8-bit Proprietary Microcontroller

CMOS

F²MC-8L MB89120/120A Series

MB89121/P131/123A/P133A/125A/P135A/ MB89PV130A

■ DESCRIPTION

The MB89120 series is a line of single-chip microcontrollers containing a compact instruction set and a great variety of peripheral functions such as a timer, serial interface, and external interrupt. The MB89120A series is an extended variant of the MB89120, with a remote control transmission function and wake-up interrupt function.

- FEATURES
- F²MC-8L family CPU core
- Low-voltage operation
- Low current consumption (allowing for dual clock)
- Minimum execution time : $0.95 \mu \mathrm{~s}$ at 4.2 MHz
- 21-bit timebase counter
- I/O ports : Max. 36 ports
- External interrupts : 3 channels
- External interrupts (wake-up function) : 8 channels (only for the MB89120A series)
- 8-bit serial I/O : 1 channel
- 8/16-bit timer/counter : 1 channel
- Built-in remote-control transmitting frequency generator (only for the MB89120A series)
- Low-power consumption modes (stop mode, sleep mode, watch mode)
- Package : QFP-48
- CMOS technology

■ PACKAGE

48-pin plastic QFP
(FPT-48P-M13)

MB89120/120A Series

PRODUCT LINEUP

Part number Item	MB89121	MB89123A	MB89125A	MB89P133A	MB89P131
Classification	Mass-produced products (Mask ROM products)			One-time products	
ROM size	$4 \mathrm{~K} \times 8$ bits (internal mask ROM)	$8 \mathrm{~K} \times 8$ bits (internal mask ROM)	$16 \mathrm{~K} \times 8$ bits (internal mask ROM)	$8 \mathrm{~K} \times 8$ bits (Internal PROM to be programmed with a general- purpose EPROM programmer)	$4 \mathrm{~K} \times 8$ bits (Internal PROM to be programmed with a generalpurpose EPROM programmer)
RAM size	128×8 bits	256×8 bits			128×8 bits
CPU functions	The number of instructions $: 136$ Instruction bit length $: 8$ bits Instruction length $: 1$ to 3 bytes Data bit length $: 1,8,16$ bits Minimum execution time $: 0.95 \mu \mathrm{~s}$ at 4.2 MHz Minimum interrupt processing time $: 8.57 \mu \mathrm{~s}$ at 4.2 MHz				
Ports	Output ports (N-ch open-drain) $: 4$ (All also serves as peripherals.) Output ports (CMOS) $: 8$ I/O ports (CMOS) $: 24$ (8 ports also serve as peripherals.) Total $: 36$				
Timer/counter	8 -bit timer/counter $\times 2$ channels or 16 -bit event counter $\times 1$ channel				
Serial I/O	8 bitsLSB/MSB first selectable				
External interrupt 1	3 Independent channels (edge selection, interrupt vector, source flag) Rising edge/falling edge/both edges selectable Also for wake-up from stop/sleep mode (edge detection is also permitted in stop mode)				
External interrupt 2 (wake-up function)	-	8 channels (only for level detection)			-
Remote control transmitting frequency generator	-	1 channel (pulse width and frequency selectable by program)			-
Standby mode	Sleep mode, stop mode, watch mode				
Process	CMOS				
Operating voltage*	2.2 V to 4.0 V (with the dual clock option) 2.2 V to 6.0 V (with the single clock option)			2.7 V to 6.0 V	
EPROM for use	-				

*: Varies with conditions such as operating frequencies. (See "■ ELECTRICAL CHARACTERISTICS".)
(Continued)

MB89120/120A Series

(Continued)

Part number Item	MB89P135A	MB89PV130A
Classification	One-time PROM products	Piggyback/evaluation product
ROM size	$16 \mathrm{~K} \times 8$ bits (internal PROM, to be programmed with general-purpose EPROM programmer)	$32 \mathrm{~K} \times 8$ bits (external ROM)
RAM size	512×8 bits	$1 \mathrm{~K} \times 8$ bits
CPU functions	The number of instructions Instruction bit length Instruction length Data bit length Minimum execution time Minimum interrupt processing time	: 136 8 bits 1 to 3 bytes : $1,8,16$ bits $: 0.95 \mu \mathrm{~s}$ at 4.2 MHz : $8.57 \mu \mathrm{~s}$ at 4.2 MHz
Ports	```Output ports (N-ch open-drain ports) Output ports (CMOS) I/O ports (CMOS) Total```	: 4 (All also serve as peripherals.) : 8 : 24 (8 ports also serve as peripherals.) $\text { : } 36$
Timer/counter	8 -bit timer/counter $\times 2$ channels or 16 -bit event counter $\times 1$ channel	
Serial I/O	8 bits LSB/MSB first selectable	
External interrupt 1	3 independent channels (edge selection, interrupt vector, source flag) Rising/falling/both edges selectable Used also for wake-up from stop/sleep mode. (Edge detection is also permitted in stop mode.)	
External interrupt 2 (wake-up function)	8 channels (only for level detection)	
Remote control transmitting frequency generator	1 channel (Pulse width and cycle selectable by program)	
Standby mode	Sleep mode, stop mode, and clock mode	
Process	CMOS	
Operating voltage	2.7 V to 6.0 V	2.7 V to 6.0 V
EPROM for use	-	MBM27C256A-20TVM

MB89120/120A Series

PACKAGE AND CORRESPONDING PRODUCTS

Package	MB89121	MB89123A	MB89125A	MB89P133A	MB89P131
FPT-48P-M13	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
MQP-48C-P01	\times	\times	\times	\times	\times

Package	MB89P135A	MB89PV130A
FPT-48P-M13	\bigcirc	\times
MQP-48C-P01	\times	\bigcirc

: Available, \times : Not available
Note : Package details of OTPROM products and piggyback/evaluation products are common to those of MB89130/ 130A series. Refer to the MB89130/130A series data sheet for details.

