

APS3623

1 GHz Three-way Active Power Splitter Optimized for MoCA-Enabled Subscriber Equipment

PRELIMINARY DATA SHEET - Rev 1.1

FEATURES

- · Single Input, Triple Output Design
- Gain profile compensates for inband MoCA line filter attenuation
- Wideband Operation to 1 GHz
- Supports both Analog TV and Digital TV Lineups
- Nominal 5 dB Gain
- 4.5 dB Typical Noise Figure
- Single +5 V Supply
- Current adjust pin for optimizing distortion performance
- · High Linearity, Low Distortion
- Single-Ended 75 Ohm Inputs/Outputs
- Materials set consistent with RoHS directives

APPLICATIONS

- Analog/Digital and All-Digital CATV Set-Top Boxes with Multiple Tuners and Multimedia over Coax Alliance (MoCA) Functionality
- Multiple-Tuner TVs, TV Tuner Cards and Broadband Media Centers

PRODUCT DESCRIPTION

This APS3623 active splitter from ANADIGICS accepts a broadband RF input from 50 MHz to 1 GHz and splits the signal to provide three broadband RF outputs with minimal degradation of quality. The single-package surface mount device amplifies the input using highly linear, low noise amplification stages, and couples the amplified signal to three separate output paths that each can drive either analog video, digital video or digital data tuners. The APS3623 offers a special

frequency/gain profile, which compensates for inband signal attenuation caused by MoCA line filters.

Requiring a single voltage supply of +5 V, the active splitter is manufactured using ANADIGICS' highly reliable GaAs MESFET process. The small surface mount QFN packaging makes this device ideal for use in today's set-top boxes, televisions and video tuner cards requiring multiple-tuner solutions.

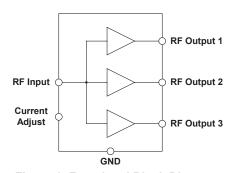


Figure 1: Functional Block Diagram

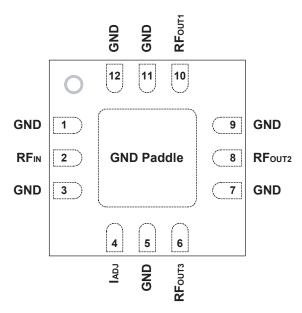


Figure 2: Pinout (X-ray Top View)

Table 1: Pin Description

PIN	NAME	DESCRIPTION
1	GND ⁽¹⁾	Ground
2	RFℕ	RF Input
3	GND ⁽¹⁾	Ground
4	A DJ	Current Adjust
5	GND ⁽¹⁾	Ground
6	RFоитз	RF Output 3
7	GND ⁽¹⁾	Ground
8	RF _{OUT2}	RF Output 2
9	GND ⁽¹⁾	Ground
10	RF _{OUT1}	RF Output 1
11	GND ⁽¹⁾	Ground
12	GND ⁽¹⁾	Ground

Note: (1) The only circuit ground required is the GND paddle. Pins 1, 3, 5, 7, 9, 11, and 12 are not connected internally and can be left floating, if preferred.

ELECTRICAL CHARACTERISTICS

Table 2: Absolute Minimum and Maximum Ratings

PARAMETER	MIN	MAX	UNIT	COMMENTS
Supply Voltage (Vcc)	0	+8	V	
RF Input Power	-	+40	dBmV	per channel 132 channel loading
ESD Rating	500 1000	1 1	V	Human Body Model, Class 1B Charged Device Model, Class 3
MSL Level	MSL-1	-	-	

Stresses in excess of the absolute ratings may cause permanent damage. Functional operation is not implied under these conditions. Exposure to absolute ratings for extended periods of time may adversely affect reliability.

Table 3: Operating Ranges

PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS
Operating Frequency (f)	50	-	1002	MHz	
Supply Voltage (Vcc)	4.75	5	5.25	٧	
RF Input Power (P _N)	-	-	+18	dBmV	per channel
Case Temperature (Tc)	-5	-	+85	°C	no damage to device operating over -30 to +95 °C range

The device may be operated safely over these conditions; however, parametric performance is guaranteed only over the conditions defined in the electrical specifications.

