$256 \mathrm{~K} \times 4$ Static RAM

Features

- High speed
$-t_{A A}=15 \mathrm{~ns}$
- CMOS for optimum speed/power
- Low active power
- 495 mW
- Low standby power
- 275 mW
- 2.0 V data retention (optional)
- Automatic power-down when deselected
- TTL-compatible inputs and outputs

Functional Description

The CY7C106BN and CY7C1006BN are high-performance CMOS static RAMs organized as 262,144 words by 4 bits. Easy memory expansion is provided by an active LOW Chip Enable ($\overline{\mathrm{CE}}$), an active LOW Output Enable ($\overline{\mathrm{OE}) \text {, and }}$ three-state drivers. These devices have an automatic power-down feature that reduces power consumption by more than 65% when the devices are deselected.
Writing to the devices is accomplished by taking Chip Enable (CE) and Write Enable (WE) inputs LOW. Data on the four I/O pins $\left(I / O_{0}\right.$ through $\left.I / \mathrm{O}_{3}\right)$ is then written into the location specified on the address pins (A_{0} through A_{17}).
Reading from the devices is accomplished by taking Chip Enable (CE) and Output Enable (OE) LOW while forcing Write Enable (WE) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the four I/O pins.
The four input/output pins $\left(1 / \mathrm{O}_{0}\right.$ through $\mathrm{I} / \mathrm{O}_{3}$) are placed in a high-impedance state when the devices are deselected ($\overline{\mathrm{CE}}$ HIGH), the outputs are disabled (OE HIGH), or during a write operation (CE and WE LOW).
The CY7C106BN is available in a standard 400-mil-wide SOJ; the CY7C1006BN is available in a standard 300 -mil-wide SOJ.

Selection Guide

	7C106BN-15 7C1006BN-15	7C106BN-20 7C1006BN-20
Maximum Access Time (ns)	15	20
Maximum Operating Current (mA)	80	75
Maximum Standby Current (mA)	30	30

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature \qquad $-65 \times C$ to $+150 \times C$
Ambient Temperature with
Power Applied. \qquad $-55 \times \mathrm{C}$ to $+125 \times \mathrm{C}$
Supply Voltage on V_{CC} Relative to $\mathrm{GND}^{[1]} \ldots .-0.5 \mathrm{~V}$ to +7.0 V DC Voltage Applied to Outputs in High Z State ${ }^{[1]}$ \qquad -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Voltage ${ }^{[1]}$ \qquad

Current into Outputs (LOW).. 20 mA
Static Discharge Voltage ... >2001V (per MIL-STD-883, Method 3015) Latch-Up Current
>200 mA

Operating Range

Range Rembient Temperature (2]	$\mathbf{V}_{\text {CC }}$	
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial	$-45^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions		$\begin{aligned} & \text { 7C106BN-15 } \\ & \text { 7C1006BN-15 } \end{aligned}$		$\begin{aligned} & \text { 7C106BN-20 } \\ & \text { 7C1006BN-20 } \end{aligned}$		Unit
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=$		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{l}_{\mathrm{OL}}=8$			0.4		0.4	V
V_{IH}	Input HIGH Voltage			2.2	$\mathrm{V}_{\mathrm{CC}}+0.3$	2.2	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
V_{IL}	Input LOW Voltage ${ }^{[1]}$			-0.3	0.8	-0.3	0.8	V
$\mathrm{I}_{1 \mathrm{X}}$	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$		-1	+1	-1	+1	mA
I_{Oz}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}, \mathrm{C}$ Disabled		-5	+5	-5	+5	mA
Ios	Output Short Circuit Current ${ }^{[3]}$	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}$			-300		-300	mA
${ }^{\text {ccc }}$	$\mathrm{V}_{C C}$ Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max., } \mathrm{I}_{\mathrm{OUT}} \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$			80		75	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic CE Power-Down Current -TTL Inputs	$\begin{aligned} & \text { Max. } V_{C C}, \overline{C E} \geq V_{I H} \\ & V_{I N} \leq V_{I L}, f=f_{M A X} \end{aligned}$	$\geq \mathrm{V}_{\mathrm{IH}} \text { or }$		30		30	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic CE Power-Down Current -CMOS Inputs	$\begin{aligned} & \text { Max. } V_{C C}, \\ & C E \\ & V_{C C}-0.3 V \\ & V_{\text {IN }} \geq V_{C C}-0.3 V \\ & \text { or } V_{\text {IN }} \leq 0.3 V, f=0 \end{aligned}$	Com'l		10		10	mA

Capacitance ${ }^{[4]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\mathrm{IN}}:$ Addresses	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25 \times \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	7	pF
$\mathrm{C}_{\mathrm{IN}}:$ Controls			10	pF
$\mathrm{C}_{\mathrm{CO}}=5.0 \mathrm{~V}$		10	pF	
Notes:				

1. V_{IL} (min.) $=-2.0 \mathrm{~V}$ for pulse durations of less than 20 ns .
2. T_{A} is the "instant on" case temperature.
3. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
4. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT
OUTPUTO-_

