | 0           | 0         | 0                                | 0          | 0               | 0         | 0          | 0          |
| Bit/F    | ield                                                                            |                  | Name     |       | Туре  |                   | Reset | Descri              | ption       |           |                                  |            |                 |           |            |            |
| 31:      | :6                                                                              |                  | reserved |       | RO    |                   | 0     | compa               | atibility v | vith futu | ely on th<br>re produ<br>ad-modi | cts, the v | value of        | a reserv  | •          |            |
| 5        | 5 IntCmpBD                                                                      |                  | C        | R/W1C |       | 0                 |       | tes that<br>ng dowr |             | nter has  | matcheo                          | d the cor  | mparato         | r B value | e while    |            |
| 4        |                                                                                 | I                | ntCmpBl  | J     | R/W1C |                   | 0     | Indicat<br>counti   |             | the cou   | nter has                         | matcheo    | d the cor       | mparato   | r B value  | e while    |
| 3        | 3 IntCmpAD                                                                      |                  | D        | R/W1C |       | 0                 |       | tes that<br>ng dowr |             | nter has  | matcheo                          | d the cor  | mparato         | r A value | e while    |            |
| 2        |                                                                                 | IntCmpAU R/W1C 0 |          |       | 0     | Indicat<br>counti |       | the cou             | nter has    | matcheo   | d the cor                        | mparato    | r A value       | e while   |            |            |
| 1        |                                                                                 | li               | ntCntLoa | d     | R/W1C |                   | 0     | Indica              | tes that    | the cou   | nter has                         | matche     | d the <b>PV</b> | MnLOA     | D regist   | ter.       |
| 0        | 0 IntCntZero R/W1C 0                                                            |                  |          |       |       |                   |       | Indica              | tes that    | the cou   | nter has                         | matche     | d 0.            |           |            |            |

# Register 22: PWM0 Load (PWM0LOAD), offset 0x050 Register 23: PWM1 Load (PWM1LOAD), offset 0x090 Register 24: PWM2 Load (PWM2LOAD), offset 0x0D0

These registers contain the load value for the PWM counter (**PWM0LOAD** controls the PWM generator 0 block, and so on). Based on the counter mode, either this value is loaded into the counter after it reaches zero, or it is the limit of up-counting after which the counter decrements back to zero. If the Load Value Update mode is immediate, this value is used the next time the counter reaches zero; if the mode is synchronous, it is used the next time the counter reaches zero after a synchronous update has been requested through the **PWM Master Control (PWMCTL)** register (see page 461). If this register is re-written before the actual update occurs, the previous value is never used and is lost.

#### PWM0 Load (PWM0LOAD)

Base 0x4002.8000

Offset 0x050 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 reserved RO Туре Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 11 10 9 8 7 6 2 0 14 13 12 5 4 3 1 Load R/W Туре Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **Bit/Field** Name Туре Reset Description 31:16 RO 0 Software should not rely on the value of a reserved bit. To provide reserved compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 15:0 Load R/W 0 The counter load value.

# Register 25: PWM0 Counter (PWM0COUNT), offset 0x054 Register 26: PWM1 Counter (PWM1COUNT), offset 0x094 Register 27: PWM2 Counter (PWM2COUNT), offset 0x0D4

These registers contain the current value of the PWM counter (**PWM0COUNT** is the value of the PWM generator 0 block, and so on). When this value matches the load register, a pulse is output; this can drive the generation of a PWM signal (via the **PWMnGENA/PWMnGENB** registers, see page 479 and page 481) or drive an interrupt or ADC trigger (via the **PWMnINTEN** register, see page 471). A pulse with the same capabilities is generated when this value is zero.

#### PWM0 Counter (PWM0COUNT)

Base 0x4002.8000

Offset 0x054 Type RO, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 20 18 17 21 19 16 reserved Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Count RO Туре RO RO RO RO 0 0 0 0 0 0 0 0 0 0 0 Reset 0 0 0 0 0 **Bit/Field** Name Туре Reset Description 31:16 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 15:0 Count RO 0 The current value of the counter.

# Register 28: PWM0 Compare A (PWM0CMPA), offset 0x058 Register 29: PWM1 Compare A (PWM1CMPA), offset 0x098 Register 30: PWM2 Compare A (PWM2CMPA), offset 0x0D8

These registers contain a value to be compared against the counter (**PWM0CMPA** controls the PWM generator 0 block, and so on). When this value matches the counter, a pulse is output; this can drive the generation of a PWM signal (via the **PWMnGENA/PWMnGENB** registers) or drive an interrupt or ADC trigger (via the **PWMnINTEN** register). If the value of this register is greater than the **PWMnLOAD** register (see page 475), then no pulse is ever output.

If the comparator A update mode is immediate (based on the CmpAUpd bit in the **PWMnCTL** register), then this 16-bit CompA value is used the next time the counter reaches zero. If the update mode is synchronous, it is used the next time the counter reaches zero after a synchronous update has been requested through the **PWM Master Control (PWMCTL)** register (see page 461). If this register is rewritten before the actual update occurs, the previous value is never used and is lost.

#### PWM0 Compare A (PWM0CMPA)

Base 0x4002.8000 Offset 0x058 Type R/W, reset 0x0000.0000

|       | 31   | 30  | 29       | 28  | 27       | 26  | 25    | 24    | 23          | 22         | 21       | 20                                    | 19       | 18       | 17  | 16  |  |  |
|-------|------|-----|----------|-----|----------|-----|-------|-------|-------------|------------|----------|---------------------------------------|----------|----------|-----|-----|--|--|
|       |      |     |          |     |          |     | •     | rese  | erved       |            |          | •                                     |          | •        | •   |     |  |  |
| Туре  | RO   | RO  | RO       | RO  | RO       | RO  | RO    | RO    | RO          | RO         | RO       | RO                                    | RO       | RO       | RO  | RO  |  |  |
| Reset | 0    | 0   | 0        | 0   | 0        | 0   | 0     | 0     | 0           | 0          | 0        | 0                                     | 0        | 0        | 0   | 0   |  |  |
|       | 15   | 14  | 13       | 12  | 11       | 10  | 9     | 8     | 7           | 6          | 5        | 4                                     | 3        | 2        | 1   | 0   |  |  |
|       |      | T   | I        | I   | г т<br>1 |     | 1     | CompA |             |            |          |                                       |          |          |     |     |  |  |
| Туре  | R/W  | R/W | R/W      | R/W | R/W      | R/W | R/W   | R/W   | R/W         | R/W        | R/W      | R/W                                   | R/W      | R/W      | R/W | R/W |  |  |
| Reset | 0    | 0   | 0        | 0   | 0        | 0   | 0     | 0     | 0           | 0          | 0        | 0                                     | 0        | 0        | 0   | 0   |  |  |
| Bit/F | ield |     | Name     |     | Туре     | F   | Reset | Descr | intion      |            |          |                                       |          |          |     |     |  |  |
| DIVI  | ieiu |     | Name     |     | туре     | '   | 10301 | Desci | iption      |            |          |                                       |          |          |     |     |  |  |
| 31:   | 16   |     | reserved | l   | RO       |     | 0     | compa | atibility v | vith futur | e produ  | e value o<br>cts, the v<br>fy-write o | value of | a reserv | •   |     |  |  |
| 15:0  |      |     | CompA    |     | R/W      |     | 0     | The v | alue to b   | e comp     | ared aga | ainst the                             | counter  |          |     |     |  |  |

# Register 31: PWM0 Compare B (PWM0CMPB), offset 0x05C Register 32: PWM1 Compare B (PWM1CMPB), offset 0x09C Register 33: PWM2 Compare B (PWM2CMPB), offset 0x0DC

These registers contain a value to be compared against the counter (**PWM0CMPB** controls the PWM generator 0 block, and so on). When this value matches the counter, a pulse is output; this can drive the generation of a PWM signal (via the **PWMnGENA/PWMnGENB** registers) or drive an interrupt or ADC trigger (via the **PWMnINTEN** register). If the value of this register is greater than the **PWMnLOAD** register, then no pulse is ever output.

IF the comparator B update mode is immediate (based on the CmpBUpd bit in the **PWMnCTL** register), then this 16-bit CompB value is used the next time the counter reaches zero. If the update mode is synchronous, it is used the next time the counter reaches zero after a synchronous update has been requested through the **PWM Master Control (PWMCTL)** register (see page 461). If this register is rewritten before the actual update occurs, the previous value is never used and is lost.

#### PWM0 Compare B (PWM0CMPB)

Base 0x4002.8000 Offset 0x05C Type R/W, reset 0x0000.0000

|       | 31   | 30  | 29       | 28  | 27   | 26    | 25    | 24    | 23          | 22         | 21       | 20                                    | 19       | 18       | 17  | 16               |
|-------|------|-----|----------|-----|------|-------|-------|-------|-------------|------------|----------|---------------------------------------|----------|----------|-----|------------------|
|       |      |     | •        | •   |      |       |       | rese  | rved        |            |          |                                       |          | •        | 1   | <b>'</b>         |
| Туре  | RO   | RO  | RO       | RO  | RO   | RO    | RO    | RO    | RO          | RO         | RO       | RO                                    | RO       | RO       | RO  | RO               |
| Reset | 0    | 0   | 0        | 0   | 0    | 0     | 0     | 0     | 0           | 0          | 0        | 0                                     | 0        | 0        | 0   | 0                |
|       | 15   | 14  | 13       | 12  | 11   | 10    | 9     | 8     | 7           | 6          | 5        | 4                                     | 3        | 2        | 1   | 0                |
|       |      | 1   | 1        | 1   |      | CompB |       |       |             |            |          |                                       |          |          |     |                  |
| Туре  | R/W  | R/W | R/W      | R/W | R/W  | R/W   | R/W   | R/W   | R/W         | R/W        | R/W      | R/W                                   | R/W      | R/W      | R/W | R/W              |
| Reset | 0    | 0   | 0        | 0   | 0    | 0     | 0     | 0     | 0           | 0          | 0        | 0                                     | 0        | 0        | 0   | 0                |
| Bit/F | ield |     | Name     |     | Туре | F     | Reset | Descr | iption      |            |          |                                       |          |          |     |                  |
| 31:   | 16   |     | reserved | I   | RO   |       | 0     | compa | atibility v | vith futur | e produ  | e value o<br>cts, the v<br>fy-write o | alue of  | a reserv | •   | vide<br>hould be |
| 15    | :0   |     | CompB    |     | R/W  |       | 0     | The v | alue to b   | e comp     | ared aga | ainst the                             | counter. | -        |     |                  |

# Register 34: PWM0 Generator A Control (PWM0GENA), offset 0x060 Register 35: PWM1 Generator A Control (PWM1GENA), offset 0x0A0 Register 36: PWM2 Generator A Control (PWM2GENA), offset 0x0E0

These registers control the generation of the PWMnA signal based on the load and zero output pulses from the counter, as well as the compare A and compare B pulses from the comparators (**PWM0GENA** controls the PWM generator 0 block, and so on). When the counter is running in Count-Down mode, only four of these events occur; when running in Count-Up/Down mode, all six occur. These events provide great flexibility in the positioning and duty cycle of the PWM signal that is produced.

The **PWM0GENA** register controls generation of the PWM0A signal; **PWM1GENA**, the PWM1A signal; and **PWM2GENA**, the PWM2A signal.

Each field in these registers can take on one of the values defined in Table 18-2 on page 480, which defines the effect of the event on the output signal.

If a zero or load event coincides with a compare A or compare B event, the zero or load action is taken and the compare A or compare B action is ignored. If a compare A event coincides with a compare B event, the compare A action is taken and the compare B action is ignored.

|                                                                                                              | 31      | 30      | 29       | 28      | 27                                    | 26       | 25       | 24       | 23                                  | 22         | 21        | 20         | 19         | 18         | 17        | 16               |
|--------------------------------------------------------------------------------------------------------------|---------|---------|----------|---------|---------------------------------------|----------|----------|----------|-------------------------------------|------------|-----------|------------|------------|------------|-----------|------------------|
|                                                                                                              |         | 1       | 1 1      |         | , , , , , , , , , , , , , , , , , , , |          | 1        | rese     | rved                                | 1          |           |            |            | 1          | 1         | 1                |
| Type<br>Reset                                                                                                | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0                               | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0                             | RO<br>0    | RO<br>0   | RO<br>0    | RO<br>0    | RO<br>0    | RO<br>0   | RO<br>0          |
|                                                                                                              | 15      | 14      | 13       | 12      | 11                                    | 10       | 9        | 8        | 7                                   | 6          | 5         | 4          | 3          | 2          | 1         | 0                |
|                                                                                                              |         | rese    | rved     |         | ActCn                                 | npBD     | ActCr    | npBU     | ActCi                               | n<br>mpAD  | ActCr     | n<br>mpAU  | Actl       | l<br>₋oad  | Act       | Zero             |
| Type<br>Reset                                                                                                | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | R/W<br>0                              | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0                            | R/W<br>0   | R/W<br>0  | R/W<br>0   | R/W<br>0   | R/W<br>0   | R/W<br>0  | R/W<br>0         |
|                                                                                                              |         |         |          |         | _                                     |          |          | _        |                                     |            |           |            |            |            |           |                  |
| Bit/F                                                                                                        | ield    |         | Name     |         | Туре                                  | F        | Reset    | Descr    | iption                              |            |           |            |            |            |           |                  |
| 31:                                                                                                          | 12      | I       | reserved |         | RO                                    |          | 0        | comp     | are shou<br>atibility v<br>rved acr | vith futur | e produ   | cts, the v | alue of    | a reserv   | •         | vide<br>nould be |
| 11:1                                                                                                         | 10      | A       | ctCmpBl  | D       | R/W                                   |          | 0        |          | ction to<br>ing dowr                |            | i when th | ne count   | er matcl   | nes com    | parator   | B while          |
|                                                                                                              |         |         |          |         |                                       |          |          |          | able 18-<br>utput sigi              |            | ge 480, v | which de   | fines the  | e effect o | of the ev | vent on          |
| the output signal.<br>9:8 ActCmpBU R/W 0 The action to be tak<br>counting up. Occurs<br>(see page 470) is so |         |         |          |         |                                       |          |          | Occurs o | nly wher                            |            |           |            | •          |            |           |                  |
| See Table 18-2<br>the output signa                                                                           |         |         |          |         |                                       |          |          |          |                                     | ge 480, v  | which de  | fines the  | e effect o | of the ev  | vent on   |                  |
| 7:0                                                                                                          | 6       | А       | ctCmpAl  | D       | R/W                                   |          | 0        |          | ction to<br>ing dowr                |            | when th   | ne count   | er matcl   | nes com    | parator   | A while          |
|                                                                                                              |         |         |          |         |                                       |          |          |          | able 18-<br>Itput sigi              |            | ge 480, v | which de   | fines the  | e effect o | of the ev | vent on          |
|                                                                                                              |         |         |          |         |                                       |          |          |          |                                     |            |           |            |            |            |           |                  |

#### PWM0 Generator A Control (PWM0GENA)

Base 0x4002.8000 Offset 0x060

Type R/W, reset 0x0000.0000

| Bit/Field | Name     | Туре | Reset | Description                                                                                                                                               |
|-----------|----------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5:4       | ActCmpAU | R/W  | 0     | The action to be taken when the counter matches comparator A while counting up. Occurs only when the Mode bit in the <b>PWMnCTL</b> register is set to 1. |
|           |          |      |       | See Table 18-2 on page 480, which defines the effect of the event on the output signal.                                                                   |
| 3:2       | ActLoad  | R/W  | 0     | The action to be taken when the counter matches the load value.                                                                                           |
|           |          |      |       | See Table 18-2 on page 480, which defines the effect of the event on the output signal.                                                                   |
| 1:0       | ActZero  | R/W  | 0     | The action to be taken when the counter is zero.                                                                                                          |
|           |          |      |       | See Table 18-2 on page 480, which defines the effect of the event on the output signal.                                                                   |

### Table 18-2. PWM Generator Action Encodings

| Value | Description                 |
|-------|-----------------------------|
| 00    | Do nothing.                 |
| 01    | Invert the output signal.   |
| 10    | Set the output signal to 0. |
| 11    | Set the output signal to 1. |

## Register 37: PWM0 Generator B Control (PWM0GENB), offset 0x064 Register 38: PWM1 Generator B Control (PWM1GENB), offset 0x0A4 Register 39: PWM2 Generator B Control (PWM2GENB), offset 0x0E4

These registers control the generation of the PWMnB signal based on the load and zero output pulses from the counter, as well as the compare A and compare B pulses from the comparators (**PWM0GENB** controls the PWM generator 0 block, and so on). When the counter is running in Down mode, only four of these events occur; when running in Up/Down mode, all six occur. These events provide great flexibility in the positioning and duty cycle of the PWM signal that is produced.

The **PWM0GENB** register controls generation of the **PWM0B** signal; **PWM1GENB**, the **PWM1B** signal; and **PWM2GENB**, the **PWM2B** signal.

Each field in these registers can take on one of the values defined in Table 18-2 on page 480, which defines the effect of the event on the output signal.

If a zero or load event coincides with a compare A or compare B event, the zero or load action is taken and the compare A or compare B action is ignored. If a compare A event coincides with a compare B event, the compare B action is taken and the compare A action is ignored.

| Type R/W      |         | x0000.000 | 00       |         |          |          |          |          |                    |            |           |                                       |          |           |           |          |
|---------------|---------|-----------|----------|---------|----------|----------|----------|----------|--------------------|------------|-----------|---------------------------------------|----------|-----------|-----------|----------|
|               | 31      | 30        | 29       | 28      | 27       | 26       | 25       | 24       | 23                 | 22         | 21        | 20                                    | 19       | 18        | 17        | 16       |
|               |         |           |          |         |          |          |          | rese     | rved               |            |           | •                                     |          |           |           |          |
| Type<br>Reset | RO<br>0 | RO<br>0   | RO<br>0  | RO<br>0 | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0            | RO<br>0    | RO<br>0   | RO<br>0                               | RO<br>0  | RO<br>0   | RO<br>0   | RO<br>0  |
|               | 15      | 14        | 13       | 12      | 11       | 10       | 9        | 8        | 7                  | 6          | 5         | 4                                     | 3        | 2         | 1         | 0        |
| ſ             |         | rese      | rved     |         | ActCrr   | npBD     | ActCr    | npBU     | ActCr              | mpAD       | ActC      | n<br>mpAU                             | ActL     | oad       | Act       | Zero     |
| Type<br>Reset | RO<br>0 | RO<br>0   | RO<br>0  | RO<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0           | R/W<br>0   | R/W<br>0  | R/W<br>0                              | R/W<br>0 | R/W<br>0  | R/W<br>0  | R/W<br>0 |
| Bit/Fi        | ield    |           | Name     |         | Туре     |          | Reset    | Descr    | iption             |            |           |                                       |          |           |           |          |
| 31:1          | 12      | r         | reserved |         | RO       |          | 0        | comp     | atibility v        | vith futur | e produ   | e value o<br>cts, the v<br>fy-write o | alue of  | a reserv  | •         |          |
| <b>11</b> :1  | 10      | A         | ctCmpBl  | D       | R/W      |          | 0        |          | ction to ling dowr |            | i when tl | ne count                              | er match | nes com   | parator   | B while  |
| 9:8           | 8       | A         | ctCmpBl  | U       | R/W      |          | 0        | count    |                    | Occurs o   | nly whe   | ne count<br>n the мо                  |          |           |           |          |
| 7:6           | 6       | A         | ctCmpAl  | D       | R/W      |          | 0        |          | ction to ling dowr |            | when t    | ne count                              | er match | nes com   | parator   | A while  |
| 5:4           | 4       | A         | ctCmpAl  | U       | R/W      |          | 0        |          | ing up. C          |            |           | ne count<br>n the мое                 |          |           | •         |          |
| 3:2 ActLoad R |         |           |          |         | R/W      |          | 0        | The a    | ction to I         | be taken   | when t    | ne count                              | er match | nes the I | load valu | ie.      |
| 1:0           | 0       |           | ActZero  |         | R/W      |          | 0        | The a    | ction to I         | be taken   | when t    | ne count                              | er is 0. |           |           |          |

#### PWM0 Generator B Control (PWM0GENB)

Base 0x4002.8000 Offset 0x064

# Register 40: PWM0 Dead-Band Control (PWM0DBCTL), offset 0x068 Register 41: PWM1 Dead-Band Control (PWM1DBCTL), offset 0x0A8 Register 42: PWM2 Dead-Band Control (PWM2DBCTL), offset 0x0E8

The **PWM0DBCTL** register controls the dead-band generator, which produces the PWM0 and PWM1 signals based on the PWM0A and PWM0B signals. When disabled, the PWM0A signal passes through to the PWM0 signal and the PWM0B signal passes through to the PWM1 signal. When enabled and inverting the resulting waveform, the PWM0B signal is ignored; the PWM0 signal is generated by delaying the rising edge(s) of the PWM0A signal by the value in the **PWM0DBRISE** register (see page 483), and the PWM1 signal is generated by delaying the falling edge(s) of the PWM0A signal by the value in the **PWM0DBFALL** register (see page 484). In a similar manner, PWM2 and PWM3 are produced from the PWM1A and PWM1B signals, and PWM4 and PWM5 are produced from the PWM2A and PWM2B signals.

