PIN ASSIGNMENT

(FPT-8P-M02)

PIN DESCRIPTION

Pin name	Pin no.	I/O	Description
XOUT	1	O	Resonator connection pin
OE	2	I/O	Clock output enable pin L : output disable, H : output enable Serial input/output pin (only program mode)
PEX	3	I	Programmable enable setting pin L : program mode, $\mathrm{H}:$ normal operation
VSS	4	-	GND pin
OUT	5	O	Modulation clock output pin
VDD	6	-	Power supply voltage pin
NC	7	-	Non-connection pin (do not connect anything)
XIN	8	I	Resonator connection pin/clock input pin

I/O CIRCUIT TYPE

Pin name	Circuit type	Remarks
PEX		- CMOS hysteresis input - With pull-up resistor ($50 \mathrm{k} \Omega$)
OE		With pull-up resistor ($50 \mathrm{k} \Omega$) - CMOS hysteresis input (Input) In serial output mode - CMOS output - lol $=3 \mathrm{~mA}$
OUT		- CMOS output - lol $=3 \mathrm{~mA} / 7 \mathrm{~mA}$ selectable (Selectable by Output driver setting bit) - Hi-Z or "L" output at OE = "L" (Selectable by OUT pin setting bit)

Note : About XIN and XOUT pins, please refer to the chapter of " CRYSTAL OSCILLATION CIRCUIT".

MB88R157

HANDLING DEVICES

- Preventing Latch-up

A latch-up can occur if, on this device, (a) a voltage higher than power supply voltage or a voltage lower than GND is applied to an input or output pin or (b) a voltage higher than the rating is applied between power supply and GND. The latch-up, if it occurs, significantly increases the power supply current and may cause thermal destruction of an element. When you use this device, be very careful not to exceed the maximum rating.

- Handling unused pins

Do not leave an unused input pin open, since it may cause a malfunction. Handle by, using a pull-up or pulldown resistor.

- To use external clock input

To use an external clock signal, input the clock signal to the XIN pin with the XOUT pin connected to nothing.

- Power supply pins

Please design connecting the power supply pin of this device by as low impedance as possible from the current supply source.
We recommend connecting electrolytic capacitor (about $10 \mu \mathrm{~F}$) and the ceramic capacitor (about $0.01 \mu \mathrm{~F}$) in parallel between power supply and GND near the device, as a bypass capacitor.

- Oscillation circuit

Noise near the XIN pin and XOUT pin may cause the device to malfunction. Design printed circuit boards so that electric wiring of XIN pin or XOUT pin and the resonator do not intersect other wiring.
Design the printed circuit board that surrounds the XIN pin and XOUT pin with ground in order to stabilize operation.

MB88R157

MEMORY MAP

Address	Function	Remarks
bit0-bit11	M divider setting (12-bit)	Selectable in the range of 1 to 4096
bit12-bit22	N divider setting (11-bit)	Selectable in the range of 1 to 2048
bit23-bit29	K divider setting (7-bit)	Selectable in the range of 1 to 128
bit30-bit32	L divider setting (3-bit)	Modulation frequency setting (the value is due to the input frequency)
bit33-bit36	Charge Pump setting (4-bit)	Charge pump current setting due to VCO oscillation frequency
bit37-bit41	VCO Gain setting (5-bit)	VCO gain setting due to VCO oscillation frequency
bit42-bit44	Modulation rate setting (3-bit)	No modulation, $\pm 0.25 \%, \pm 0.50 \%, \pm 0.75 \%, \pm 1.00 \%, \pm 1.25 \%$, $\pm 1.50 \%, \pm 1.75 \%$ are selectable
bit45	OUT pin setting (1bit)	Selectable OUT pin situation at OE pin $=\mathrm{L}$ $0:$ L output $1:$ Hi-Z output
bit46	Output drive setting (1bit)	OUT pin driving ability setting $0:$ Ability small $1:$ Ability large
bit47	Source clock dividing mode (1bit)	Source clock selectable to K divider $0:$ VCO output $1:$ Source clock
bit48	PLL mode setting (1bit)	$0:$ Normal mode $1:$ PLL mode
bit49-bit55	XIN oscillation stabilization capacitance setting (7-bit)	Capacitance is selectable from 5 pF to 10 pF by 0.039 pF Step
bit56-bit62	XOUT oscillation stabilization capacitance setting (7-bit)	Capacitance is selectable from 5 pF to 10 pF by 0.039 pF Step
bit63	Reserve	

OPERATION SETTING

- Frequency setting

Output frequency can be set by writing the internal memory to each divider parameter in the PLL block.
Internal oscillation frequency and output frequency can be calculated following expressions :
Internal oscillation frequency (fvco*) $=$ Input frequency $($ fin $) \times(\mathrm{M}+1) /(\mathrm{N}+1)$

* : Please set the fvco range from 20 MHz to 134 MHz .

