

D/A Converter Series for Electronic Adjustments

Standard 8bit 4ch - 6ch Type D/A Converters

BH2227FV, BH2228FV

No.09052EAT04

Description

The BH2227FV and BH2228FV ICs are 8bit R-2R-type D/A converters with 4 and 6 channels, respectively. Optimized circuitry allows two output voltages to be supplied (3V/5V). Furthermore, the built-in RESET function ensures that the output voltage at all channels is Low during power up. A broad power supply voltage range is available (2.7V-5.5V), providing design flexibility.

Features

- 1) Suitable for 2 independent power sources (3V/5V)
- 2) Built-in RESET function
- 3) High speed output response characteristics
- 4) 3-line serial interface
- 5) Broad power supply voltage range: 2.7V-5.5V

Applications

DVCs, DSCs, DVDs, CD-Rs, CD-RWs

●Lineup

incup		
Parameter	BH2227FV	BH2228FV
Power source voltage range	2.7 to 5.5V	2.7 to 5.5V
Number of channels	4ch	6ch
Current consumption	0.9mA	0.9mA
Differential non linearity error	±1.0LSB	±1.0LSB
Integral non linearity error	±1.5LSB	±1.5LSB
Output current performance	±1.0mA	±1.0mA
Settling time	100µs	100µs
Data transfer frequency	10MHz	10MHz
Input method	CMOS	CMOS
Data latch method	CSB method	CSB method
Package	SSOP-B14	SSOP-B14

● Absolute Maximum Ratings(Ta=25°C)

Parameter	Symbol	Limits	Unit	Remarks
Power source voltage	VCC	-0.3 to 7.0	V	-
Terminal voltage	VIN	-0.3 to VCC	V	-
Storage temperature range	TSTG	-55 to 125	°C	-
Power dissipation	PD	400*1	mW	-

^{*1} Derated at 4.0mW/ °C at Ta>25°C

^{*2} This product is not robust against radiation.

■Recommended Operating Conditions(Ta=25°C)

Parameter	C: mah al		Limits	1.1	Damada	
	Symbol	Min.	Тур.	Max.	Unit	Remarks
VDD power source voltage	VDD	2.7	-	5.5	V	-
VFS voltage to be impressed	VFS	2.7	-	5.5	V	-
Terminal input voltage range	VIN	0	-	VDD	V	-
Analog output current	IO	-1.0	-	1.0	mA	-
Action temperature range	TOPR	-20	-	85	°C	-
Serial clock frequency	FCLK	-	1.0	10.0	MHz	-
Limit load capacity	CL	-	-	0.1	μF	-

● Electrical Characteristics(Unless otherwise specified, VDD=VFS=3.0V, RL=OPEN, CL=0pF, Ta=25°C)

electrical Characteristics(Unless otherwis	e specilled	ı, vuu-vrs-	-3.0V, KL=OP	EN, CL-UPF,	1a=25 C)			
Parameter	Symbol		Limits	Unit	Conditions				
Farameter	Symbol	Min.	Тур.	Max.	Offic	Conditions			
<current consumption=""></current>									
VDD system	IDD	-	0.5	1.5	mA	VDD=5V, CLK=1MHz			
VFS system	IFS	-	0.3	0.9	mA				
<logic interface=""></logic>									
L input voltage	VIL	VSS	-	0.6	V	VDD=5.0V			
H input voltage	VIH	2.4	-	VDD	V	VDD=5.0V			
Input current	IIN	-10	-	10	μA				
<buffer amplifier=""></buffer>									
Output zere ceale veltage	70	VSS	-	0.1	V	00h setting, at no load			
Output zero scale voltage	ZS	VSS	-	0.3	V	00h setting, IOL=1.0mA			
	FS1	VDD-0.1	-	VDD	V	FFh setting, at no load			
Output full coals voltage		VDD-0.3	-	VDD	V	FFh setting,IOH=1.0mA			
Output full scale voltage	F00	VFS-0.1	-	VFS	V	FFh setting, at no load			
	FS2	VFS-0.3	-	VFS	V	FFh setting,IOH=1.0mA			
<d a="" converter="" precision=""></d>	<d a="" converter="" precision=""></d>								
Differential non linearity error	DNL	-1.0	-	1.0	LSB	Input code 02H to FDH			
Integral non linearity error	INL	-1.5	-	1.5	LSB	Input code 02H to FDH			
VDD power source voltage rise time	trVDD	100	-	-	μs	VDD=0→2.7			
Power ON reset release voltage	VPOR	-	1.9	-	V				

●Timing Chart(Unless otherwise specified, VDD = VFS = 3.0V, RL = OPEN, CL = 0pF, Ta = 25°C)