#### PWM0 Dead-Band Control (PWM0DBCTL)

Base 0x4002.8000 Offset 0x068

Type R/W, reset 0x0000.0000

|               | 31      | 30      | 29       | 28      | 27       | 26      | 25      | 24       | 23          | 22         | 21      | 20                                    | 19      | 18       | 17      | 16      |
|---------------|---------|---------|----------|---------|----------|---------|---------|----------|-------------|------------|---------|---------------------------------------|---------|----------|---------|---------|
|               |         |         |          |         | і і      |         | •       | rese     | rved        |            |         |                                       |         |          |         |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0     | RO<br>0    | RO<br>0 | RO<br>0                               | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 |
|               | 15      | 14      | 13       | 12      | 11       | 10      | 9       | 8        | 7           | 6          | 5       | 4                                     | 3       | 2        | 1       | 0       |
|               |         | 1       | 1 1      | I       | г г<br>1 |         | 1       | reserved |             |            | ſ       | 1                                     | 1       | 1        | r       | Enable  |
| Туре          | RO      | RO      | RO       | RO      | RO       | RO      | RO      | RO       | RO          | RO         | RO      | RO                                    | RO      | RO       | RO      | R/W     |
| Reset         | 0       | 0       | 0        | 0       | 0        | 0       | 0       | 0        | 0           | 0          | 0       | 0                                     | 0       | 0        | 0       | 0       |
| Bit/F         | ield    |         | Name     |         | Туре     | I       | Reset   | Descri   | iption      |            |         |                                       |         |          |         |         |
| 31            | :1      |         | reserved |         | RO       |         | 0       | compa    | atibility w | ith futur/ | e produ | e value o<br>cts, the v<br>fy-write o | alue of | a reserv | •       |         |
| 0             | )       |         | Enable   |         | R/W      |         | 0       |          | -           |            | •       | erator ins<br>basses th               |         |          |         | •       |

# Register 43: PWM0 Dead-Band Rising-Edge Delay (PWM0DBRISE), offset 0x06C

# Register 44: PWM1 Dead-Band Rising-Edge Delay (PWM1DBRISE), offset 0x0AC

# Register 45: PWM2 Dead-Band Rising-Edge Delay (PWM2DBRISE), offset 0x0EC

The **PWM0DBRISE** register contains the number of clock ticks to delay the rising edge of the PWM0A signal when generating the PWM0 signal. If the dead-band generator is disabled through the **PWM0DBCTL** register, the **PWM0DBRISE** register is ignored. If the value of this register is larger than the width of a High pulse on the input PWM signal, the rising-edge delay consumes the entire High time of the signal, resulting in no High time on the output. Care must be taken to ensure that the input High time always exceeds the rising-edge delay. In a similar manner, PWM2 is generated from PWM1A with its rising edge delayed and PWM4 is produced from PWM2A with its rising edge delayed.

#### PWM0 Dead-Band Rising-Edge Delay (PWM0DBRISE)

Base 0x4002.8000 Offset 0x06C Type R/W, reset 0x0000.0000

|               | 31      | 30      | 29       | 28      | 27       | 26       | 25       | 24       | 23          | 22                                   | 21       | 20         | 19       | 18       | 17       | 16               |
|---------------|---------|---------|----------|---------|----------|----------|----------|----------|-------------|--------------------------------------|----------|------------|----------|----------|----------|------------------|
|               |         | •       |          |         |          |          | •        | rese     | rved        |                                      |          |            |          |          | •        |                  |
| Туре          | RO      | RO      | RO       | RO      | RO       | RO       | RO       | RO       | RO          | RO                                   | RO       | RO         | RO       | RO       | RO       | RO               |
| Reset         | 0       | 0       | 0        | 0       | 0        | 0        | 0        | 0        | 0           | 0                                    | 0        | 0          | 0        | 0        | 0        | 0                |
|               | 15      | 14      | 13       | 12      | 11       | 10       | 9        | 8        | 7           | 6                                    | 5        | 4          | 3        | 2        | 1        | 0                |
|               |         | rese    | rved     |         |          |          | •        | •        |             | Risel                                | Delay    | •          | ,<br>,   |          | •        | '                |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0    | R/W<br>0                             | R/W<br>0 | R/W<br>0   | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0         |
| Reset         | 0       | 0       | 0        | 0       | 0        | 0        | 0        | 0        | 0           | 0                                    | 0        | 0          | 0        | 0        | 0        | 0                |
| Bit/F         | ield    |         | Name     |         | Туре     | F        | Reset    | Descr    | iption      |                                      |          |            |          |          |          |                  |
| 31:           | 12      | I       | reserved |         | RO       |          | 0        | compa    | atibility v | uld not re<br>vith futur<br>oss a re | e produ  | cts, the v | alue of  | a reserv | •        | vide<br>nould be |
| 11:           | :0      | F       | RiseDela | ý       | R/W      |          | 0        | The n    | umber o     | f clock ti                           | cks to d | elay the   | rising e | dge.     |          |                  |

# Register 46: PWM0 Dead-Band Falling-Edge-Delay (PWM0DBFALL), offset 0x070

# Register 47: PWM1 Dead-Band Falling-Edge-Delay (PWM1DBFALL), offset 0x0B0

# Register 48: PWM2 Dead-Band Falling-Edge-Delay (PWM2DBFALL), offset 0x0F0

The **PWM0DBFALL** register contains the number of clock ticks to delay the falling edge of the PWM0A signal when generating the PWM1 signal. If the dead-band generator is disabled, this register is ignored. If the value of this register is larger than the width of a Low pulse on the input PWM signal, the falling-edge delay consumes the entire Low time of the signal, resulting in no Low time on the output. Care must be taken to ensure that the input Low time always exceeds the falling-edge delay. In a similar manner, PWM3 is generated from PWM1A with its falling edge delayed and PWM5 is produced from PWM2A with its falling edge delayed.

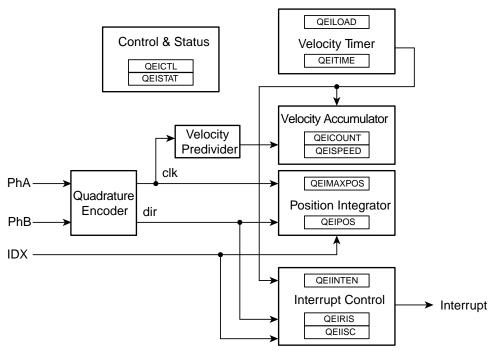
#### PWM0 Dead-Band Falling-Edge-Delay (PWM0DBFALL)

Base 0x4002.8000 Offset 0x070 Type R/W, reset 0x0000.0000 31 30 25 16 29 28 27 26 24 23 22 21 20 18 17 19 reserved Туре RO 0 0 0 Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 10 9 6 0 11 8 5 3 2 FallDelay reserved Туре RO RO RO RO R/W Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **Bit/Field** Name Reset Description Type Software should not rely on the value of a reserved bit. To provide 31:12 reserved RO 0 compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 11:0 FallDelay R/W 0 The number of clock ticks to delay the falling edge.

# **19 Quadrature Encoder Interface (QEI)**

A quadrature encoder, also known as a 2-channel incremental encoder, converts linear displacement into a pulse signal. By monitoring both the number of pulses and the relative phase of the two signals, you can track the position, direction of rotation, and speed. In addition, a third channel, or index signal, can be used to reset the position counter.

The LM3S6965 microcontroller includes two quadrature encoder interface (QEI) modules. Each QEI module interprets the code produced by a quadrature encoder wheel to integrate position over time and determine direction of rotation. In addition, it can capture a running estimate of the velocity of the encoder wheel.


Each Stellaris<sup>®</sup> quadrature encoder has the following features:

- Position integrator that tracks the encoder position
- Velocity capture using built-in timer
- Interrupt generation on:
  - Index pulse
  - Velocity-timer expiration
  - Direction change
  - Quadrature error detection

### **19.1** Block Diagram

Figure 19-1 on page 486 provides a block diagram of a Stellaris<sup>®</sup> QEI module.





## 19.2 Functional Description

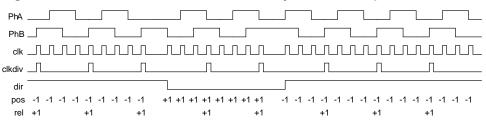
The QEI module interprets the two-bit gray code produced by a quadrature encoder wheel to integrate position over time and determine direction of rotation. In addition, it can capture a running estimate of the velocity of the encoder wheel.

The position integrator and velocity capture can be independently enabled, though the position integrator must be enabled before the velocity capture can be enabled. The two phase signals, PhA and PhB, can be swapped before being interpreted by the QEI module to change the meaning of forward and backward, and to correct for miswiring of the system. Alternatively, the phase signals can be interpreted as a clock and direction signal as output by some encoders.

The QEI module supports two modes of signal operation: quadrature phase mode and clock/direction mode. In quadrature phase mode, the encoder produces two clocks that are 90 degrees out of phase; the edge relationship is used to determine the direction of rotation. In clock/direction mode, the encoder produces a clock signal to indicate steps and a direction signal to indicate the direction of rotation. This mode is determined by the SigMode bit of the **QEI Control (QEICTL)** register (see page 490).

When the QEI module is set to use the quadrature phase mode (SigMode bit equals zero), the capture mode for the position integrator can be set to update the position counter on every edge of the PhA signal or to update on every edge of both PhA and PhB. Updating the position counter on every PhA and PhB provides more positional resolution at the cost of less range in the positional counter.

When edges on PhA lead edges on PhB, the position counter is incremented. When edges on PhB lead edges on PhA, the position counter is decremented. When a rising and falling edge pair is seen on one of the phases without any edges on the other, the direction of rotation has changed.


The positional counter is automatically reset on one of two conditions: sensing the index pulse or reaching the maximum position value. Which mode is determined by the ResMode bit of the **QEI Control (QEICTL)** register.

When ResMode is 0, the positional counter is reset when the index pulse is sensed. This limits the positional counter to the values [0:N-1], where N is the number of phase edges in a full revolution of the encoder wheel. The **QEIMAXPOS** register must be programmed with N-1 so that the reverse direction from position 0 can move the position counter to N-1. In this mode, the position register contains the absolute position of the encoder relative to the index (or home) position once an index pulse has been seen.

When ResMode is 1, the positional counter is constrained to the range [0:M], where M is the programmable maximum value. The index pulse is ignored by the positional counter in this mode.

The velocity capture has a configurable timer and a count register. It counts the number of phase edges (using the same configuration as for the position integrator) in a given time period. The edge count from the previous time period is available to the controller via the **QEISPEED** register, while the edge count for the current time period is being accumulated in the **QEICOUNT** register. As soon as the current time period is complete, the total number of edges counted in that time period is made available in the **QEISPEED** register (losing the previous value), the **QEICOUNT** is reset to 0, and counting commences on a new time period. The number of edges counted in a given time period is directly proportional to the velocity of the encoder.

Figure 19-2 on page 487 shows how the Stellaris<sup>®</sup> quadrature encoder converts the phase input signals into clock pulses, the direction signal, and how the velocity predivider operates (in Divide by 4 mode).



#### Figure 19-2. Quadrature Encoder and Velocity Predivider Operation

The period of the timer is configurable by specifying the load value for the timer in the **QEILOAD** register. When the timer reaches zero, an interrupt can be triggered, and the hardware reloads the timer with the **QEILOAD** value and continues to count down. At lower encoder speeds, a longer timer period is needed to be able to capture enough edges to have a meaningful result. At higher encoder speeds, both a shorter timer period and/or the velocity predivider can be used.

The following equation converts the velocity counter value into an rpm value:

rpm = (clock \* (2 ^ VelDiv) \* Speed \* 60) ÷ (Load \* ppr \* edges)

where:

clock is the controller clock rate

ppr is the number of pulses per revolution of the physical encoder

edges is 2 or 4, based on the capture mode set in the **QEICTL** register (2 for CapMode set to 0 and 4 for CapMode set to 1)

For example, consider a motor running at 600 rpm. A 2048 pulse per revolution quadrature encoder is attached to the motor, producing 8192 phase edges per revolution. With a velocity predivider of

÷1 (VelDiv set to 0) and clocking on both PhA and PhB edges, this results in 81,920 pulses per second (the motor turns 10 times per second). If the timer were clocked at 10,000 Hz, and the load value was 2,500 (¼ of a second), it would count 20,480 pulses per update. Using the above equation:

rpm = (10000 \* 1 \* 20480 \* 60) ÷ (2500 \* 2048 \* 4) = 600 rpm

Now, consider that the motor is sped up to 3000 rpm. This results in 409,600 pulses per second, or 102,400 every  $\frac{1}{4}$  of a second. Again, the above equation gives:

rpm = (10000 \* 1 \* 102400 \* 60) ÷ (2500 \* 2048 \* 4) = 3000 rpm

Care must be taken when evaluating this equation since intermediate values may exceed the capacity of a 32-bit integer. In the above examples, the clock is 10,000 and the divider is 2,500; both could be predivided by 100 (at compile time if they are constants) and therefore be 100 and 25. In fact, if they were compile-time constants, they could also be reduced to a simple multiply by 4, cancelled by the  $\div$ 4 for the edge-count factor.

Important: Reducing constant factors at compile time is the best way to control the intermediate values of this equation, as well as reducing the processing requirement of computing this equation.

The division can be avoided by selecting a timer load value such that the divisor is a power of 2; a simple shift can therefore be done in place of the division. For encoders with a power of 2 pulses per revolution, this is a simple matter of selecting a power of 2 load value. For other encoders, a load value must be selected such that the product is very close to a power of two. For example, a 100 pulse per revolution encoder could use a load value of 82, resulting in 32,800 as the divisor, which is 0.09% above 2<sup>14</sup>; in this case a shift by 15 would be an adequate approximation of the divide in most cases. If absolute accuracy were required, the controller's divide instruction could be used.

The QEI module can produce a controller interrupt on several events: phase error, direction change, reception of the index pulse, and expiration of the velocity timer. Standard masking, raw interrupt status, interrupt status, and interrupt clear capabilities are provided.

## **19.3** Initialization and Configuration

The following example shows how to configure the Quadrature Encoder module to read back an absolute position:

- 1. Enable the QEI clock by writing a value of 0x0000.0100 to the **RCGC1** register in the System Control module.
- 2. Enable the clock to the appropriate GPIO module via the **RCGC2** register in the System Control module.
- 3. In the GPIO module, enable the appropriate pins for their alternate function using the **GPIOAFSEL** register.
- 4. Configure the quadrature encoder to capture edges on both signals and maintain an absolute position by resetting on index pulses. Using a 1000-line encoder at four edges per line, there are 4000 pulses per revolution; therefore, set the maximum position to 3999 (0xF9F) since the count is zero-based.
  - Write the **QEICTL** register with the value of 0x0000.0018.

- Write the **QEIMAXPOS** register with the value of 0x0000.0F9F.
- 5. Enable the quadrature encoder by setting bit 0 of the **QEICTL** register.
- 6. Delay for some time.
- 7. Read the encoder position by reading the **QEIPOS** register value.

### **19.4** Register Map

"Register Map" on page 489 lists the QEI registers. The offset listed is a hexadecimal increment to the register's address, relative to the module's base address:

- QEI0: 0x4002.C000
- QEI1: 0x4002.D000

#### Table 19-1. QEI Register Map

| Offset | Name      | Туре  | Reset       | Description                    | See<br>page |
|--------|-----------|-------|-------------|--------------------------------|-------------|
| 0x000  | QEICTL    | R/W   | 0x0000.0000 | QEI Control                    | 490         |
| 0x004  | QEISTAT   | RO    | 0x0000.0000 | QEI Status                     | 492         |
| 0x008  | QEIPOS    | R/W   | 0x0000.0000 | QEI Position                   | 493         |
| 0x00C  | QEIMAXPOS | R/W   | 0x0000.0000 | QEI Maximum Position           | 494         |
| 0x010  | QEILOAD   | R/W   | 0x0000.0000 | QEI Timer Load                 | 495         |
| 0x014  | QEITIME   | RO    | 0x0000.0000 | QEI Timer                      | 496         |
| 0x018  | QEICOUNT  | RO    | 0x0000.0000 | QEI Velocity Counter           | 497         |
| 0x01C  | QEISPEED  | RO    | 0x0000.0000 | QEI Velocity                   | 498         |
| 0x020  | QEIINTEN  | R/W   | 0x0000.0000 | QEI Interrupt Enable           | 499         |
| 0x024  | QEIRIS    | RO    | 0x0000.0000 | QEI Raw Interrupt Status       | 500         |
| 0x028  | QEIISC    | R/W1C | 0x0000.0000 | QEI Interrupt Status and Clear | 501         |

### **19.5** Register Descriptions

The remainder of this section lists and describes the QEI registers, in numerical order by address offset.

**QEI** Control (QEICTL)

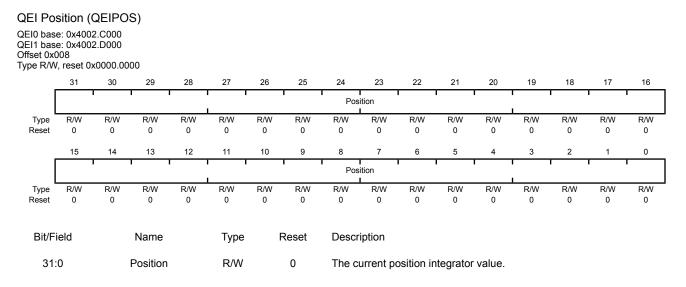
### Register 1: QEI Control (QEICTL), offset 0x000

This register contains the configuration of the QEI module. Separate enables are provided for the quadrature encoder and the velocity capture blocks; the quadrature encoder must be enabled in order to capture the velocity, but the velocity does not need to be captured in applications that do not need it. The phase signal interpretation, phase swap, Position Update mode, Position Reset mode, and velocity predivider are all set via this register.

| QEI0 bas<br>QEI1 bas<br>Offset 0x | e: 0x400<br>e: 0x400<br>000<br>/, reset 0                                                                                                                                                                                                                                                       | )2.D000<br>)x0000.000 |         |          |          |          |          |          |                       |             |           |           |            |          |          |          |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------|----------|----------|----------|----------|----------|-----------------------|-------------|-----------|-----------|------------|----------|----------|----------|
|                                   | 31                                                                                                                                                                                                                                                                                              | 30                    | 29      | 28       | 27       | 26       | 25       | 24       | 23<br>erved           | 22          | 21        | 20        | 19<br>I    | 18       | 17       | 16       |
| _                                 |                                                                                                                                                                                                                                                                                                 |                       |         | 1        |          |          |          |          |                       |             |           |           |            |          |          |          |
| Type<br>Reset                     | RO<br>0                                                                                                                                                                                                                                                                                         | RO<br>0               | RO<br>0 | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0               | RO<br>0     | RO<br>0   | RO<br>0   | RO<br>0    | RO<br>0  | RO<br>0  | RO<br>0  |
| 1                                 | 15                                                                                                                                                                                                                                                                                              | 14                    | 13      | 12       | 11       | 10       | 9        | 8        | 7                     | 6           | 5         | 4         | 3          | 2        | 1        | 0        |
|                                   |                                                                                                                                                                                                                                                                                                 | reserved              |         | STALLEN  | INVI     | INVB     | INVA     |          | VelDiv                |             | VelEn     | ResMode   | ·          | SigMode  | Swap     | Enable   |
| Type<br>Reset                     | RO<br>0                                                                                                                                                                                                                                                                                         | RO<br>0               | RO<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0              | R/W<br>0    | R/W<br>0  | R/W<br>0  | R/W<br>0   | R/W<br>0 | R/W<br>0 | R/W<br>0 |
| Bit/F                             | ield                                                                                                                                                                                                                                                                                            |                       | Name    |          | Туре     | F        | Reset    | Descr    | ription               |             |           |           |            |          |          |          |
| 31:                               | 31:13reservedRO0Software should not rely on the value of a reserved bit. To provide<br>compatibility with future products, the value of a reserved bit should be<br>preserved across a read-modify-write operation.12STALLENR/W0When set, the QEI stalls when the microcontroller asserts Halt. |                       |         |          |          |          |          |          |                       |             |           |           |            |          |          |          |
| 12                                | preserved across a read-modify-write operation.                                                                                                                                                                                                                                                 |                       |         |          |          |          |          |          |                       |             |           |           |            |          |          |          |
| 11                                | 1                                                                                                                                                                                                                                                                                               |                       | INVI    |          | R/W      |          | 0        | When     | set , the             | e input Ir  | ndex Pul  | se is inv | verted.    |          |          |          |
| 1(                                | D                                                                                                                                                                                                                                                                                               |                       | INVB    |          | R/W      |          | 0        | When     | set, the              | PhB inp     | ut is inv | erted.    |            |          |          |          |
| 9                                 | 1                                                                                                                                                                                                                                                                                               |                       | INVA    |          | R/W      |          | 0        | When     | set, the              | PhA inp     | ut is inv | erted.    |            |          |          |          |
| 8:                                | 6                                                                                                                                                                                                                                                                                               | ,                     | VelDiv  |          | R/W      |          | 0        | •        | divider of<br>OUNT ad | •           | •         | •         |            |          | • • •    |          |
|                                   |                                                                                                                                                                                                                                                                                                 |                       |         |          |          |          |          | Binar    | y Value               | Predivio    | der       |           |            |          |          |          |
|                                   |                                                                                                                                                                                                                                                                                                 |                       |         |          |          |          |          | (        | 000                   | ÷1          |           |           |            |          |          |          |
|                                   |                                                                                                                                                                                                                                                                                                 |                       |         |          |          |          |          |          | 001                   | ÷2          |           |           |            |          |          |          |
|                                   |                                                                                                                                                                                                                                                                                                 |                       |         |          |          |          |          |          | 010                   | ÷4          |           |           |            |          |          |          |
|                                   |                                                                                                                                                                                                                                                                                                 |                       |         |          |          |          |          |          | D11                   | ÷8          |           |           |            |          |          |          |
|                                   |                                                                                                                                                                                                                                                                                                 |                       |         |          |          |          |          |          | 100                   | ÷16         |           |           |            |          |          |          |
|                                   |                                                                                                                                                                                                                                                                                                 |                       |         |          |          |          |          |          | 101                   | ÷32         |           |           |            |          |          |          |
|                                   |                                                                                                                                                                                                                                                                                                 |                       |         |          |          |          |          |          | 110<br>111            | ÷64<br>÷128 |           |           |            |          |          |          |
|                                   |                                                                                                                                                                                                                                                                                                 |                       |         |          |          |          |          |          |                       |             |           |           |            |          |          |          |
| 5                                 | i                                                                                                                                                                                                                                                                                               |                       | VelEn   |          | R/W      |          | 0        | When     | i set, ena            | ables ca    | pture of  | the velo  | city of th | e quadra | ature en | coder.   |
| 4                                 |                                                                                                                                                                                                                                                                                                 | R                     | esMode  | e        | R/W      |          | 0        |          | Reset mo<br>et when i |             | •         |           |            |          |          |          |

reset when the index pulse is captured.

| Bit/Field | Name    | Туре | Reset | Description                                                                                                                                                                                                                 |
|-----------|---------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3         | CapMode | R/W  | 0     | The Capture mode defines the phase edges that are counted in the position. When 0, only the PhA edges are counted; when 1, the PhA and PhB edges are counted, providing twice the positional resolution but half the range. |
| 2         | SigMode | R/W  | 0     | When 1, the ${\tt PhA}$ and ${\tt PhB}$ signals are clock and direction; when 0, they are quadrature phase signals.                                                                                                         |
| 1         | Swap    | R/W  | 0     | Swaps the PhA and PhB signals.                                                                                                                                                                                              |
| 0         | Enable  | R/W  | 0     | Enables the quadrature encoder module.                                                                                                                                                                                      |


# Register 2: QEI Status (QEISTAT), offset 0x004

This register provides status about the operation of the QEI module.

