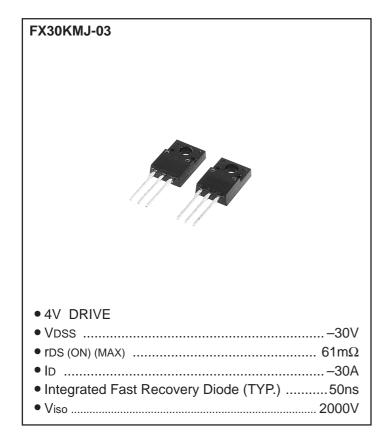
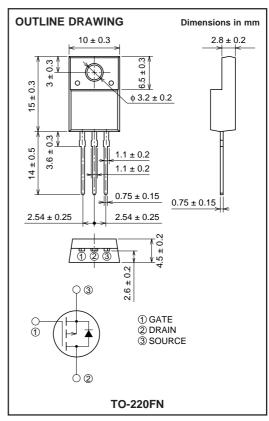
Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself.

Note: Mitsubishi Electric will continue the business operations of high frequency & optical devices and power devices.


Renesas Technology Corp. Customer Support Dept. April 1, 2003



FX30KMJ-03

HIGH-SPEED SWITCHING USE

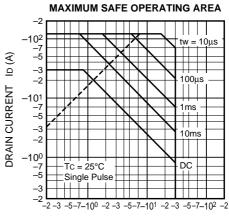
APPLICATION

Motor control, Lamp control, Solenoid control DC-DC converter, etc.

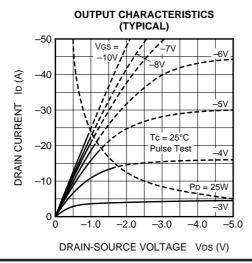
MAXIMUM RATINGS (Tc = 25°C)

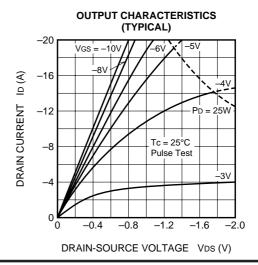
Symbol	Parameter	Conditions	Ratings	Unit
VDSS	Drain-source voltage	VGS = 0V	-30	V
Vgss	Gate-source voltage	VDS = 0V	±20	V
ID	Drain current		-30	Α
IDM	Drain current (Pulsed)		-120	Α
IDA	Avalanche drain current (Pulsed)	L = 10μH	-30	Α
Is	Source current		-30	Α
Ism	Source current (Pulsed)		-120	Α
PD	Maximum power dissipation		25	W
Tch	Channel temperature		− 55 ~ + 150	°C
Tstg	Storage temperature		− 55 ~ + 150	°C
Viso	Isolation voltage	AC for 1minute, Terminal to case	2000	V
_	Weight	Typical value	2.0	g

HIGH-SPEED SWITCHING USE

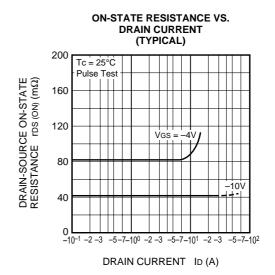

ELECTRICAL CHARACTERISTICS (Tch = 25°C)

Symbol	Parameter	Test conditions	Limits			Unit
			Min.	Тур.	Max.	Offic
V (BR) DSS	Drain-source breakdown voltage	ID = -1mA, $VDS = 0V$	-30	_	_	V
Igss	Gate-source leakage current	$VGS = \pm 20V$, $VDS = 0V$	_	_	±0.1	μΑ
IDSS	Drain-source leakage current	VDS = -30V, $VGS = 0V$	_	_	-0.1	mA
VGS (th)	Gate-source threshold voltage	ID = -1mA, $VDS = -10V$	-1.3	-1.8	-2.3	V
rDS (ON)	Drain-source on-state resistance	ID = -15A, $VGS = -10V$	_	48	61	mΩ
rDS (ON)	Drain-source on-state resistance	ID = -5A, $VGS = -4V$	_	96	120	mΩ
VDS (ON)	Drain-source on-state voltage	ID = -15A, VGS = -10V	_	-0.72	-0.92	V
yfs	Forward transfer admittance	ID = -15A, VDS = -10V	_	11.9	_	S
Ciss	Input capacitance	VDS = -10V, VGS = 0V, f = 1MHz	_	2460	_	pF
Coss	Output capacitance		_	410	_	pF
Crss	Reverse transfer capacitance		_	170	_	pF
td (on)	Turn-on delay time	VDD = -15V, ID = -15A, VGS = -10V, RGEN = RGS = $50Ω$	_	20	_	ns
tr	Rise time		_	84	_	ns
td (off)	Turn-off delay time		_	123	_	ns
tf	Fall time		_	60	_	ns
VsD	Source-drain voltage	Is = -15A, VGS = 0V	_	-1.0	-1.5	V
Rth (ch-c)	Thermal resistance	Channel to case	_	_	5.00	°C/W
trr	Reverse recovery time	Is = $-15A$, dis/dt = $50A/\mu$ s	_	50	_	ns

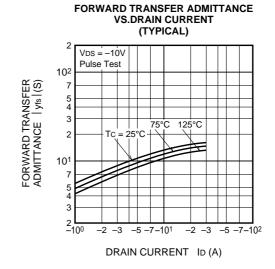

PERFORMANCE CURVES

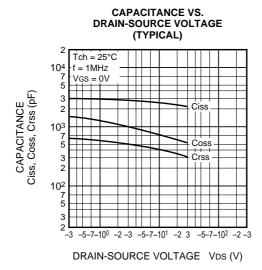


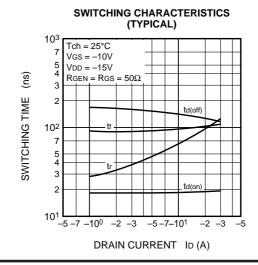
DRAIN-SOURCE VOLTAGE VDS (V)

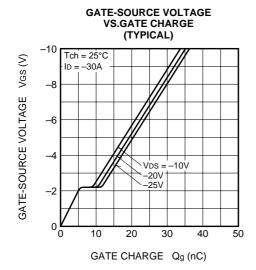

Jan.1999

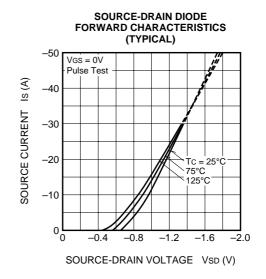


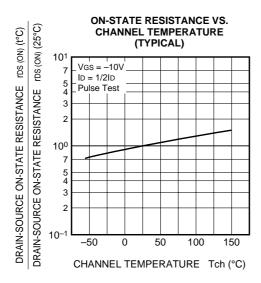


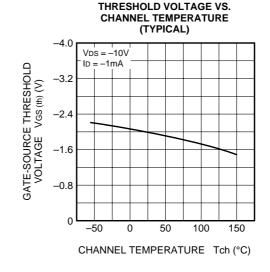

HIGH-SPEED SWITCHING USE

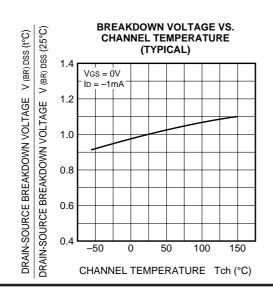











HIGH-SPEED SWITCHING USE

