

March 16, 2009

Data Sheet

16-Bit Long-Reach Video SERDES with Bidirectional Side-Channel

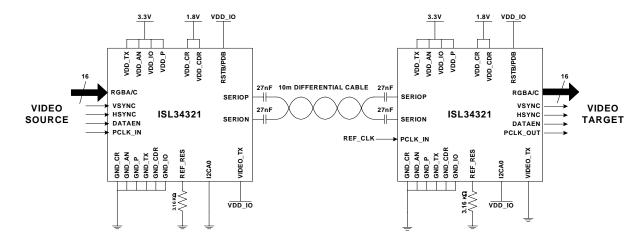
The ISL34321 is a serializer/deserializer of LVCMOS parallel video data. The video data presented to the serializer on the parallel LVCMOS bus is serialized into a high-speed differential signal. This differential signal is converted back to parallel video at the remote end by the deserializer. It also transports auxiliary data bidirectionally over the same link during the video vertical retrace interval.

 I^2C bus mastering allows the placement of external slave devices on the remote side of the link. An I^2C controller can be place on either side of the link allowing bidirectional I^2C communication through the link to the external devices on the other side. Both chips can be fully configured from a single controller or independently by local controllers.

Ordering Information

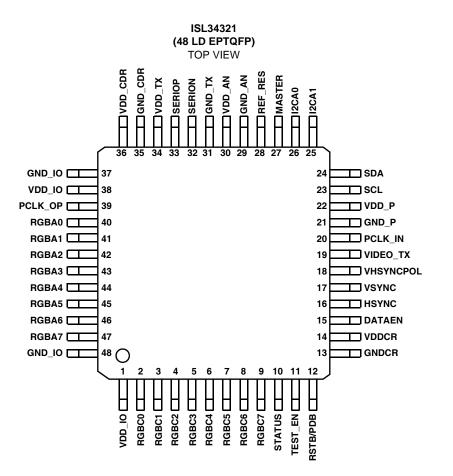
PART NUMBER (Note)	PART MARKING	TEMP. RANGE (°C)	PACKAGE (Pb-free)	PKG. DWG. #
ISI 34321INI7*	ISI 343211NZ	-40 to +85	48 Ld EPTQFP	Q48 7x7B

*Add "-T13" suffix for tape and reel. Please refer to TB347 for details on reel specifications.

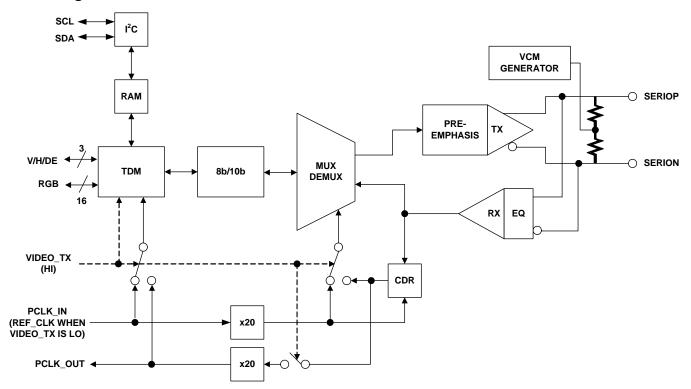

NOTE: These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.

Features

- 16-bit RGB transport over single differential pair
- 6MHz to 45MHz pixel clock rates
- Bi-directional auxiliary data transport without extra bandwidth and over the same differential pair
- Hot plugging with automatic resynchronization every HSYNC.
- I²C Bus Mastering to the remote side of the link with a controller on either the serializer or deserializer
- · Selectable clock edge for parallel data output
- Internal 100Ω termination on high-speed serial lines
- DC balanced with industry standard 8b/10b line code allows AC-coupling
 - Provides immunity against ground shifts
- 16 programmable settings each for transmitter amplitude boost and pre-emphasis and receiver equalization allow for longer cable lengths and higher data rates
- Programmable powerdown of the transmitter and the receiver.
- Same device for serializer and deserializer simplifies inventory
- I²C communication interface
- 8kV ESD rating for serial lines
- Pb-free (RoHS compliant)


Applications

- · Video entertainment systems
- Industrial computing terminals
- Remote cameras



1

Pinout

Block Diagram

2

Absolute Maximum Ratings

-
Supply Voltage
VDD_P to GND_P, VDD_TX to GND_TX,
VDD_IO to GND_IO
VDD_CDR to GND_CDR, VDD_CR to GND_CR0.5V to 2.5V
Between any pair of GND_P, GND_TX,
GND_IO, GND_CDR, GND_CR0.1V to 0.1V
3.3V Tolerant LVTTL/LVCMOS Input Voltage -0.3V to VDD_IO+0.3V
Differential Input Voltage
Differential Output CurrentShort Circuit Protected
LVTTL/LVCMOS OutputsShort Circuit Protected
ESD Rating
Human Body Model
All pins
SERIOP/N (all VDD Connected, all GND Connected) 8kV
Machine Model