Switching Characteristics Over the Operating Range ${ }^{[5]}$

Parameter	Description	$\begin{aligned} & \text { 7C106B-15 } \\ & \text { 7C1006B-15 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C106B-20 } \\ & \text { 7C1006B-20 } \end{aligned}$		Unit
		Min.	Max.	Min.	Max.	
READ CYCLE						
t_{RC}	Read Cycle Time	15		20		ns
t_{AA}	Address to Data Valid		15		20	ns
$\mathrm{t}_{\mathrm{OHA}}$	Data Hold from Address Change	3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}$ LOW to Data Valid		15		20	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		7		8	ns
tizoe	$\overline{\text { OE LOW to Low } \mathrm{Z}}$	0		0		ns
$\mathrm{t}_{\text {Hzoe }}$	$\overline{\mathrm{OE}}$ HIGH to High $\mathrm{Z}^{[6,7]}$		7		8	ns
t LzCE	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[7]}$	3		3		ns
$\mathrm{t}_{\text {HZCE }}$	$\overline{\overline{C E}}$ HIGH to High ${ }^{[6,7]}$		7		8	ns
t_{PU}	$\overline{\overline{C E}}$ LOW to Power-Up	0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\overline{C E}}$ HIGH to Power-Down		15		20	ns
WRITE CYCLE ${ }^{[8,9]}$						
t_{wc}	Write Cycle Time	15		20		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\overline{C E}}$ LOW to Write End	12		15		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	12		15		ns
t_{HA}	Address Hold from Write End	0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	12		15		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	8		10		ns
t_{HD}	Data Hold from Write End	0		0		ns
t LzWE	$\overline{\text { WE }}$ HIGH to Low ${ }^{[7]}$	3		3		ns
$t_{\text {HzWE }}$	$\overline{\text { WE }}$ LOW to High ${ }^{[6,7]}$		7		8	ns

Notes:

5. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
6. $t_{H Z O E}, t_{H Z C E}$, and $t_{H Z W E}$ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
7. At any given temperature and voltage condition, $t_{H Z C E}$ is less than $t_{I Z C E}, t_{H Z O E}$ is less than $t_{L Z O E}$, and $t_{H Z W E}$ is less than $t_{L Z W E}$ for any given device.
8. The internal write time of the memory is defined by the overlap of CE and WE LOW. CE and WE must be LOW to initiate a write, and the transition of either of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.
9. The minimum write cycle time for Write Cycle No. 3 (WE controlled, $\overline{O E} L O W$) is the sum of $t_{H Z W E}$ and $t_{S D}$.

Data Retention Characteristics Over the Operating Range

Parameter	Description	Conditions ${ }^{[10]}$	Min.	Max.	Unit
$V_{\text {DR }}$	$\mathrm{V}_{\text {CC }}$ for Data Retention		2.0		V
$\mathrm{l}_{\text {CCDR }}$	Data Retention Current	$\begin{aligned} & V_{C C}=V_{D R}=2.0 V, \\ & C E \geq V_{C C}-0.3 V, \\ & V_{I N} \geq V_{C C}-0.3 V \text { or } \\ & V_{I N} \leq 0.3 V \end{aligned}$		250	$\mu \mathrm{A}$
$\mathrm{t}_{\mathrm{CDR}}{ }^{[4]}$	Chip Deselect to Data Retention Time		0		ns
$\mathrm{t}_{\mathrm{R}}{ }^{[4]}$	Operation Recovery Time		200		ms

Data Retention Waveform

Switching Waveforms

Read Cycle No. ${ }^{[11,12]}$

Read Cycle No. $2\left(\overline{\mathrm{OE}}\right.$ Controlled) ${ }^{[12,13]}$

Notes:

10. No input may exceed $\mathrm{V}_{\mathrm{Cc}}+0.5 \mathrm{~V}$.
11. Device is continuously selected, $\overline{\mathrm{OE}}$ and $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
12. WE is HIGH for read cycle.
13. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.

Switching Waveforms (continued)
Write Cycle No. 1 ($\overline{\text { CE }}$ Controlled) ${ }^{[14,15]}$

Write Cycle No. 2 ($\overline{\mathrm{WE}}$ Controlled, $\overline{\mathrm{OE}}$ HIGH During Write) ${ }^{[14,15]}$

Notes:

14. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\text { WE }}$ going HIGH, the output remains in a high-impedance state.
15. Data I / O is high impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.

Switching Waveforms (continued)
Write Cycle No. 3 ($\overline{\text { WE }}$ Controlled, $\overline{\mathrm{OE}} \mathrm{LOW})^{[9,15]}$

Truth Table

CE	OE	WE	Input/Output	Mode	Power
H	X	X	High Z	Power-Down	Standby ($\mathrm{I}_{\text {SB }}$)
L	L	H	Data Out	Read	Active (I_{CC})
L	X	L	Data In	Write	Active (I_{cc})
L	H	H	High Z	Selected, Outputs Disabled	Active (I_{cc})

Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
15	CY7C106BN-15VC	$51-85032$	28 -Lead (400-Mil) Molded SOJ	Commercial
	CY7C1006BN-15VC	$51-85031$	28 -Lead (300-Mil) Molded SOJ	
20	CY7C106BN-20VC	$51-85032$	28 -Lead (400-Mil) Molded SOJ	Commercial

Please contact local sales representative regarding availability of these parts.

Package Diagrams

All product or company names mentioned in this document may be the trademarks of their respective holders.

CY7C106BN CY7C1006BN

Document History Page

Document Title: CY7C106BN/CY7C1006BN 256K x 4 Static RAM
Document Number: 001-06429

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
$* *$	423847	See ECN	NXR	New Data sheet