Table 4: Electrical Specifications (T_{AMB} = +25 °C, V_{CC} = +5 V, I_{CC} = 140 mA, 75 Ω system, ref. Figure 2)

PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS
Gain at 55 MHz	3.9	-	-	dB	
Gain at 100 MHz	-	5.0	-	dB	
Gain at 1002 MHz	5.2	6.0	-	dB	
Noise Figure	-	4.5	-	dB	
CTB (1)	-	-77	-66	dBc	
CSO (1)	-	-65	-64	dBc	
XMOD (1)	-	-72	-	dBc	
RF Isolation Input-Output Output-Output	1 1	21 22	1 1	dB	
Input Return Loss	-	-15	-	dB	
Current Consumption (Icc)	110	140	170	mA	

Notes:

^{(1) 132} channels, +15 dBmV input per channel.

Figure 5: Gain vs Frequency (1)

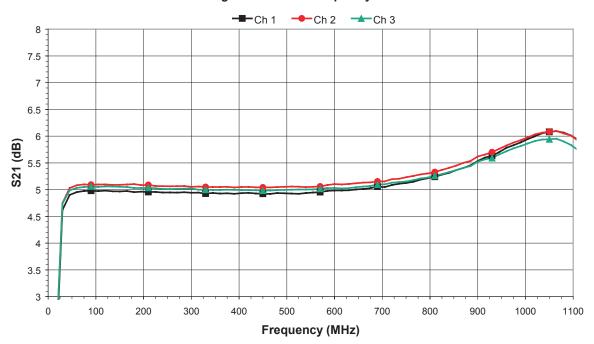


Figure 6: Input Return Loss vs Frequency (1) 0 -5 -10 -15 S11 (dB) -20 -25 -30 -35 -40 0 100 200 300 400 500 600 700 800 900 1000 1100 Frequency (MHz)

Figure 7:Output Return Loss vs Frequency (1)

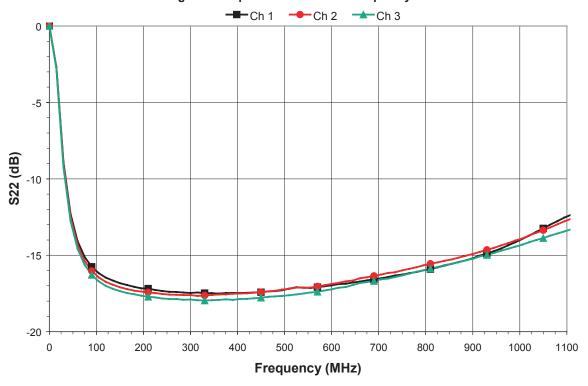


Figure 8: Reverse Isolation vs Frequency (1)

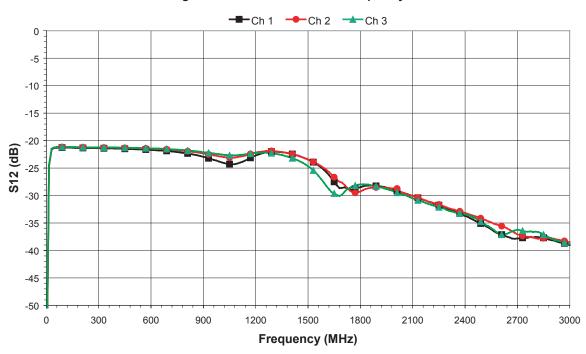


Figure 9: CSO vs Frequency (2)

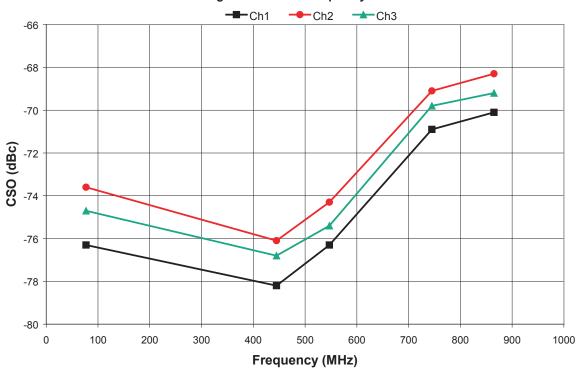


Figure 10: CTB vs Frequency (2)

