## Description

The YB1522 is a step-up DC-DC converter; with wide input voltage range from 3 V to 16 V , which operates as current source to drive up to 3S7P to 3S10P ( $\mathrm{V}_{\mathrm{IN}}$ at 3 V to 5 V ). Series connecting of the LEDs provides identical LED currents resulting in uniform brightness and eliminating the need for ballast resistors. The light intensity of these LEDs is proportional to the current passing through them. The YB1522 switches at a fixed frequency of $\sim 930 \mathrm{KHz}$, allowing the use of tiny, low profile inductors and capacitors to minimize footprint and cost in space consideration applications.

The YB1522 can drive up to 3S10P white LEDs from a single Li-lon battery. At automotive $(5 \mathrm{~V} / 12 \mathrm{~V})$ applications with higher conversion efficiency. To control LED brightness, the LED current can be pulsed by applying a PWM (pulse width modulated) signal with a frequency range of 100 Hz to 1 KHz to the CTRL pin.

YB1522 has integrated Latched Over Voltage Protection that prevents damage to the device in case of a high impedance output due to faulty LED or open circuit caused by abnormal conditions.

## Features

■ Built-in Internal Switch
■ 3V to 16V Input Range

- <1uA Shutdown Current
- High Efficiency

■ Internal Soft Start
■ Drives up to 3S7P to 3S10P White
LEDs( $\mathrm{V}_{\text {IN }}$ at 3.5 V to 5 V )

- Over Voltage Protection 30V

■ Small 5-Lead SOT-23 Package

- Analog and PWM Dimming Control

■ 100mV Low Reference Voltage

## Applications

■ 5" ~ 7" LCD Display Module

- White LED Backlighting
- Car TV
- Handheld and PDA
- Electronic Books
- Digital Photo Frame


## Typical Application Circuit



Figure 1: Typical Application Circuit

## Pin Configuration



Figure 2: Pin Configuration

## Pin Description

Table 1

| Pin | NAME | Description |
| :---: | :---: | :--- |
| 1 | SW | Switching Pin. This is the collector of the internal NPN power switch. <br> Connect to inductor and diode. Minimize the metal trace area <br> connected to this pin to reduce EMI. |
| 2 | GND | Ground Pin. Connect directly to local ground plane. |
| 3 | FB | Feedback Pin. Reference voltage is 100mV. Connect LEDs and a <br> resistor at this pin. LED current is determined by the resistance and <br> CTRL voltage. |
| 4 | CTRL | Shutdown Pin and Dimming Control Pin. <br> VCTRL > 1.8V generates full-scale LED current. <br> VCTRL < 0.4V chip is off. <br> Switching from 0.4V to 2.0V, PWM duty cycle controls the LED current. |
| 5 | VIN | Input Supply Pin. Bypass this pin with a capacitor as close to the <br> device as possible. |

## Ordering Information

| Order Number | Package Type | Supplied As | Package Marking |
| :---: | :---: | :---: | :---: |
| YB1522ST25 | SOT23-5 | 3000 units Tape \& Reel | Please contact sales <br> representative |

## Absolute Maximum Ratings

VIN 20V
SW Voltage ............................................. 32 V
FB Voltage 5V
CTRL Voltage ..... 5 V
Maximum Junction Temp, $\mathrm{T}_{\mathrm{J}}$ ..... $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec ) ..... $300^{\circ} \mathrm{C}$

## Recommended Operating Conditions

Operating Temperature......... $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Supply Voltage.
3V~16V
SW Voltage...........................................20V

## Electrical Characteristics

Table $2 \quad\left(\mathrm{~V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{C}_{\text {IN }}=1 \mathrm{uF}, \mathrm{C}_{\text {OUT }}=10 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