■ DIFFERENCES AMONG PRODUCTS

1. Memory Size

Before evaluating using the one-time ROM product, verify its difference from the product that will actually be used. Take particular care on the following points:

- The number of register banks available is different between the MB89121 and the MB89123A/125A/P135A/ PV130A.
- The stack area, etc., is set at the upper limit of the RAM.

2. Current Consumption

- When operated at low speed, a product with an OTPROM (EPROM) will consume more current than a product with a mask ROM. However, the same is current consumption in the sleep/stop mode is the same. (For more information, see "■ ELECTRICAL CHARACTERISTICS".)
- In the case of the MB89PV130A, added is the current consumed by the EPROM which is connected to the top socket.

3. Mask Options

Functions that can be selected as options and how to designate these options vary with product.
Before using options, check " \square MASK OPTIONS".
Take particular care on the following point :

- Pull-up resistor can't be set for P40 to P43 on the MB89P135A.
- Options are fixed on the MB89PV130A.

MB89120/120A Series

PIN ASSIGNMENT

(FPT-48P-M13)

Note : Parenthesized function is available only for the MB89120A series.

MB89120/120A Series

PIN DESCRIPTION

Pin no.	Pin name	Circuit type	Function
5	X0	A	Main clock crystal oscillator pins (max. 4.2 MHz)
6	X1		
8	X0A	B	Subclock crystal oscillator pins (for 32.768 kHz)
9	X1A		
3	MOD0	C	Operation mode select pins Connect these pins directly to Vss.
4	MOD1		
2	$\overline{\mathrm{RST}}$	D	Reset I/O pin This port is of N -ch open-drain output type with pull-up resistor and a hysteresis input type. The internal circuit is initialized by the input of "L". "L" is output from this pin by an internal reset source as optional setting.
27 to 34	$\begin{aligned} & \text { P07/ (INT27) to } \\ & \text { P00/ (INT20) } \end{aligned}$	1	General-purpose I/O ports On the MB89120A series, these pins also serve as exter- nal interrupt input. External interrupt input is hysteresis input.
18, 20 to 26	P17 to P10	E	General-purpose I/O ports
10 to 17	P27 to P20	G	General-purpose output-only ports
42	P30/SCK	F	General-purpose I/O port Also serves as clock I/O for the 8-bit serial I/O interface. This port is of hysteresis input type.
41	P31/SO	F	General-purpose I/O port Also serves as a serial I/O data output. This port is hysteresis input type.
40	P32/SI	F	General-purpose I/O port Also serves as a serial I/O data input. This port is hysteresis input type.
39	P33/EC/SCO	F	General-purpose I/O port Also serves as the external clock input for the 8-bit timer/ counter. This port is hysteresis input type. System clock output is optional.
38	P34/TO/INT0	F	General-purpose I/O port Also serves as the overflow output and external interrupt input for the 8 -bit timer/counter. This port is hysteresis input type.
$\begin{aligned} & 36, \\ & 37 \end{aligned}$	P36/INT2, P35/INT1	F	General-purpose I/O ports Also serve as an external interrupt input. These ports are hysteresis input type.
35	P37/BZ/ (RCO)	F	General-purpose I/O port Also serves as a buzzer output. This port is hysteresis input type. On the MB89120A series, the pin also serves as a remote control output.

(Continued)

MB89120/120A Series

(Continued)

Pin no.	Pin name	Circuit type	Function
45 to 48	P43 to P40	H	N-ch open-drain output ports
7	Vcc	-	Power supply pin
19	Vss	-	Power supply (GND) pin
1	AVcc	-	Power supply (GND) pin Use this pin at the same voltage as Vcc.
44	AVR	-	Reference voltage input pin
43	AVss	-	Power supply (GND) pin Use this pin at the same voltage as Vss.

MB89120/120A Series

I/O CIRCUIT TYPE

Type	Circuit	Remarks
A		- Crystal and ceramic oscillation type (main clock) - Cricuit for the MB89P133A/P131/P135A/PV130A - External clock input select versions of MB89121/ 123A/125A At an oscillation feedback resistor of approximately $1 \mathrm{M} \Omega / 5 \mathrm{~V}$
		- Crystal and ceramic oscillation type (main clock) - Crystal or ceramic oscillator select versions of MB89121/123A/125A At an oscillation feedback resistor of approximately $1 \mathrm{M} \Omega / 5 \mathrm{~V}$
B		- Crystal and ceramic oscillation type (sub clock) Circuit for the MB89121/123A/125A At an oscillation feedback resistor of approximately $4.5 \mathrm{M} \Omega / 5 \mathrm{~V}$
		- Crystal and ceramic oscillation type (sub clock) Circuit for the MB89P131/P133A/P135A/PV130A At an oscillation feedback resistor of approximately $4.5 \mathrm{M} \Omega / 5 \mathrm{~V}$
C	$\square>$	
D		- Output pull-up resistor (P-ch) of approximately $50 \mathrm{k} \Omega / 5 \mathrm{~V}$ - Hysteresis input

(Continued)

MB89120/120A Series

(Continued)

Type	Circuit	Remarks
E		- CMOS output - CMOS input - Pull-up resistor optional
F		- CMOS output - Hysteresis input - Pull-up resistor optional
G		- CMOS output
H		- N-ch open-drain output - Pull-up resistor optional
1	Only for the MB89120A series	- CMOS output - CMOS input - The interrupt input is a hysteresis input (available only for the MB89120A series). - Pull-up resistor optional

MB89120/120A Series

■ HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than Vcc or lower than $\mathrm{V}_{\text {ss }}$ is applied to input and output pins other than medium- and high- voltage pins, or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in "■ ELECTRICAL CHARACTERISTICS" is applied between Vcc and Vss.
When latchup occurs, power supply current increases rapidly, and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.
Also, take care to prevent the analog power supply (AV cc and AVR) and analog input from exceeding the digital power supply (Vcc) when the analog system power supply is turned on and off.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to pull-up or pull-down resistor.