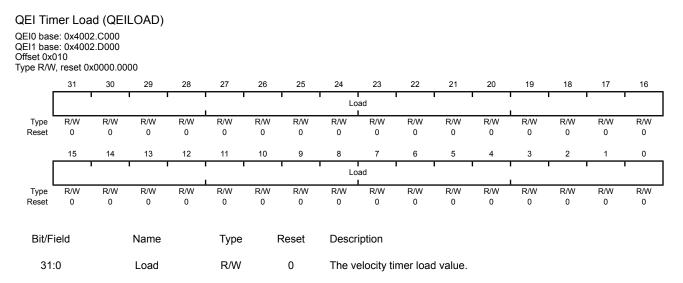
| QEI Sta<br>QEI0 base<br>QEI1 base<br>Offset 0x0<br>Type RO, | e: 0x400<br>e: 0x400<br>004 | 02.C000<br>02.D000 |           |         |         |         |         |         |                       |            |         |           |          |          |                          |           |
|-------------------------------------------------------------|-----------------------------|--------------------|-----------|---------|---------|---------|---------|---------|-----------------------|------------|---------|-----------|----------|----------|--------------------------|-----------|
| _                                                           | 31                          | 30                 | 29        | 28      | 27      | 26      | 25      | 24      | 23                    | 22         | 21      | 20        | 19       | 18       | 17                       | 16        |
|                                                             |                             | 1                  | 1 1       |         |         |         | 1       | rese    | rved                  |            | 1       | 1         | 1        |          | г т                      |           |
| Type<br>Reset                                               | RO<br>0                     | RO<br>0            | RO<br>0   | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0               | RO<br>0    | RO<br>0 | RO<br>0   | RO<br>0  | RO<br>0  | RO<br>0                  | RO<br>0   |
|                                                             | 15                          | 14                 | 13        | 12      | 11      | 10      | 9       | 8       | 7                     | 6          | 5       | 4         | 3        | 2        | 1                        | 0         |
| [                                                           |                             | 1                  | 1         |         | r r     |         | rese    | rved    |                       |            | 1       | ı         | 1        |          | Direction                | Error     |
| Type<br>Reset                                               | RO<br>0                     | RO<br>0            | RO<br>0   | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0               | RO<br>0    | RO<br>0 | RO<br>0   | RO<br>0  | RO<br>0  | RO<br>0                  | RO<br>0   |
| Bit/Fi                                                      | ield                        |                    | Name      |         | Туре    |         | Reset   | Descr   | iption                |            |         |           |          |          |                          |           |
| 31:                                                         | 2                           |                    | reserved  |         | RO      |         | 0       | compa   | atibility w           | vith futur | e produ | cts, the  |          | a reserv | . To provi<br>red bit sh |           |
| 1                                                           |                             |                    | Direction | I       | RO      |         | 0       | Indica  | tes the c             | direction  | the end | oder is r | otating. |          |                          |           |
|                                                             |                             |                    |           |         |         |         |         | 0: For  | ward rot              | ation      |         |           |          |          |                          |           |
|                                                             |                             |                    |           |         |         |         |         | 1: Rev  | verse rot             | ation      |         |           |          |          |                          |           |
| 0                                                           |                             |                    | Error     |         | RO      |         | 0       |         | tes that<br>ignals cl |            |         |           |          | code se  | equence                  | (that is, |

### Register 3: QEI Position (QEIPOS), offset 0x008

This register contains the current value of the position integrator. Its value is updated by inputs on the QEI phase inputs, and can be set to a specific value by writing to it.

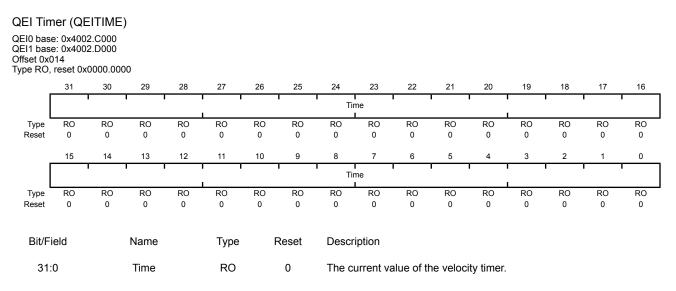


### Register 4: QEI Maximum Position (QEIMAXPOS), offset 0x00C


This register contains the maximum value of the position integrator. When moving forward, the position register resets to zero when it increments past this value. When moving backward, the position register resets to this value when it decrements from zero.

#### QEI Maximum Position (QEIMAXPOS)

| QEI0 base<br>QEI1 base<br>Offset 0x0<br>Type R/W | e: 0x400<br>00C | 2.D000 | 000    |     | ,                                     |     |       |          |                |           |           |           |     |     |     |     |
|--------------------------------------------------|-----------------|--------|--------|-----|---------------------------------------|-----|-------|----------|----------------|-----------|-----------|-----------|-----|-----|-----|-----|
|                                                  | 31              | 30     | 29     | 28  | 27                                    | 26  | 25    | 24       | 23             | 22        | 21        | 20        | 19  | 18  | 17  | 16  |
|                                                  |                 | Î      | 1      | 1   | , , , , , , , , , , , , , , , , , , , |     | 1     | n<br>Max | I<br>(Pos<br>I | T         | T         | 1         | 1   | 1   |     |     |
| Туре                                             | R/W             | R/W    | R/W    | R/W | R/W                                   | R/W | R/W   | R/W      | R/W            | R/W       | R/W       | R/W       | R/W | R/W | R/W | R/W |
| Reset                                            | 0               | 0      | 0      | 0   | 0                                     | 0   | 0     | 0        | 0              | 0         | 0         | 0         | 0   | 0   | 0   | 0   |
| -                                                | 15              | 14     | 13     | 12  | 11                                    | 10  | 9     | 8        | 7              | 6         | 5         | 4         | 3   | 2   | 1   | 0   |
|                                                  |                 | 1      | 1      | 1   | · ·                                   |     | I     | Max      | l<br>(Pos<br>I | I         | 1         | 1         |     | I   |     | '   |
| Туре                                             | R/W             | R/W    | R/W    | R/W | R/W                                   | R/W | R/W   | R/W      | R/W            | R/W       | R/W       | R/W       | R/W | R/W | R/W | R/W |
| Reset                                            | 0               | 0      | 0      | 0   | 0                                     | 0   | 0     | 0        | 0              | 0         | 0         | 0         | 0   | 0   | 0   | 0   |
| Bit/Fi                                           | ield            |        | Name   |     | Туре                                  |     | Reset | Descr    | iption         |           |           |           |     |     |     |     |
| 31:                                              | 0               |        | MaxPos | 3   | R/W                                   |     | 0     | The m    | naximum        | n positio | n integra | itor valu | e.  |     |     |     |


### Register 5: QEI Timer Load (QEILOAD), offset 0x010

This register contains the load value for the velocity timer. Since this value is loaded into the timer the clock cycle after the timer is zero, this value should be one less than the number of clocks in the desired period. So, for example, to have 2000 clocks per timer period, this register should contain 1999.



### Register 6: QEI Timer (QEITIME), offset 0x014

This register contains the current value of the velocity timer. This counter does not increment when VelEn in **QEICTL** is 0.



### Register 7: QEI Velocity Counter (QEICOUNT), offset 0x018

This register contains the running count of velocity pulses for the current time period. Since this is a running total, the time period to which it applies cannot be known with precision (that is, a read of this register does not necessarily correspond to the time returned by the **QEITIME** register since there is a small window of time between the two reads, during which time either value may have changed). The **QEISPEED** register should be used to determine the actual encoder velocity; this register is provided for information purposes only. This counter does not increment when VelEn in **QEICTL** is 0.

QEI Velocity Counter (QEICOUNT)

| QEI0 bas<br>QEI1 bas<br>Offset 0x0<br>Type RO, | e: 0x400<br>e: 0x400<br>018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.D000 | 00    | ,  |      |    |       |        |          |           |          |          |            |          |         |        |
|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|----|------|----|-------|--------|----------|-----------|----------|----------|------------|----------|---------|--------|
|                                                | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30     | 29    | 28 | 27   | 26 | 25    | 24     | 23       | 22        | 21       | 20       | 19         | 18       | 17      | 16     |
|                                                | Type     RO     RO |        |       |    |      |    |       |        |          |           |          |          |            |          |         |        |
|                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |       |    |      |    |       |        |          |           |          |          |            |          |         |        |
| _                                              | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14     | 13    | 12 | 11   | 10 | 9     | 8      | 7        | 6         | 5        | 4        | 3          | 2        | 1       | 0      |
|                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1      |       | 1  |      |    |       | Co     | unt      | 1         | 1        | 1        |            | I        |         | 1      |
| Туре                                           | RO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RO     | RO    | RO | RO   | RO | RO    | RO     | RO       | RO        | RO       | RO       | RO         | RO       | RO      | RO     |
| Reset                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0      | 0     | 0  | 0    | 0  | 0     | 0      | 0        | 0         | 0        | 0        | 0          | 0        | 0       | 0      |
| Bit/Fi                                         | ield                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | Name  |    | Туре |    | Reset | Descr  | iption   |           |          |          |            |          |         |        |
| 31:                                            | :0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | Count |    | RO   |    | 0     | The ru | unning t | otal of e | ncoder p | ulses du | uring this | velocity | timer p | eriod. |

QEI Velocity (QEISPEED)

### Register 8: QEI Velocity (QEISPEED), offset 0x01C

This register contains the most recently measured velocity of the quadrature encoder. This corresponds to the number of velocity pulses counted in the previous velocity timer period. This register does not update when VelEn in **QEICTL** is 0.

| QEI0 bas<br>QEI1 bas<br>Offset 0x0<br>Type RO, | e: 0x400<br>01C | 2.D000 | 00    |    |      |    |       |          |        |         |           |         |          |           |         |         |
|------------------------------------------------|-----------------|--------|-------|----|------|----|-------|----------|--------|---------|-----------|---------|----------|-----------|---------|---------|
|                                                | 31              | 30     | 29    | 28 | 27   | 26 | 25    | 24       | 23     | 22      | 21        | 20      | 19       | 18        | 17      | 16      |
|                                                |                 | I      | I     | I  | r r  |    | I     | l<br>Spe | ed     | 1       | [ ]       |         | 1 I      | [         | l .     |         |
| Туре                                           | RO              | RO     | RO    | RO | RO   | RO | RO    | RO       | RO     | RO      | RO        | RO      | RO       | RO        | RO      | RO      |
| Reset                                          | 0               | 0      | 0     | 0  | 0    | 0  | 0     | 0        | 0      | 0       | 0         | 0       | 0        | 0         | 0       | 0       |
| -                                              | 15              | 14     | 13    | 12 | 11   | 10 | 9     | 8        | 7      | 6       | 5         | 4       | 3        | 2         | 1       | 0       |
|                                                |                 | I      | I     | 1  |      |    | 1     | Spe      | eed    | 1       |           |         |          |           |         |         |
| Туре                                           | RO              | RO     | RO    | RO | RO   | RO | RO    | RO       | RO     | RO      | RO        | RO      | RO       | RO        | RO      | RO      |
| Reset                                          | 0               | 0      | 0     | 0  | 0    | 0  | 0     | 0        | 0      | 0       | 0         | 0       | 0        | 0         | 0       | 0       |
| Bit/Fi                                         | ield            |        | Name  |    | Туре |    | Reset | Descr    | iption |         |           |         |          |           |         |         |
| 31:                                            | 0               |        | Speed |    | RO   |    | 0     | The m    | easure | d speed | of the qu | adratur | e encode | er in pul | ses per | period. |

### Register 9: QEI Interrupt Enable (QEIINTEN), offset 0x020

This register contains enables for each of the QEI module's interrupts. An interrupt is asserted to the controller if its corresponding bit in this register is set to 1.

#### QEI Interrupt Enable (QEIINTEN)

QEI0 base: 0x4002.C000 QEI1 base: 0x4002.D000 Offset 0x020 Type R/W, reset 0x0000.0000

|               | 31      | 30      | 29               | 28      | 27         | 26      | 25         | 24      | 23                      | 22        | 21      | 20       | 19                                   | 18         | 17       | 16       |
|---------------|---------|---------|------------------|---------|------------|---------|------------|---------|-------------------------|-----------|---------|----------|--------------------------------------|------------|----------|----------|
|               |         | 1       |                  |         |            |         | 1          | rese    | rved                    |           |         |          |                                      |            |          |          |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0          | RO<br>0 | RO<br>0    | RO<br>0 | RO<br>0    | RO<br>0 | RO<br>0                 | RO<br>0   | RO<br>0 | RO<br>0  | RO<br>0                              | RO<br>0    | RO<br>0  | RO<br>0  |
| Reber         |         |         |                  | -       |            |         |            |         | -                       | -         |         | -        |                                      | -          |          | -        |
|               | 15      | 14      | 13               | 12      | 11         | 10      | 9          | 8       | 7                       | 6         | 5       | 4        | 3                                    | 2          | 1        | 0        |
|               |         | •       |                  |         |            | rese    | erved      |         |                         |           |         | •        | IntError                             | IntDir     | IntTimer | IntIndex |
| Туре          | RO      | RO      | RO               | RO      | RO         | RO      | RO         | RO      | RO                      | RO        | RO      | RO       | R/W                                  | R/W        | R/W      | R/W      |
| Reset         | 0       | 0       | 0                | 0       | 0          | 0       | 0          | 0       | 0                       | 0         | 0       | 0        | 0                                    | 0          | 0        | 0        |
| Bit/F<br>31:  |         |         | Name<br>reserved |         | Type<br>RO | F       | Reset<br>0 | compa   | are shou<br>atibility w | ith futur | e produ | cts, the | of a rese<br>value of a<br>operation | a reserv   | •        |          |
| 3             |         |         | IntError         |         | R/W        |         | 0          | When    | 1, an in                | terrupt o | ccurs w | hen a pl | nase erro                            | or is dete | ected.   |          |
| 2             |         |         | IntDir           |         | R/W        |         | 0          | When    | 1, an in                | terrupt o | ccurs w | hen the  | direction                            | change     | es.      |          |
| 1             |         |         | IntTimer         |         | R/W        |         | 0          | When    | 1, an in                | terrupt o | ccurs w | hen the  | velocity                             | timer ex   | pires.   |          |
| 0             |         |         | IntIndex         |         | R/W        |         | 0          | When    | 1, an in                | terrupt o | ccurs w | hen the  | index pu                             | lse is de  | etected. |          |

### Register 10: QEI Raw Interrupt Status (QEIRIS), offset 0x024

This register provides the current set of interrupt sources that are asserted, regardless of whether they cause an interrupt to be asserted to the controller (this is set through the **QEIINTEN** register). Bits set to 1 indicate the latched events that have occurred; a zero bit indicates that the event in question has not occurred.

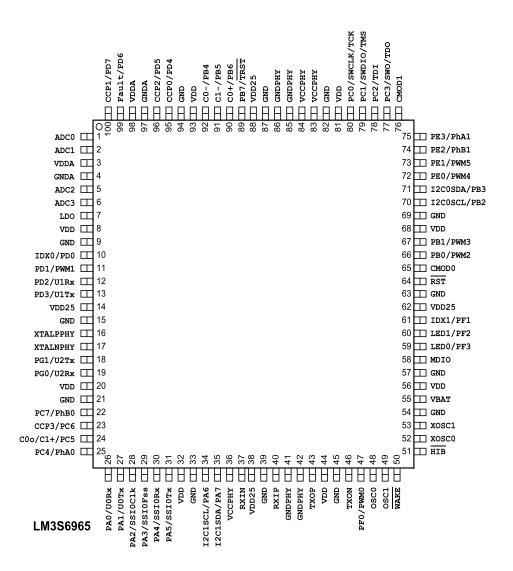
| QEI0 bas<br>QEI1 bas<br>Offset 0x | se: 0x400<br>se: 0x400<br>024 |         | -        | ,       |         |         |         |         |                                      |            |           |            |           |          |          |          |
|-----------------------------------|-------------------------------|---------|----------|---------|---------|---------|---------|---------|--------------------------------------|------------|-----------|------------|-----------|----------|----------|----------|
|                                   | 31                            | 30      | 29       | 28      | 27      | 26      | 25      | 24      | 23                                   | 22         | 21        | 20         | 19        | 18       | 17       | 16       |
|                                   |                               | 1       |          |         | r       |         | 1       | rese    | erved                                |            |           |            |           |          | 1        |          |
| Type<br>Reset                     | RO<br>0                       | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                              | RO<br>0    | RO<br>0   | RO<br>0    | RO<br>0   | RO<br>0  | RO<br>0  | RO<br>0  |
|                                   | 15                            | 14      | 13       | 12      | 11      | 10      | 9       | 8       | 7                                    | 6          | 5         | 4          | 3         | 2        | 1        | 0        |
|                                   |                               | 1       |          |         | · · ·   | re      | served  |         |                                      |            |           | 1          | IntError  | IntDir   | IntTimer | IntIndex |
| Type<br>Reset                     | RO<br>0                       | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                              | RO<br>0    | RO<br>0   | RO<br>0    | RO<br>0   | RO<br>0  | RO<br>0  | RO<br>0  |
| Bit/F                             | ield                          |         | Name     |         | Туре    |         | Reset   | Descr   | ription                              |            |           |            |           |          |          |          |
| 31                                | :4                            | r       | reserved |         | RO      |         | 0       | comp    | are shou<br>atibility w<br>rved acro | ith futur/ | e produ   | cts, the v | alue of a | a reserv | •        |          |
| 3                                 | 3                             |         | IntError |         | RO      |         | 0       | Indica  | ates that                            | a phase    | error w   | as detec   | ted.      |          |          |          |
| 2                                 | 2                             |         | IntDir   |         | RO      |         | 0       | Indica  | ates that                            | the direc  | tion has  | s change   | ed.       |          |          |          |
| 1                                 |                               |         | IntTimer |         | RO      |         | 0       | Indica  | ates that                            | the velo   | city time | er has ex  | pired.    |          |          |          |
| 0                                 | )                             |         | IntIndex |         | RO      |         | 0       | Indica  | ates that                            | the inde   | x pulse   | has occu   | urred.    |          |          |          |

QEI Raw Interrupt Status (QEIRIS)

### Register 11: QEI Interrupt Status and Clear (QEIISC), offset 0x028

This register provides the current set of interrupt sources that are asserted to the controller. Bits set to 1 indicate the latched events that have occurred; a zero bit indicates that the event in question has not occurred. This is a R/W1C register; writing a 1 to a bit position clears the corresponding interrupt reason.

QEI Interrupt Status and Clear (QEIISC)


QEI0 base: 0x4002.C000 QEI1 base: 0x4002.D000 Offset 0x028 Type R/W1C, reset 0x0000.0000

|               | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24      | 23          | 22         | 21        | 20        | 19                                   | 18         | 17         | 16         |
|---------------|---------|---------|----------|---------|---------|---------|---------|---------|-------------|------------|-----------|-----------|--------------------------------------|------------|------------|------------|
|               |         | 1       | 1        | 1       | · ·     |         | 1       | rese    | rved        |            |           | 1         |                                      |            | 1          |            |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0    | RO<br>0   | RO<br>0   | RO<br>0                              | RO<br>0    | RO<br>0    | RO<br>0    |
|               | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8       | 7           | 6          | 5         | 4         | 3                                    | 2          | 1          | 0          |
|               |         |         | 1        | 1       | · · ·   | res     | served  |         |             |            |           | 1         | IntError                             | IntDir     | IntTimer   | IntIndex   |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0    | RO<br>0   | RO<br>0   | R/W1C<br>0                           | R/W1C<br>0 | R/W1C<br>0 | R/W1C<br>0 |
|               |         |         |          |         |         |         |         |         |             |            |           |           |                                      |            |            |            |
| Bit/Fi        | ield    |         | Name     |         | Туре    |         | Reset   | Descri  | iption      |            |           |           |                                      |            |            |            |
| 31:           | 4       |         | reserved | 1       | RO      |         | 0       | compa   | atibility v | vith futur | e produ   | cts, the  | of a rese<br>value of a<br>operation | a reserv   | •          |            |
| 3             |         |         | IntError |         | R/W1C   |         | 0       | Indica  | tes that    | a phase    | error w   | as detec  | cted.                                |            |            |            |
| 2             |         |         | IntDir   |         | R/W1C   |         | 0       | Indica  | tes that    | the dired  | tion ha   | s change  | ed.                                  |            |            |            |
| 1             |         |         | IntTimer |         | R/W1C   |         | 0       | Indica  | tes that    | the velo   | city time | er has ex | pired.                               |            |            |            |
| 0             |         |         | IntIndex |         | R/W1C   |         | 0       | Indica  | tes that    | the inde   | x pulse   | has occ   | urred.                               |            |            |            |

# 20 Pin Diagram

Figure 20-1 on page 502 shows the pin diagram and pin-to-signal-name mapping.