Thermal Information

Thermal Resistance (Typical, Notes 1, 2)	θ_{JA}	θ _{JC} (°C/W)
EPTQFP	38	12
Maximum Power Dissipation		327mW
Maximum Junction Temperature		+125°C
Maximum Storage Temperature Range	6	65°C to +150°C
Operating Temperature Range		-40°C to +85°C
Pb-free Reflow Profile		.see link below
http://www.intersil.com/pbfree/Pb-FreeRe	flow.asp	

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

NOTES:

- 1. θ_{JA} is measured in free air with the component mounted on a high effective thermal conductivity test board with "direct attach" features. See Tech Brief TB379.
- 2. For θ_{JC} , the "case temp" location is the center of the exposed metal pad on the package underside.

Electrical Specifications

Unless otherwise indicated, all data is for: VDD_CDR = VDD_CR = 1.8V, VDD_IO = 3.3V
VDD_TX = VDD_P = VDD_AN = 3.3V, T _A = +25°C, Ref_Res = $3.16k\Omega$, High-speed AC-coupling

capacitor = 27nF.

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLY VOLTAGE						-
VDD_CDR, VDD_CR			1.7	1.8	1.9	V
VDD_TX, VDD_P, VDD_AN, VDD_IO			3.0	3.3	3.6	V
SERIALIZER POWER SUPPLY CURRENT	S			1		1
Total 1.8V Supply Current		PCLK_IN = 45MHz		62	80	mA
Total 3.3V Supply Current		(Note 3)		40	52	mA
DESERIALIZER POWER SUPPLY CURRE	INTS					1
Total 1.8V Supply Current		PCLK_IN=45MHz		66	76	mA
Total 3.3V Supply Current		(Note 3)		50	63	mA
POWER-DOWN SUPPLY CURRENT	L.					1
Total 1.8V Power-Down Supply Current		RSTB = GND		10		mA
Total 3.3V Power-Down Supply Current				0.5		mA
PARALLEL INTERFACE						
High Level Input Voltage	VIH		2.0			V
Low Level Input Voltage	V _{IL}				0.8	V
Input Leakage Current	I _{IN}		-1	±0.01	1	μA
High Level Output Voltage	V _{OH}	I _{OH} = -4.0mA,VDD_IO = 3.0V	2.6			V
Low Level Output Voltage	V _{OL}	I _{OL} = 4.0mA, VDD_IO = 3.6V			0.4	V
Output Short Circuit Current	IOSC				35	mA
Output Rise and Fall Times	tOR/tOF	Slew rate control set to min $C_L = 8pF$		1		ns
		Slew rate control set to max C _L = 8pF		4		ns

Electrical Specifications

Unless otherwise indicated, all data is for: VDD_CDR = VDD_CR = 1.8V, VDD_IO = $3.3V_{,}$ VDD_TX = VDD_P = VDD_AN = $3.3V_{,}$ T_A = +25°C, Ref_Res = $3.16k\Omega$, High-speed AC-coupling capacitor = 27nF. (Continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	UNITS
SERIALIZER PARALLEL INTERFACE						1
PCLK_IN Frequency	f _{IN}		6		45	MHz
PCLK_IN Duty Cycle	^t IDC		40	50	60	%
Parallel Input Setup Time	t _{IS}		3.5			ns
Parallel Input Hold Time	tIH		1.0			ns
DESERIALIZER PARALLEL INTERFACE						
PCLK_OUT Frequency	fout		6		45	MHz
PCLK_OUT Duty Cycle	todc			50		%
PCLK_OUT Period Jitter (rms)	t _{OJ}	Clock randomizer off		0.5		%t _{PCLK}
PCLK_OUT Spread Width	tOSPRD	Clock randomizer on		±20		%t _{PCLK}
PCLK_OUT to Parallel Data Outputs (includes Sync and DE pins)	t _{DV}	Relative to PCLK_OUT, (Note 4)	-1.0		5.5	ns
Deserializer Output Latency	^t CPD	Inherent in the design	4	9	14	PCLK
DESERIALIZER REFERENCE CLOCK (REF_	CLK IS FED	INTO PCLK_IN)				
REF_CLK Lock Time	t _{PLL}			100		μs
REF_CLK to PCLK_OUT Maximum Frequency Offset		PCLK_OUT is the recovered clock	1500	5000		ppm
HIGH-SPEED TRANSMITTER						
HS Differential Output Voltage, Transition Bit	VOD _{TR}	TXCN = 0x00	650	800	900	mV _{P-P}
		TXCN = 0x0F		900		mV _{P-P}
		TXCN = 0xF0		1100		mV _{P-P}
		TXCN = 0xFF		1300		mV _{P-P}
HS Differential Output Voltage, Non-Transition	VOD _{NTR}	TXCN = 0x00	650	800	900	mV _{P-P}
Bit		TXCN = 0x0F		900		mV _{P-P}
		TXCN = 0xF0		430		mV _{P-P}
		TXCN = 0xFF		600		mV _{P-P}
HS Generated Output Common Mode Voltage	V _{OCM}			2.35		V
HS Common Mode Serializer-Deserializer Voltage Difference	ΔV_{CM}			10	20	mV
HS Differential Output Impedance	R _{OUT}		80	100	120	Ω
HS Output Latency	t _{LPD}	Inherent in the design	4	7	10	PCLK
HS Output Rise and Fall Times	t _R /t _F	20% to 80%		150		ps
HS Differential Skew	^t SKEW			<10		ps
HS Output Random Jitter	t _{RJ}	PCLK_IN = 45MHz		6		ps _{rms}
HS Output Deterministic Jitter	t _{DJ}	PCLK_IN = 45MHz		25		psp-p
HIGH SPEED RECEIVER						
HS Differential Input Voltage	V _{ID}		75			mV _{P-P}
HS Generated Input Common Mode Voltage	VICM			2.32		V
HS Differential Input Impedance	R _{IN}		80	100	120	Ω
HS Maximum Jitter Tolerance				0.50		UI _{P-P}