Output frequency (fout*) $=$ Input frequency $($ fin $) \times(\mathrm{M}+1) /((\mathrm{N}+1) \times \mathrm{K})$
*: Please set the fout range from 1 MHz to 134 MHz .
(Setting example)
fin $=27 \mathrm{MHz}$, fout $=60 \mathrm{MHz}$
M divider parameter : 1999 (= 7СFн) , N divider parameter : 899 ($=383 \mathrm{H}$) , K divider parameter : 1 ($=01 \mathrm{H}$) $27 \times(1999+1) /((899+1) \times 1)=60[\mathrm{MHz}](f v c o=27 \times(1999+1) /(899+1)=60[M H z])$
Note: Recommended value of each divider parameter is different at PLL mode and normal mode. Please refer and confirm the recommended value by our support tool. Contact the sales representatives for details on the support tools.

- Modulation frequency setting

Modulation frequency can be set by writing the internal memory to L divider parameter.
The average of modulation frequency can be calculated following expressions :

$$
\frac{\text { Input frequency }}{266 \times(\mathrm{L}+1)} \quad(\mathrm{L}=1,2,3,4,5,6,7)
$$

Note: Please refer and confirm the recommended value by our support tool. Contact the sales representatives for details on the support tools.

- Modulation rate setting

Modulation rate can be selectable from no modulation, $\pm 0.25 \%, \pm 0.50 \%, \pm 0.75 \%, \pm 1.00 \%, \pm 1.25 \%, \pm 1.50 \%$, $\pm 1.75 \%$.

bit44	bit43	bit42	Modulation rate setting
0	0	0	No modulation
0	0	1	$\pm 0.25 \%$
0	1	0	$\pm 0.50 \%$
0	1	1	$\pm 0.75 \%$
1	0	0	$\pm 1.00 \%$
1	0	1	$\pm 1.25 \%$
1	1	0	$\pm 1.50 \%$
1	1	1	$\pm 1.75 \%$

MB88R157

- Charge Pump setting, VCO gain setting

Note: Please refer and confirm the recommended value by our support tool. Contact the sales representatives for details on the support tools.

- OUT pin setting

OUT pin situation can be selected at OE pin "L" input.

bit45	OUT pin situation
0	"L" output
1	"Hi-Z" output

Note : Internal oscillation circuit has been operating when OE pin is input " L ".

- Output drive ability setting

Output drive ability of OUT pin can be selected.

bit46	OUT pin drive ability
0	Small (loL $=3 \mathrm{~mA})$
1	Large (loL $=7 \mathrm{~mA})$

- Source clock dividing setting

Source clock to K divider can be selected.
When "input frequency" is selected, source clock or its divided clock can be output. But modulation setting is not enable.

bit47	Source clock to K divider
0	VCO output clock
1	Input clock (Source clock)

Note: When "input frequency " is selected, internal oscillation circuit has been operating. About M and N divider parameter setting, please refer and confirm the recommended value by our support tool. Contact the sales representatives for details on the support tools.

- PLL mode setting

It can be selected normal mode and PLL mode by bit48 setting in the memory map. PLL mode is good jitter specification at non modulation. When the mode is selected, it becomes non modulation setting, the resistance and capacitance value of the loop filter is changed, so oscillation specification is change.

bit48	Operation mode
0	SSCG mode
1	PLL mode

Note: When PLL mode is selected, recommended value of M, N, K divider is changed. Please refer and confirm the recommended value by our support tool. Contact the sales representatives for details on the support tools.

MB88R157

MEMORY ACCESS

Read/write to the built-in non-volatile memory is enabled through the serial communication with the OE pin functioned as the I/O pin.
Set for the communication protocol. Also, set the transfer speed as $1 / 512$ of the source clock.

- Asynchronous transfer mode of UART
- LSB fast
- NRZ format
- Bit length: 8 bits
- No parity
- Stop bit: 1 bit

- Transfer sequence

OUT

1. Set the PEX pin to "L" more than 30 ms after this device is turned on, input a command from the OE pin set MB88R157 into memory access mode.(When a command is input by serial communication, data of "FDh" is sent.)
Note: When memory access is available, source clock can be output from the OUT pin.
Fix the PEX pin to "H", or fix the OE pin to "H" or "L" until command input.
2. At writing, " 00 H " is sent serially, and at reading, " 40 H " is sent.

