

DI2CMS

I²C Bus Interface – Master/Slave ver 1.01

OVERVIEW

I²C is a two-wire, bi-directional serial bus that provides a simple and efficient method of data transmission over a short distance between many devices. The DI2CMS core provides an interface between a microprocessor / microcontroller and an I²C bus. It can work as a master or slave transmitter/receiver depending on working mode determined by microprocessor/microcontroller. The DI2CMS core incorporates all features required by the latest I²C specification including clock synchronization, arbitration, multi-master systems and High-speed transmission mode. The DI2CMS supports all the transmission speed modes. Built-in timer allows operation from a wide range of the clk frequencies.

The DI2CMS is a technology independent VHDL or VERILOG design that can be implemented in a variety of process technologies and can be fully customized accordingly to customer needs.

DI2CMS is delivered with **fully automated testbench** and **complete set of tests** allowing easy package validation at each stage of SoC design flow.

KEY FEATURES

- Conforms to v.2.1 of the I²C specification
- Master mode
 - Master operation
 - Master transmitter
 - Master receiver

All trademarks mentioned in this document are trademarks of their respective owners.

- Support for all transmission speeds
 - Standard (up to 100 kb/s)
 - o Fast (up to 400 kb/s)
 - High Speed (up to 3,4 Mb/s)
- Arbitration and clock synchronization
- Support for multi-master systems
- Support for both 7-bit and 10-bit addressing formats on the fC bus
- Build-in 8-bit timer for data transfers speed adjusting
- User-defined timing (data setup, start setup, start hold, etc.)
- Slave mode
 - Slave operation
 - o Slave transmitter
 - Slave receiver
 - Supports 3 transmission speed modes
 - o Standard (up to 100 kb/s)
 - Fast (up to 400 kb/s)
 - High Speed (up to 3,4 Mb/s)
 - Allows operation from a wide range of input clock frequencies
 - User-defined data setup time
- Simple interface allows easy connection to microprocessor/microcontroller devices
- Interrupt generation
- Fully synthesizable
- Static synchronous design with positive edge clocking and synchronous reset

http://www.DigitalCoreDesign.com http://www.dcd.pl

- No internal tri-states
- Scan test ready

APPLICATIONS

- Embedded microprocessor boards
- Consumer and professional audio/video
- Home and automotive radio
- Low-power applications
- Communication systems
- Cost-effective reliable automotive systems

DELIVERABLES

- Source code:
 - ♦ VHDL Source Code or/and
 - ♦ VERILOG Source Code or/and
 - ♦ Encrypted, or plain text EDIF netlist
- VHDL & VERILOG test bench environment
 - ♦ Active-HDL automatic simulation macros
 - ♦ ModelSim automatic simulation macros
 - Tests with reference responses
- Technical documentation
 - ♦ Installation notes
 - HDL core specification
 - ♦ Datasheet
- Synthesis scripts
- Example application
- Technical support
 - ◊ IP Core implementation support
 - ♦ 3 months maintenance
 - Delivery the IP Core updates, minor and major versions changes
 - Delivery the documentation updates
 - Phone & email support

LICENSING

Comprehensible and clearly defined licensing methods without royalty fees make using of IP Core easy and simply.

<u>Single Design</u> license allows use IP Core in single FPGA bitstream and ASIC implementation.

<u>Unlimited Designs</u>, <u>One Year</u> licenses allow use IP Core in unlimited number of FPGA bitstreams and ASIC implementations.

In all cases number of IP Core instantiations within a design, and number of manufactured chips are unlimited. There is no time restric-

tion except <u>One Year</u> license where time of use is limited to 12 months.