Figure 20-1. Pin Connection Diagram



# 21 Signal Tables

The following tables list the signals available for each pin. Functionality is enabled by software with the GPIOAFSEL register.

Important: All multiplexed pins are GPIOs by default, with the exception of the five JTAG pins (PB7 and PC[3:0]) which default to the JTAG functionality.

Table 21-1 on page 503 shows the pin-to-signal-name mapping, including functional characteristics of the signals. Table 21-2 on page 507 lists the signals in alphabetical order by signal name.

Table 21-3 on page 512 groups the signals by functionality, except for GPIOs. Table 21-4 on page 516 lists the GPIO pins and their alternate functionality.

| Pin Number | Pin Name | Pin Type | Buffer Type | Description                                                                                                                                                                                                                                                                                                                       |
|------------|----------|----------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | ADC0     | I        | Analog      | Analog-to-digital converter input 0.                                                                                                                                                                                                                                                                                              |
| 2          | ADC1     | I        | Analog      | Analog-to-digital converter input 1.                                                                                                                                                                                                                                                                                              |
| 3          | VDDA     | -        | Power       | The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.).<br>These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions.                                                                                                                       |
| 4          | GNDA     | -        | Power       | The ground reference for the analog circuits (ADC, Analog Comparators, etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.                                                                                                                                 |
| 5          | ADC2     | I        | Analog      | Analog-to-digital converter input 2.                                                                                                                                                                                                                                                                                              |
| 6          | ADC3     | I        | Analog      | Analog-to-digital converter input 3.                                                                                                                                                                                                                                                                                              |
| 7          | LDO      | -        | Power       | Low drop-out regulator output voltage. This<br>pin requires an external capacitor between<br>the pin and GND of 1 $\mu$ F or greater. When the<br>on-chip LDO is used to provide power to the<br>logic, the LDO pin must also be connected to<br>the VDD25 pins at the board level in addition<br>to the decoupling capacitor(s). |
| 8          | VDD      | -        | Power       | Positive supply for I/O and some logic.                                                                                                                                                                                                                                                                                           |
| 9          | GND      | -        | Power       | Ground reference for logic and I/O pins.                                                                                                                                                                                                                                                                                          |
| 10         | IDX0     | I        | TTL         | QEI module 0 index                                                                                                                                                                                                                                                                                                                |
|            | PDO      | I/O      | TTL         | GPIO port D bit 0                                                                                                                                                                                                                                                                                                                 |
| 11         | PD1      | I/O      | TTL         | GPIO port D bit 1                                                                                                                                                                                                                                                                                                                 |
|            | PWM1     | 0        | TTL         | PWM 1                                                                                                                                                                                                                                                                                                                             |
| 12         | PD2      | I/O      | TTL         | GPIO port D bit 2                                                                                                                                                                                                                                                                                                                 |
|            | UlRx     | I        | TTL         | UART module 1 receive. When in IrDA mode, this signal has IrDA modulation.                                                                                                                                                                                                                                                        |
| 13         | PD3      | I/O      | TTL         | GPIO port D bit 3                                                                                                                                                                                                                                                                                                                 |
|            | UlTx     | 0        | TTL         | UART module 1 transmit. When in IrDA mode, this signal has IrDA modulation.                                                                                                                                                                                                                                                       |

#### Table 21-1. Signals by Pin Number

| Pin Number | Pin Name | Pin Type | Buffer Type | Description                                                                                        |
|------------|----------|----------|-------------|----------------------------------------------------------------------------------------------------|
| 14         | VDD25    | -        | Power       | Positive supply for most of the logic function, including the processor core and most peripherals. |
| 15         | GND      | -        | Power       | Ground reference for logic and I/O pins.                                                           |
| 16         | XTALPPHY | 0        | TTL         | XTALP of the Ethernet PHY                                                                          |
| 17         | XTALNPHY | I        | TTL         | XTALN of the Ethernet PHY                                                                          |
| 18         | PG1      | I/O      | TTL         | GPIO port G bit 1                                                                                  |
|            | U2Tx     | 0        | TTL         | UART 2 Transmit. When in IrDA mode, this signal has IrDA modulation.                               |
| 19         | PG0      | I/O      | TTL         | GPIO port G bit 0                                                                                  |
|            | U2Rx     | I        | TTL         | UART 2 Receive. When in IrDA mode, this signal has IrDA modulation.                                |
| 20         | VDD      | -        | Power       | Positive supply for I/O and some logic.                                                            |
| 21         | GND      | -        | Power       | Ground reference for logic and I/O pins.                                                           |
| 22         | PC7      | I/O      | TTL         | GPIO port C bit 7                                                                                  |
|            | PhB0     | I        | TTL         | QEI module 0 Phase B                                                                               |
| 23         | CCP3     | I/O      | TTL         | Capture/Compare/PWM 3                                                                              |
| -          | PC6      | I/O      | TTL         | GPIO port C bit 6                                                                                  |
| 24         | COo      | 0        | TTL         | Analog comparator 0 output                                                                         |
| -          | Cl+      | I        | Analog      | Analog comparator positive input                                                                   |
| -          | PC5      | I/O      | TTL         | GPIO port C bit 5                                                                                  |
| 25         | PC4      | I/O      | TTL         | GPIO port C bit 4                                                                                  |
| -          | PhA0     | I        | TTL         | QEI module 0 Phase A                                                                               |
| 26         | PAO      | I/O      | TTL         | GPIO port A bit 0                                                                                  |
|            | UORx     | I        | TTL         | UART module 0 receive. When in IrDA mode, this signal has IrDA modulation.                         |
| 27         | PA1      | I/O      | TTL         | GPIO port A bit 1                                                                                  |
|            | UOTx     | 0        | TTL         | UART module 0 transmit. When in IrDA mode, this signal has IrDA modulation.                        |
| 28         | PA2      | I/O      | TTL         | GPIO port A bit 2                                                                                  |
|            | SSIOClk  | I/O      | TTL         | SSI module 0 clock                                                                                 |
| 29         | PA3      | I/O      | TTL         | GPIO port A bit 3                                                                                  |
|            | SSIOFss  | I/O      | TTL         | SSI module 0 frame                                                                                 |
| 30         | PA4      | I/O      | TTL         | GPIO port A bit 4                                                                                  |
|            | SSIORx   | I        | TTL         | SSI module 0 receive                                                                               |
| 31         | PA5      | I/O      | TTL         | GPIO port A bit 5                                                                                  |
| -          | SSIOTx   | 0        | TTL         | SSI module 0 transmit                                                                              |
| 32         | VDD      | -        | Power       | Positive supply for I/O and some logic.                                                            |
| 33         | GND      | -        | Power       | Ground reference for logic and I/O pins.                                                           |
| 34         | I2C1SCL  | I/O      | OD          | I2C module 1 clock                                                                                 |
|            | PA6      | I/O      | TTL         | GPIO port A bit 6                                                                                  |
| 35         | I2C1SDA  | I/O      | OD          | I2C module 1 data                                                                                  |
|            | PA7      | I/O      | TTL         | GPIO port A bit 7                                                                                  |
| 36         | VCCPHY   |          | TTL         | VCC of the Ethernet PHY                                                                            |

| Pin Number | Pin Name | Pin Type | Buffer Type | Description                                                                                                                                                                                                                                        |
|------------|----------|----------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 37         | RXIN     | I        | Analog      | RXIN of the Ethernet PHY                                                                                                                                                                                                                           |
| 38         | VDD25    | -        | Power       | Positive supply for most of the logic function, including the processor core and most peripherals.                                                                                                                                                 |
| 39         | GND      | -        | Power       | Ground reference for logic and I/O pins.                                                                                                                                                                                                           |
| 40         | RXIP     | I        | Analog      | RXIP of the Ethernet PHY                                                                                                                                                                                                                           |
| 41         | GNDPHY   | I        | TTL         | GND of the Ethernet PHY                                                                                                                                                                                                                            |
| 42         | GNDPHY   | I        | TTL         | GND of Ethernet PHY                                                                                                                                                                                                                                |
| 43         | TXOP     | 0        | Analog      | TXOP of Ethernet PHY                                                                                                                                                                                                                               |
| 44         | VDD      | -        | Power       | Positive supply for I/O and some logic.                                                                                                                                                                                                            |
| 45         | GND      | -        | Power       | Ground reference for logic and I/O pins.                                                                                                                                                                                                           |
| 46         | TXON     | 0        | Analog      | TXON of Ethernet PHY                                                                                                                                                                                                                               |
| 47         | PF0      | I/O      | TTL         | GPIO port F bit 0                                                                                                                                                                                                                                  |
| -          | PWMO     | 0        | TTL         | PWM 0                                                                                                                                                                                                                                              |
| 48         | OSC0     | I        | Analog      | Main oscillator crystal input or an external clock reference input.                                                                                                                                                                                |
| 49         | OSC1     | 0        | Analog      | Main oscillator crystal output.                                                                                                                                                                                                                    |
| 50         | WAKE     | I        | OD          | An external input that brings the processor out of hibernate mode when asserted.                                                                                                                                                                   |
| 51         | HIB      | 0        | TTL         | An output that indicates the processor is in hibernate mode.                                                                                                                                                                                       |
| 52         | xosc0    | I        | Analog      | Hibernation Module oscillator crystal input or<br>an external clock reference input. Note that<br>this is either a 4.19-MHz crystal or a<br>32.768-kHz oscillator for the Hibernation<br>Module RTC. See the CLKSEL bit in the<br>HIBCTL register. |
| 53         | XOSC1    | 0        | Analog      | Hibernation Module oscillator crystal output.                                                                                                                                                                                                      |
| 54         | GND      | -        | Power       | Ground reference for logic and I/O pins.                                                                                                                                                                                                           |
| 55         | VBAT     | -        | Power       | Power source for the Hibernation Module. It<br>is normally connected to the positive terminal<br>of a battery and serves as the battery<br>backup/Hibernation Module power-source<br>supply.                                                       |
| 56         | VDD      | -        | Power       | Positive supply for I/O and some logic.                                                                                                                                                                                                            |
| 57         | GND      | -        | Power       | Ground reference for logic and I/O pins.                                                                                                                                                                                                           |
| 58         | MDIO     | I/O      | TTL         | MDIO of Ethernet PHY                                                                                                                                                                                                                               |
| 59         | LED0     | 0        | TTL         | MII LED 0                                                                                                                                                                                                                                          |
| -          | PF3      | I/O      | TTL         | GPIO port F bit 3                                                                                                                                                                                                                                  |
| 60         | LED1     | 0        | TTL         | MII LED 1                                                                                                                                                                                                                                          |
|            | PF2      | I/O      | TTL         | GPIO port F bit 2                                                                                                                                                                                                                                  |
| 61         | IDX1     | I        | TTL         | QEI module 1 index                                                                                                                                                                                                                                 |
|            | PF1      | I/O      | TTL         | GPIO port F bit 1                                                                                                                                                                                                                                  |
| 62         | VDD25    | -        | Power       | Positive supply for most of the logic function,<br>including the processor core and most<br>peripherals.                                                                                                                                           |
| 63         | GND      | -        | Power       | Ground reference for logic and I/O pins.                                                                                                                                                                                                           |

| Pin Number | Pin Name | Pin Type | Buffer Type | Description                                                                                        |
|------------|----------|----------|-------------|----------------------------------------------------------------------------------------------------|
| 64         | RST      | I        | TTL         | System reset input.                                                                                |
| 65         | CMOD0    | I/O      | TTL         | CPU Mode bit 0. Input must be set to logic 0 (grounded); other encodings reserved.                 |
| 66         | PB0      | I/O      | TTL         | GPIO port B bit 0                                                                                  |
|            | PWM2     | 0        | TTL         | PWM 2                                                                                              |
| 67         | PB1      | I/O      | TTL         | GPIO port B bit 1                                                                                  |
|            | PWM3     | 0        | TTL         | PWM 3                                                                                              |
| 68         | VDD      | -        | Power       | Positive supply for I/O and some logic.                                                            |
| 69         | GND      | -        | Power       | Ground reference for logic and I/O pins.                                                           |
| 70         | I2C0SCL  | I/O      | OD          | I2C module 0 clock                                                                                 |
|            | PB2      | I/O      | TTL         | GPIO port B bit 2                                                                                  |
| 71         | I2C0SDA  | I/O      | OD          | I2C module 0 data                                                                                  |
|            | PB3      | I/O      | TTL         | GPIO port B bit 3                                                                                  |
| 72         | PE0      | I/O      | TTL         | GPIO port E bit 0                                                                                  |
|            | PWM4     | 0        | TTL         | PWM 4                                                                                              |
| 73         | PE1      | I/O      | TTL         | GPIO port E bit 1                                                                                  |
|            | PWM5     | 0        | TTL         | PWM 5                                                                                              |
| 74         | PE2      | I/O      | TTL         | GPIO port E bit 2                                                                                  |
|            | PhB1     | I        | TTL         | QEI module 1 Phase B                                                                               |
| 75         | PE3      | I/O      | TTL         | GPIO port E bit 3                                                                                  |
|            | PhA1     | I        | TTL         | QEI module 1 Phase A                                                                               |
| 76         | CMOD1    | I/O      | TTL         | CPU Mode bit 1. Input must be set to logic 0 (grounded); other encodings reserved.                 |
| 77         | PC3      | I/O      | TTL         | GPIO port C bit 3                                                                                  |
|            | SWO      | 0        | TTL         | JTAG TDO and SWO                                                                                   |
|            | TDO      | 0        | TTL         | JTAG TDO and SWO                                                                                   |
| 78         | PC2      | I/O      | TTL         | GPIO port C bit 2                                                                                  |
|            | TDI      | I        | TTL         | JTAG TDI                                                                                           |
| 79         | PC1      | I/O      | TTL         | GPIO port C bit 1                                                                                  |
|            | SWDIO    | I/O      | TTL         | JTAG TMS and SWDIO                                                                                 |
|            | TMS      | I/O      | TTL         | JTAG TMS and SWDIO                                                                                 |
| 80         | PC0      | I/O      | TTL         | GPIO port C bit 0                                                                                  |
|            | SWCLK    | I        | TTL         | JTAG/SWD CLK                                                                                       |
|            | TCK      | I        | TTL         | JTAG/SWD CLK                                                                                       |
| 81         | VDD      | -        | Power       | Positive supply for I/O and some logic.                                                            |
| 82         | GND      | -        | Power       | Ground reference for logic and I/O pins.                                                           |
| 83         | VCCPHY   | I        | TTL         | VCC of the Ethernet PHY                                                                            |
| 84         | VCCPHY   |          | TTL         | VCC of the Ethernet PHY                                                                            |
| 85         | GNDPHY   | I        | TTL         | GND of the Ethernet PHY                                                                            |
| 86         | GNDPHY   | I        | TTL         | GND of the Ethernet PHY                                                                            |
| 87         | GND      | -        | Power       | Ground reference for logic and I/O pins.                                                           |
| 88         | VDD25    | -        | Power       | Positive supply for most of the logic function, including the processor core and most peripherals. |

| Pin Number | Pin Name | Pin Type | Buffer Type | Description                                                                                                                                                                                                 |
|------------|----------|----------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 89         | PB7      | I/O      | TTL         | GPIO port B bit 7                                                                                                                                                                                           |
|            | TRST     | 1        | TTL         | JTAG TRSTn                                                                                                                                                                                                  |
| 90         | C0+      | 1        | Analog      | Analog comparator 0 positive input                                                                                                                                                                          |
|            | PB6      | I/O      | TTL         | GPIO port B bit 6                                                                                                                                                                                           |
| 91         | C1-      | I        | Analog      | Analog comparator 1 negative input                                                                                                                                                                          |
|            | PB5      | I/O      | TTL         | GPIO port B bit 5                                                                                                                                                                                           |
| 92         | C0-      | I        | Analog      | Analog comparator 0 negative input                                                                                                                                                                          |
|            | PB4      | I/O      | TTL         | GPIO port B bit 4                                                                                                                                                                                           |
| 93         | VDD      | -        | Power       | Positive supply for I/O and some logic.                                                                                                                                                                     |
| 94         | GND      | -        | Power       | Ground reference for logic and I/O pins.                                                                                                                                                                    |
| 95         | CCP0     | I/O      | TTL         | Capture/Compare/PWM 0                                                                                                                                                                                       |
|            | PD4      | I/O      | TTL         | GPIO port D bit 4                                                                                                                                                                                           |
| 96         | CCP2     | I/O      | TTL         | Capture/Compare/PWM 2                                                                                                                                                                                       |
|            | PD5      | I/O      | TTL         | GPIO port D bit 5                                                                                                                                                                                           |
| 97         | GNDA     | -        | Power       | The ground reference for the analog circuits (ADC, Analog Comparators, etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.           |
| 98         | VDDA     | -        | Power       | The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.).<br>These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions. |
| 99         | Fault    | I        | TTL         | PWM Fault                                                                                                                                                                                                   |
|            | PD6      | I/O      | TTL         | GPIO port D bit 6                                                                                                                                                                                           |
| 100        | CCP1     | I/O      | TTL         | Capture/Compare/PWM 1                                                                                                                                                                                       |
|            | PD7      | I/O      | TTL         | GPIO port D bit 7                                                                                                                                                                                           |

## Table 21-2. Signals by Signal Name

| Pin Name | Pin Number | Pin Type | Buffer Type | Description                          |
|----------|------------|----------|-------------|--------------------------------------|
| ADC0     | 1          | I        | Analog      | Analog-to-digital converter input 0. |
| ADC1     | 2          | I        | Analog      | Analog-to-digital converter input 1. |
| ADC2     | 5          | I        | Analog      | Analog-to-digital converter input 2. |
| ADC3     | 6          | I        | Analog      | Analog-to-digital converter input 3. |
| C0+      | 90         | I        | Analog      | Analog comparator 0 positive input   |
| C0-      | 92         | I        | Analog      | Analog comparator 0 negative input   |
| COo      | 24         | 0        | TTL         | Analog comparator 0 output           |
| C1+      | 24         | I        | Analog      | Analog comparator positive input     |
| C1-      | 91         | I        | Analog      | Analog comparator 1 negative input   |
| CCP0     | 95         | I/O      | TTL         | Capture/Compare/PWM 0                |
| CCP1     | 100        | I/O      | TTL         | Capture/Compare/PWM 1                |
| CCP2     | 96         | I/O      | TTL         | Capture/Compare/PWM 2                |
| CCP3     | 23         | I/O      | TTL         | Capture/Compare/PWM 3                |

| Pin Name | Pin Number | Pin Type | Buffer Type | Description                                                                                                                                                                                                                                                                                                                       |
|----------|------------|----------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CMOD0    | 65         | I/O      | TTL         | CPU Mode bit 0. Input must be set to logic 0 (grounded); other encodings reserved.                                                                                                                                                                                                                                                |
| CMOD1    | 76         | I/O      | TTL         | CPU Mode bit 1. Input must be set to logic 0 (grounded); other encodings reserved.                                                                                                                                                                                                                                                |
| Fault    | 99         | I        | TTL         | PWM Fault                                                                                                                                                                                                                                                                                                                         |
| GND      | 9          | -        | Power       | Ground reference for logic and I/O pins.                                                                                                                                                                                                                                                                                          |
| GND      | 15         | -        | Power       | Ground reference for logic and I/O pins.                                                                                                                                                                                                                                                                                          |
| GND      | 21         | -        | Power       | Ground reference for logic and I/O pins.                                                                                                                                                                                                                                                                                          |
| GND      | 33         | -        | Power       | Ground reference for logic and I/O pins.                                                                                                                                                                                                                                                                                          |
| GND      | 39         | -        | Power       | Ground reference for logic and I/O pins.                                                                                                                                                                                                                                                                                          |
| GND      | 45         | -        | Power       | Ground reference for logic and I/O pins.                                                                                                                                                                                                                                                                                          |
| GND      | 54         | -        | Power       | Ground reference for logic and I/O pins.                                                                                                                                                                                                                                                                                          |
| GND      | 57         | -        | Power       | Ground reference for logic and I/O pins.                                                                                                                                                                                                                                                                                          |
| GND      | 63         | -        | Power       | Ground reference for logic and I/O pins.                                                                                                                                                                                                                                                                                          |
| GND      | 69         | -        | Power       | Ground reference for logic and I/O pins.                                                                                                                                                                                                                                                                                          |
| GND      | 82         | -        | Power       | Ground reference for logic and I/O pins.                                                                                                                                                                                                                                                                                          |
| GND      | 87         | -        | Power       | Ground reference for logic and I/O pins.                                                                                                                                                                                                                                                                                          |
| GND      | 94         | -        | Power       | Ground reference for logic and I/O pins.                                                                                                                                                                                                                                                                                          |
| GNDA     | 4          | -        | Power       | The ground reference for the analog circuits (ADC, Analog Comparators, etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.                                                                                                                                 |
| GNDA     | 97         | -        | Power       | The ground reference for the analog circuits (ADC, Analog Comparators, etc.). These are separated from GND to minimize the electrica noise contained on VDD from affecting the analog functions.                                                                                                                                  |
| GNDPHY   | 41         | I        | TTL         | GND of the Ethernet PHY                                                                                                                                                                                                                                                                                                           |
| GNDPHY   | 42         | Ι        | TTL         | GND of Ethernet PHY                                                                                                                                                                                                                                                                                                               |
| GNDPHY   | 85         | I        | TTL         | GND of the Ethernet PHY                                                                                                                                                                                                                                                                                                           |
| GNDPHY   | 86         | Ι        | TTL         | GND of the Ethernet PHY                                                                                                                                                                                                                                                                                                           |
| HIB      | 51         | 0        | TTL         | An output that indicates the processor is in hibernate mode.                                                                                                                                                                                                                                                                      |
| I2C0SCL  | 70         | I/O      | OD          | I2C module 0 clock                                                                                                                                                                                                                                                                                                                |
| I2C0SDA  | 71         | I/O      | OD          | I2C module 0 data                                                                                                                                                                                                                                                                                                                 |
| I2C1SCL  | 34         | I/O      | OD          | I2C module 1 clock                                                                                                                                                                                                                                                                                                                |
| I2C1SDA  | 35         | I/O      | OD          | I2C module 1 data                                                                                                                                                                                                                                                                                                                 |
| IDX0     | 10         | I        | TTL         | QEI module 0 index                                                                                                                                                                                                                                                                                                                |
| IDX1     | 61         | I        | TTL         | QEI module 1 index                                                                                                                                                                                                                                                                                                                |
| LDO      | 7          | -        | Power       | Low drop-out regulator output voltage. This<br>pin requires an external capacitor between<br>the pin and GND of 1 $\mu$ F or greater. When the<br>on-chip LDO is used to provide power to the<br>logic, the LDO pin must also be connected to<br>the VDD25 pins at the board level in addition<br>to the decoupling capacitor(s). |
| LED0     | 59         | 0        | TTL         | MII LED 0                                                                                                                                                                                                                                                                                                                         |

