

Feature

- 100W peak pulse power per line ($t_P = 8/20\mu S$)
- SOT-353 package
- Protects three bidirectional lines and four Unidirectional lines
- Monolithic structure
- Working voltage: 5V
- Low clamping voltage
- ESD protection > 40 KV
- Low leakage current
- RoHS compliant
- lacktriangle Transient protection for data lines to IEC 61000-4-2(ESD) \pm 15KV(air),
 - \pm 8KV(contact); IEC 61000-4-4 (EFT) 40A (5/50ns)

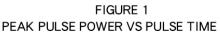
Applications

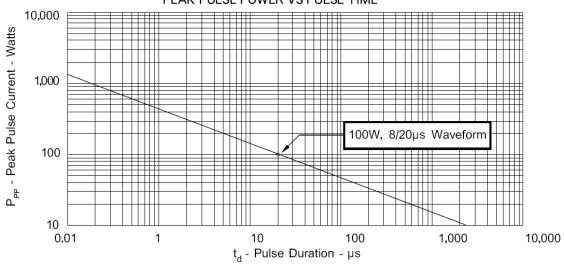
- Communication systems & Cellular phones
- Printers
- Notebook and hand hold computers
- PDAs
- Video Equipment

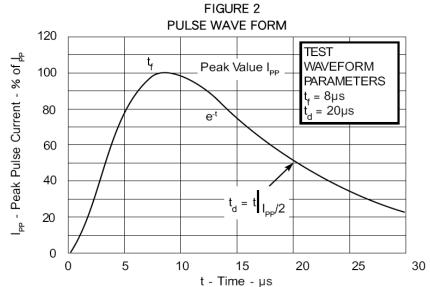
Electrical characteristics per line@25°C (unless otherwise specified) note1

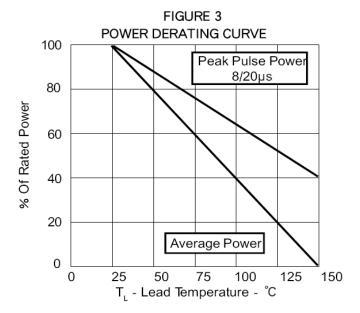
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Reverse stand-off voltage	V_{RWM}				5	V
Reverse Breakdown voltage	V_{BR}	I _t = 1mA	6			V
Reverse Leakage Current	I _R	V _{RWM} = 5V T=25°C			5	μΑ
Clamping Voltage	V _C	$I_{PP} = 1A$ $t_P = 8/20 \mu S$			8.8	V
Clamping Voltage	V _C	I _{PP} =10A t _P = 8/20μ S			10.0	V
Junction Capacitance	C _j	V _R =0V f = 1MHz		90		pF

Absolute maximum rating @25℃ note1

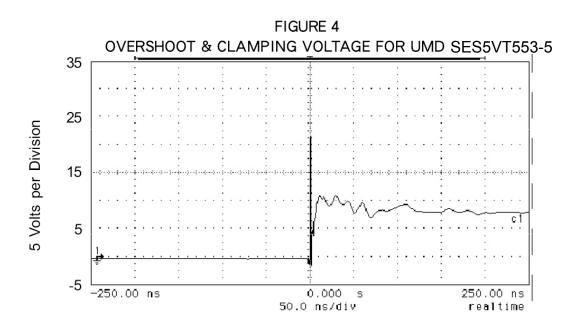

Rating	Symbol	Value	Units
Peak Pulse Power (t_p =8/20 μ S)	P_{pp}	100	W
Forward voltage@10mA	V _F	1.5	V
Operating Temperature	TJ	-55 to +150	$^{\circ}$ C
Storage Temperature	T _{STG}	-55 to +150	$^{\circ}\mathrm{C}$


