

February 2009

- Pletronics' THA4 Series is a temperature compensated voltage controlled crystal oscillator with a HCMOS output.
- The package is designed for high density surface mount designs.
- · Tape and Reel packaging is available.

- 8 to 52 MHZ
- Stabilities to less than 0.2ppm available
- 5 x 7 mm LCC Ceramic Package
- Optional Voltage Control Function

Pletronics Inc. certifies this device is in accordance with the RoHS (2002/95/EC) and WEEE (2002/96/EC) directives.

Pletronics Inc. guarantees the device does not contain the following: Cadmium, Hexavalent Chromium, Lead, Mercury, PBB's, PBDE's

Weight of the Device: 0.3 grams

Moisture Sensitivity Level: 1 As defined in J-STD-020C

Second Level Interconnect code: e4

Absolute Maximum Ratings:

Parameter	Unit
V _{cc} Supply Voltage	-0.5V to +6.5V
Vi Input Voltage	-0.5V to V _{CC} + 0.5V
Vo Output Voltage	-0.5V to V _{CC} + 0.5V

Thermal Characteristics

The maximum die or junction temperature is 155°C

The thermal resistance junction to board is 30 to 50°C/Watt depending on the solder pads, ground plane and construction of the PCB.

February 2009

Part Number:

THA4	031	035	G	н	015	008	-40.0M	-XX	
									Internal code or blank
									Nominal Frequency in MHZ
									Pullability in ppm (Vcontrol) 000 = TCXO only 008 = ± 8 ppm minimum 015 = ± 15 ppm minimum
									Stability in ppm $001 = \pm 0.1 \text{ ppm}$ $010 = \pm 1 \text{ ppm}$ $002 = \pm 0.2 \text{ ppm}$ $015 = \pm 1.5 \text{ ppm}$ $005 = \pm 0.5 \text{ ppm}$ $025 = \pm 2.5 \text{ ppm}$ $007 = \pm 0.7 \text{ ppm}$
									Highest Specified Operating Temperature A = +40°C
									Lowest Specified Operating Temperature A = +10°C
									Highest Supply Voltage* 055 = 5.5 volts 035 = 3.5 volts 036 = 3.6 volts 030 = 3.0 volts
									Lowest Supply Voltage * 045 = 4.5 volts
									Series (Part Type, Logic & Package)

^{*} Supply Voltage: Select range between 2.7V and 5.5V with ratio of Highest / Lowest \leq 1.20 For Example: the part number for 3.3V nominal could be TCA4030036.......

ESD Rating

Model	Minimum Voltage	Conditions				
Human Body Model	1500	MIL-STD-883 Method 3115				
Charged Device Model	1000	JESD 22-C101				

February 2009

Electrical Specification for specified Vcc over the specified temperature range

Item	Min	Max	Unit	Condition
Frequency Range	10	52	MHZ	
Frequency Accuracy ¹	-2.5 -0.1	+2.8 +0.1	ppm	Vcontrol 1.50 volts if used ²
Frequency Stability versus Supply	-0.2	+0.2	ppm	Load: 15 pF & V _{cc} ± 5%
Output Waveform		СМО	S	
Output Level High	90	-	% of $V_{\rm CC}$	Load: 15 pF
Output Level High	1	10		
Output Rise and Fall Time	-	8	nS	10% to 90% of V _{CC} Load: 15 pF
Output Duty Cycle	40	60	%	50% of V _{cc} Load: 15 pF
Phase Noise 1 Hz 10 Hz 100 Hz 1 KHz 10 KHz >10 KHz	•	-62 -91 -116 -137 -145	dBc/Hz	
V Supply Range ¹ V _{cc}	2.7	5.5	Volts	
Supply Current I _{cc} at 13 MHZ I _{cc} at 26 MHZ I _{cc} at 52 MHZ	-	3.2 5.0 9.0	mA	15 pF load
Start-up time	ı	10	mS	to be within ±3 ppm of the final frequency
Aging	-1.0 -0.5	+1.0 +0.5	ppm	Per year at 25°C for the first year For any year thereafter
Vcontrol Range	0.5	2.70	Volts	1.35 volts nominal
Vcontrol Input Current	-50	+50	uA	
Frequency Pullability 1	-15	+15	ppm	
Operating Temperature Range ¹	-45	+85	°C	
Storage Temperature Range	-55	+95	°C	