| Pin Name | Pin Number | Pin Type | Buffer Type | Description                                                         |
|----------|------------|----------|-------------|---------------------------------------------------------------------|
| LED1     | 60         | 0        | TTL         | MII LED 1                                                           |
| MDIO     | 58         | I/O      | TTL         | MDIO of Ethernet PHY                                                |
| OSC0     | 48         | I        | Analog      | Main oscillator crystal input or an external clock reference input. |
| OSC1     | 49         | 0        | Analog      | Main oscillator crystal output.                                     |
| PAO      | 26         | I/O      | TTL         | GPIO port A bit 0                                                   |
| PA1      | 27         | I/O      | TTL         | GPIO port A bit 1                                                   |
| PA2      | 28         | I/O      | TTL         | GPIO port A bit 2                                                   |
| PA3      | 29         | I/O      | TTL         | GPIO port A bit 3                                                   |
| PA4      | 30         | I/O      | TTL         | GPIO port A bit 4                                                   |
| PA5      | 31         | I/O      | TTL         | GPIO port A bit 5                                                   |
| PA6      | 34         | I/O      | TTL         | GPIO port A bit 6                                                   |
| PA7      | 35         | I/O      | TTL         | GPIO port A bit 7                                                   |
| PB0      | 66         | I/O      | TTL         | GPIO port B bit 0                                                   |
| PB1      | 67         | I/O      | TTL         | GPIO port B bit 1                                                   |
| PB2      | 70         | I/O      | TTL         | GPIO port B bit 2                                                   |
| PB3      | 71         | I/O      | TTL         | GPIO port B bit 3                                                   |
| PB4      | 92         | I/O      | TTL         | GPIO port B bit 4                                                   |
| PB5      | 91         | I/O      | TTL         | GPIO port B bit 5                                                   |
| PB6      | 90         | I/O      | TTL         | GPIO port B bit 6                                                   |
| PB7      | 89         | I/O      | TTL         | GPIO port B bit 7                                                   |
| PC0      | 80         | I/O      | TTL         | GPIO port C bit 0                                                   |
| PC1      | 79         | I/O      | TTL         | GPIO port C bit 1                                                   |
| PC2      | 78         | I/O      | TTL         | GPIO port C bit 2                                                   |
| PC3      | 77         | I/O      | TTL         | GPIO port C bit 3                                                   |
| PC4      | 25         | I/O      | TTL         | GPIO port C bit 4                                                   |
| PC5      | 24         | I/O      | TTL         | GPIO port C bit 5                                                   |
| PC6      | 23         | I/O      | TTL         | GPIO port C bit 6                                                   |
| PC7      | 22         | I/O      | TTL         | GPIO port C bit 7                                                   |
| PD0      | 10         | I/O      | TTL         | GPIO port D bit 0                                                   |
| PD1      | 11         | I/O      | TTL         | GPIO port D bit 1                                                   |
| PD2      | 12         | I/O      | TTL         | GPIO port D bit 2                                                   |
| PD3      | 13         | I/O      | TTL         | GPIO port D bit 3                                                   |
| PD4      | 95         | I/O      | TTL         | GPIO port D bit 4                                                   |
| PD5      | 96         | I/O      | TTL         | GPIO port D bit 5                                                   |
| PD6      | 99         | I/O      | TTL         | GPIO port D bit 6                                                   |
| PD7      | 100        | I/O      | TTL         | GPIO port D bit 7                                                   |
| PEO      | 72         | I/O      | TTL         | GPIO port E bit 0                                                   |
| PE1      | 73         | I/O      | TTL         | GPIO port E bit 1                                                   |
| PE2      | 74         | I/O      | TTL         | GPIO port E bit 2                                                   |
| PE3      | 75         | I/O      | TTL         | GPIO port E bit 3                                                   |
| PF0      | 47         | I/O      | TTL         | GPIO port F bit 0                                                   |
| PF1      | 61         | I/O      | TTL         | GPIO port F bit 1                                                   |

| Pin Name | Pin Number | Pin Type | Buffer Type | Description                                                                 |
|----------|------------|----------|-------------|-----------------------------------------------------------------------------|
| PF2      | 60         | I/O      | TTL         | GPIO port F bit 2                                                           |
| PF3      | 59         | I/O      | TTL         | GPIO port F bit 3                                                           |
| PGO      | 19         | I/O      | TTL         | GPIO port G bit 0                                                           |
| PG1      | 18         | I/O      | TTL         | GPIO port G bit 1                                                           |
| PWM0     | 47         | 0        | TTL         | PWM 0                                                                       |
| PWM1     | 11         | 0        | TTL         | PWM 1                                                                       |
| PWM2     | 66         | 0        | TTL         | PWM 2                                                                       |
| PWM3     | 67         | 0        | TTL         | PWM 3                                                                       |
| PWM4     | 72         | 0        | TTL         | PWM 4                                                                       |
| PWM5     | 73         | 0        | TTL         | PWM 5                                                                       |
| PhA0     | 25         | I        | TTL         | QEI module 0 Phase A                                                        |
| PhA1     | 75         | I        | TTL         | QEI module 1 Phase A                                                        |
| PhB0     | 22         | I        | TTL         | QEI module 0 Phase B                                                        |
| PhB1     | 74         | I        | TTL         | QEI module 1 Phase B                                                        |
| RST      | 64         | I        | TTL         | System reset input.                                                         |
| RXIN     | 37         | I        | Analog      | RXIN of the Ethernet PHY                                                    |
| RXIP     | 40         | Ι        | Analog      | RXIP of the Ethernet PHY                                                    |
| SSIOClk  | 28         | I/O      | TTL         | SSI module 0 clock                                                          |
| SSIOFss  | 29         | I/O      | TTL         | SSI module 0 frame                                                          |
| SSIORx   | 30         | I        | TTL         | SSI module 0 receive                                                        |
| SSIOTx   | 31         | 0        | TTL         | SSI module 0 transmit                                                       |
| SWCLK    | 80         | I        | TTL         | JTAG/SWD CLK                                                                |
| SWDIO    | 79         | I/O      | TTL         | JTAG TMS and SWDIO                                                          |
| SWO      | 77         | 0        | TTL         | JTAG TDO and SWO                                                            |
| TCK      | 80         | I        | TTL         | JTAG/SWD CLK                                                                |
| TDI      | 78         | I        | TTL         | JTAG TDI                                                                    |
| TDO      | 77         | 0        | TTL         | JTAG TDO and SWO                                                            |
| TMS      | 79         | I/O      | TTL         | JTAG TMS and SWDIO                                                          |
| TRST     | 89         | I        | TTL         | JTAG TRSTn                                                                  |
| TXON     | 46         | 0        | Analog      | TXON of Ethernet PHY                                                        |
| TXOP     | 43         | 0        | Analog      | TXOP of Ethernet PHY                                                        |
| UORx     | 26         | I        | TTL         | UART module 0 receive. When in IrDA mode, this signal has IrDA modulation.  |
| UOTx     | 27         | 0        | TTL         | UART module 0 transmit. When in IrDA mode, this signal has IrDA modulation. |
| UlRx     | 12         | I        | TTL         | UART module 1 receive. When in IrDA mode, this signal has IrDA modulation.  |
| UlTx     | 13         | 0        | TTL         | UART module 1 transmit. When in IrDA mode, this signal has IrDA modulation. |
| U2Rx     | 19         | I        | TTL         | UART 2 Receive. When in IrDA mode, this signal has IrDA modulation.         |
| U2Tx     | 18         | 0        | TTL         | UART 2 Transmit. When in IrDA mode, this signal has IrDA modulation.        |

| Pin Name | Pin Number | Pin Type | Buffer Type | Description                                                                                                                                                                                                                                        |
|----------|------------|----------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VBAT     | 55         | -        | Power       | Power source for the Hibernation Module. It<br>is normally connected to the positive terminal<br>of a battery and serves as the battery<br>backup/Hibernation Module power-source<br>supply.                                                       |
| VCCPHY   | 36         | Ι        | TTL         | VCC of the Ethernet PHY                                                                                                                                                                                                                            |
| VCCPHY   | 83         | I        | TTL         | VCC of the Ethernet PHY                                                                                                                                                                                                                            |
| VCCPHY   | 84         | I        | TTL         | VCC of the Ethernet PHY                                                                                                                                                                                                                            |
| VDD      | 8          | -        | Power       | Positive supply for I/O and some logic.                                                                                                                                                                                                            |
| VDD      | 20         | -        | Power       | Positive supply for I/O and some logic.                                                                                                                                                                                                            |
| VDD      | 32         | -        | Power       | Positive supply for I/O and some logic.                                                                                                                                                                                                            |
| VDD      | 44         | -        | Power       | Positive supply for I/O and some logic.                                                                                                                                                                                                            |
| VDD      | 56         | -        | Power       | Positive supply for I/O and some logic.                                                                                                                                                                                                            |
| VDD      | 68         | -        | Power       | Positive supply for I/O and some logic.                                                                                                                                                                                                            |
| VDD      | 81         | -        | Power       | Positive supply for I/O and some logic.                                                                                                                                                                                                            |
| VDD      | 93         | -        | Power       | Positive supply for I/O and some logic.                                                                                                                                                                                                            |
| VDD25    | 14         | -        | Power       | Positive supply for most of the logic function, including the processor core and most peripherals.                                                                                                                                                 |
| VDD25    | 38         | -        | Power       | Positive supply for most of the logic function, including the processor core and most peripherals.                                                                                                                                                 |
| VDD25    | 62         | -        | Power       | Positive supply for most of the logic function, including the processor core and most peripherals.                                                                                                                                                 |
| VDD25    | 88         | -        | Power       | Positive supply for most of the logic function, including the processor core and most peripherals.                                                                                                                                                 |
| VDDA     | 3          | -        | Power       | The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.).<br>These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions.                                        |
| VDDA     | 98         | -        | Power       | The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions.                                           |
| WAKE     | 50         | I        | OD          | An external input that brings the processor out of hibernate mode when asserted.                                                                                                                                                                   |
| XOSC0    | 52         | 1        | Analog      | Hibernation Module oscillator crystal input or<br>an external clock reference input. Note that<br>this is either a 4.19-MHz crystal or a<br>32.768-kHz oscillator for the Hibernation<br>Module RTC. See the CLKSEL bit in the<br>HIBCTL register. |
| XOSC1    | 53         | 0        | Analog      | Hibernation Module oscillator crystal output.                                                                                                                                                                                                      |
| XTALNPHY | 17         | I        | TTL         | XTALN of the Ethernet PHY                                                                                                                                                                                                                          |
| XTALPPHY | 16         | 0        | TTL         | XTALP of the Ethernet PHY                                                                                                                                                                                                                          |

| Function        | Pin Name | Pin<br>Number | Pin Type | Buffer<br>Type | Description                          |
|-----------------|----------|---------------|----------|----------------|--------------------------------------|
| ADC             | ADC0     | 1             | I        | Analog         | Analog-to-digital converter input 0. |
|                 | ADC1     | 2             | I        | Analog         | Analog-to-digital converter input 1. |
|                 | ADC2     | 5             | I        | Analog         | Analog-to-digital converter input 2. |
|                 | ADC3     | 6             | I        | Analog         | Analog-to-digital converter input 3. |
| Analog          | C0+      | 90            | I        | Analog         | Analog comparator 0 positive input   |
| Comparators     | C0-      | 92            | I        | Analog         | Analog comparator 0 negative input   |
|                 | C0o      | 24            | 0        | TTL            | Analog comparator 0 output           |
|                 | C1+      | 24            | I        | Analog         | Analog comparator positive input     |
|                 | C1-      | 91            | I        | Analog         | Analog comparator 1 negative input   |
| Ethernet PHY    | GNDPHY   | 41            | I        | TTL            | GND of the Ethernet PHY              |
|                 | GNDPHY   | 42            | I        | TTL            | GND of Ethernet PHY                  |
|                 | GNDPHY   | 85            | I        | TTL            | GND of the Ethernet PHY              |
|                 | GNDPHY   | 86            | I        | TTL            | GND of the Ethernet PHY              |
|                 | LED0     | 59            | 0        | TTL            | MII LED 0                            |
|                 | LED1     | 60            | 0        | TTL            | MII LED 1                            |
|                 | MDIO     | 58            | I/O      | TTL            | MDIO of Ethernet PHY                 |
|                 | RXIN     | 37            | I        | Analog         | RXIN of the Ethernet PHY             |
|                 | RXIP     | 40            | I        | Analog         | RXIP of the Ethernet PHY             |
|                 | TXON     | 46            | 0        | Analog         | TXON of Ethernet PHY                 |
|                 | TXOP     | 43            | 0        | Analog         | TXOP of Ethernet PHY                 |
|                 | VCCPHY   | 36            | I        | TTL            | VCC of the Ethernet PHY              |
|                 | VCCPHY   | 83            | I        | TTL            | VCC of the Ethernet PHY              |
|                 | VCCPHY   | 84            | I        | TTL            | VCC of the Ethernet PHY              |
|                 | XTALNPHY | 17            | I        | TTL            | XTALN of the Ethernet PHY            |
|                 | XTALPPHY | 16            | 0        | TTL            | XTALP of the Ethernet PHY            |
| General-Purpose | CCP0     | 95            | I/O      | TTL            | Capture/Compare/PWM 0                |
| Timers          | CCP1     | 100           | I/O      | TTL            | Capture/Compare/PWM 1                |
|                 | CCP2     | 96            | I/O      | TTL            | Capture/Compare/PWM 2                |
|                 | CCP3     | 23            | I/O      | TTL            | Capture/Compare/PWM 3                |
| 12C             | I2C0SCL  | 70            | I/O      | OD             | I2C module 0 clock                   |
|                 | I2C0SDA  | 71            | I/O      | OD             | I2C module 0 data                    |
|                 | I2C1SCL  | 34            | I/O      | OD             | I2C module 1 clock                   |
|                 | I2C1SDA  | 35            | I/O      | OD             | I2C module 1 data                    |
| JTAG/SWD/SWO    | SWCLK    | 80            | I        | TTL            | JTAG/SWD CLK                         |
|                 | SWDIO    | 79            | I/O      | TTL            | JTAG TMS and SWDIO                   |
|                 | SWO      | 77            | 0        | TTL            | JTAG TDO and SWO                     |
|                 | ТСК      | 80            | I        | TTL            | JTAG/SWD CLK                         |
|                 | TDI      | 78            | I        | TTL            | JTAG TDI                             |
|                 | TDO      | 77            | 0        | TTL            | JTAG TDO and SWO                     |
|                 | TMS      | 79            | I/O      | TTL            | JTAG TMS and SWDIO                   |

#### Table 21-3. Signals by Function, Except for GPIO

| Function | Pin Name | Pin<br>Number | Pin Type | Buffer<br>Type | Description |
|----------|----------|---------------|----------|----------------|-------------|
| PWM      | Fault    | 99            | I        | TTL            | PWM Fault   |
|          | PWM0     | 47            | 0        | TTL            | PWM 0       |
|          | PWM1     | 11            | 0        | TTL            | PWM 1       |
|          | PWM2     | 66            | 0        | TTL            | PWM 2       |
|          | PWM3     | 67            | 0        | TTL            | PWM 3       |
|          | PWM4     | 72            | 0        | TTL            | PWM 4       |
|          | PWM5     | 73            | 0        | TTL            | PWM 5       |

| Function | Pin Name | Pin<br>Number | Pin Type | Buffer<br>Type | Description                                                                                                                                                                                                                                                                                                     |
|----------|----------|---------------|----------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Power    | GND      | 9             | -        | Power          | Ground reference for logic and I/O pins.                                                                                                                                                                                                                                                                        |
|          | GND      | 15            | -        | Power          | Ground reference for logic and I/O pins.                                                                                                                                                                                                                                                                        |
|          | GND      | 21            | -        | Power          | Ground reference for logic and I/O pins.                                                                                                                                                                                                                                                                        |
|          | GND      | 33            | -        | Power          | Ground reference for logic and I/O pins.                                                                                                                                                                                                                                                                        |
|          | GND      | 39            | -        | Power          | Ground reference for logic and I/O pins.                                                                                                                                                                                                                                                                        |
|          | GND      | 45            | -        | Power          | Ground reference for logic and I/O pins.                                                                                                                                                                                                                                                                        |
|          | GND      | 54            | -        | Power          | Ground reference for logic and I/O pins.                                                                                                                                                                                                                                                                        |
|          | GND      | 57            | -        | Power          | Ground reference for logic and I/O pins.                                                                                                                                                                                                                                                                        |
|          | GND      | 63            | -        | Power          | Ground reference for logic and I/O pins.                                                                                                                                                                                                                                                                        |
|          | GND      | 69            | -        | Power          | Ground reference for logic and I/O pins.                                                                                                                                                                                                                                                                        |
|          | GND      | 82            | -        | Power          | Ground reference for logic and I/O pins.                                                                                                                                                                                                                                                                        |
|          | GND      | 87            | -        | Power          | Ground reference for logic and I/O pins.                                                                                                                                                                                                                                                                        |
|          | GND      | 94            | -        | Power          | Ground reference for logic and I/O pins.                                                                                                                                                                                                                                                                        |
|          | GNDA     | 4             | -        | Power          | The ground reference for the analog circuits (ADC,<br>Analog Comparators, etc.). These are separated<br>from GND to minimize the electrical noise contained<br>on VDD from affecting the analog functions.                                                                                                      |
|          | GNDA     | 97            | -        | Power          | The ground reference for the analog circuits (ADC,<br>Analog Comparators, etc.). These are separated<br>from GND to minimize the electrical noise contained<br>on VDD from affecting the analog functions.                                                                                                      |
|          | HIB      | 51            | 0        | TTL            | An output that indicates the processor is in hibernate mode.                                                                                                                                                                                                                                                    |
|          | LDO      | 7             | -        | Power          | Low drop-out regulator output voltage. This pin requires an external capacitor between the pin and GND of 1 $\mu$ F or greater. When the on-chip LDO is used to provide power to the logic, the LDO pin must also be connected to the VDD25 pins at the board level in addition to the decoupling capacitor(s). |
|          | VBAT     | 55            | -        | Power          | Power source for the Hibernation Module. It is<br>normally connected to the positive terminal of a<br>battery and serves as the battery<br>backup/Hibernation Module power-source supply.                                                                                                                       |
|          | VDD      | 8             | -        | Power          | Positive supply for I/O and some logic.                                                                                                                                                                                                                                                                         |
|          | VDD      | 20            | -        | Power          | Positive supply for I/O and some logic.                                                                                                                                                                                                                                                                         |
|          | VDD      | 32            | -        | Power          | Positive supply for I/O and some logic.                                                                                                                                                                                                                                                                         |
|          | VDD      | 44            | -        | Power          | Positive supply for I/O and some logic.                                                                                                                                                                                                                                                                         |
|          | VDD      | 56            | -        | Power          | Positive supply for I/O and some logic.                                                                                                                                                                                                                                                                         |
|          | VDD      | 68            | -        | Power          | Positive supply for I/O and some logic.                                                                                                                                                                                                                                                                         |
|          | VDD      | 81            | -        | Power          | Positive supply for I/O and some logic.                                                                                                                                                                                                                                                                         |
|          | VDD      | 93            | -        | Power          | Positive supply for I/O and some logic.                                                                                                                                                                                                                                                                         |
|          | VDD25    | 14            | -        | Power          | Positive supply for most of the logic function, including the processor core and most peripherals.                                                                                                                                                                                                              |
|          | VDD25    | 38            | -        | Power          | Positive supply for most of the logic function, including the processor core and most peripherals.                                                                                                                                                                                                              |
|          | VDD25    | 62            | -        | Power          | Positive supply for most of the logic function, including the processor core and most peripherals.                                                                                                                                                                                                              |

