GaAs SPDT Svitch DC-4GHz

Features

- Terminated (SW-226-PIN), High Isolation (SW-227-PIN), Low Loss (SW-228-PIN)
- Fast Switching Speed: 6 nS Typical
- Ultra Low DC Power Consumption
- Lead-Free 7-Lead Ceramic Package
- RoHS* Compliant and $260^{\circ} \mathrm{C}$ Reflow Compatible

Description

M/A-COM's SW-226/227/228-PIN are GaAs MMIC SPDT switches packaged in lead-free, surface mount CR-2 ceramic style packages. The SW-226PIN is a terminated SPDT. The SW-227-PIN offers high isolation. The SW-228-PIN offers low insertion loss. This ceramic switch platform has a common footprint for all three designs. The CR-2 package is hermetically sealed, making these switches ideal for space, military radios, and other environmentally harsh applications.

Typical applications include synthesizer switching, transmit/receive switching, switch matrices and filter banks in systems such as radio and cellular equipment, PCM, GPS, and fiber optic modules.

The SW-226/227/228-PIN are fabricated as monolithic GaAs MMICs using a 1.0 micron MESFET process.

Ordering Information

Part Number	Package
SW-226-PIN	Ceramic (CR-2)
SW-227-PIN	Ceramic (CR-2)
SW-228-PIN	Ceramic (CR-2)

Absolute Maximum Ratings ${ }^{1,2}$

Parameter	Absolute Maximum
Input Power	
0.05 GHz	+27 dBm
$0.5-4.0 \mathrm{GHz}$	+34 dBm
Control Voltage	$-8.5 \mathrm{~V} \leq \mathrm{Vc} \leq+5 \mathrm{~V}$
Operating Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

1. Exceeding any one or combination of these limits may cause permanent damage to this device.
2. $\mathrm{M} / \mathrm{A}-\mathrm{COM}$ does not recommend sustained operation near these survivability limits.

Block Diagram/Pin Configuration SW-226-PIN ${ }^{3}$

Block Diagram/Pin Configuration SW-227-PIN ${ }^{3}$

Block Diagram/Pin Configuration SW-228-PIN ${ }^{3}$

3. Bottom of case is RF ground.

[^0]Visit www.macomtech.com for additional data sheets and product information.
M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

GaAs SPDT Switch
 DC - 4 GHz

Electrical Specifications: $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{Vc}=0 \mathrm{~V} /-5 \mathrm{~V}, \mathrm{Z}_{0}=50 \Omega^{4}$

Parameter	Test Conditions	Units	Min.	Typ.	Max.
Insertion Loss (SW-226-PIN)	$\begin{aligned} & \text { DC }-0.5 \mathrm{GHz} \\ & \mathrm{DC}-1 \mathrm{GHz} \\ & \mathrm{DC}-2 \mathrm{GHz} \\ & \mathrm{DC}-4 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$	-	$-$	$\begin{aligned} & 0.9 \\ & 1.0 \\ & 1.2 \\ & 1.5 \end{aligned}$
Insertion Loss (SW-227-PIN)	$\begin{aligned} & \mathrm{DC}-0.5 \mathrm{GHz} \\ & \mathrm{DC}-1 \mathrm{GHz} \\ & \mathrm{DC}-2 \mathrm{GHz} \\ & \mathrm{DC}-4 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	-	$\begin{aligned} & 0.9 \\ & 1.0 \\ & 1.1 \\ & 1.4 \end{aligned}$
Insertion Loss (SW-228-PIN)	$\begin{aligned} & \mathrm{DC}-0.5 \mathrm{GHz} \\ & \mathrm{DC}-1 \mathrm{GHz} \\ & \mathrm{DC}-2 \mathrm{GHz} \\ & \mathrm{DC}-4 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	-	$\begin{aligned} & 0.7 \\ & 0.7 \\ & 0.8 \\ & 1.0 \end{aligned}$
Isolation (SW-226-PIN)	$\begin{aligned} & \mathrm{DC}-0.5 \mathrm{GHz} \\ & \mathrm{DC}-1 \mathrm{GHz} \\ & \mathrm{DC}-2 \mathrm{GHz} \\ & \mathrm{DC}-4 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 53 \\ & 48 \\ & 40 \\ & 25 \end{aligned}$	-	二
Isolation (SW-227-PIN)	$\begin{aligned} & \mathrm{DC}-0.5 \mathrm{GHz} \\ & \mathrm{DC}-1 \mathrm{GHz} \\ & \mathrm{DC}-2 \mathrm{GHz} \\ & \mathrm{DC}-4 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 55 \\ & 50 \\ & 40 \\ & 35 \end{aligned}$	-	二
Isolation (SW-228-PIN)	$\begin{aligned} & \mathrm{DC}-0.5 \mathrm{GHz} \\ & \mathrm{DC}-1 \mathrm{GHz} \\ & \mathrm{DC}-2 \mathrm{GHz} \\ & \mathrm{DC}-4 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 50 \\ & 42 \\ & 32 \\ & 22 \end{aligned}$	-	-
VSWR (SW-226-PIN)	$\begin{aligned} & \mathrm{DC}-0.5 \mathrm{GHz} \\ & \mathrm{DC}-1 \mathrm{GHz} \\ & \mathrm{DC}-2 \mathrm{GHz} \\ & \mathrm{DC}-4 \mathrm{GHz} \end{aligned}$	Ratio Ratio Ratio Ratio	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	-	$\begin{aligned} & 1.2: 1 \\ & 1.4: 1 \\ & 1.6: 1 \\ & 2.3: 1 \end{aligned}$
VSWR (SW-227-PIN)	$\begin{aligned} & \mathrm{DC}-0.5 \mathrm{GHz} \\ & \mathrm{DC}-1 \mathrm{GHz} \\ & \mathrm{DC}-2 \mathrm{GHz} \\ & \mathrm{DC}-4 \mathrm{GHz} \end{aligned}$	Ratio Ratio Ratio Ratio	-	-	$\begin{aligned} & 1.2: 1 \\ & 1.4: 1 \\ & 1.6: 1 \\ & 2.0: 1 \end{aligned}$
VSWR (SW-228-PIN)	$\begin{aligned} & \mathrm{DC}-0.5 \mathrm{GHz} \\ & \mathrm{DC}-1 \mathrm{GHz} \\ & \mathrm{DC}-2 \mathrm{GHz} \\ & \mathrm{DC}-4 \mathrm{GHz} \end{aligned}$	Ratio Ratio Ratio Ratio	-	-	$\begin{aligned} & 1.2: 1 \\ & 1.2: 1 \\ & 1.3: 1 \\ & 1.9: 1 \end{aligned}$
Trise, Tfall ${ }^{5}$	10\% to 90\% RF, 90% to 10% RF	nS	-	3	-
Ton, Toff ${ }^{5}$	50% control to 90% RF, 50\% control to 10\% RF	nS	-	6	-
Transients ${ }^{5}$ (SW-226-PIN,SW-227-PIN)	In-Band	mV	-	30	-
Transients ${ }^{5}$ (SW-228-PIN)	In-Band	mV	-	10	-