Specified by part number
 For all supply voltages, load changes, aging for 1 year, shock, vibration and temperatures

February 2009

Reliability: Environmental Compliance

Parameter	Condition
Mechanical Shock	MIL-STD-883 Method 2002, Condition A
Vibration	MIL-STD-883 Method 2007, Condition A
Solderability	MIL-STD-883 Method 2003
Thermal Shock	MIL-STD-883 Method 1011, Condition A

Part Marking:

THymda Where: = Date code ymd

fff.fff M = frequency in MHZ fff.fff

P*LHXXX* Ρ = Pletronics

LH = Lowest Temp, Highest Temp

XXX = Stability

Due to part size limitations, marking cannot identify complete specifications.

Codes for Date Code YMD

Code	6	7	8 9		0	1	2	
Year	2006	2007	2008	2009	2010	2011	2012	

Code	Α	В	С	D	Е	F	G	Н	J	K	L	M
Month	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC

Code	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F	G
Day	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Code	Н	J	K	L	М	N	Р	R	T	U	٧	W	Х	Υ	Z	
Day	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	

Package Labeling

Label is 1" x 2.6" (25.4mm x 66.7mm) Font is Courier New Bar code is 39-Full ASCII

Label is 1" x 2.6" (25.4mm x 66.7mm) Font is Arial

TCA4027050GH015008-12.75M

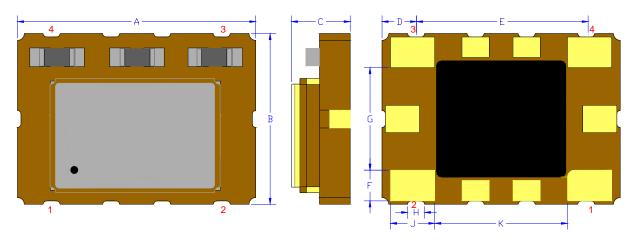
Customer P/N:

12345678 Qty:

D/C

Pb Free

2nd LvL Interconnect


Category=e4

Max Safe Temp=260C for 10s 2X Max

February 2009

Mechanical:

Not to Scale

Pad	Function	Note
1	Vcontrol Input	If this function is not specified, recommend connecting this pad to ground.
2	Ground (GND)	
3	Output	
4	Supply Voltage (V _{cc})	Recommend connecting appropriate power supply bypass capacitors as close as possible.

	Inches	mm
Α	0.276 <u>+</u> 0.006	7.00 <u>+</u> 0.15
В	0.197 <u>+</u> 0.006	5.00 <u>+</u> 0.15
С	0.074 <u>+</u> 0.006	1.88 <u>+</u> 0.15
D ¹	0.039	1.00
E¹	0.197	5.00
F ¹	0.025	0.90
G ¹	0.118	3.00
H ¹	0.020	0.50
J ¹	0.051	1.30
K ¹	0.154	3.90

¹ Typic dimensions

Contacts:

Gold 11.8 $\mu inches$ 0.3 μm minimum over Nickel 50 to 350 $\mu inches$ 1.27 to 8.89 μm

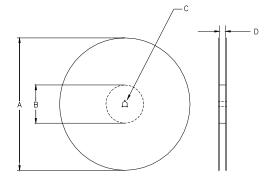
There are additional pads on the package bottom, these are **not to be connected to any traces** on the PCB, solder masking on the PCB should be used to make sure no contact is made.