Note1: Pin 1, 3, 4, 5 to Pin 2

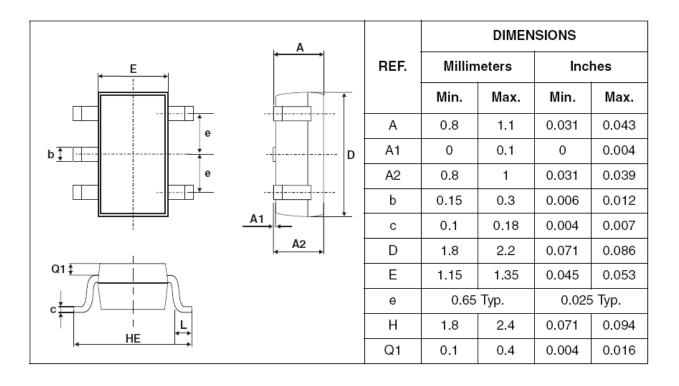




Typical Characteristics



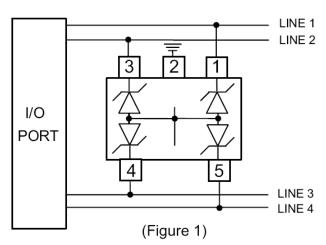
Typical Characteristics



Product dimension and pad size

SOT-353 Mechanical Data

Application note

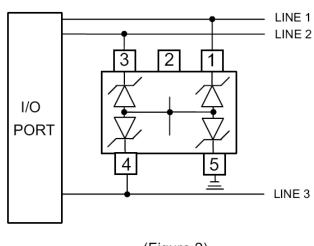

The **SES5VT353-5** Series is TVS arrays designed to protect I/O or data lines from the damaging effects of ESD or EFT. This product provides both unidirectional and bidirectional protection, with a surge capability of 100 Watts Ppp per line for an 8/20µs wave shape and ESD protection > 25 kilovolts.

COMMON-MODE UNIDIRECTIONAL CONFIGURATION (Figure 1)

The **sessvT353-5** Series provides up to 4 lines of protection in a common-mode unidirectional configuration as depicted in Figure 1.

Circuit connectivity is as follows:

- Line 1 is connected to Pin 1.
- Line 2 is connected to Pin 3.
- Line 3 is connected to Pin 4.
- Line 4 is connected to Pin 5.
- Pin 2 is connected to ground.



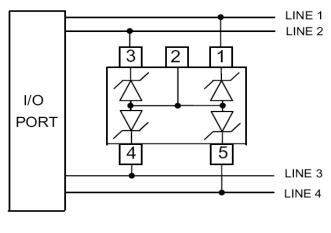
COMMON-MODE BIDIRECTIONAL CONFIGURATION (Figure 2)

The SES5VT353-5 Series provides up to 3 lines of protection in a common-mode bidirectional configuration as depicted in Figure 2.

Circuit connectivity is as follows:

- Line 1 is connected to Pin 1.
- Line 2 is connected to Pin 3.
- Line 3 is connected to Pin 4.
- Pin 5 is connected to ground.
- Pin 2 is not connected.

(Figure 2)


Application note

DIFFERENTIAL-MODE BIDIRECTIONAL CONFIGURATION (Figure 3)

The SES5VT353-5 Series provides up to 4 lines of protection in a differential-mode bidirectional configuration as depicted in Figure 3.

Circuit connectivity is as follows:

- Line 1 is connected to Pin 1.
- Line 2 is connected to Pin 3.
- Line 3 is connected to Pin 4.
- Line 4 is connected to Pin 5.
- Pin 2 is not connected.

(Figure 3)

Circuit board layout and protection device placement:

Circuit board layout is critical for the suppression of ESD transients.

The following guidelines are recommended:

- 1. Place the protection device as close to the input terminal or connector as possible.
- 2. The path length between the protection device and the protected line should be minimized.
- 3. Keep parallel signal paths to a minimum.
- 4. Avoid running protection conductors in parallel with unprotected conductor.
- 5. Minimize all printed-circuit board conductive loops including power and ground loops.
- 6. Minimize the length of the transient return path to ground.
- 7. Avoid using shared transient return paths to a common ground point.
- 8. Ground planes should be used whenever possible. For multilayer printed-circuit boards, use ground vias.

SES5VT353-5

ROHS 🤝

Revision History

Revision	Date	Changes
1.0	2008-7-3	-