Electrical Specifications

Unless otherwise indicated, all data is for: VDD_CDR = VDD_CR = 1.8V, VDD_IO = 3.3V, VDD_TX = VDD_P = VDD_AN = 3.3V, T_A = $+25^{\circ}$ C, Ref_Res = $3.16k\Omega$, High-speed AC-coupling

capacitor = 27nF. (Continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
l ² C					·	
I ² C Clock Rate (on SCL)	f _{I2C}			100	400	kHz
I ² C Clock Pulse Width (HI or LO)			1.3			μs
I ² C Clock Low to Data Out Valid			0		1	μs
I ² C Start/Stop Setup/Hold Time			0.6			μs
I ² C Data in Setup Time			100			ns
I ² C Data in Hold Time			100			ns
I ² C Data out Hold Time			100			ms

NOTES:

3. IDDIO is nominally 50µA and not included in this total as it is dominated by the loading of the parallel pins

4. This parameter is the output data skew from the invalid edge of PCLK_OUT. The setup and hold time provided to a system is dependent on the PCLK frequency and is calculated as follows: 0.5 * f_{IN} - t_{DV}.

Pin Descriptions

PIN NAME				
	SERIALIZER	DESERIALIZER		
RGBA[7:0], RGBC[7:0]	Parallel video data LVCMOS inputs with Hysteresis	Parallel video data LVCMOS outputs		
ISYNC	Horizontal (line) Sync LVCMOS input with Hysteresis	Horizontal (line) Sync LVCMOS output		
/SYNC	Vertical (frame) Sync LVCMOS input with Hysteresis	Vertical (frame) Sync LVCMOS output		
DATAEN	Video Data Enable LVCMOS input with Hysteresis	Video Data Enable LVCMOS output		
PCLK_IN	Pixel clock LVCMOS input	PLL reference clock LVCMOS input		
PCLK_OUT	Default; not used	Recovered clock LVCMOS output		
SERIOP, SERION	High speed differential serial I/O	High speed differential serial I/O		
HSYNCPOL	CMOS input for HSYNC and VSYNC Polarity 1: HSYNC & VSYNC active low 0: HSYNC & VSYNC active high			
/IDEO_TX	CMOS input for video flow direction 1: video serializer 0: video deserializer			
SDA, SCL (Note 5)	I ² C Interface Pins (I ² C DATA, I ² C CLK)			
2CA[1:0] (Note 5)	I ² C Device Address			
ASTER	I ² C Master Mode 1: Master 0: Slave			
RSTB/PDB	CMOS input for Reset and Power-down. For normal operation, this pin must be forced high. When this pin is forced low, the device will be reset. If this pin stays low, the device will be in PD mode.			
STATUS	CMOS output for Receiver Status: 1: Valid 8b/10b data received 0: otherwise Note: serializer and deserializer switch roles during side-channel reverse traffic			
REF_RES	Analog bias setting resistor connection; use 3.16k Ω ±1% to ground			
	SYNC SYNC CLK_IN CLK_OUT ERIOP, SERION HSYNCPOL IDEO_TX DA, SCL (Note 5) CA[1:0] (Note 5) IASTER STB/PDB TATUS	HysteresisSYNCHorizontal (line) Sync LVCMOS input with HysteresisSYNCVertical (frame) Sync LVCMOS input with HysteresisATAENVideo Data Enable LVCMOS input with HysteresisCLK_INPixel clock LVCMOS inputCLK_OUTDefault; not usedERIOP, SERIONHigh speed differential serial I/OHSYNCPOLCMOS input for HSYNC and VSYNC Polarity 1: HSYNC & VSYNC active low 0: HSYNC & VSYNC active highIDEO_TXCMOS input for video flow direction 1: video serializer 0: video deserializerDA, SCL (Note 5)I²C Interface Pins (I²C DATA, I²C CLK)IASTERI²C Master Mode 1: Master 0: SlaveSTB/PDBCMOS input for Reset and Power-down. For norr this pin is forced low, the device will be reset. If th TATUSCMOS output for Receiver Status: 1: Valid 8b/10b data received 0: otherwise Note: serializer and deserializer switch roles durin		