| Function                   | Pin Name | Pin<br>Number | Pin Type | Buffer<br>Type | Description                                                                                                                                                                                                                         |
|----------------------------|----------|---------------|----------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            | VDD25    | 88            | -        | Power          | Positive supply for most of the logic function, including the processor core and most peripherals.                                                                                                                                  |
|                            | VDDA     | 3             | -        | Power          | The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions.                            |
|                            | VDDA     | 98            | -        | Power          | The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions.                            |
|                            | WAKE     | 50            | I        | OD             | An external input that brings the processor out of hibernate mode when asserted.                                                                                                                                                    |
| QEI                        | IDX0     | 10            | I        | TTL            | QEI module 0 index                                                                                                                                                                                                                  |
|                            | IDX1     | 61            | I        | TTL            | QEI module 1 index                                                                                                                                                                                                                  |
|                            | PhA0     | 25            | I        | TTL            | QEI module 0 Phase A                                                                                                                                                                                                                |
|                            | PhA1     | 75            | I        | TTL            | QEI module 1 Phase A                                                                                                                                                                                                                |
|                            | PhB0     | 22            | I        | TTL            | QEI module 0 Phase B                                                                                                                                                                                                                |
|                            | PhB1     | 74            | I        | TTL            | QEI module 1 Phase B                                                                                                                                                                                                                |
| SSI                        | SSI0Clk  | 28            | I/O      | TTL            | SSI module 0 clock                                                                                                                                                                                                                  |
|                            | SSIOFss  | 29            | I/O      | TTL            | SSI module 0 frame                                                                                                                                                                                                                  |
|                            | SSIORx   | 30            | I        | TTL            | SSI module 0 receive                                                                                                                                                                                                                |
|                            | SSIOTx   | 31            | 0        | TTL            | SSI module 0 transmit                                                                                                                                                                                                               |
| System Control &<br>Clocks | CMOD0    | 65            | I/O      | TTL            | CPU Mode bit 0. Input must be set to logic 0 (grounded); other encodings reserved.                                                                                                                                                  |
|                            | CMOD1    | 76            | I/O      | TTL            | CPU Mode bit 1. Input must be set to logic 0 (grounded); other encodings reserved.                                                                                                                                                  |
|                            | OSC0     | 48            | I        | Analog         | Main oscillator crystal input or an external clock reference input.                                                                                                                                                                 |
|                            | OSC1     | 49            | 0        | Analog         | Main oscillator crystal output.                                                                                                                                                                                                     |
|                            | RST      | 64            | I        | TTL            | System reset input.                                                                                                                                                                                                                 |
|                            | TRST     | 89            | I        | TTL            | JTAG TRSTn                                                                                                                                                                                                                          |
|                            | XOSC0    | 52            | I        | Analog         | Hibernation Module oscillator crystal input or an external clock reference input. Note that this is either a 4.19-MHz crystal or a 32.768-kHz oscillator for the Hibernation Module RTC. See the CLKSEL bit in the HIBCTL register. |
|                            | XOSC1    | 53            | 0        | Analog         | Hibernation Module oscillator crystal output.                                                                                                                                                                                       |

| Function | Pin Name | Pin<br>Number | Pin Type | Buffer<br>Type | Description                                                                 |
|----------|----------|---------------|----------|----------------|-----------------------------------------------------------------------------|
| UART     | UORx     | 26            | I        | TTL            | UART module 0 receive. When in IrDA mode, this signal has IrDA modulation.  |
|          | UOTx     | 27            | 0        | TTL            | UART module 0 transmit. When in IrDA mode, this signal has IrDA modulation. |
|          | UlRx     | 12            | I        | TTL            | UART module 1 receive. When in IrDA mode, this signal has IrDA modulation.  |
|          | UlTx     | 13            | 0        | TTL            | UART module 1 transmit. When in IrDA mode, this signal has IrDA modulation. |
|          | U2Rx     | 19            | I        | TTL            | UART 2 Receive. When in IrDA mode, this signal has IrDA modulation.         |
|          | U2Tx     | 18            | 0        | TTL            | UART 2 Transmit. When in IrDA mode, this signal has IrDA modulation.        |

### Table 21-4. GPIO Pins and Alternate Functions

| GPIO Pin | Pin Number | Multiplexed Function | Multiplexed Function |
|----------|------------|----------------------|----------------------|
| PAO      | 26         | UORx                 |                      |
| PA1      | 27         | UOTx                 |                      |
| PA2      | 28         | SSIOClk              |                      |
| PA3      | 29         | SSIOFss              |                      |
| PA4      | 30         | SSIORx               |                      |
| PA5      | 31         | SSIOTx               |                      |
| PA6      | 34         | I2C1SCL              |                      |
| PA7      | 35         | I2C1SDA              |                      |
| PBO      | 66         | PWM2                 |                      |
| PB1      | 67         | PWM3                 |                      |
| PB2      | 70         | I2C0SCL              |                      |
| PB3      | 71         | I2C0SDA              |                      |
| PB4      | 92         | C0-                  |                      |
| PB5      | 91         | C1-                  |                      |
| PB6      | 90         | C0+                  |                      |
| PB7      | 89         | TRST                 |                      |
| PC0      | 80         | TCK                  | SWCLK                |
| PC1      | 79         | TMS                  | SWDIO                |
| PC2      | 78         | TDI                  |                      |
| PC3      | 77         | TDO                  | SWO                  |
| PC4      | 25         | PhA0                 |                      |
| PC5      | 24         | C1+                  | COo                  |
| PC6      | 23         | CCP3                 |                      |
| PC7      | 22         | PhB0                 |                      |
| PDO      | 10         | IDX0                 |                      |
| PD1      | 11         | PWM1                 |                      |
| PD2      | 12         | UlRx                 |                      |
| PD3      | 13         | UlTx                 |                      |
| PD4      | 95         | CCP0                 |                      |

| GPIO Pin | Pin Number | Multiplexed Function | Multiplexed Function |
|----------|------------|----------------------|----------------------|
| PD5      | 96         | CCP2                 |                      |
| PD6      | 99         | Fault                |                      |
| PD7      | 100        | CCP1                 |                      |
| PEO      | 72         | PWM4                 |                      |
| PE1      | 73         | PWM5                 |                      |
| PE2      | 74         | PhB1                 |                      |
| PE3      | 75         | PhA1                 |                      |
| PFO      | 47         | PWM0                 |                      |
| PF1      | 61         | IDX1                 |                      |
| PF2      | 60         | LED1                 |                      |
| PF3      | 59         | LED0                 |                      |
| PGO      | 19         | U2Rx                 |                      |
| PG1      | 18         | U2Tx                 |                      |

# 22 Operating Characteristics

## Table 22-1. Temperature Characteristics

| Characteristic                           | Symbol         | Value      | Unit |
|------------------------------------------|----------------|------------|------|
| Operating temperature range <sup>a</sup> | T <sub>A</sub> | -40 to +85 | °C   |
|                                          |                |            |      |

a. Maximum storage temperature is 150°C.

#### Table 22-2. Thermal Characteristics

| Characteristic                                        | Symbol        | Value                                 | Unit |
|-------------------------------------------------------|---------------|---------------------------------------|------|
| Thermal resistance (junction to ambient) <sup>a</sup> | $\Theta_{JA}$ | 55.3                                  | °C/W |
| Average junction temperature <sup>b</sup>             | TJ            | $T_A + (P_{AVG} \bullet \Theta_{JA})$ | °C   |

a. Junction to ambient thermal resistance  $\theta_{JA}$  numbers are determined by a package simulator.

b. Power dissipation is a function of temperature.

# 23 Electrical Characteristics

# 23.1 DC Characteristics

### 23.1.1 Maximum Ratings

The maximum ratings are the limits to which the device can be subjected without permanently damaging the device.

Note: The device is not guaranteed to operate properly at the maximum ratings.

| Characteristic                                    | Symbol             | Value |     | Unit |
|---------------------------------------------------|--------------------|-------|-----|------|
| u                                                 |                    | Min   | Max |      |
| I/O supply voltage (V <sub>DD</sub> )             | V <sub>DD</sub>    | 0     | 4   | V    |
| Core supply voltage (V <sub>DD25</sub> )          | V <sub>DD25</sub>  | 0     | 4   | V    |
| Analog supply voltage (V <sub>DDA</sub> )         | V <sub>DDA</sub>   | 0     | 4   | V    |
| Battery supply voltage (V <sub>BAT</sub> )        | V <sub>BAT</sub>   | 0     | 4   | V    |
| Ethernet PHY supply voltage (V <sub>CCPHY</sub> ) | V <sub>CCPHY</sub> | 0     | 4   | V    |
| Input voltage                                     | V <sub>IN</sub>    | -0.3  | 5.5 | V    |
| Maximum current per output pins                   | I                  | -     | 25  | mA   |

#### Table 23-1. Maximum Ratings

a. Voltages are measured with respect to GND.

**Important:** This device contains circuitry to protect the inputs against damage due to high-static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are connected to an appropriate logic voltage level (for example, either GND or V<sub>DD</sub>).

# 23.1.2 Recommended DC Operating Conditions

#### Table 23-2. Recommended DC Operating Conditions

| Parameter          | Parameter Name                                      | Min                   | Nom | Max                   | Unit |
|--------------------|-----------------------------------------------------|-----------------------|-----|-----------------------|------|
| V <sub>DD</sub>    | I/O supply voltage                                  | 3.0                   | 3.3 | 3.6                   | V    |
| V <sub>DD25</sub>  | Core supply voltage                                 | 2.25                  | 2.5 | 2.75                  | V    |
| V <sub>DDA</sub>   | Analog supply voltage                               | 3.0                   | 3.3 | 3.6                   | V    |
| V <sub>BAT</sub>   | Battery supply voltage                              | 2.3                   | 3.0 | 3.6                   | V    |
| V <sub>CCPHY</sub> | Ethernet PHY supply voltage                         | 3.0                   | 3.3 | 3.6                   | V    |
| V <sub>IH</sub>    | High-level input voltage                            | 2.0                   | -   | 5.0                   | V    |
| V <sub>IL</sub>    | Low-level input voltage                             | -0.3                  | -   | 1.3                   | V    |
| V <sub>SIH</sub>   | High-level input voltage for Schmitt trigger inputs | 0.8 * V <sub>DD</sub> | -   | V <sub>DD</sub>       | V    |
| V <sub>SIL</sub>   | Low-level input voltage for Schmitt trigger inputs  | 0                     | -   | 0.2 * V <sub>DD</sub> | V    |
| V <sub>OH</sub>    | High-level output voltage                           | 2.4                   | -   | -                     | V    |
| V <sub>OL</sub>    | Low-level output voltage                            | -                     | -   | 0.4                   | V    |

| Parameter       | Parameter Name                                    |            | Min | Nom | Max | Unit |
|-----------------|---------------------------------------------------|------------|-----|-----|-----|------|
| I <sub>OH</sub> | High-level source current, V <sub>OH</sub> =2.4 V | /          |     |     |     |      |
|                 |                                                   | 2-mA Drive | 2.0 | -   | -   | mA   |
|                 |                                                   | 4-mA Drive | 4.0 | -   | -   | mA   |
|                 |                                                   | 8-mA Drive | 8.0 | -   | -   | mA   |
| I <sub>OL</sub> | Low-level sink current, V <sub>OL</sub> =0.4 V    |            |     | ,   |     |      |
|                 |                                                   | 2-mA Drive | 2.0 | -   | -   | mA   |
|                 |                                                   | 4-mA Drive | 4.0 | -   | -   | mA   |
|                 |                                                   | 8-mA Drive | 8.0 | -   | -   | mA   |

# 23.1.3 On-Chip Low Drop-Out (LDO) Regulator Characteristics

| Table 23-3. LDO Regulator Characteristics |
|-------------------------------------------|
|-------------------------------------------|

| Parameter           | Parameter Name                                           | Min  | Nom | Max  | Unit |
|---------------------|----------------------------------------------------------|------|-----|------|------|
| V <sub>LDOOUT</sub> | Programmable internal (logic) power supply output value  | 2.25 | 2.5 | 2.75 | V    |
|                     | Output voltage accuracy                                  | -    | 2%  | -    | %    |
| t <sub>PON</sub>    | Power-on time                                            | -    | -   | 100  | μs   |
| t <sub>ON</sub>     | Time on                                                  | -    | -   | 200  | μs   |
| t <sub>OFF</sub>    | Time off                                                 | -    | -   | 100  | μs   |
| V <sub>STEP</sub>   | Step programming incremental voltage                     | -    | 50  | -    | mV   |
| C <sub>LDO</sub>    | External filter capacitor size for internal power supply | -    | 1   | -    | μF   |

## 23.1.4 **Power Specifications**

The power measurements specified in the tables that follow are run on the core processor using SRAM with the following specifications (except as noted):

- V<sub>DD</sub> = 3.3 V
- V<sub>DD25</sub> = 2.50 V
- V<sub>BAT</sub> = 3.0 V
- V<sub>DDA</sub> = 3.3 V
- V<sub>DDPHY</sub> = 3.3 V
- Temperature = 25°C
- Clock Source (MOSC) =3.579545 MHz Crystal Oscillator
- Main oscillator (MOSC) = enabled
- Internal oscillator (IOSC) = disabled

| Parameter                 | Parameter<br>Name  | Conditions                            |     | V <sub>DD</sub> , V <sub>DDA</sub> ,<br>ddphy | 2.5  | V V <sub>DD25</sub>  | 3.0 | V V <sub>BAT</sub>   | Unit |
|---------------------------|--------------------|---------------------------------------|-----|-----------------------------------------------|------|----------------------|-----|----------------------|------|
|                           |                    |                                       | Nom | Max                                           | Nom  | Мах                  | Nom | Max                  | 1    |
| I <sub>DD_RUN</sub>       | Run mode 1         | V <sub>DD25</sub> = 2.50 V            | 48  | pending <sup>a</sup>                          | 108  | pending <sup>a</sup> | 0   | pending <sup>a</sup> | mA   |
|                           | (Flash loop)       | Code= while(1){} executed in<br>Flash |     |                                               |      |                      |     |                      |      |
|                           |                    | Peripherals = All ON                  |     |                                               |      |                      |     |                      |      |
|                           |                    | System Clock = 50 MHz (with PLL)      |     |                                               |      |                      |     |                      |      |
|                           | Run mode 2         | V <sub>DD25</sub> = 2.50 V            | 5   | pending <sup>a</sup>                          | 52   | pending <sup>a</sup> | 0   | pending <sup>a</sup> | mA   |
|                           | (Flash loop)       | Code= while(1){} executed in<br>Flash |     |                                               |      |                      |     |                      |      |
|                           |                    | Peripherals = All OFF                 |     |                                               |      |                      |     |                      |      |
|                           |                    | System Clock = 50 MHz (with PLL)      |     |                                               |      |                      |     |                      |      |
|                           | Run mode 1         | V <sub>DD25</sub> = 2.50 V            | 48  | pending <sup>a</sup>                          | 100  | pending <sup>a</sup> | 0   | pending <sup>a</sup> | mA   |
|                           | (SRAM loop)        | Code= while(1){} executed in SRAM     |     |                                               |      |                      |     |                      |      |
|                           |                    | Peripherals = All ON                  |     |                                               |      |                      |     |                      |      |
|                           |                    | System Clock = 50 MHz (with PLL)      |     |                                               |      |                      |     |                      |      |
|                           | Run mode 2         | V <sub>DD25</sub> = 2.50 V            | 5   | pending <sup>a</sup>                          | 45   | pending <sup>a</sup> | 0   | pending <sup>a</sup> | mA   |
|                           | (SRAM loop)        | Code= while(1){} executed in SRAM     |     |                                               |      |                      |     |                      |      |
|                           |                    | Peripherals = All OFF                 |     |                                               |      |                      |     |                      |      |
|                           |                    | System Clock = 50 MHz (with PLL)      |     |                                               |      |                      |     |                      |      |
| I <sub>DD_SLEEP</sub>     | Sleep mode         | V <sub>DD25</sub> = 2.50 V            | 5   | pending <sup>a</sup>                          | 16   | pending <sup>a</sup> | 0   | pending <sup>a</sup> | mA   |
|                           |                    | Peripherals = All OFF                 |     |                                               |      |                      |     |                      |      |
|                           |                    | System Clock = 50 MHz (with PLL)      |     |                                               |      |                      |     |                      |      |
| IDD_DEEPSLEEP             | Deep-Sleep<br>mode | LDO = 2.25 V                          | 4.6 | pending <sup>a</sup>                          | 0.21 | pending <sup>a</sup> | 0   | pending <sup>a</sup> | mA   |
|                           | mode               | Peripherals = All OFF                 |     |                                               |      |                      |     |                      |      |
|                           |                    | System Clock = IOSC30KHZ/64           |     |                                               |      |                      |     |                      |      |
| I <sub>DD_HIBERNATE</sub> | Hibernate<br>mode  | V <sub>BAT</sub> = 3.0 V              | 0   | pending <sup>a</sup>                          | 0    | pending <sup>a</sup> | 16  | pending <sup>a</sup> | μA   |
|                           | mode               | V <sub>DD</sub> = 0 V                 |     |                                               |      |                      |     |                      |      |
|                           |                    | V <sub>DD25</sub> = 0 V               |     |                                               |      |                      |     |                      |      |
|                           |                    | V <sub>DDA</sub> = 0 V                |     |                                               |      |                      |     |                      |      |
|                           |                    | V <sub>DDPHY</sub> = 0 V              |     |                                               |      |                      |     |                      |      |
|                           |                    | Peripherals = All OFF                 |     |                                               |      |                      |     |                      |      |
|                           |                    | System Clock = OFF                    |     |                                               |      |                      |     |                      |      |
|                           |                    | Hibernate Module = 32 kHz             |     |                                               |      |                      |     |                      |      |

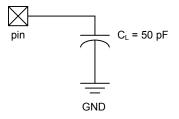
| Table 23-4. Detailed Power Specifications |
|-------------------------------------------|
|-------------------------------------------|

a. Pending characterization completion.

# 23.1.5 Flash Memory Characteristics

#### **Table 23-5. Flash Memory Characteristics**

| Parameter          | Parameter Name                                                        | Min    | Nom     | Max | Unit   |
|--------------------|-----------------------------------------------------------------------|--------|---------|-----|--------|
| PE <sub>CYC</sub>  | Number of guaranteed program/erase cycles before failure <sup>a</sup> | 10,000 | 100,000 | -   | cycles |
| T <sub>RET</sub>   | Data retention at average operating temperature of 85°C 10            |        | -       | -   | years  |
| T <sub>PROG</sub>  | Word program time                                                     | 20     | -       | -   | μs     |
| T <sub>ERASE</sub> | Page erase time                                                       | 20     | -       | -   | ms     |
| T <sub>ME</sub>    | Mass erase time                                                       | 200    | -       | -   | ms     |


a. A program/erase cycle is defined as switching the bits from 1-> 0 -> 1.

# 23.2 AC Characteristics

### 23.2.1 Load Conditions

Unless otherwise specified, the following conditions are true for all timing measurements. Timing measurements are for 4-mA drive strength.

#### Figure 23-1. Load Conditions



## 23.2.2 Clocks

| Table 23-6. Phase Locked Loop (PLL) Characteristics |
|-----------------------------------------------------|
|-----------------------------------------------------|

| Parameter                | Parameter Name                        | Min      | Nom | Max   | Unit |
|--------------------------|---------------------------------------|----------|-----|-------|------|
| f <sub>ref_crystal</sub> | Crystal reference <sup>a</sup>        | 3.579545 | -   | 8.192 | MHz  |
| f <sub>ref_ext</sub>     | External clock reference <sup>a</sup> | 3.579545 | -   | 8.192 | MHz  |
| f <sub>pll</sub>         | PLL frequency <sup>b</sup>            | -        | 400 | -     | MHz  |
| T <sub>READY</sub>       | PLL lock time                         | -        | -   | 0.5   | ms   |

a. The exact value is determined by the crystal value programmed into the XTAL field of the Run-Mode Clock Configuration (RCC) register.

b. PLL frequency is automatically calculated by the hardware based on the XTAL field of the RCC register.

#### Table 23-7. Clock Characteristics

| Parameter              | Parameter Name                                  | Min | Nom      | Max  | Unit |
|------------------------|-------------------------------------------------|-----|----------|------|------|
| f <sub>IOSC</sub>      | Internal 12 MHz oscillator frequency            | 8.4 | 12       | 15.6 | MHz  |
| f <sub>IOSC30KHZ</sub> | Internal 30 KHz oscillator frequency            | 21  | 30       | 39   | KHz  |
| f <sub>XOSC</sub>      | Hibernation module oscillator frequency         | -   | 4.194304 | -    | MHz  |
| f <sub>XOSC_XTAL</sub> | Crystal reference for hibernation oscillator    | -   | 4.194304 | -    | MHz  |
| f <sub>XOSC_EXT</sub>  | External clock reference for hibernation module | -   | 32.768   | -    | KHz  |

| Parameter                       | Parameter Name                                                   | Min | Nom | Max  | Unit |
|---------------------------------|------------------------------------------------------------------|-----|-----|------|------|
| f <sub>MOSC</sub>               | Main oscillator frequency                                        | 1   | -   | 8    | MHz  |
| t <sub>MOSC_per</sub>           | Main oscillator period                                           | 125 | -   | 1000 | ns   |
| f <sub>ref_crystal_bypass</sub> | Crystal reference using the main oscillator (PLL in BYPASS mode) | 1   | -   | 8    | MHz  |
| f <sub>ref_ext_bypass</sub>     | External clock reference (PLL in BYPASS mode) <sup>a</sup>       | 0   | -   | 50   | MHz  |
| f <sub>system_clock</sub>       | System clock                                                     | 0   | -   | 50   | MHz  |

a. The ADC must be clocked from the PLL or directly from a 14-MHz to 18-MHz clock source to operate properly.