3. Treatment of N.C. Pins

Be sure to leave N.C. (internally connected) pins open.

4. Power Supply Voltage Fluctuations

Although operation is assured within the rated range of Vcc power supply voltage, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that V_{cc} ripple fluctuations ($\mathrm{P}-\mathrm{P}$ value) will be less than 10% of the standard V_{cc} value at the commercial frequency (50 to 60 Hz) and the transient fluctuation rate will be less than $0.1 \mathrm{~V} / \mathrm{ms}$ at the time of a momentary fluctuation such as when power is switched.

5. Precautions when Using an External Clock

When an external clock is used, oscillation stabilization time is required even for power-on reset (optional) and release from stop mode.
6. Turning on the supply voltage (only for the MB89P135A)

When the power supply is turned on if MB89P135A is used, power on sharply up to 2.0 V within 13 clock cycles after starting of oscillation.
Further, various option may be set, if power supply up to keep this condition.

MB89120/120A Series

- PROGRAMMING TO THE EPROM ON THE MB89P131

The MB89P131 is a one-time PROM version of the MB89121.

1. Features

- 4-Kbyte PROM on chip
- Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)

2. Memory Space

Memory space in EPROM mode is diagrammed below :

3. Programming to the EPROM

In EPROM mode the MB89P131 functions equivalent to the MBM27C256A. This allows the EPROM to be programmed with a general-purpose EPROM programmer by using the dedicated socket adapter. Note, however, that the electronic signature mode cannot be used.

- Programming procedure
(1) Set the EPROM programmer to MBM27C256A.
(2) Load program data into the EPROM programmer at $7000_{\text {н }}$ to 7 FFFн (note that addresses $\mathrm{F000}$ н to FFFF while operating as a single chip correspond to 7000 н to 7 FFFH in EPROM mode).
(3) Program with the EPROM programmer.

MB89120/120A Series

PROGRAMMING TO THE EPROM ON THE MB89P133A

The MB89P133A is a one-time PROM version of the MP89123A.

1. Features

- 8-Kbyte PROM on chip
- Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)

2. Memory Space

Memory space in EPROM mode is diagrammed below :

3. Programming to the EPROM

In EPROM mode the MB89P133A functions equivalent to the MBM27C256A, This allows the EPROM to be programmed with a general-purpose EPROM programmer by using the dedicated socket adapter. Note, however, that the MB89P133A cannot use the electronic signature mode.

- Programming procedure

(1) Set the EPROM programmer to MBM27C256A.
(2) Load program data into the EPROM programmer at 6000_{H} to 7 FFFH (note that addresses $\mathrm{E} 00 \mathrm{O}_{\mathrm{H}}$ to FFFFн while operating as a single chip correspond to 6000н to 7FFFн in EPROM mode).
(3) Program with the EPROM programmer.

MB89120/120A Series

■ PROGRAMMING TO THE EPROM ON THE MB89P135A
The MB89P135A is an OTPROM version of the MB89123A/125A.

1. Features

- 16-Kbyte PROM on chip
- Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)

2. Memory Space

Memory space in EPROM mode is diagrammed below.

3. Programming to the EPROM

In EPROM mode, the MB89P135A functions equivalent to the MBM27C256A. This allows the PROM to be programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by using the dedicated socket adapter.

- Programming procedure

(1) Set the EPROM programmer to the MBM27C256A.
(2) Load program data into the EPROM programmer at $4000_{\text {н }}$ to 7 FFF (note that addresses C 000 н to FFFFн while operating as a single chip correspond to 4000 н to 7 FFFн in EPROM mode).
(3) Load option data into the EPROM programmer at $3 \mathrm{FFO} \mathrm{H}_{\mathrm{H}}$ to $3 \mathrm{FF6}$ н.
(4) Program with the EPROM programmer.

MB89120/120A Series

4. Setting OTPROM Options (MB89P135A Only)

The programming procedure is the same as that for the PROM. Options can be set by programming values at the addresses shown on the memory map. The relationship between bits and options is shown on the following bit map :

- OTPROM option bit map

Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	Vacancy	Vacancy	Vacancy	Clock mode selection	Reset pin		Oscillation stabilization time	
3FFOH	Readable and writable	Readable and writable	Readable and writable	1 : Single clock 0 : Dual clock	$\begin{aligned} & 1 \text { : Yes } \\ & 0: \text { No } \end{aligned}$	$\begin{array}{\|l\|} \hline 1: \text { Yes } \\ 0: N o \end{array}$	$\begin{aligned} & 00: 2^{2 /} / \mathrm{FcH}_{c H} \\ & 01: 2^{12 / F_{c H}} \end{aligned}$	$\begin{aligned} & 10: 2^{16} / \mathrm{Fcн}_{\text {ch }} \\ & 11: 2^{18} / \mathrm{F}_{\mathrm{c}} \end{aligned}$
3FF1н	P07 Pull-up 1: Yes 0 : No	P06 Pull-up 1: Yes 0 : No	$\begin{aligned} & \hline \text { P05 } \\ & \text { Pull-up } \\ & 1 \text { : Yes } \\ & 0 \text { : No } \end{aligned}$	P04 Pull-up 1: Yes 0 : No	P03 Pull-up 1: Yes 0 : No	P02 Pull-up 1: Yes 0 : No	P01 Pull-up 1: Yes 0 : No	P00 Pull-up 1: Yes 0 : No
3FF2н	P17 Pull-up 1: Yes 0 : No	P16 Pull-up 1: Yes 0 : No	P15 Pull-up 1: Yes 0 : No	P14 Pull-up 1 : Yes 0 : No	P13 Pull-up 1: Yes 0 : No	P12 Pull-up 1: Yes 0 : No	P11 Pull-up 1: Yes 0 : No	P10 Pull-up 1: Yes 0 : No
3FF3н	P37 Pull-up 1: Yes 0 : No	P36 Pull-up 1: Yes 0 : No	$\begin{array}{\|l\|} \hline \text { P35 } \\ \text { Pull-up } \\ 1: \text { Yes } \\ 0: \text { No } \end{array}$	P34 Pull-up 1: Yes 0 : No	P33 Pull-up 1: Yes 0 : No	P32 Pull-up 1 : Yes 0 : No	P31 Pull-up 1: Yes 0 : No	P30 Pull-up 1: Yes 0 : No
3FF4	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable				
3FF5	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable				
3FF6н	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable

Note : Each bit is set to " 1 " as the initialized value, therefore the pull-up option is selected.

MB89120/120A Series

■ HANDLING MB89P131/P133A/P135A

1. Recommended Screening Conditions

High-temperature aging is recommended as the pre-assembly screening procedure.

2. Programming Yield

Due to its nature, bit programming test can't be conducted as Fujitsu delivery test. For this reason, a programming yeild of 100% cannot be assured at all times.
3. EPROM Programmer Socket Adapter

Part no.	Package	Compatible socket adapter Sun Hayato Co., Ltd.
MB89P131PF	QFP-48	ROM-48QF2-28DP-8L
MB89P133APFM		
MB89P135APFM		

Inquiry : Sun Hayato Co., Ltd. : TEL (81) -3-3986-0403
FAX (81) -3-5396-9106

MB89120/120A Series

PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE

1. EPROM for Use

MBM27C256A-20TVM
2. Programming Socket Adapter

To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer : Sun Hayato Co., Ltd.) listed below :

Package	Adapter socket part number
LCC-32 (Square)	ROM-32LC-28DP-S

Inquiry : Sun Hayato Co., Ltd. : TEL (81) -3-3986-0403
FAX (81) -3-5396-9106
3. Memory Space

Memory space in each mode, such as 32 -Kbyte EPROM is diagrammed below.
Address
4. Programming to the EPROM
(1) Set the EPROM programmer for the MBM27C256A.
(2) Load program data into the EPROM programmer at 0000 н to 7 FFFr.
(3) Program with the EPROM programmer.

MB89120/120A Series

BLOCK DIAGRAM

*: Only the MB89120A series has wake-up interrupt inputs and remote control transmission.
Note : Parenthesized pins are available only with the MB89120A series.

MB89120/120A Series

- CPU CORE

1. Memory Space

The microcontrollers of the MB89120/A series offer 64 Kbytes of memory for storing all of I/O, data, and program areas. The I/O area is allocated from the lowest address. The data area is allocated immediately above the I/ O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is allocated from exactly the opposite end of I/O area, that is, near the highest address. The tables of interrupt reset vectors and vector call instructions are allocated from the highest address with the program area. The memory space of the MB89120/A series is structured as illustrated below :

MB89120/120A Series

2. Registers

The F²MC-8L family has two types of registers; dedicated hardware registers and general-purpose memory registers. The following dedicated registers are provided :

Program counter (PC) : A 16-bit register for indicating the instruction storage positions
Accumulator (A) :
A 16-bi temporary register for arithmetic operations, etc. When the instruction is an 8 -bit data processing instruction, the lower byte is used.
Temporary accumulator (T) : A 16-bit register which is used for arithmetic operations with the accumulator When the instruction is an 8 -bit data processing instruction, the lower byte is used.
Index register (IX) : A 16-bit register for index modification
Extra pointer (EP) : A 16-bit pointer for indicating a memory address
Stack pointer (SP) : A 16-bit pointer for indicating a stack area
Program status (PS) : A 16-bit register for storing a register pointer, a condition code

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR) (see the diagram below).

Structure of the Program Status Register

MB89120/120A Series

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

Rule for Conversion of Actual Addresses of the General-purpose Register Area

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data, and bits for control of CPU operations at the time of an interrupt.

H-flag : Set to "1" when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared " 0 " otherwise. This flag is for decimal adjustment instructions.
I-flag : Interrupt is enabled when this flag is set to " 1 ". Interrupt is disabled when the flag is cleared to " 0 ". Cleared to " 0 " at the reset.
IL1, 0 : Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	ILO	Interrupt level	High-low
0	0	1	High
0	1		
1	0	2	
1	1	3	

N-flag: Set to " 1 " if the MSB becomes " 1 " as the result of an arithmetic operation. Cleared to "0" otherwise.
Z-flag: Set to " 1 " when an arithmetic operation results in 0 . Cleared to " 0 " otherwise.
V-flag : Set to " 1 " if the complement on " 2 " overflows as a result of an arithmetic operation. Cleared to " 0 " if the overflow does not occur.
C-flag: Set to "1" when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to " 0 " otherwise. Set to the shift-out value in the case of a shift instruction.

MB89120/120A Series

The following general-purpose registers are provided :
General-purpose registers : An 8-bit register for storing data
The general-purpose registers are of 8 bits and located in the register banks of the memory. One bank contains 8 registers and up to a total of 8 banks can be used on the MB89121/P131, and a total of 16 banks can be used on the MB89123A/125A/P133A and a total of 32 banks can be used on the MB89P135A/PV130A.

The bank currently in use is indicated by the register bank pointer (RP) .

