FEATURES

- Ranges 0...1000 sccm¹ and 0...6 slpm²
- · Actual mass flow sensing
- 1...5 V output
- Manifold mount/o-ring sealed

To be used with dry gases only

The AWM series is NOT designed for liquid flow and will be damaged by liquid flow through the sensor

SPECIFICATIONS

Maximum ratings

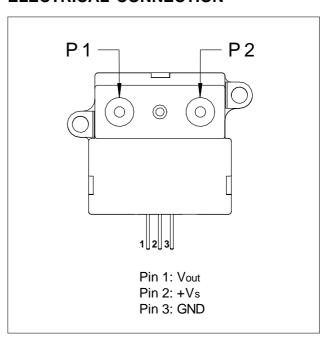
Supply voltage³ 8 to 15 V

typ. 10 ±0.01 V

Power consumption

AWM43300V 60 mW AWM43600V 75 mW

Output load


NPN (Sinking) 10 mA PNP (Sourcing) 20 mA

Temperature limits

Operating -25 to 85°C Storage -40 to 90°C

Mechanical shock 100 g (5 drops, 6 axes)

ELECTRICAL CONNECTION

Note:

- ¹ sccm denotes standard cubic centimeters per minute, 1000 sccm = 1 slpm
- ² slpm denotes standard liters per minute, which is a flow measurement referenced to standard conditions of 0°C, 1 bar, 50% RH.

³ Output voltage is ratiometric to supply voltage

November 2004 / 625 1/4

Mass flow sensor for gases

FLOW SENSOR CHARACTERISTICS⁴

 $V_S = 10 \pm 0.01 \text{ V}, T_A = 25^{\circ}\text{C}$

Part no.	Flow range (full scale)	Max. flow change⁵	Output voltage @ trim point
AWM43300V	1000 sccm ¹	5.0 l/sec	5 ±0.15 V @ 1000 sccm ¹
AWM43600V	6 SLPM ²	5.0 l/sec	5 ±0.15 V @ 6 SLPM ²

PERFORMANCE CHARACTERISTICS

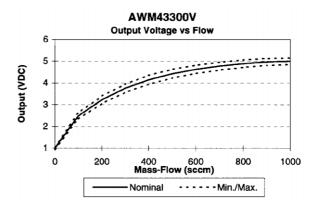
 $V_{s} = 10 \pm 0.01 \text{ V}, T_{A} = 25^{\circ}\text{C}$

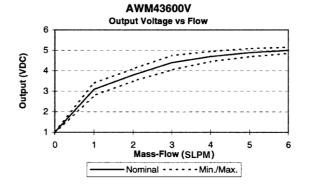
Characteristics					Тур.	Max.	Unit
Zero offset				0.95	1.0	1.05	V
Repeatability and hysteresis AWM43300V						±0.5	% reading
(combined) AWM43600V					±1.0		
Ratiometricity error ³						±0.3	
Temperature effects ⁶	Offset	-25 to 85 °C			±0.025		V
	Span	-25 to 25 °C	AWM43300V			-5.0	
			AWM43600V			-6.0	% reading
		25 to 85 °C	AWM43300V			6.0	
			AWM43600V			6.0	
Response time					1.0	3.0	ms
Common mode pressure AWM43300V AWM43600V					150	noi	
			AWM43600V			25	psi

Notes:

- ¹ sccm denotes standard cubic centimeters per minute, 1000 sccm = 1 slpm
- ² SLPM denotes standard liters per minute, which is a flow measurement referenced to standard conditions of 0°C, 1 bar, 50% RH.
- ³ Output voltage is ratiometric to supply voltage
- ⁴ A 5 micron filter is recommended for all devices.
- ⁵ Maximum allowable rate of flow change to prevent damage.
- ⁶ Shift is relative to 25 °C.

2/4 November 2004 / 625




OUTPUT FLOW VS INTERCHANGEABILITY

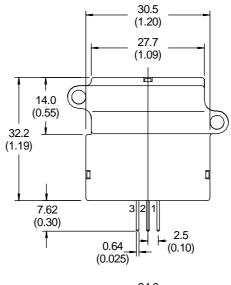
 $V_s = 10 \pm 0.01 \text{ V}, T_A = 25^{\circ}\text{C}$

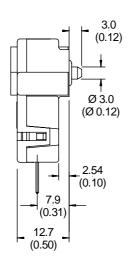
AWM43300V				AWM43600V			
Press. mBar	Flow sccm	Nom. VDC	Tol. ± VDC	Press. mBar	Flow SLPM	Nom. VDC	Tol. ± VDC
2.23	1000	5.00	0.15	20.0	6	5.00	0.15
1.87	900	4.97	0.16	14.7	5	4.89	0.20
1.52	800	4.89	0.17	9.07	4	4.70	0.25
1.16	700	4.78	0.18	6.40	3	4.40	0.35
0.94	600	4.63	0.19	3.35	2	3.80	0.30
0.71	500	4.43	0.20	1.17	1	3.10	0.30
0.50	400	4.15	0.21	0.00	0	1.00	0.05
0.33	300	3.76	0.19				
0.19	200	3.23	0.17				
0.08	100	2.49	0.14				
0.00	0	1.00	0.05		·		

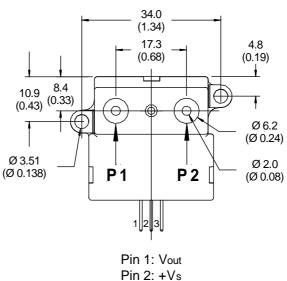
OUTPUT CURVES

GAS CORRECTION FACTORS7

Gas type	Correction factor (approx.)		
Helium (He)	0.5 ⁸		
Hydrogen (H ₂)	0.78,9		
Argon (Ar)	0.95		
Nitrogen (N ₂)	1.0		
Oxygen (O ₂)	1.0		
Air	1.0		
Nitric oxide (NO)	1.0		
Carbon monoxide (CO)	1.0		
Methane (CH₄)	1.1		
Ammonia (NH ₃)	1.1		
Nitrous oxide (N ₂ O)	1.35		
Nitrogen dioxide (NO ₂)	1.35		
Carbon dioxide (CO ₂)	1.35		


Notes:


- ⁷ Gas correction factors are referenced to nitrogen (N₂) as calibration gas type. Approximate gas correction factors are provided as guidelines only. Individual gas types may perform differently at temperature extremes and varying flow rates.
- ⁸ When sensing Hydrogen (H_.) or Helium (He) it may be necessary to power the mass flow sensor using increased supply voltage: Hydrogen typ. 12 V, Helium typ. 15 V
- ⁹ Hydrogen (H₂) flow measurement requires the use of a special sensor. These devices provide normal operation when sensing hydrogen flow and are designated with an "H" at the end of the order number.


November 2004 / 625 3/4

OUTLINE DRAWING

Pin 3: GND

mass: approx. 11 g

dimensions in mm (inches)

ORDERING INFORMATION

Flow range	Dry gas	Hydrogen gas ⁹
1000 sccm	AWM43300V	AWM43300VH
6 SLPM	AWM43600V	

Note:

Sensortechnics reserves the right to make changes to any products herein. Sensortechnics does not assume any liability arising out of the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

4/4 November 2004 / 625

⁹ Hydrogen (H₂) flow measurement requires the use of a special sensor. These devices provide normal operation when sensing hydrogen flow and are designated with an "H" at the end of the order number.