- Single Design license for
 - VHDL, Verilog source code called <u>HDL</u> Source
 - Encrypted, or plain text EDIF called <u>Netlist</u>
- One Year license for
 - Encrypted Netlist only
- Unlimited Designs license for
 - HDL Source
 - Netlist
- Upgrade from
 - HDL Source to Netlist
 - Single Design to Unlimited Designs

All trademarks mentioned in this document are trademarks of their respective owners.

http://www.DigitalCoreDesign.com http://www.dcd.pl

datai(7:0) datao(7:0) rd we address(2:0) sclhs scli sclo sdai sdao cs rst clk irq

PINS DESCRIPTION

PIN	TYPE	DESCRIPTION					
clk	input	Global clock					
rst	input	Global reset					
address(1:0)	input	Processor address lines					
cs	input	Chip select					
we	input	Processor write strobe					
rd	input	Processor read strobe					
scli	input	I ² C bus clock line (input)					
sdai	input	I ² C bus data line (input)					
datai(7:0)	input	Processor data bus (input)					
datao(7:0)	output	Processor data bus (output)					
sclo	output	I ² C bus clock line (output)					
sclhs	output	High-speed clock line (output					
sdao	output	I ² C bus data line (output)					
irq	output	Processor interrupt line					

BLOCK DIAGRAM

Figure below shows the DI2CMS IP Core block diagram.

CPU Interface – Performs the interface functions between DI2CMS internal blocks and microprocessor. Allows easy connection of the core to a microprocessor/microcontroller system

Control Logic – Manages execution of all commands sent via interface. Synchronizes internal data flow.

Shift Register – Controls SDA line, performs data and address shifts during the data transmission and reception.

Control Register – Contains five control bits used for performing all types of I²C Bus transmissions.

Status Register – Contains seven status bits that indicates state of the I²C Bus and the DI2CMS core.

Input Filter – Performs spike filtering.

Clock Control Logic – Performs clock synchronization, clock generation in master mode, and clock stretching in slave mode.

Arbitration Logic – Performs arbitration during operations in multi-master systems.

Timer – Allows operation from a wide range of the input frequencies. It is programmed by an user before transmission and can be reprogrammed to change the SCL frequency.

IMPLEMENTATION

Figures below show the typical DI2CMS implementations in system with Standard/Fast and High-speed devices.

DI2CMS implementation in IC-bus system with

Standard/Fast devices only

V_{DD} R_P SDA SCL sda sda Master /Slave DI2CMS device current-source sclhs pull-up V_{DD}

DI2CMS implementation in PC-bus system with High-speed devices

PERFORMANCE

The following table gives a survey about the Core area and performance in the ALTERA® devices after Place & Route (all key features have been included):

Device	Speed grade	Logic Cells	F _{max}			
STRATIX-II	-3	337	380 MHz			
CYCOLNE-II	-6	354	263 MHz			
MERCURY	-5	414	210 MHz			
STRATIX	-5	370	254 MHz			
CYCLONE	-6	370	220 MHz			
APEX II	-7	394	192 MHz			
APEX20KC	-7	394	150 MHz			
APEX20KE	-1	394	120 MHz			
APEX20K	-1	394	90 MHz			
ACEX1K	-1	411	107 MHz			
FLEX10KE	-1	411	107 MHz			
MAX 2	-3	291	187 MHz			
MAX 7000AE	-5	198	67 MHz			
MAX 3000A	-7	198	49 MHz			

Core performance in ALTERA® devices

The main features of each Digital Core Design I^2C compliant cores have been summarized in table below. It gives a briefly member characterization helping user to select the most suitable IP Core for its application.

Design	I ² C specification version	Master operation	Slave operation	CPU interface	Passive device interface	Interrupt genera- tion	Clock synchroni- zation	Arbitration	7-bit addressing	10-bit addressing	Standard mode	Fast mode	High-speed mode	User defined tim- ing	Spike filtering
DI2CM	2.1	✓	-	✓	-	\checkmark	\checkmark	✓	\checkmark	✓	\checkmark	✓	\checkmark	\checkmark	\checkmark
DI2CS	2.1	ı	✓	✓	-	√	\checkmark	-	✓	-	✓	✓	\checkmark	\checkmark	\checkmark
DI2CSB	2.1	-	✓	-	✓	-	-	-	✓	-	✓	✓	√	-	\checkmark
DI2CMS	2.1	\	\checkmark	✓	-	\checkmark	\checkmark	✓	✓	✓	✓	✓	\checkmark	\checkmark	\checkmark

PC cores summary table

CONTACTS

For any modification or special request please contact to Digital Core Design or local distributors.

Headquarters:

Wroclawska 94

41-902 Bytom, POLAND

e-mail: info@dcd.pl

tel. : +48 32 282 82 66 fax : +48 32 282 74 37

Distributors:

Please check http://www.dcd.pl/apartn.php