4. See MIL-STD-883 for environmental screening options.
5. Faster switching speed can be achieved with enhanced driver waveform.

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, is considering for development. Performance is based on target specification
and/or prototype measurements. Commitment to develop is not guaranteed.
PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology
Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 - Europe Tel: +353.21.244.6400
- India Tel: +91.80.4155721 - China Tel: +86.21.2407.1588

Visit www.macomtech.com for additional data sheets and product information.
M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Electrical Specifications (continued): $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{Vc}=0 \mathrm{~V} /-5 \mathrm{~V}, \mathrm{Z}_{0}=50 \Omega$

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Input P1dB	$\begin{gathered} 0.5-4 \mathrm{GHz}, 0 /-5 \mathrm{VDC} \\ 0.05 \mathrm{GHz}, 0 /-5 \mathrm{VDC} \\ 0.5-4 \mathrm{GHz}, 0 /-8 \mathrm{VDC} \\ 0.05 \mathrm{GHz}, 0 /-8 \mathrm{VDC} \end{gathered}$	dBm dBm dBm dBm	— — —	$\begin{aligned} & 27 \\ & 21 \\ & 33 \\ & 26 \end{aligned}$	— — —
IP2	For two-tone input power up to +13 dBm $\begin{gathered} 0.5-4 \mathrm{GHz} \\ 0.05 \mathrm{GHz} \end{gathered}$	dBm dBm	—	$\begin{aligned} & 68 \\ & 62 \end{aligned}$	-
IP3	For two-tone input power up to +13 dBm $\begin{gathered} 0.5-4 \mathrm{GHz} \\ 0.05 \mathrm{GHz} \end{gathered}$	dBm dBm	—	$\begin{aligned} & 46 \\ & 40 \end{aligned}$	-
Control Current	$\begin{gathered} \|\mathrm{Vc}\|=0 \text { to } 0.2 \mathrm{~V} \\ \left\lvert\, \begin{array}{c} \mathrm{Vc} \\ \mathrm{Vc} \mid=5 \mathrm{~V}(\text { SW-226-PIN, SW-227-PIN }) \\ =8 \mathrm{~V}(\text { SW-226-PIN, SW-227-PIN }) \\ \left\|\begin{array}{\|l\|l} \mathrm{Vc} \\ \mathrm{Vc} \end{array}\right\|=5 \mathrm{~V} \text { (SW-228-PIN) } \\ \end{array}=8 \mathrm{~V}\right. \text { (SW-228-PIN) } \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$	- — —	$\begin{gathered} \overline{110} \\ \overline{50} \\ \hline \end{gathered}$	$\begin{gathered} \frac{20}{-} \\ \frac{600}{-} \\ 300 \end{gathered}$

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

SW-226-PIN and SW-227-PIN Truth Table ${ }^{6,7}$

Control Input			Condition of Switch, RF Common to each RF Poort		
A1	B1	A2	B2	RF1	RF2
1	0	0	1	ON	OFF
0	1	1	0	OFF	ON

SW-228-PIN Truth Table ${ }^{6,7}$

Control Input		Condition of Switch, RF Common to each RF Port	
A1	B1	RF1	RF2
1	0	ON	OFF
0	1	OFF	ON

6. $0=0 \vee$ to $-0.2 \mathrm{~V}, 1=-5 \mathrm{~V}$ to -8 V
7. For the SW-227-PIN and SW-228-PIN only, when an RF output is "OFF" it is shorted to case ground.
[^1]Visit www.macomtech.com for additional data sheets and product information.
M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Typical Performance Curves

Insertion Loss

VSWR

Isolation

Lead-Free CR-2 ${ }^{\dagger}$

† Reference Application Note M538 for lead-free solder reflow recommendations.

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, is considering for development. Performance is based on target specification
and/or prototype measurements. Commitment to develop is not guaranteed.

[^0]: - North America Tel: 800.366.2266
 - Europe Tel: +353.21.244.6400
 - India Tel: +91.80.4155721 - China Tel: +86.21.2407.1588

[^1]: - North America Tel: 800.366.2266
 - Europe Tel: +353.21.244.6400
 - India Tel: +91.80.4155721 - China Tel: +86.21.2407.1588