#### Table 23-8. Crystal Characteristics

| Parameter Name                     | arameter Name Value |          |          |          |        |  |  |
|------------------------------------|---------------------|----------|----------|----------|--------|--|--|
| Frequency                          | 8                   | 6        | 4        | 3.5      | MHz    |  |  |
| Frequency tolerance                | ±50                 | ±50      | ±50      | ±50      | ppm    |  |  |
| Aging                              | ±5                  | ±5       | ±5       | ±5       | ppm/yr |  |  |
| Oscillation mode                   | Parallel            | Parallel | Parallel | Parallel |        |  |  |
| Temperature stability (0 - 85 °C)  | ±25                 | ±25      | ±25      | ±25      | ppm    |  |  |
| Motional capacitance (typ)         | 27.8                | 37.0     | 55.6     | 63.5     | pF     |  |  |
| Motional inductance (typ)          | 14.3                | 19.1     | 28.6     | 32.7     | mH     |  |  |
| Equivalent series resistance (max) | 120                 | 160      | 200      | 220      | Ω      |  |  |
| Shunt capacitance (max)            | 10                  | 10       | 10       | 10       | pF     |  |  |
| Load capacitance (typ)             | 16                  | 16       | 16       | 16       | pF     |  |  |
| Drive level (typ)                  | 100                 | 100      | 100      | 100      | μW     |  |  |

# 23.2.3 Temperature Sensor

#### Table 23-9. Temperature Sensor Characteristics

| Parameter          | Parameter Name N                    |     | Nom | Max  | Unit |
|--------------------|-------------------------------------|-----|-----|------|------|
| V <sub>TSO</sub>   | Output voltage                      | 0.3 | -   | 2.7  | V    |
| t <sub>TSERR</sub> | Output voltage temperature accuracy | -   | -   | ±3.5 | °C   |
| t <sub>TSNL</sub>  | Output temperature nonlinearity     | -   | -   | ±1   | °C   |

# 23.2.4 Analog-to-Digital Converter

#### Table 23-10. ADC Characteristics

| Parameter            | Parameter Name                                        | Min | Nom  | Мах  | Unit                                 |
|----------------------|-------------------------------------------------------|-----|------|------|--------------------------------------|
| V <sub>ADCIN</sub>   | Maximum single-ended, full-scale analog input voltage | -   | -    | 3.0  | V                                    |
|                      | Minimum single-ended, full-scale analog input voltage | -   | -    | 0    | V                                    |
|                      | Maximum differential, full-scale analog input voltage | -   | -    | 1.5  | V                                    |
|                      | Minimum differential, full-scale analog input voltage | -   | -    | -1.5 | V                                    |
| C <sub>ADCIN</sub>   | Equivalent input capacitance                          | -   | 1    | -    | pF                                   |
| N                    | Resolution                                            | -   | 10   | -    | bits                                 |
| f <sub>ADC</sub>     | ADC internal clock frequency                          | 14  | 16   | 18   | MHz                                  |
| t <sub>ADCCONV</sub> | Conversion time                                       | -   | -    | 16   | t <sub>ADC</sub> cycles <sup>a</sup> |
| f ADCCONV            | Conversion rate                                       | 875 | 1000 | 1125 | k samples/s                          |

| Parameter | Parameter Name            | Min | Nom | Max | Unit |
|-----------|---------------------------|-----|-----|-----|------|
| INL       | Integral nonlinearity     | -   | -   | ±1  | LSB  |
| DNL       | Differential nonlinearity | -   | -   | ±1  | LSB  |
| OFF       | Offset                    | -   | -   | ±1  | LSB  |
| GAIN      | Gain                      | -   | -   | ±1  | LSB  |

a.  $t_{ADC}$ = 1/ $f_{ADC \ clock}$ 

# 23.2.5 Analog Comparator

#### Table 23-11. Analog Comparator Characteristics

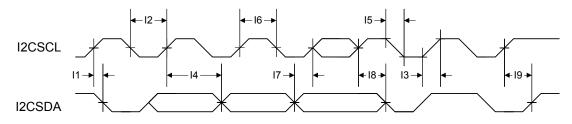
| Parameter        | Parameter Name                         | Min | Nom | Max                  | Unit |
|------------------|----------------------------------------|-----|-----|----------------------|------|
| V <sub>OS</sub>  | Input offset voltage                   | -   | ±10 | ±25                  | mV   |
| V <sub>CM</sub>  | Input common mode voltage range        | 0   | -   | V <sub>DD</sub> -1.5 | V    |
| C <sub>MRR</sub> | Common mode rejection ratio            | 50  | -   | -                    | dB   |
| T <sub>RT</sub>  | Response time                          | -   | -   | 1                    | μs   |
| T <sub>MC</sub>  | Comparator mode change to Output Valid | -   | -   | 10                   | μs   |

#### Table 23-12. Analog Comparator Voltage Reference Characteristics

| Parameter       | Parameter Name               | Min | Nom                 | Мах  | Unit |
|-----------------|------------------------------|-----|---------------------|------|------|
| R <sub>HR</sub> | Resolution high range        | -   | V <sub>DD</sub> /32 | -    | LSB  |
| R <sub>LR</sub> | Resolution low range         | -   | V <sub>DD</sub> /24 | -    | LSB  |
| A <sub>HR</sub> | Absolute accuracy high range | -   | -                   | ±1/2 | LSB  |
| A <sub>LR</sub> | Absolute accuracy low range  | -   | -                   | ±1/4 | LSB  |

# 23.2.6 I<sup>2</sup>C

# Table 23-13. I<sup>2</sup>C Characteristics


| Parameter No.   | Parameter         | Parameter Name                                                             | Min | Nom | Max          | Unit          |
|-----------------|-------------------|----------------------------------------------------------------------------|-----|-----|--------------|---------------|
| l1 <sup>a</sup> | t <sub>SCH</sub>  | Start condition hold time                                                  | 36  | -   | -            | system clocks |
| l2 <sup>a</sup> | t <sub>LP</sub>   | Clock Low period                                                           | 36  | -   | -            | system clocks |
| I3 <sup>b</sup> | t <sub>SRT</sub>  | I2CSCL/I2CSDA rise time (V <sub>IL</sub> =0.5 V to V <sub>IH</sub> =2.4 V) | -   | -   | (see note b) | ns            |
| I4 <sup>a</sup> | t <sub>DH</sub>   | Data hold time                                                             | 2   | -   | -            | system clocks |
| I5 <sup>c</sup> | t <sub>SFT</sub>  | I2CSCL/I2CSDA fall time (V <sub>IH</sub> =2.4 V to V <sub>IL</sub> =0.5 V) | -   | 9   | 10           | ns            |
| l6 <sup>a</sup> | t <sub>HT</sub>   | Clock High time                                                            | 24  | -   | -            | system clocks |
| I7 <sup>a</sup> | t <sub>DS</sub>   | Data setup time                                                            | 18  | -   | -            | system clocks |
| I8 <sup>a</sup> | t <sub>SCSR</sub> | Start condition setup time (for repeated start condition only)             | 36  | -   | -            | system clocks |
| l9 <sup>a</sup> | t <sub>SCS</sub>  | Stop condition setup time                                                  | 24  | -   | -            | system clocks |

a. Values depend on the value programmed into the TPR bit in the I<sup>2</sup>C Master Timer Period (I2CMTPR) register; a TPR programmed for the maximum I2CSCL frequency (TPR=0x2) results in a minimum output timing as shown in the table above. The I<sup>2</sup>C interface is designed to scale the actual data transition time to move it to the middle of the I2CSCL Low period. The actual position is affected by the value programmed into the TPR; however, the numbers given in the above values are minimum values.

b. Because I2CSCL and I2CSDA are open-drain-type outputs, which the controller can only actively drive Low, the time I2CSCL or I2CSDA takes to reach a high level depends on external signal capacitance and pull-up resistor values.

c. Specified at a nominal 50 pF load.

# Figure 23-2. I<sup>2</sup>C Timing



## 23.2.7 Ethernet Controller

## Table 23-14. 100BASE-TX Transmitter Characteristics<sup>a</sup>

| Parameter Name            | Min  | Nom | Max  | Unit |
|---------------------------|------|-----|------|------|
| Peak output amplitude     | 950  | -   | 1050 | mVpk |
| Output amplitude symmetry | 0.98 | -   | 1.02 | mVpk |
| Output overshoot          | -    | -   | 5    | %    |
| Rise/Fall time            | 3    | -   | 5    | ns   |
| Rise/Fall time imbalance  | -    | -   | 500  | ps   |
| Duty cycle distortion     | -    | -   | -    | ps   |
| Jitter                    | -    | -   | 1.4  | ns   |

a. Measured at the line side of the transformer.

### Table 23-15. 100BASE-TX Transmitter Characteristics (informative)<sup>a</sup>

| Parameter Name          | Min | Nom | Max | Unit |
|-------------------------|-----|-----|-----|------|
| Return loss             | 16  | -   | -   | dB   |
| Open-circuit inductance | 350 | -   | -   | μs   |

a. The specifications in this table are included for information only. They are mainly a function of the external transformer and termination resistors used for measurements.

#### Table 23-16. 100BASE-TX Receiver Characteristics

| Parameter Name                       | Min | Nom | Max  | Unit  |
|--------------------------------------|-----|-----|------|-------|
| Signal detect assertion threshold    | 600 | 700 |      | mVppd |
| Signal detect de-assertion threshold | 350 | 425 | -    | mVppd |
| Differential input resistance        | 20  | -   | -    | kΩ    |
| Jitter tolerance (pk-pk)             | 4   | -   | -    | ns    |
| Baseline wander tracking             | -75 | -   | +75  | %     |
| Signal detect assertion time         | -   | -   | 1000 | μs    |
| Signal detect de-assertion time      | -   | -   | 4    | μs    |

### Table 23-17. 10BASE-T Transmitter Characteristics<sup>a</sup>

| Parameter Name                  | Min | Nom | Мах | Unit |
|---------------------------------|-----|-----|-----|------|
| Peak differential output signal | 2.2 | -   | 2.8 | V    |
| Harmonic content                | 27  | -   | -   | dB   |
| Link pulse width                | -   | 100 | -   | ns   |

| Parameter Name            | Min | Nom | Мах | Unit |
|---------------------------|-----|-----|-----|------|
| Start-of-idle pulse width | -   | 300 | -   | ns   |
|                           |     | 350 |     |      |

a. The Manchester-encoded data pulses, the link pulse and the start-of-idle pulse are tested against the templates and using the procedures found in Clause 14 of *IEEE 802.3*.

#### Table 23-18. 10BASE-T Transmitter Characteristics (informative)<sup>a</sup>

| Parameter Name                  | Min            | Nom | Max | Unit |
|---------------------------------|----------------|-----|-----|------|
| Output return loss              | 15             | -   | -   | dB   |
| Output impedance balance        | 29-17log(f/10) | -   | -   | dB   |
| Peak common-mode output voltage | -              | -   | 50  | mV   |
| Common-mode rejection           | -              | -   | 100 | mV   |
| Common-mode rejection jitter    | -              | -   | 1   | ns   |

a. The specifications in this table are included for information only. They are mainly a function of the external transformer and termination resistors used for measurements.

#### Table 23-19. 10BASE-T Receiver Characteristics

| Parameter Name                | Min | Nom               | Мах | Unit  |
|-------------------------------|-----|-------------------|-----|-------|
| DLL phase acquisition time    | -   | 10                | -   | BT    |
| Jitter tolerance (pk-pk)      | 30  | -                 | -   | ns    |
| Input squelched threshold     | 500 | 600               | 700 | mVppd |
| Input unsquelched threshold   | 275 | 350               | 425 | mVppd |
| Differential input resistance | -   | 20                | -   | kΩ    |
| Bit error ratio               | -   | 10 <sup>-10</sup> | -   | -     |
| Common-mode rejection         | 25  | -                 | -   | V     |

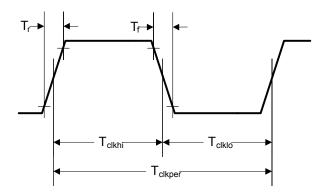
#### Table 23-20. Isolation Transformers<sup>a</sup>

| Name                      | Value         | Condition       |
|---------------------------|---------------|-----------------|
| Turns ratio               | 1 CT : 1 CT   | +/- 5%          |
| Open-circuit inductance   | 350 uH (min)  | @ 10 mV, 10 kHz |
| Leakage inductance        | 0.40 uH (max) | @ 1 MHz (min)   |
| Inter-winding capacitance | 25 pF (max)   |                 |
| DC resistance             | 0.9 Ohm (max) |                 |
| Insertion loss            | 0.4 dB (typ)  | 0-65 MHz        |
| HIPOT                     | 1500          | Vrms            |

a. Two simple 1:1 isolation transformers are required at the line interface. Transformers with integrated common-mode chokes are recommended for exceeding FCC requirements. This table gives the recommended line transformer characteristics.

**Note:** The 100Base-TX amplitude specifications assume a transformer loss of 0.4 dB. For the transmit line transformer with higher insertion losses, up to 1.2 dB of insertion loss can be compensated by selecting the appropriate setting in the Transmit Amplitude Selection (TXO) bits in the **MR19** register.

| Name                                            | Value                                | Condition |
|-------------------------------------------------|--------------------------------------|-----------|
| Frequency                                       | 25.00000                             | MHz       |
| Load capacitance <sup>b</sup>                   | 4 <sup>c</sup>                       | pF        |
| Frequency tolerance                             | ±50                                  | PPM       |
| Aging                                           | ±2                                   | PPM/yr    |
| Temperature stability (0° to 70°)               | ±5                                   | PPM       |
| Oscillation mode                                | Parallel resonance, fundamental mode |           |
| Parameters at 25° C ±2° C; Drive level = 0.5 mW |                                      |           |
| Drive level (typ)                               | 50-100                               | μW        |
| Shunt capacitance (max)                         | 10                                   | pF        |
| Motional capacitance (min)                      | 10                                   | fF        |
| Serious resistance (max)                        | 60                                   | Ω         |
| Spurious response (max)                         | > 5 dB below main within 500 kHz     |           |


### Table 23-21. Ethernet Reference Crystal<sup>a</sup>

a. If the internal crystal oscillator is used, select a crystal with the following characteristics.

b. Equivalent differential capacitance across XTLP/XTLN.

c. If crystal with a larger load is used, external shunt capacitors to ground should be added to make up the equivalent capacitance difference.

#### Figure 23-3. External XTLP Oscillator Characteristics



#### Table 23-22. External XTLP Oscillator Characteristics

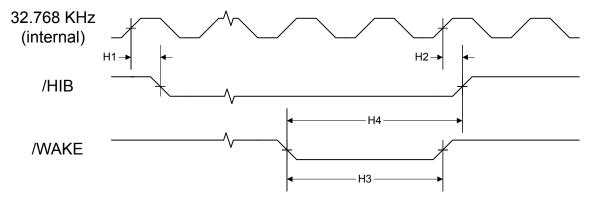
| Parameter Name              | Symbol                          | Min | Nom  | Max | Unit |
|-----------------------------|---------------------------------|-----|------|-----|------|
| XTLN Input Low Voltage      | XTLN <sub>ILV</sub>             | -   | -    | 0.8 | -    |
| XTLP Frequency <sup>a</sup> | XTLP <sub>f</sub>               | -   | 25.0 | -   | -    |
| XTLP Period <sup>b</sup>    | T <sub>clkper</sub>             | -   | 40   | -   | -    |
| XTLP Duty Cycle             | XTLP <sub>DC</sub>              | 40  | -    | 60  | %    |
|                             |                                 | 40  |      | 60  |      |
| Rise/Fall Time              | T <sub>r</sub> , T <sub>f</sub> | -   | -    | 4.0 | ns   |
| Absolute Jitter             |                                 | -   | -    | 0.1 | ns   |

a. IEEE 802.3 frequency tolerance ±50 ppm.

b. IEEE 802.3 frequency tolerance ±50 ppm.

#### 23.2.8 Hibernation Module

The Hibernation Module requires special system implementation considerations since it is intended to power-down all other sections of its host device. The system power-supply distribution and interfaces of the system must be driven to 0 V<sub>DC</sub> or powered down with the same regulator controlled by  $\overline{\text{HIB}}$ .


The regulators controlled by  $\overline{\text{HIB}}$  are expected to have a settling time of 250 µs or less.

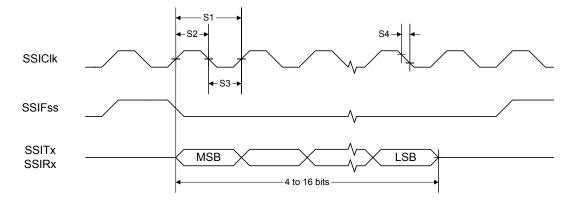
| Table 23-23 | . Hibernation | Module | <b>Characteristics</b> |
|-------------|---------------|--------|------------------------|
|-------------|---------------|--------|------------------------|

| Parameter No | Parameter                  | Parameter Name                                                       | Min | Nom | Max | Unit |
|--------------|----------------------------|----------------------------------------------------------------------|-----|-----|-----|------|
| H1           | t <sub>HIB_LOW</sub>       | Internal 32.768 KHz clock reference rising edge to /HIB asserted     | -   | 200 | -   | μs   |
| H2           | t <sub>HIB_HIGH</sub>      | Internal 32.768 KHz clock reference rising edge to /HIB deasserted   | -   | 30  | -   | μs   |
| H3           | t <sub>WAKE_ASSERT</sub>   | /WAKE assertion time                                                 | 62  | -   | -   | μs   |
| H4           | t <sub>WAKETOHIB</sub>     | /WAKE assert to /HIB desassert                                       | 62  | -   | 124 | μs   |
| H5           | t <sub>XOSC_SETTLE</sub>   | XOSC settling time <sup>a</sup>                                      | 20  | -   | -   | ms   |
| H6           | t <sub>HIB_REG_WRITE</sub> | Time for a write to non-volatile registers in HIB module to complete | 92  | -   | -   | μs   |

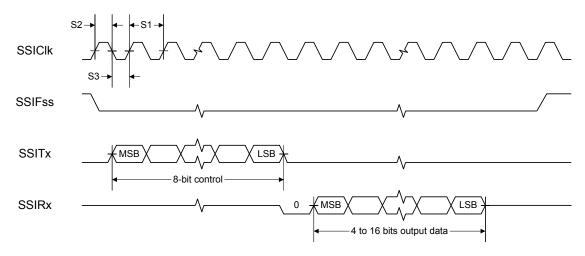
a. This parameter is highly sensitive to PCB layout and trace lengths, which may make this parameter time longer. Care must be taken in PCB design to minimize trace lengths and RLC (resistance, inductance, capacitance).