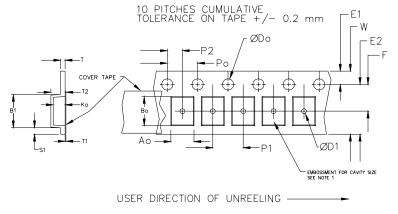
February 2009

Reflow Cycle (typical for lead free processing)

The part may be reflowed 2 times without degradation.

Tape and Reel: available for quantities of 250 to 1000 per reel


	Constant Dimensions Table 1											
Tape Size	D0	D1 Min	E1	P0	P2	S1 Min	T Max	T1 Max				
8mm		1.0			2.0							
12mm	1.5	1.5	1.75	4.0	<u>+</u> 0.05							
16mm	+0.1 -0.0	1.5	<u>+</u> 0.1	<u>+</u> 0.1	2.0	0.6	0.6	0.1				
24mm		1.5			<u>+</u> 0.1							


	Variable Dimensions Table 2												
Tape Size	B1 E2 Min F P1 T2 W Ao, I Max Max K												
16 mm 12.1 14.25 7.5 ±0.1 8.0 ±0.1 8.0 16.3 Note 1													

Note 1: Embossed cavity to conform to EIA-481-B

Dimensions in mm

Not to scale

		REEL DIMENSIONS			
Α	inches	7.0	10.0	13.0	
	mm	177.8	254.0	330.2	
В	inches	2.50	4.00	3.75	
	mm	63.5	101.6	95.3	Tape Width
С	mm	13.0 +0.5 / -0.2			widii
D	mm	16.4 +2.0 -0.0	16.4 +2.0 -0.0	16.4 +2.0 -0.0	16.0
	mm			24.4 +2.0 -0.0	24.0
	mm			32.4 +2.0 -0.0	32.0

Reel dimensions may vary

from the above

February 2009

IMPORTANT NOTICE

Pletronics Incorporated (PLE) reserves the right to make corrections, improvements, modifications and other changes to this product at anytime. PLE reserves the right to discontinue any product or service without notice. Customers are responsible for obtaining the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to PLE's terms and conditions of sale supplied at the time of order acknowledgment.

PLE warrants performance of this product to the specifications applicable at the time of sale in accordance with PLE's limited warranty. Testing and other quality control techniques are used to the extent PLE deems necessary to support this warranty. Except where mandated by specific contractual documents, testing of all parameters of each product is not necessarily performed.

PLE assumes no liability for application assistance or customer product design. Customers are responsible for their products and applications using PLE components. To minimize the risks associated with the customer products and applications, customers should provide adequate design and operating safeguards.

PLE products are not designed, intended, authorized or warranted to be suitable for use in life support applications, devices or systems or other critical applications that may involve potential risks of death, personal injury or severe property or environmental damage. Inclusion of PLE products in such applications is understood to be fully at the risk of the customer. Use of PLE products in such applications requires the written approval of an appropriate PLE officer. Questions concerning potential risk applications should be directed to PLE.

PLE does not warrant or represent that any license, either express or implied, is granted under any PLE patent right, copyright, artwork or other intellectual property right relating to any combination, machine or process which PLE product or services are used. Information published by PLE regarding third-party products or services does not constitute a license from PLE to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from PLE under the patents or other intellectual property of PLE.

Reproduction of information in PLE data sheets or web site is permissible only if the reproduction is without alteration and is accompanied by associated warranties, conditions, limitations and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. PLE is not responsible or liable for such altered documents.

Resale of PLE products or services with statements different from or beyond the parameters stated by PLE for that product or service voids all express and implied warranties for the associated PLE product or service and is an unfair or deceptive business practice. PLE is not responsible for any such statements.

Contacting Pletronics Inc.

Pletronics Inc. Tel: 425-776-1880 19013 36th Ave. W, Suite H Fax: 425-776-2760

Lynnwood, WA 98036-5761 USA E-mail: ple-sales@pletronics.com

URL: www.pletronics.com

Copyright © 2008, 2009 Pletronics Inc.