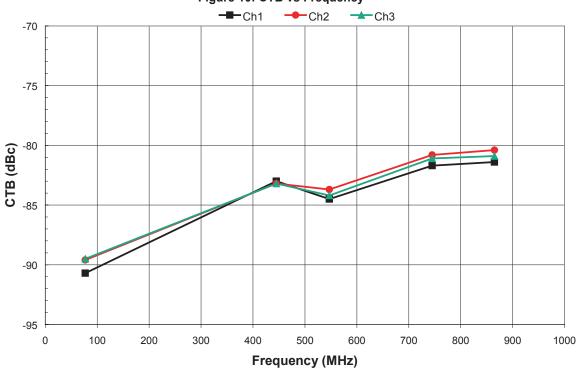
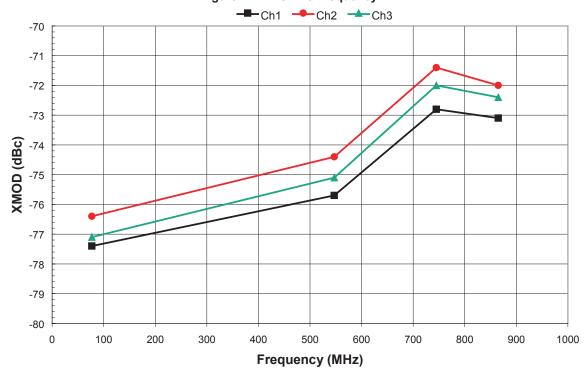
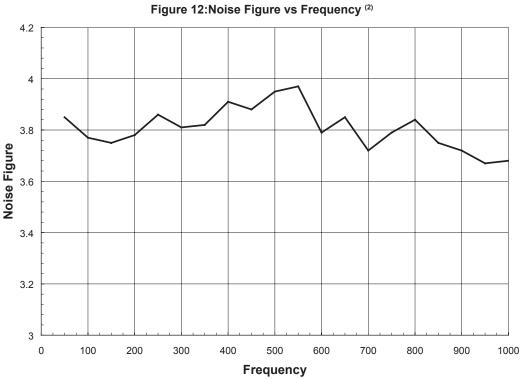
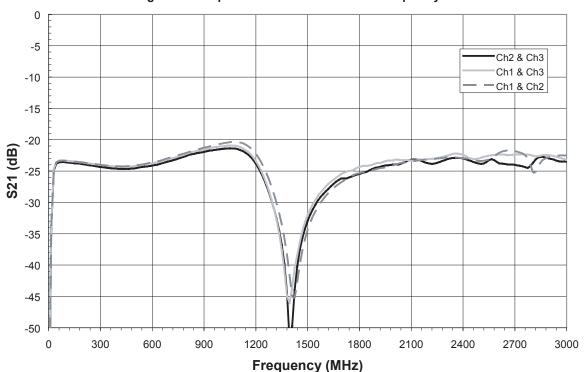
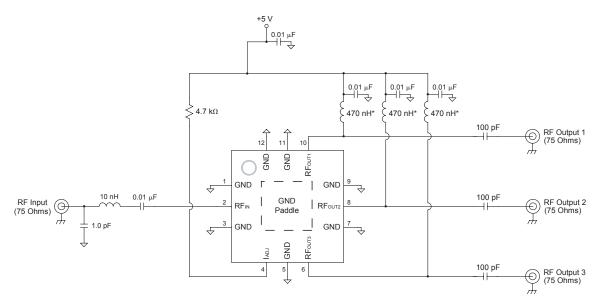




Figure 11: XMOD vs Frequency (2)



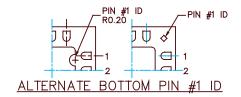

Figure 13: Output Port-to-Port Isolation vs Frequency (2)