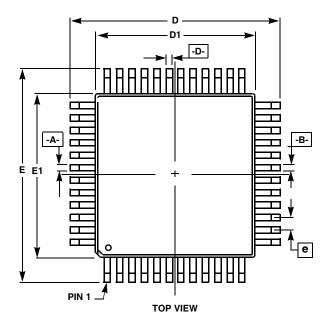
Pin Descriptions (Continued)

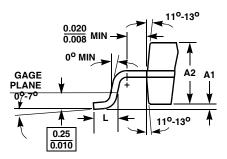
		DESCRIPTION			
PIN NUMBER	PIN NAME	SERIALIZER	DESERIALIZER		
21	GND_P (Note 6)	PLL Ground			
37, 48	GND_IO (Note 6)	Digital (Parallel and Control) Ground			
35	GND_CDR (Note 6)	Analog (Serial) Data Recovery Ground			
31	GND_TX (Note 6)	Analog (Serial) Output Ground			
29	GND_AN (Note 6)	Analog Bias Ground			
13	GND_CR (Note 6)	Core Logic Ground			
14	VDD_CR	Core Logic VDD			
34	VDD_TX	Analog (Serial) Output VDD			
30	VDD_AN	Analog Bias VDD			
36	VDD_CDR	Analog (Serial) Data Recovery VDD			
1, 38	VDD_IO (Note 5)	Digital (Parallel and Control) VDD			
22	VDD_P	PLL VDD			
11	TEST_EN	Must be connected to ground			
Exposed Pad	Exposed Pad	Must be connected to ground			

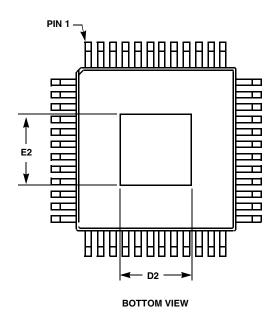
NOTES:

5. Pins with the same name are internally connected together. However, this connection must NOT be used for connecting together external components or features.

6. The various differently-named Ground pins are internally weakly connected. They must be tied together externally. The different names are provided to assist in minimizing the current loops involved in bypassing the associated supply VDD pins. In particular, for ESD testing, they should be considered a common connection

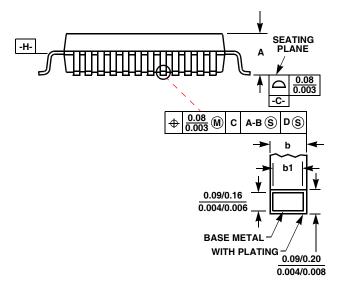

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality


Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.


For information regarding Intersil Corporation and its products, see www.intersil.com

ISL34321

Thin Plastic Quad Flatpack Exposed Pad Plastic Packages (EPTQFP)


Q48.7X7B (JEDEC MS-026ABC-HU ISSUE D) 48 LEAD THIN PLASTIC QUAD FLATPACK EXPOSED PAD PACKAGE

	MILLIMETERS				
SYMBOL	MIN	МАХ	NOTES		
A	-	1.20	-		
A1	0.05	0.15	-		
A2	0.95	1.05	-		
b	0.17	0.27	6		
b1	0.17	0.23	-		
D	8.80	9.20	3		
D1	6.90	7.10	4, 5		
D2	3.90	4.10	-		
E	8.80	9.20	3		
E1	6.90	7.10	4, 5		
E2	3.90	4.10	-		
L	0.45	0.75	-		
Ν	48		7		
е	0.50 BSC		-		

NOTES:

- ----

- 1. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.
- 2. All dimensions and tolerances per ANSI Y14.5M-1982.
- 3. Dimensions D and E to be determined at seating plane -C- .
- 4. Dimensions D1 and E1 to be determined at datum plane -H-.
- 5. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25mm (0.010 inch) per side.
- 6. Dimension b does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum b dimension by more than 0.08mm (0.003 inch).
- 7. "N" is the number of terminal positions.