| Description | Symbol | Test Conditions | MIN | TYP | MAX | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Voltage Range | $\mathrm{V}_{\text {IN }}$ |  | 3 |  | 16 | V |
| Not Switching | $\mathrm{I}_{\mathrm{Q}}$ | $\mathrm{V}_{\mathrm{FB}}=0.3 \mathrm{~V}$ | 1.2 | 1.5 | 1.7 | mA |
| Shutdown |  | CTRL $=0 \mathrm{~V}$ |  | 0.3 | 1 | uA |
| Feedback Voltage | $V_{\text {FB }}$ | $\mathrm{I}_{\text {OUT }}=20 \mathrm{~mA}, \mathrm{~V}_{\text {OUT }}=12.5 \mathrm{~V}$ <br> Circuit of Figure 1 | 90 | 100 | 110 | mV |
| Switch Current Limit | $\mathrm{I}_{\mathrm{CL}}$ | 85\% duty cycle | 620 | 650 |  | mA |
|  |  | 40\% duty cycle |  | 450 |  | mA |
| FB Pin Bias Current | $\mathrm{I}_{\mathrm{B}}$ | $\mathrm{V}_{\mathrm{FB}}=100 \mathrm{mV}$ |  |  | 1 | uA |
| Switching Frequency | $\mathrm{F}_{\text {SW }}$ |  | 900 | 930 | 960 | KHz |
| Maximum Duty Cycle | $\mathrm{D}_{\text {MAX }}$ |  |  |  | 85 | \% |
| Minimum Duty Cycle | $\mathrm{D}_{\text {MIN }}$ |  | 20 |  | 25 | \% |
| Switch Vcesat | $\mathrm{V}_{\text {SAT }}$ | At $\mathrm{I}_{\text {SW }}=200 \mathrm{~mA}$ |  |  | 180 | mV |
| Switch Leakage Current | ILKG | $\mathrm{CTRL}=0.3 \mathrm{~V}$ |  |  | 1 | $\mu \mathrm{A}$ |
| VCTRL for Full LED Current | $\mathrm{V}_{\text {cti }}$ | Full On | 1.7 |  |  | V |
|  |  | Full Off |  |  | 0.3 | V |
| CTRL Pin Bias Current | $\mathrm{I}_{\text {ctL }}$ | CTRL $=2 \mathrm{~V}$ |  | 40 |  | $\mu \mathrm{A}$ |
| Over Voltage Protection | OVP |  |  | 30 |  | V |
| Over Thermal Protection | OTP |  |  | 160 |  | ${ }^{\circ} \mathrm{C}$ |
| Thermal Resistance | $\theta_{\text {JA }}$ |  |  | 220 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

## Note :

Absolute maximum ratings are limits beyond which damage to the device may occur.
The maximum allowable power dissipation is a function of maximum function temperature, $T_{\text {JMAX) }}$, the junction to ambient thermal resistance, $\theta_{\mathrm{JA}}$, and the ambient temperature. The maximum allowable, power dissipation at any ambient temperature is calculated using: $\mathrm{P}_{\mathrm{D}(\text { MAX })}=\left[\mathrm{T}_{J(\text { max })}-T_{A}\right] / \theta_{\mathrm{JA}}$. Exceeding the maximum allowable power dissipation will cause excessive die temperature. All limits at temperature extremes are guaranteed via correlation using standard statistical methods.

## Typical Performance Characteristics



Output Waveform


Vin \& Efficiency


Output Ripple


1usidiv

Vin \& lout



Output Waveform


Vin \& Efficiency


Output Ripple


1us/DIv

Vin \& lout



Output Waveform


Vin \& Efficiency

$\mathrm{Vin}(\mathrm{V})$

Output Ripple


Vin \& lout



| $\mathrm{C} 1=1 \mathrm{uF} / 16 \mathrm{~V}$ | $\mathrm{C} 2=10 \mathrm{uF} / 16 \mathrm{~V}$ |
| :--- | :--- |
| $\mathrm{~L} 1=33 \mathrm{uH} / \mathrm{CD} 43$ | $\mathrm{R} 1=0.5 \Omega$ |

## Output Waveform



Vin \& Efficiency


Output Ripple


Vin \& lout


## Typical Performance Characteristics

Supply Current $(V \operatorname{ctr}=0 V)$


Switching Frequency


Switch Leakage Current


Supply Current (Vctrl = Vin)


Vcesat


CTRL Pin Bias Current


Step-up DC-DC Converter White LED Driver

## Function Block



Figure 3: YB1522 Block Diagram

## Operation

The YB1522 uses a constant frequency, current mode control scheme to regulate the output LED current. Its operation can be understood by referring to the block diagram in Figure 3. At the start of each oscillator cycle, a voltage proportional to the switch current is added to a ramp output and the resulting sum is fed into the positive terminal of the PWM comparator (comparator-1). When this voltage exceeds the level of the comparator negative input, the peak current has been reached, and the SR latch (in Control Logic) is reset and turns off the power switch. The voltage at the negative input of the comparator comes from the output of the error amplifier. The error amplifier sets the correct peak current level to keep the output in regulation. If the error amplifier's output increases, more current is delivered to the output; if it decreases, less current is delivered.

## Application Information

Soft Start and Current Limit
The internal soft start circuit minimizes the inrush current during turning on YB1522. The maximum switch current is limited to about 650 mA by the chip.

## LED Current and Dimming Control

The LED's current is set by a resistor connected at FB pin to GND using:

$$
I_{L E D}=\frac{100 \mathrm{mV}}{R_{L E D}}
$$

The maximum LED current set initially can be reduced by pulse width modulating the CTRL. A better approach is to adjust the feedback voltage for dimming control. Either a DC level signal or a filtered PWM signal can be used to control the LED current as illustrated in Figure 4 and Figure 5 respectively. Using the above different scheme, the LED current can be controlled from $0 \%$ to $100 \%$ to its maximum value.