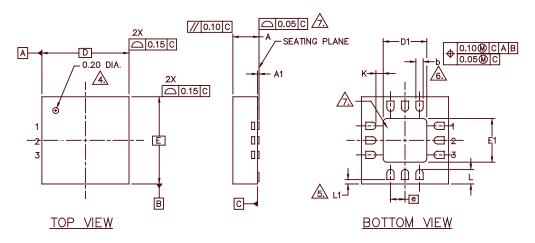
Notes:

(1) Test Condition: TAMB = +25 °C, Vcc = +5 V

(2) Test Condition: 132 Channels, 0 dB Tilt, +15 dBmV input power, TAMB = +25 °C, VCC = +5 V

APPLICATION INFORMATION




Figure 3: Application Circuit

Note:

1. *560 nH inductors may be substituted with a slight change in return loss.

PACKAGE OUTLINE

s Y	DIMENS	ONS-MM		s,	DIMENSION	IS-INCHES	
%	DIMENSI	OI42-IAIIAI	l™o l	¥	DIMENSION	13-III/CHE3	۱ _N o
<u>_</u> 6	MIN.	MAX.	No _{TE}	٥.	MIN.	MAX.	No _{TE}
A	0.80	1.00		Α	0.031	0.039	
A1	0.00	0.05		Α1	0.000	0.001	
ь	0.18	0.30		Ь	0.007	0.011	
D	3.00	BSC		D	0.118	BSC	
D1	1.30	1.70		D1	0.051	0.067	
Ε	3.00	BSC		E	0.118	BSC	
E1	1.30	1.70		E1	0.051	0.067	
e	0.50	BSC		e	0.019	BSC	
K	0.20 MIN.			Κ	0.007 MIN.		
L	0.35	0.55		L	0.014	0.022	
[1]		0.15 MAX.		L1		0.006 MAX.	

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. MAX. PACKAGE WARPAGE IS 0.05 mm.
- 3. MAXIMUM ALLOWABLE BURRS IS 0.076 mm IN ALL DIRECTIONS.
- 4. PIN #1 ID ON TOP WILL BE LASER MARKED.
- A MAXIMUM 0.15mm PULL BACK (L1) MAYBE PRESENT.
 L MINUS L1 TO BE EQUAL TO OR GREATER THAN 0.30mm.
- AND IS MEASURED BETWEEN 0.15 AND 0.30mm
 FROM TERMINAL TIPL IF THE TERMINAL HAS THE OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL, THE DIMENSION B SHOULD NOT BE MEASURED IN THAT RADIUS AREA.
- BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.
 - 8. REFERENCE JEDEC OUTLINE MO-220.

Figure 4: S26 Package Outline - 12 Pin 3 mm x 3 mm x 1 mm QFN

ORDERING INFORMATION

ORDER NUMBER	TEMPERATURE RANGE	PACKAGE DESCRIPTION	COMPONENT PACKAGING
APS3623RS26Q1	-5 °C to +85 °C	12 Pin 3 mm x 3 mm x 1 mm QFN Package	Tape and Reel, 1000 pieces per Reel

ANADIGICS, Inc.

141 Mount Bethel Road Warren, New Jersey 07059, U.S.A.

Tel: +1 (908) 668-5000 Fax: +1 (908) 668-5132

URL: http://www.anadigics.com E-mail: Mktg@anadigics.com

IMPORTANT NOTICE

ANADIGICS, Inc. reserves the right to make changes to its products or to discontinue any product at any time without notice. The product specifications contained in Advanced Product Information sheets and Preliminary Data Sheets are subject to change prior to a product's formal introduction. Information in Data Sheets have been carefully checked and are assumed to be reliable; however, ANADIGICS assumes no responsibilities for inaccuracies. ANADIGICS strongly urges customers to verify that the information they are using is current before placing orders.

WARNING

ANADIGICS products are not intended for use in life support appliances, devices or systems. Use of an ANADIGICS product in any such application without written consent is prohibited.