Register Bank Configuration

[^0]
MB89120/120A Series

I/O MAP

Address	Read/Write	Register name	Register description
00н	(R/W)	PDR0	Port 0 data register
01н	(W)	DDR0	Port 0 data direction register
02н	(R/W)	PDR1	Port 1 data register
03н	(W)	DDR1	Port 1 data direction register
04н	(R/W)	PDR2	Port 2 data register
05			Vacancy
06н			Vacancy
07\%	(R/W)	SYCC	System clock control register
08н	(R/W)	STBC	Standby control register
09н	(R/W)	WDTC	Watchdog control register
ОАн	(R/W)	TBTC	Time-base timer control register
OВн	(R/W)	WPCR	Watch prescaler control register
0 CH	(R/W)	PDR3	Port 3 data register
0D	(W)	DDR3	Port 3 data direction register
ОЕн	(R/W)	PDR4	Port 4 data register
ОFн	(R/W)	BZCR	Buzzer register
10н			Vacancy
11н			Vacancy
12н	(R/W)	SCGC	Peripheral control clock register
13н			Vacancy
14 H	(R/W)	RCR1	Remote control transmission control register 1*
15 н	(R/W)	RCR2	Remote control transmission control register 2*
16 н			Vacancy
17 H			Vacancy
18н	(R/W)	T2CR	Timer 2 control register
19н	(R/W)	T1CR	Timer 1 control register
1 Ан	(R/W)	T2DR	Timer 2 data register
1Вн	(R/W)	T1DR	Timer 1 data register
1 CH	(R/W)	SMR1	Serial mode register
1䉼	(R/W)	SDR1	Serial data register
1Ен			Vacancy
$1 \mathrm{~F}_{\mathrm{H}}$			Vacancy

(Continued)

MB89120/120A Series

(Continued)

Address	Read/write	Register name	Register description
20 H			Vacancy
21,			Vacancy
22-			Vacancy
23н	(R/W)	EIC1	External interrupt control register 1
24 н	(R/W)	EIC2	External interrupt control register 2
25			Vacancy
26 to 31н			Vacancy
32н	(R/W)	EIE2	External interrupt 2 enable register*
33-	(R/W)	EIF2	External interrupt 2 flag register*
34- to 7Вн			Vacancy
7 CH	(W)	ILR1	Interrupt level register 1
7Dн	(W)	ILR2	Interrupt level register 2
7 ен $^{\text {¢ }}$	(W)	ILR3	Interrupt level register 3
7 FH			Vacancy

*: Only for the MB89120A series
Note : Do not use vacancies.

MB89120/120A Series

- ELECTRICAL CARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Rating		Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc AVcc AVR	Vss - 0.3	Vss +7.2	V	Use Vcc, AVcc, and AVR set to the same voltage.
Program voltage	Vpp	Vss - 0.6	Vss + 13.0	V	MOD1 pin on the MB89P131/P133A/P135A
Input voltage	V	Vss - 0.3	V cc +0.3	V	
Output voltage	Vo	Vss - 0.3	V cc +0.3	V	
"L" level maximum output current	lo	-	10	mA	
"L" level average output current	lolav	-	4	mA	Avarage value (operating current \times operating rate)
"L" level total maximum output current	Eloı	-	100	mA	
"L" level total average output current	Elolav	-	20	mA	Avarage value (operating current \times operating rate)
"H" level maximum output current	Іон	-	-10	mA	
"H" level average output current	lohav	-	-2	mA	Avarage value (operating current \times operating rate)
" H " level total maximum output current	Eloh	-	-30	mA	
" H " level total average output current	Elohav	-	-10	mA	Avarage value (operating current \times operating rate)
Power consumption	Po	-	200	mW	
Operating temperature	TA	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$	

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

MB89120/120A Series

2. Recommended Operating Conditions

$(\mathrm{AVss}=\mathrm{V} s \mathrm{~s}=0.0 \mathrm{~V})$

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc	2.2	6.0	V	Normal operation assurance range * Applied to "Single-clock MB89121/123A/125A"
		2.2	4.0	V	Normal operation assurance range * Applied to "Dual-clock MB89121/123A/125A"
		2.7	6.0	V	Normal operation assurance range * Applied to "MB89P131/P133A/P135A/PV130A"
		1.5	6.0	V	Retains the RAM state in stop mode
Operating temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	

*: These values vary with the operating conditions. See "Operating Voltage vs. Main Clock Operating
Frequency."
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MB89120/120A Series

- Operating Voltage vs. Main Clock Operating Frequency

Dual-clock MB89121/123A/125A

Main clock operating frequency (Instruction cycle time of $4 / \mathrm{FcH})(\mathrm{MHz})$

MB89P131/P133A/P135A/PV130A, and single-clock MB89121/123A/125A

Main clock oprating frequency (Instruction cycle time of $4 / \mathrm{FCH})(\mathrm{MHz})$

Note : The shaded area is assured only for the MB89121/123A/125A (instruction cycle time of 4/Fch) .