D	0	Limits				O a a l'itte a a
Parameter	Symbol	MIN.	TYP.	MAX.	Unit	Conditions
CLK L level time	tCLKL	50	-	-	ns	
CLK H level time	tCLKH	50	-	-	ns	
DI setup time	tsDI	20	-	-	ns	
DI hold time	thDI	40	-	-	ns	
CSB setup time	tsCSB	50	-	-	ns	
CSB hold time	thCSB	50	-	-	ns	
CSB H level time	tCSBH	50	-	-	ns	
D/A Output settling time	tOUT	-	-	100	μs	CL=50pF,RL=10kΩ

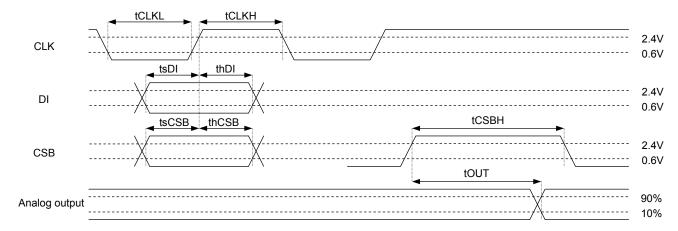


Fig.1

●Terminal Description / Block Diagrams

(BH2227FV)

Terminal	Terminal name	Function
1	AO1	Analog output terminal
2	AO2	Analog output terminal
3	TESTMONI1	Test terminal
4	TESTMONI2	(OPEN at normal use)
5	AO3	Analas autorit tamainal
6	AO4	Analog output terminal
7	NC	Internally not connected yet
8	NC	Internally not connected yet
9	VDD	Power source terminal (AO3, 4 full scale voltage use in common)
10	CSB	Chip select signal input terminal
11	CLK	Serial clock input terminal
12	DI	Serial data input terminal
13	VFS	AO1,2 full scale Voltage setting terminal
14	VSS	Ground terminal

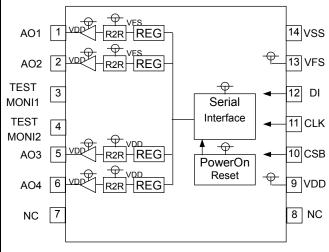


Fig.2

(BH2228FV)

Terminal	Terminal name	Function		
1	AO1			
2	AO2			
3	AO3	Analog output terminal		
4	AO4	Analog output terminal		
5	AO5			
6	AO6			
7	NC	Internally not connected yet		
8	NC	Internally not connected yet		
9	VDD	Power source terminal (AO4~6 full scale voltage use in common)		
10	CSB	Chip select signal input terminal		
11	CLK	Serial clock input terminal		
12	DI	Serial data input terminal		
13	VFS	AO1,2,3 full scale Voltage setting terminal		
14	VSS	Ground terminal		

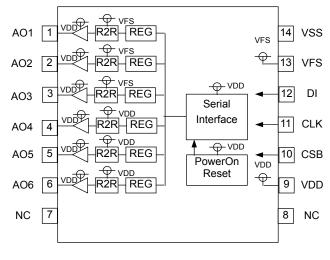


Fig.3

Equivalent Circuits

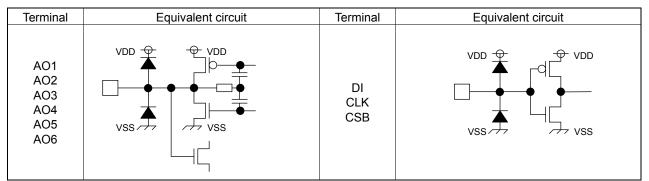


Fig.4 Equivalent circuit

Operation Description

Command Transmission

The Control command consists of 3-lines of 12bit serial input data (MSB first).

Data is read at the rise edge of CLK, and data becomes valid in the CSB Low area (before the CSB rise for 12bit data).

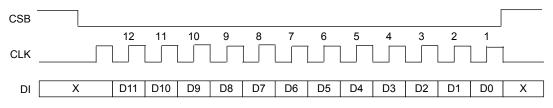


Fig.5

Data Settings

D0	D1	D2	D3	D4	D5	D6	D7	Setting
0	0	0	0	0	0	0	0	GND
1	0	0	0	0	0	0	0	(VDD or VFS-GND)/256x1
0	1	0	0	0	0	0	0	(VDD or VFS-GND)/256x2
1	1	0	0	0	0	0	0	(VDD or VFS-GND)/256x3
0	0	1	0	0	0	0	0	(VDD or VFS-GND)/256x4
	~							
0	1	1	1	1	1	1	1	(VDD or VFS-GND)/256x254
1	1	1	1	1	1	1	1	(VDD or VFS-GND)/256x255

Note: Initial status D[7:0]=00h

Channel Settings

Ondriner octungs					
D8	D9	D10	D11	BH2227FV	BH2228FV
0	0	0	0	Inconsequential	Inconsequential
0	0	0	1	AO1	AO1
0	0	1	0	AO2	AO2
0	0	1	1	Inconsequential	AO3
0	1	0	0	Inconsequential	AO4
0	1	0	1	AO3	AO5
0	1	1	0	AO4	AO6
0	1	1	1	Inconsequential	Inconsequential
1	0	0	0	Inconsequential	Inconsequential
1	0	0	1	Inconsequential	Inconsequential
1	0	1	0	Inconsequential	Inconsequential
1	0	1	1	Inconsequential	Inconsequential
1	1	0	0	Inconsequential	Inconsequential
1	1	0	1	Inconsequential	Inconsequential
1	1	1	0	Inconsequential	Inconsequential
1	1	1	1	Inconsequential	Inconsequential