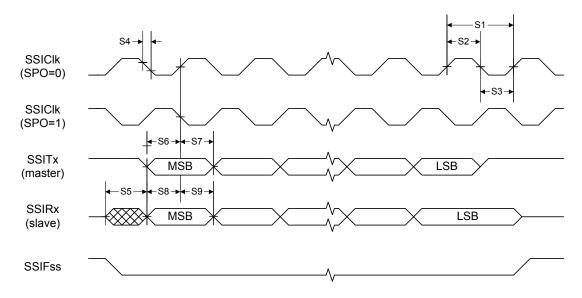
#### Figure 23-4. Hibernation Module Timing




### 23.2.9 Synchronous Serial Interface (SSI)

#### Table 23-24. SSI Characteristics


| Parameter No. | Parameter             | Parameter Name                    | Min | Nom | Max   | Unit          |
|---------------|-----------------------|-----------------------------------|-----|-----|-------|---------------|
| S1            | t <sub>clk_per</sub>  | SSIClk cycle time                 | 2   | -   | 65024 | system clocks |
| S2            | t <sub>clk_high</sub> | SSIClk high time                  | -   | 1/2 | -     | t clk_per     |
| S3            | t <sub>clk_low</sub>  | SSIClk low time                   | -   | 1/2 | -     | t clk_per     |
| S4            | t <sub>clkrf</sub>    | SSIClk rise/fall time             | -   | 7.4 | 26    | ns            |
| S5            | t <sub>DMd</sub>      | Data from master valid delay time | 0   | -   | 20    | ns            |
| S6            | t <sub>DMs</sub>      | Data from master setup time       | 20  | -   | -     | ns            |
| S7            | t <sub>DMh</sub>      | Data from master hold time        | 40  | -   | -     | ns            |
| S8            | t <sub>DSs</sub>      | Data from slave setup time        | 20  | -   | -     | ns            |


| Parameter No. | Parameter        | Parameter Name            | Min | Nom | Max | Unit |
|---------------|------------------|---------------------------|-----|-----|-----|------|
| S9            | t <sub>DSh</sub> | Data from slave hold time | 40  | -   | -   | ns   |

# Figure 23-5. SSI Timing for TI Frame Format (FRF=01), Single Transfer Timing Measurement

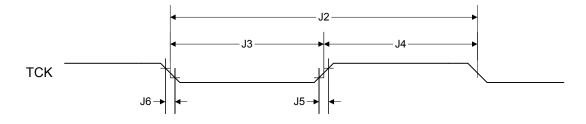




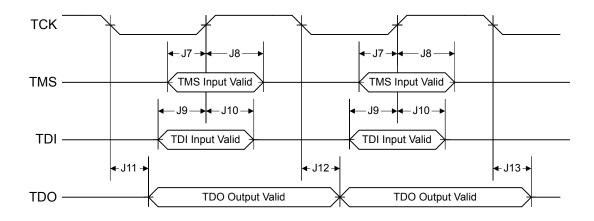




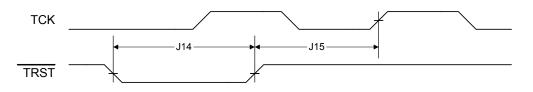



# 23.2.10 JTAG and Boundary Scan

#### Table 23-25. JTAG Characteristics


| Parameter No.        | Parameter                              | Parameter Name                                   | Min | Nom              | Мах | Unit |
|----------------------|----------------------------------------|--------------------------------------------------|-----|------------------|-----|------|
| J1                   | f <sub>TCK</sub>                       | f <sub>TCK</sub> TCK operational clock frequency |     | -                | 10  | MHz  |
| J2                   | t <sub>TCK</sub>                       | TCK operational clock period                     |     | -                | -   | ns   |
| J3                   | t <sub>TCK_LOW</sub>                   | TCK clock Low time                               |     | t <sub>TCK</sub> | -   | ns   |
| J4                   | <sup>t</sup> тск_нідн                  | TCK clock High time                              | -   | t <sub>TCK</sub> | -   | ns   |
| J5                   | t <sub>TCK_R</sub>                     | TCK rise time                                    | 0   | -                | 10  | ns   |
| J6                   | t <sub>TCK_F</sub>                     | TCK fall time                                    | 0   | -                | 10  | ns   |
| J7                   | t <sub>TMS_SU</sub>                    | TMS setup time to TCK rise                       | 20  | -                | -   | ns   |
| J8                   | t <sub>TMS_HLD</sub>                   | TMS hold time from TCK rise                      | 20  | -                | -   | ns   |
| J9                   | t <sub>TDI_SU</sub>                    | TDI setup time to TCK rise                       | 25  | -                | -   | ns   |
| J10                  | t <sub>TDI_HLD</sub>                   | TDI hold time from TCK rise                      | 25  | -                | -   | ns   |
| J11                  | TCK fall to Data Valid from High-Z     | 2-mA drive                                       | -   | 23               | 35  | ns   |
| t <sub>TDO_ZDV</sub> |                                        | 4-mA drive                                       |     | 15               | 26  | ns   |
|                      |                                        | 8-mA drive                                       |     | 14               | 25  | ns   |
|                      |                                        | 8-mA drive with slew rate control                |     | 18               | 29  | ns   |
| J12                  | TCK fall to Data Valid from Data Valid | 2-mA drive                                       | -   | 21               | 35  | ns   |
| t <sub>TDO_DV</sub>  |                                        | 4-mA drive                                       |     | 14               | 25  | ns   |
|                      |                                        | 8-mA drive                                       |     | 13               | 24  | ns   |
|                      |                                        | 8-mA drive with slew rate control                |     | 18               | 28  | ns   |

| Parameter No.        | Parameter                          | Parameter Name                    | Min | Nom | Max | Unit |
|----------------------|------------------------------------|-----------------------------------|-----|-----|-----|------|
| J13                  | TCK fall to High-Z from Data Valid | 2-mA drive                        | -   | 9   | 11  | ns   |
| t <sub>TDO DVZ</sub> |                                    | 4-mA drive                        |     | 7   | 9   | ns   |
| _                    |                                    | 8-mA drive                        |     | 6   | 8   | ns   |
|                      |                                    | 8-mA drive with slew rate control |     | 7   | 9   | ns   |
| J14                  | t <sub>TRST</sub>                  | TRST assertion time               | 100 | -   | -   | ns   |
| J15                  | t <sub>TRST_SU</sub>               | TRST setup time to TCK rise       | 10  | -   | -   | ns   |


#### Figure 23-8. JTAG Test Clock Input Timing



#### Figure 23-9. JTAG Test Access Port (TAP) Timing



#### Figure 23-10. JTAG TRST Timing

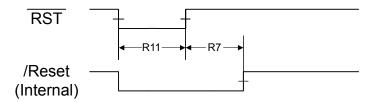


### 23.2.11 General-Purpose I/O

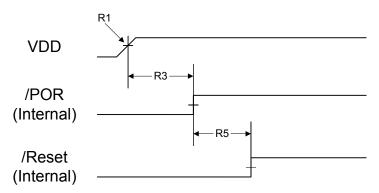
**Note:** All GPIOs are 5 V-tolerant.

| Parameter          | Parameter Name                                               | Condition                         | Min | Nom | Мах | Unit |
|--------------------|--------------------------------------------------------------|-----------------------------------|-----|-----|-----|------|
| t <sub>GPIOR</sub> | GPIO Rise Time (from 20% to 80% of $\mathrm{V}_\mathrm{DD})$ | 2-mA drive                        | -   | 17  | 26  | ns   |
|                    |                                                              | 4-mA drive                        |     | 9   | 13  | ns   |
|                    |                                                              | 8-mA drive                        |     | 6   | 9   | ns   |
|                    |                                                              | 8-mA drive with slew rate control |     | 10  | 12  | ns   |
| t <sub>GPIOF</sub> | GPIO Fall Time (from 80% to 20% of $V_{DD}$ )                | 2-mA drive                        | -   | 17  | 25  | ns   |
|                    |                                                              | 4-mA drive                        |     | 8   | 12  | ns   |
|                    |                                                              | 8-mA drive                        |     | 6   | 10  | ns   |
|                    |                                                              | 8-mA drive with slew rate control |     | 11  | 13  | ns   |

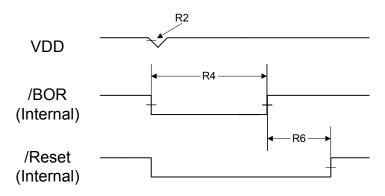
#### Table 23-26. GPIO Characteristics


# 23.2.12 Reset

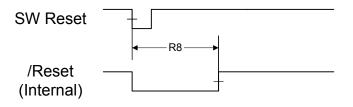
#### Table 23-27. Reset Characteristics


| Parameter No. | Parameter            | Parameter Name                                                               | Min | Nom | Max  | Unit |
|---------------|----------------------|------------------------------------------------------------------------------|-----|-----|------|------|
| R1            | V <sub>TH</sub>      | Reset threshold                                                              |     | 2.0 | -    | V    |
| R2            | V <sub>BTH</sub>     | Brown-Out threshold 2.                                                       |     | 2.9 | 2.95 | V    |
| R3            | T <sub>POR</sub>     | Power-On Reset timeout                                                       | -   | 10  | -    | ms   |
| R4            | T <sub>BOR</sub>     | Brown-Out timeout                                                            | -   | 500 | -    | μs   |
| R5            | T <sub>IRPOR</sub>   | Internal reset timeout after POR                                             | 6   | -   | 11   | ms   |
| R6            | T <sub>IRBOR</sub>   | Internal reset timeout after BOR<br><sup>a</sup>                             | 0   | -   | 1    | μs   |
| R7            | T <sub>IRHWR</sub>   | Internal reset timeout after hardware reset ( $\overline{\mathtt{RST}}$ pin) | 0   | -   | 1    | ms   |
| R8            | T <sub>IRSWR</sub>   | Internal reset timeout after software-initiated system reset a               | 2.5 | -   | 20   | μs   |
| R9            | T <sub>IRWDR</sub>   | Internal reset timeout after watchdog reset <sup>a</sup>                     | 2.5 | -   | 20   | μs   |
| R10           | T <sub>VDDRISE</sub> | Supply voltage (V <sub>DD</sub> ) rise time (0V-3.3V)                        | -   | -   | 100  | ms   |
| R11           | T <sub>MIN</sub>     | Minimum RST pulse width                                                      | 2   | -   | -    | μs   |

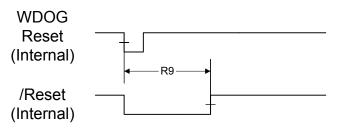
a. 20 \* t <sub>MOSC\_per</sub>


### Figure 23-11. External Reset Timing (RST)



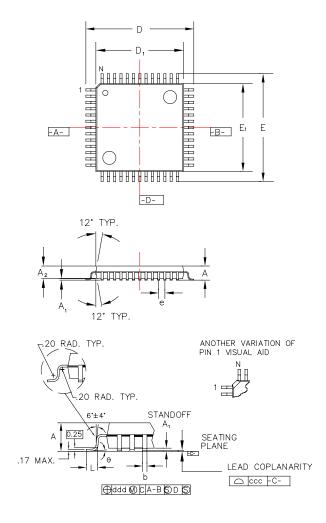






#### Figure 23-13. Brown-Out Reset Timing



#### Figure 23-14. Software Reset Timing




#### Figure 23-15. Watchdog Reset Timing

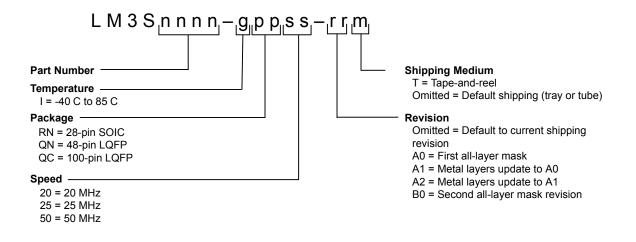


# 24 Package Information

#### Figure 24-1. 100-Pin LQFP Package



#### Notes


- 1. All dimensions shown in mm.
- 2. Dimensions shown are nominal with tolerances indicated.
- 3. Foot length 'L' is measured at gage plane 0.25 mm above seating plane.
- 4. L/F: Eftec 64T Cu or equivalent, 0.127 mm (0.005") or 0.152 mm (0.006") thick.
- 5. Use variation BED for body dimensions.

| Body +2.00 mm Footprint, 1.4 mm package thickness |       |                     |  |  |  |  |
|---------------------------------------------------|-------|---------------------|--|--|--|--|
| Symbols                                           | Leads | 100L                |  |  |  |  |
| A                                                 | Max.  | 1.60                |  |  |  |  |
| A <sub>1</sub>                                    |       | 0.05 Min./0.15 Max. |  |  |  |  |

| A <sub>2</sub> | ±0.05                   | 1.40  |  |
|----------------|-------------------------|-------|--|
| D              | ±0.20                   | 16.00 |  |
| D <sub>1</sub> | ±0.05                   | 14.00 |  |
| E              | ±0.20                   | 16.00 |  |
| E <sub>1</sub> | ±0.05                   | 14.00 |  |
| L              | ±0.15/-0.10             | 0.60  |  |
| е              | BASIC                   | 0.50  |  |
| b              | ±0.05                   | 0.22  |  |
| θ              |                         | 0°~7° |  |
| ddd            | Max.                    | 0.08  |  |
| CCC            | Max.                    | 0.08  |  |
| JEDEC Refer    | JEDEC Reference Drawing |       |  |
| Variation [    | BED                     |       |  |

# 25 Ordering and Contact Information

# 25.1 Ordering Information



#### Table 25-1. Part Ordering Information

| Orderable Part Number |                                                 |
|-----------------------|-------------------------------------------------|
| LM3S6965-IQC50        | Stellaris <sup>®</sup> LM3S6965 Microcontroller |

# 25.2 Company Information

Luminary Micro, Inc. designs, markets, and sells ARM Cortex-M3-based microcontrollers (MCUs). Austin, Texas-based Luminary Micro is the lead partner for the Cortex-M3 processor, delivering the world's first silicon implementation of the Cortex-M3 processor. Luminary Micro's introduction of the Stellaris® family of products provides 32-bit performance for the same price as current 8- and 16-bit microcontroller designs. With entry-level pricing at \$1.00 for an ARM technology-based MCU, Luminary Micro's Stellaris product line allows for standardization that eliminates future architectural upgrades or software tool changes.

Luminary Micro, Inc. 108 Wild Basin, Suite 350 Austin, TX 78746 Main: +1-512-279-8800 Fax: +1-512-279-8879 http://www.luminarymicro.com sales@luminarymicro.com

# 25.3 Support Information

For support on Luminary Micro products, contact:

support@luminarymicro.com +1-512-279-8800, ext. 3

# A Serial Flash Loader

# A.1 Serial Flash Loader

The Stellaris<sup>®</sup> serial flash loader is a preprogrammed flash-resident utility used to download code to the flash memory of a device without the use of a debug interface. The serial flash loader uses a simple packet interface to provide synchronous communication with the device. The flash loader runs off the crystal and does not enable the PLL, so its speed is determined by the crystal used. The two serial interfaces that can be used are the UART0 and SSI interfaces. For simplicity, both the data format and communication protocol are identical for both serial interfaces.

# A.2 Interfaces

Once communication with the flash loader is established via one of the serial interfaces, that interface is used until the flash loader is reset or new code takes over. For example, once you start communicating using the SSI port, communications with the flash loader via the UART are disabled until the device is reset.

### A.2.1 UART

The Universal Asynchronous Receivers/Transmitters (UART) communication uses a fixed serial format of 8 bits of data, no parity, and 1 stop bit. The baud rate used for communication is automatically detected by the flash loader and can be any valid baud rate supported by the host and the device. The auto detection sequence requires that the baud rate should be no more than 1/32 the crystal frequency of the board that is running the serial flash loader. This is actually the same as the hardware limitation for the maximum baud rate for any UART on a Stellaris<sup>®</sup> device.

In order to determine the baud rate, the serial flash loader needs to determine the relationship between its own crystal frequency and the baud rate. This is enough information for the flash loader to configure its UART to the same baud rate as the host. This automatic baud-rate detection allows the host to use any valid baud rate that it wants to communicate with the device.

The method used to perform this automatic synchronization relies on the host sending the flash loader two bytes that are both 0x55. This generates a series of pulses to the flash loader that it can use to calculate the ratios needed to program the UART to match the host's baud rate. After the host sends the pattern, it attempts to read back one byte of data from the UART. The flash loader returns the value of 0xCC to indicate successful detection of the baud rate. If this byte is not received after at least twice the time required to transfer the two bytes, the host can resend another pattern of 0x55, 0x55, and wait for the 0xCC byte again until the flash loader acknowledges that it has received a synchronization pattern correctly. For example, the time to wait for data back from the flash loader should be calculated as at least 2\*(20(bits/sync)/baud rate (bits/sec)). For a baud rate of 115200, this time is 2\*(20/115200) or 0.35 ms.

### A.2.2 SSI

The Synchronous Serial Interface (SSI) port also uses a fixed serial format for communications, with the framing defined as Motorola format with SPH set to 1 and SPO set to 1. See the section on SSI formats for more details on this transfer protocol. Like the UART, this interface has hardware requirements that limit the maximum speed that the SSI clock can run. This allows the SSI clock to be at most 1/12 the crystal frequency of the board running the flash loader. Since the host device is the master, the SSI on the flash loader device does not need to determine the clock as it is provided directly by the host.

# A.3 Packet Handling

All communications, with the exception of the UART auto-baud, are done via defined packets that are acknowledged (ACK) or not acknowledged (NAK) by the devices. The packets use the same format for receiving and sending packets, including the method used to acknowledge successful or unsuccessful reception of a packet.

### A.3.1 Packet Format

All packets sent and received from the device use the following byte-packed format.

```
struct
{
 unsigned char ucSize;
 unsigned char ucCheckSum;
 unsigned char Data[];
};
ucSize
                               The first byte received holds the total size of the transfer including
                               the size and checksum bytes.
ucChecksum
                               This holds a simple checksum of the bytes in the data buffer only.
                               The algorithm is Data[0]+Data[1]+...+ Data[ucSize-3].
Data
                               This is the raw data intended for the device, which is formatted in
                               some form of command interface. There should be ucSize-2
                               bytes of data provided in this buffer to or from the device.
```

## A.3.2 Sending Packets

The actual bytes of the packet can be sent individually or all at once; the only limitation is that commands that cause flash memory access should limit the download sizes to prevent losing bytes during flash programming. This limitation is discussed further in the commands that interact with the flash.

Once the packet has been formatted correctly by the host, it should be sent out over the UART or SSI interface. Then the host should poll the UART or SSI interface for the first non-zero data returned from the device. The first non-zero byte will either be an ACK (0xCC) or a NAK (0x33) byte from the device indicating the packet was received successfully (ACK) or unsuccessfully (NAK). This does not indicate that the actual contents of the command issued in the data portion of the packet were valid, just that the packet was received correctly.

# A.3.3 Receiving Packets

The flash loader sends a packet of data in the same format that it receives a packet. The flash loader may transfer leading zero data before the first actual byte of data is sent out. The first non-zero byte is the size of the packet followed by a checksum byte, and finally followed by the data itself. There is no break in the data after the first non-zero byte is sent from the flash loader. Once the device communicating with the flash loader receives all the bytes, it must either ACK or NAK the packet to indicate that the transmission was successful. The appropriate response after sending a NAK to the flash loader is to resend the command that failed and request the data again. If needed, the host may send leading zeros before sending down the ACK/NAK signal to the flash loader, as the flash loader only accepts the first non-zero data as a valid response. This zero padding is needed by the SSI interface in order to receive data to or from the flash loader.

# A.4 Commands

The next section defines the list of commands that can be sent to the flash loader. The first byte of the data should always be one of the defined commands, followed by data or parameters as determined by the command that is sent.

## A.4.1 COMMAND\_PING (0X20)

This command simply accepts the command and sets the global status to success. The format of the packet is as follows:

```
Byte[0] = 0x03;
Byte[1] = checksum(Byte[2]);
Byte[2] = COMMAND_PING;
```

The ping command has 3 bytes and the value for COMMAND\_PING is 0x20 and the checksum of one byte is that same byte, making Byte[1] also 0x20. Since the ping command has no real return status, the receipt of an ACK can be interpreted as a successful ping to the flash loader.

# A.4.2 COMMAND\_GET\_STATUS (0x23)

This command returns the status of the last command that was issued. Typically, this command should be sent after every command to ensure that the previous command was successful or to properly respond to a failure. The command requires one byte in the data of the packet and should be followed by reading a packet with one byte of data that contains a status code. The last step is to ACK or NAK the received data so the flash loader knows that the data has been read.

Byte[0] = 0x03
Byte[1] = checksum(Byte[2])
Byte[2] = COMMAND\_GET\_STATUS

# A.4.3 COMMAND\_DOWNLOAD (0x21)

This command is sent to the flash loader to indicate where to store data and how many bytes will be sent by the COMMAND\_SEND\_DATA commands that follow. The command consists of two 32-bit values that are both transferred MSB first. The first 32-bit value is the address to start programming data into, while the second is the 32-bit size of the data that will be sent. This command also triggers an erase of the full area to be programmed so this command takes longer than other commands. This results in a longer time to receive the ACK/NAK back from the board. This command should be followed by a COMMAND\_GET\_STATUS to ensure that the Program Address and Program size are valid for the device running the flash loader.

The format of the packet to send this command is a follows:

```
Byte[0] = 11

Byte[1] = checksum(Bytes[2:10])

Byte[2] = COMMAND_DOWNLOAD

Byte[3] = Program Address [31:24]

Byte[4] = Program Address [23:16]

Byte[5] = Program Address [7:0]

Byte[6] = Program Size [31:24]

Byte[8] = Program Size [23:16]

Byte[9] = Program Size [15:8]

Byte[10] = Program Size [7:0]
```

# A.4.4 COMMAND\_SEND\_DATA (0x24)

This command should only follow a COMMAND\_DOWNLOAD command or another COMMAND\_SEND\_DATA command if more data is needed. Consecutive send data commands automatically increment address and continue programming from the previous location. The caller should limit transfers of data to a maximum 8 bytes of packet data to allow the flash to program successfully and not overflow input buffers of the serial interfaces. The command terminates programming once the number of bytes indicated by the COMMAND\_DOWNLOAD command has been received. Each time this function is called it should be followed by a COMMAND\_GET\_STATUS to ensure that the data was successfully programmed into the flash. If the flash loader sends a NAK to this command, the flash loader does not increment the current address to allow retransmission of the previous data.

```
Byte[0] = 11
Byte[1] = checksum(Bytes[2:10])
Byte[2] = COMMAND_SEND_DATA
Byte[3] = Data[0]
Byte[4] = Data[1]
Byte[5] = Data[2]
Byte[6] = Data[2]
Byte[6] = Data[3]
Byte[7] = Data[4]
Byte[8] = Data[5]
Byte[9] = Data[6]
Byte[10] = Data[7]
```

# A.4.5 COMMAND\_RUN (0x22)

This command is used to tell the flash loader to execute from the address passed as the parameter in this command. This command consists of a single 32-bit value that is interpreted as the address to execute. The 32-bit value is transmitted MSB first and the flash loader responds with an ACK signal back to the host device before actually executing the code at the given address. This allows the host to know that the command was received successfully and the code is now running.

```
Byte[0] = 7
Byte[1] = checksum(Bytes[2:6])
Byte[2] = COMMAND_RUN
Byte[3] = Execute Address[31:24]
Byte[4] = Execute Address[23:16]
Byte[5] = Execute Address[15:8]
Byte[6] = Execute Address[7:0]
```

# A.4.6 COMMAND\_RESET (0x25)

This command is used to tell the flash loader device to reset. This is useful when downloading a new image that overwrote the flash loader and wants to start from a full reset. Unlike the COMMAND\_RUN command, this allows the initial stack pointer to be read by the hardware and set up for the new code. It can also be used to reset the flash loader if a critical error occurs and the host device wants to restart communication with the flash loader.

```
Byte[0] = 3
Byte[1] = checksum(Byte[2])
Byte[2] = COMMAND_RESET
```

The flash loader responds with an ACK signal back to the host device before actually executing the software reset to the device running the flash loader. This allows the host to know that the command was received successfully and the part will be reset.