MB89120/120A Series

3. DC Characteristics

$\left(\mathrm{AV} \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V}, \mathrm{AV}_{\mathrm{ss}}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
"H" level input voltage	VIH	$\begin{aligned} & \text { P00 to P07, } \\ & \text { P10 to P17 } \end{aligned}$	-	0.7 Vcc	-	$\begin{gathered} \hline \mathrm{V}_{\mathrm{cc}}+ \\ 0.3 \end{gathered}$	V	
	Viнs	$\overline{R S T}$, P30 to P37, $\overline{\mathrm{INT20}}$ to $\overline{\mathrm{INT} 27}$	-	0.8 Vcc	-	$\begin{gathered} \mathrm{V}_{\mathrm{cc}}+ \\ 0.3 \end{gathered}$	V	$\overline{\text { INT20 }}$ to INT27 are available only for the MB89120A series.
"L" level input voltage	VIL	$\begin{aligned} & \text { P00 to P07, } \\ & \text { P10 to P17 } \end{aligned}$	-	$\begin{gathered} \hline \text { Vss - } \\ 0.3 \end{gathered}$	-	0.3 Vcc	V	
	Vıss	$\overline{\mathrm{RST}}$, P30 to P37, $\overline{\text { INT20 to }} \overline{\text { INT27 }}$	-	$\begin{gathered} \text { Vss - } \\ 0.3 \end{gathered}$	-	0.2 Vcc	V	$\overline{\text { NT20 }}$ to $\overline{\text { INT27 are }}$ available only for the MB89120A series.
Open-drain output pin applied voltage	V	P40 to P43	-	$\begin{gathered} \mathrm{V}_{\mathrm{ss}}- \\ 0.3 \end{gathered}$	-	$\begin{gathered} \mathrm{V}_{\mathrm{cc}}+ \\ 0.3 \end{gathered}$	V	
"H" level output voltage	Vон	$\begin{aligned} & \text { P00 to P07, } \\ & \text { P10 to P17, } \\ & \text { P20 to P27, } \\ & \text { 30 to P37 } \end{aligned}$	$\mathrm{lor}=-2.0 \mathrm{~mA}$	2.4	-	-	V	
"L" level output voltage	VoL	$\begin{aligned} & \text { P00 to P07, } \\ & \text { P10 to P17 } \\ & \text { P20 to P27, } \\ & \text { P30 to P37, } \\ & \text { P40 to P43 } \end{aligned}$	$\mathrm{loL}=1.8 \mathrm{~mA}$	-	-	0.4	V	
	Vol2	$\overline{\text { RST }}$	$\mathrm{loL}=4.0 \mathrm{~mA}$	-	-	0.6	V	
Input leakage current (Hi-z output leakage current)	1 LI	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P43, MOD0, MOD1	$0.45 \mathrm{~V}<\mathrm{V}_{1}<\mathrm{V}_{\mathrm{cc}}$	-	-	± 5	$\mu \mathrm{A}$	Without pull-up resistor
Pull-up resistance	Rpull	$\begin{aligned} & \text { P00 to P07, } \\ & \text { P10 to P17, } \\ & \text { P30 to P37, } \\ & \frac{\text { P40 to P43, }}{} \begin{array}{l} \text { RST } \end{array} \\ & \hline \end{aligned}$	$\mathrm{V}_{1}=0.0 \mathrm{~V}$	25	50	100	$\mathrm{k} \Omega$	

(Continued)

MB89120/120A Series

(Continued)
$\left(\mathrm{AV}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V}, \mathrm{AV}_{\mathrm{ss}}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Power supply current ${ }^{11}$	Icc1	Vcc (External clock operation)	$\begin{aligned} & \mathrm{Vcc}=5.0 \mathrm{~V} \\ & \mathrm{~F}_{\mathrm{cH}}=4.00 \mathrm{MHz} \\ & \mathrm{tinst}^{2}=1.0 \mu \mathrm{~s} \end{aligned}$	-	4	7	mA	$\begin{array}{\|l\|} \hline \text { MB89121/ } \\ \text { 123A/125A } \end{array}$
				-	6	10	mA	$\begin{aligned} & \hline \text { MB89P131/ } \\ & \text { P133A/ } \\ & \text { P135A } \end{aligned}$
	Iccs1		$\begin{aligned} & \hline \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \\ & \mathrm{~F}_{\mathrm{cH}}=4.00 \mathrm{MHz} \\ & \text { Main sleep mode } \\ & \text { tinst }^{2}=1.0 \mu \mathrm{~s} \end{aligned}$	-	2	5	mA	
			$\mathrm{Vcc}=3.0 \mathrm{~V}$	-	50	100	$\mu \mathrm{A}$	$\begin{aligned} & \text { MB89121/ } \\ & \text { 123A/125A } \end{aligned}$
	Iccl		$\begin{aligned} & \mathrm{FcL}=32.768 \mathrm{kHz} \\ & \text { Subclock mode } \end{aligned}$	-	1	3	mA	$\begin{array}{\|l\|} \hline \text { MB89P131/ } \\ \text { P133A/ } \\ \text { P135A } \end{array}$
	Iccıs		$\begin{array}{\|l\|} \hline \mathrm{V} \mathrm{cc}=3.0 \mathrm{~V} \\ \mathrm{FcL}^{2} 32.768 \mathrm{kHz} \\ \text { Subclock sleep } \\ \text { mode } \end{array}$	-	25	50	$\mu \mathrm{A}$	
	Ісст		$\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}$ $\mathrm{FcL}=32.768 \mathrm{kHz}$ - Watch mode - Main clock stop mode at dual clock system	-	-	15	$\mu \mathrm{A}$	
	Ісch		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ - Subclock stop mode - Main clock stop mode at single clock system	-	-	1	$\mu \mathrm{A}$	
Input capacitance	Cin	Other than $\mathrm{AVcc}, \mathrm{A} \mathrm{V}_{\mathrm{ss}}$, Vcc , and V_{ss}	$\mathrm{f}=1 \mathrm{MHz}$	-	10	-	pF	

*1 : The measurement conditions of power supply current is external clock. ($\mathrm{Vcc}=5.0 \mathrm{~V}, \mathrm{~V} \mathrm{Vc}=3.0 \mathrm{~V}$)
*2 : For information on tinst, see " (4) Instruction Cycle" in "4. AC Characteristics."