Electrical Characteristics Curves

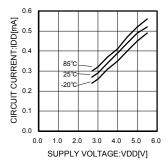


Fig.6 VDD current consumption

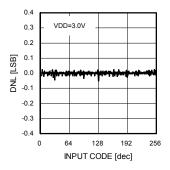


Fig.9 Differential non linearity error

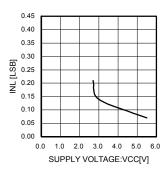


Fig.12 Power source voltage to integral non linearity error

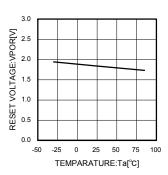


Fig.15 Reset release voltage

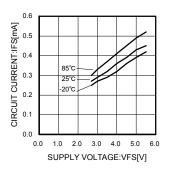


Fig.7 VFS current consumption

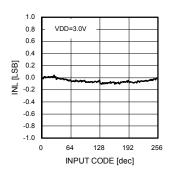


Fig.10 Integral non linearity error

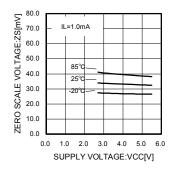


Fig.13 Output zero scale voltage

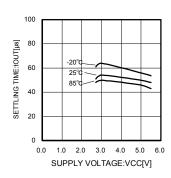


Fig.16 Settling time

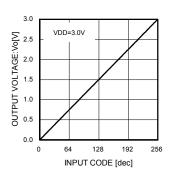


Fig.8 Output voltage characteristic

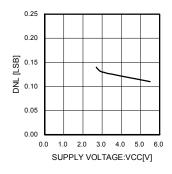


Fig.11 Power source voltage to differential non linearity error

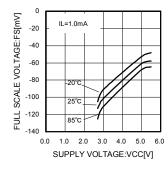


Fig.14 Output full scale voltage

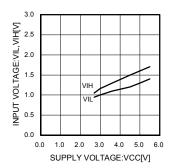


Fig.17 Input voltage

Operation Notes

(1) Absolute maximum ratings

Operating or testing the device over the maximum specifications may damage the part itself as well as peripheral components. Therefore, please ensure that the specifications are not exceeded.

(2) GND potential

Ensure that the GND terminal is at the lowest potential under all operating conditions.

(3) Thermal design

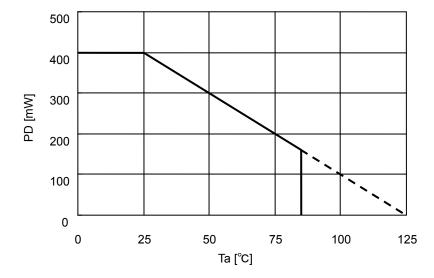
Use a thermal design that allows for a sufficient margin regarding power dissipation (Pd) under actual operating conditions.

(4) Terminal shorts and mis-mounting

Incorrect orientation or misalignment of the IC when mounting to the PCB may damage part. Short-circuits caused by The introduction of foreign matter between the output terminals or across the output and power supply or GND may also result in destruction.

(5) Operation in a strong magnetic field

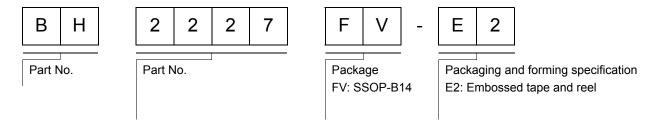
Operation in a strong electromagnetic field may cause malfunction.

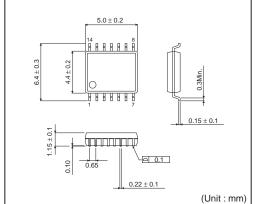

(6) Set the power source voltage so that $VDD \ge VFS$.

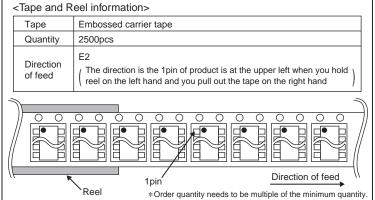
(7) Reset function

The power on reset circuit, which initializes internal settings, may malfunction during abrupt power ons. Therefore, set the time constant so as to satisfy the power source rise time.

●Thermal Derating Curve


· SSOP-B14


Board size: 70 x 70 x 1.6mm Material: FR4 glass epoxy board (copper foil area less than 3%)


Fig.18

Ordering part number

SSOP-B14

Notes

No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd.

The content specified herein is subject to change for improvement without notice.

The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.

While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/