| $\mathbf{V}_{\mathrm{DC}}(\mathbf{V})$ | $\mathbf{V}_{\mathrm{FB}}(\mathbf{m V})$ | $\mathbf{I}_{\mathrm{OUT}}(\mathbf{m A})$ |
| :---: | :---: | :---: |
| 2 | 0 | 0 |
| 1.8 | 2.2 | 0.43 |
| 1.6 | 9.2 | 1.8 |
| 1.4 | 19.6 | 3.6 |
| 1.2 | 31.1 | 6 |
| 1 | 43.4 | 8.5 |
| 0.8 | 63 | 12.3 |
| 0.6 | 74 | 14.5 |
| 0.4 | 86.4 | 16.9 |
| 0.2 | 96.9 | 19 |
| 0 | 102 | 20 |

Figure 4: Dimming Control Using a DC Voltage


| Duty | I Out $^{\prime}$ (mA) |
| :---: | :---: |
| $0 \%$ | 20 |
| $20 \%$ | 17.4 |
| $30 \%$ | 15 |
| $40 \%$ | 12.4 |
| $50 \%$ | 10 |
| $60 \%$ | 8 |
| $70 \%$ | 6.4 |
| $80 \%$ | 4.07 |
| $100 \%$ | 0 |
| PWM : $2 \mathrm{~V} ; 1 \mathrm{KHz} ; \operatorname{Vin}=3.6 \mathrm{~V}$ |  |

Figure 5: Dimming Control Using a Filtered PWM Signal

## Over Voltage Protection

The YB1522 has an internal over voltage protection circuit which also acts as an open-circuit protection. In the cases of open circuit or the LEDs failure, the LEDs are disconnected from the circuit, and the feedback voltage will be zero. The YB1522 will then switch to a high duty cycle resulting in a high output voltage, which may cause SW pin voltage to exceed its maximum 30 V rating. The YB1522 will shutdown automatically until input condition changes to bring it out of the shutdown mode.

## Inductor Selection

A 33 uH inductor is recommended for most applications to drive more than $3 \times 7$ WLEDs. Although small size and high efficiency are major concerns, the inductor should have low core losses at 1 MHz and low DCR (copper wire resistance).

## Diode Selection

To maintain high efficiency, the average current rating of the Schottky diode should be large than the peak inductor current, lek. Schottky diode with a low forward drop and fast switching speeds are ideal for increase efficiency in portable application. Choose a reverse breakdown of the Schottky diode large than the output voltage.

## Capacitor Selection

Choose low ESR capacitors for the output to minimize output voltage ripple. Multilayer capacitors are a good choice for this as well. A 10uF capacitor is sufficient for $3 \times 7$ WLEDs applications. For additional bypassing, a 100 nF ceramic capacitor can
be used to shunt high frequency ripple on the input.

The input bypass capacitor $\mathrm{C}_{\mathrm{IN}}$, as shown in Figure 1, must be placed close to the IC. This will reduce copper trace resistance which affects input voltage ripple of the IC. For additional input voltage filtering, a 100 nF bypass capacitor can be placed in parallel with $\mathrm{C}_{\mathbb{I N}}$ to shunt any high frequency noise to ground. The output capacitor, Cout, should also be placed close to the IC. Any copper trace connections for the Cout capacitor can increase the series resistance, which directly effect output voltage ripple.

The feedback network, resister R2 should be kept close to the FB pin to minimize copper trace connections that can inject noise into the system. The ground connection for the feedback resistor network should connect directly to an analog ground plane. The analog ground plane should tie directly to the GND pin. If no analog ground plane is available, the ground connection for the feedback network should tie directly to the GND pin. Trace connections made to the inductor and Schottky diode should be minimized to reduce power dissipation and increase overall efficiency.

## Package Information (SOT23-5)



VIEW B


SEE VIEW B

| \multicolumn{1}{\|c|}{ SYMBOLS } | DIMENSIONS IN MILLMETERS |  |  |
| :---: | :---: | :---: | :---: |
|  | MIN | NOM | MAX |
| A | 1.05 | 1.20 | 1.35 |
| A1 | 0.05 | 0.10 | 0.15 |
| A2 | 1.00 | 1.10 | 1.20 |
| b | 0.35 | - | 0.50 |
| b1 | 0.35 | 0.40 | 0.45 |
| c | 0.08 | - | 0.22 |
| c1 | 0.08 | 0.13 | 0.20 |
| D | 2.80 | 2.90 | 3.00 |
| E | 2.60 | 2.80 | 3.00 |
| E1 | 1.50 | 1.60 | 1.70 |
| e | 0.95 BSC |  |  |
| e1 | 1.90 BSC |  |  |
| L | 0.35 | 0.43 | 0.60 |
| L1 | 0.60 REF |  |  |
| L2 | 0.25 BSC.$$ |  |  |
| R | 0.10 | - | - |
| R1 | 0.10 | - | $0^{\circ}$ |
| $\theta$ | $0^{\circ}$ | $4^{\circ}$ | $8^{\circ}$ |
| $\theta 1$ | $5^{\circ}$ | $6^{\circ}$ | $15^{\circ}$ |
| $\theta 2$ | $5^{\circ}$ | $8^{\circ}$ | $15^{\circ}$ |

## NOTICE:

- The information described herein is subject to change without notice.
- Yobon does not assume any responsibility for use of any circuitry or applications described herein, nor does it convey any patent license.