MB89120/120A Series

4. AC Characteristics

(1) Reset Timing
$\left(\mathrm{V} \mathrm{cc}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{AVss}=\mathrm{V} s \mathrm{~s}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Condition	Value		Unit	Remarks
				Min.		
$\overline{\text { RST "L" pulse width }}$	tzLZH	-	48 thcyL*	-	ns	

*: thcyl is the oscillation cycle (1/Fcн) input to the XO.

(2) Power-on Reset
$\left(\mathrm{AV}\right.$ ss $=\mathrm{V}_{\text {ss }}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min.	Max.		
Power supply rising time	t_{R}	-	-	50	ms	Power-on reset function only
Power supply cut-off time	toff		1	-	ms	Due to repeated operations

Note : Make sure that power supply rises within the oscillation stabilization time selected.
For example, when the main clock is operating at $\mathrm{F}_{\mathrm{CH}}=3 \mathrm{MHz}$ and the oscillation stabilization time select option has been set to $2^{12} / \mathrm{F}_{\mathrm{ch}}$, the oscillation settling time is 1.4 ms and accordingly the maximum value of power supply rising time is about 1.4 ms .
Keep in mind that rapid changes in power supply voltage may cause a power-on reset. If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.

MB89120/120A Series

(3) Clock Timings

Parameter	Symbol	Pin	Value			Unit	Remarks
			Min.	Typ.	Max.		
Clock frequency	F_{ch}	X0, X1	1	-	4.2	MHz	Main clock
	FcL	X0A, X1A	-	32.768	-	kHz	Subclock
Clock cycle time	thcyl	X0, X1	238	-	1000	ns	Main clock
	ttcyı	X0A, X1A	-	30.5	-	$\mu \mathrm{s}$	Subclock
Input clock pulse width	$\begin{aligned} & \hline \mathrm{PwH}_{\mathrm{w}} \\ & \mathrm{P}_{\mathrm{wL}} \end{aligned}$	X0	72	-	-	ns	External clock
Input clock rising/falling time	$\begin{aligned} & \text { tcR1 } \\ & \text { tcF } 1^{2} \end{aligned}$	X0	-	-	24	ns	External clock

X0, X1 Timings and Conditions of Applied Voltage

Main Clock Conditions of Applied Voltage

When an external clock is used

MB89120/120A Series

X0A, X1A Timings and Conditions of Applied Voltage

Subclock Conditions of Applied Voltage

Single-clock option is used

(4) Instruction Cycles
(Vss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Value (typical)	Unit	Remarks
Instruction cycle (minimum execution time)	tinst	4/Fсн, 8/Fсн, 16/Fсн, 64/Fсн	$\mu \mathrm{S}$	$(4 / \mathrm{Fch})$ tinst $=1.0 \mu \mathrm{~s}$ when operating at $\mathrm{F}_{\mathrm{CH}}=4 \mathrm{MHz}$
		2/Fcı	$\mu \mathrm{s}$	$\begin{aligned} & \text { tinst }=61.036 \mu \mathrm{~s} \text { when operating at } \mathrm{FcL} \\ & =32.768 \mathrm{kHz} \end{aligned}$

MB89120/120A Series

(5) Recommended Resonator Manufacturers

Sample Application of Piezoelectric Resonator (FAR Series) for Main Clock Oscillation Circuit

*1 : FUJITSU MEDIA DEVICE LIMITED

FAR part number (built-in capacitor type)	Frequency (MHz)	Dumping resistor	Initial deviation of FAR frequency ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)	Temperature characteristics of FAR frequency $\left(\mathrm{T}_{\mathrm{A}}=-20^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C}\right)$	Loading capacitors*2
FAR-C4CC-02000-L00	2.00	1000	$\pm 0.5 \%$	$\pm 0.5 \%$	Built-in
		510			
FAR-C4 \square A-03580- $\square 01$	3.58	-			
FAR-C4CB-04000-M00	4.00				

Inquiry : FUJITSU MEDIA DEVICES LIMITED

MB89120/120A Series

Sample Application of Ceramic Resonator for Main Clock Oscillation Circuit

- Mask ROM products

Resonator manufacturer*	Resonator	$\begin{gathered} \text { Frequency } \\ (\mathrm{MHz}) \end{gathered}$	C1 (pF)	C2 (pF)	R (k)
Kyocera Corporation	KBR-4.0MKS	4.00	33	33	Not required
Matsushita Electronic Components	EFOV4004B	4.00	Built-in	Built-in	1.5
Murata Mfg. Co. Ltd.	CSBF1000J	1.00	100	100	6.8
	CSTCS4.00MG800	4.00	Built-in	Built-in	Not required
	CSA4.00MG040		100	100	Not required
	CST4.00MGW040		Built-in	Built-in	Not required

Inquiry: Kyocera Corporation

- AVX Corporation

North American Sales Headquarters : TEL (803) 448-9411

- AVX Limited European Sales Headquarters : TEL (01252) 770000
- AVX/Kyocera H.K. Ltd.

Asian Sales Headquarters : TEL 363-3303
Matsushita Electronic Components Co., Ltd.

- Ceramic Division : TEL 81-6-908-1101

Murata Mfg Co., Ltd.

- Murata Electronics North America, Inc. : TEL 1-404-436-1300
- Murata Europe Management GmbH : TEL 49-911-66870
- Murata Electronics Singapore (Pte.) Ltd. : TEL 65-758-4233

MB89120/120A Series

Sample Application of Crystal Resonator for Subclock Oscillation Circuit

- Mask ROM product

Resonator manufacturer*	Resonator	Frequency $(\mathbf{k H z})$	$\mathbf{C 1}(\mathbf{p F})$	$\mathbf{C 2}(\mathbf{p F})$	Rd (k Ω)
SII	DS-VT-200	32.768	24	24	680

Inquiry : SII
Seiko Instruments Inc. (Japan): TEL 81-43-211-1219
Seiko Instruments U.S.A. Inc. : TEL 310-517-7770
Seiko Instruments GmbH: TEL 49-6102-297-122

MB89120/120A Series

(6) Serial I/O Timings
$\left(\mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV}_{\mathrm{ss}}=\mathrm{V}\right.$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min.	Max.		
Serial clock cycle time	tscyc	SCK	Internal clock operation	2 tinst*	-	$\mu \mathrm{s}$	
SCK $\downarrow \rightarrow$ SO time	tstov	SCK, SO		-200	200	ns	
Valid SI \rightarrow SCK \uparrow	tivsh	SI, SCK		200	-	ns	
SCK $\uparrow \rightarrow$ Valid SI hold time	tshix	SCK, SI		200	-	ns	
Serial clock "H" pulse width	tshsL	SCK	External clock operation	tins**	-	$\mu \mathrm{s}$	
Serial clock "L" pulse width	tslsh			tins**	-	$\mu \mathrm{s}$	
SCK $\downarrow \rightarrow$ SO time	tslov	SCK, SO		0	200	ns	
Valid SI \rightarrow SCK \uparrow	tivsh	SI, SCK		200	-	ns	
SCK $\uparrow \rightarrow$ Valid SI hold time	tshix	SCK, SI		200	-	ns	

*: For information on tinst, see " (4) Instruction Cycles."

Internal Shift Clock Mode

External Shift Clock Mode

MB89120/120A Series

(7) Peripheral Input Timings

Parameter	Symbol	Pin	Value		Unit	Remarks
			Min.	Max.		
Peripheral input "H" pulse width Peripheral input "L" pulse width	tıı	EC, INT0 to INT2	2 tins*	-	$\mu \mathrm{s}$	
	timil		2 tinst*	-	$\mu \mathrm{s}$	

*: For information on tinst, see " (4) Instruction Cycle."

MB89120/120A Series

EXAMPLE CHARACTERISTICS

(1) "L" Level Output Voltage

(3) "H" Level Input Voltage/"L" Level Input Voltage (CMOS Input)

(5) Pull-up Resistance

(2) "H" Level Output Voltage

(4) "H" Level Input Voltage/"L" Level Input Voltage (Hysteresis Input)

V $_{\text {нs }}$: Threshold when input voltage in hysteresis characteristics is set to " H " level
Vils : Threshold when input voltage in hysteresis characteristics is set to "L" level

MB89120/120A Series

(6) Power Supply Current

MB89120/120A Series

MASK OPTIONS

No.	Part number	$\begin{aligned} & \text { MB89121 } \\ & \text { MB89123A } \\ & \text { MB89125A } \end{aligned}$	$\begin{gathered} \text { MB89P131 } \\ \text { MB89P133A } \end{gathered}$	MB89P135A	MB89PV130A
	Specifying procedure	Specify when ordering masking		Set with EPROM programmer	Specification impossible
1	Pull-up resistors - P00 to P07, P10 to P17, - P30 to P37, P40 to P43	Selectable by pin	Selectable by pin (P40 to P43 must be set to without a pull-up resistor.)		All pins fixed to no pull-up resistor optional
2	Power-on reset Power-on reset provided No power-on reset	Selectable	Selectable	Selectable	With power-on reset
3	Selection of oscillation stabilization wait time - The oscillation stabilization wait time initial value is selectable from 4 types given below. 0 : Oscillation stabilization $2^{2} / \mathrm{FCH}_{\text {CH }}$ 1 : Oscillation stabilization $2^{12 /} / \mathrm{FcH}$ 2 : Oscillation stabilization $2^{16 / F} / \mathrm{FH}$ 3 : Oscillation stabilization $2^{18} /$ Fch	Selectable	Selectable	Selectable	Oscillation stabilization $2^{18} /$ Fch
4	Reset pin output - Reset output provided - No reset output	Selectable	Selectable	Selectable	With reset output
5	Clock mode selection - Single-clock mode - Dual-clock mode	Selectable	Selectable	Selectable	Dual-clock mode
6	Main clock oscillation circuit type - External clock input - Oscillation resonator	Selectable		Not required*1	
7	Peripheral control clock output function*2 - Not used - Used	Selectable		Not required ${ }^{* 3}$	

*1 : Can be used as either crystal or ceramics oscillation.
*2 : "Used" must be selected when P33 (39 pin) is used as SCO for the peripheral control clock output.
*3 : The peripheral control clock function can be used only by software.

MB89120/120A Series

MB89P131/P133A STANDARD OPTIONS

No.	Product option	MB89P131-101	MB89P133A-201
1	Pull-up resistor	Not provided for any port	Not provided for any port
2	Power-on reset	Provided	Provided
3	Selection of oscillation stabilization time	2 : Oscillation stabilization $2^{16 /} / \mathrm{FcH}^{\text {c }}$	2 : Oscillation stabilization ${ }^{16 / F} / \mathrm{FH}$
4	Reset pin output	Provided	Provided
5	Clock mode selection	Dual-clock mode	Dual-clock mode

- ORDERING INFORMATION

Part number	Package	Remarks
MB89121PFM		
MB89123APFM		
MB89125APFM	48-pin Plastic QFP	
MB89P131PFM-101	(FPT-48P-M13)	
MB89P133APFM-201		
MB89P135APFM		
MB89PV130ACF-ES	48-pin Ceramic MQFP	
	(MQP-48C-P01)	

MB89120/120A Series

PACKAGE DIMENSION

48-pin Plastic QFP (FPT-48P-M13)

© 2001 FUJTSU LIMITED F48023S-C-2-3

MB89120/120A Series

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

[^0]: 8 banks (MB89121/P131)
 16 banks (MB89123A/125A/133A)
 32 banks (MB89P135A/PV130A)