Note: This device needs to stop outputting to the OE pin of the transferred device within $15 \mu \mathrm{~s}$ after transferring " 40 H " serially at the reading state and place it to a receivable state.
3. At writing : Send 8-byte data blocks from the lower address of the memory map in turn with more than $100 \mu \mathrm{~s}$ between each data block.
At read : This device outputs 8 -byte data blocks from the lower address of the memory map in turn.
4. Repeat the operations of 2 . and 3 . for re-writing and re-reading.

To operate the device using the written data, turn on the power again.
However, the oscillation stabilization capacitance is set simultaneously with writing to memory. When the oscillation stabilization capacitance and the crystal oscillation frequency are adjusted, change the oscillation stabilization capacitance value so that the clock output from the OUT pin is set to the desired frequency.

MB88R157

- Interconnection example

* 1 : Set the UO pin to Hi-z to read from memory, as the UO pin serves for serial I/O.

UO : UART serial data output pin
UI : UART serial data input pin
UCK : UART serial synchronous clock I/O pin
*2 : Because the transfer rate is set to $1 / 512$ of source oscillation in MB88R157, the clock generator is used as shown in above figure, so that the transfer speed is set to $1 / 512$ of source clock in MB88R157. However, the clock generator is not needed if the transfer speed can be maintained from an internal clock of the baud rate generator of the UART.

MB88R157

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating		Unit
		Min	Max	
Power supply voltage*	VDD	-0.5	+ 4.0	V
Input voltage*	V_{1}	Vss -0.5	$\mathrm{V}_{\mathrm{DD}}+0.5$	V
Output voltage*	Vo	Vss -0.5	$V_{\text {do }}+0.5$	V
Storage temperature	Tst	- 55	+ 125	${ }^{\circ} \mathrm{C}$
Operation junction temperature	TJ	-40	+ 125	${ }^{\circ} \mathrm{C}$
Output current	Io	- 14	+ 14	mA
Overshoot	Viover	-	VDD +1.0 (tover $\leq 50 \mathrm{~ns}$)	V
Undershoot	Viunder	Vss - 1.0 (tunder $\leq 50 \mathrm{~ns}$)	-	V

*: This parameter is based on $\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}$
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

Overshoot/Undershoot

RECOMMENDED OPERATING CONDITONS

$(\mathrm{V}$ ss $=0.0 \mathrm{~V}$)							
Parameter	Symbol	Pin name	Conditions	Value			Unit
				Min	Typ	Max	
Power supply voltage	V ${ }_{\text {d }}$	VDD	-	3.0	3.3	3.6	V
"H" level input voltage	V_{H}	$\begin{gathered} \text { OE, PEX, } \\ \text { XIN } \end{gathered}$	Input slew rate for XIN pin only $3 \mathrm{~V} / \mathrm{ns}$	VDD $\times 0.80$	-	$V_{\text {DD }}+0.3$	V
"L" level input voltage	VIL			Vss	-	$V_{D D} \times 0.20$	V
Input clock duty cycle	tocı	XIN	10 MHz to 50 MHz	40	50	60	\%
Operating temperature	Ta	-	Write to the internal non-volatile memory Operating test after the re-flow	+20	-	+ 50	${ }^{\circ} \mathrm{C}$
			Other than those above	-20	-	+ 85	${ }^{\circ} \mathrm{C}$

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

Input clock duty cycle (tocı $=\mathrm{t}_{\mathrm{o}} / \mathrm{ta}$)

XIN

MB88R157

ELECTRICAL CHARACTERISTICS

- DC Characteristics

$$
\left(\mathrm{T}_{\mathrm{a}}=-20^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0.0 \mathrm{~V}\right)
$$

Parameter	Symbol	Pin name	Conditions	Value			Unit
				Min	Typ	Max	
Power supply current	Icc	VDD	24 MHz input (Crystal), 24 MHz internal oscillation, 24 MHz output no load capacitance	-	5.5	7.0	mA
	Icc2		50 MHz input clock, 134 MHz internal oscillation, 134 MHz output 15 pF load capacitance	-	-	26	mA
Output voltage	Vон	OUT	"H" level output Driving voltage (low) $\mathrm{l} \mathbf{\mathrm { oH }}=-3 \mathrm{~mA}$, Driving voltage (high) Іон $=-7 \mathrm{~mA}$	$\begin{gathered} \mathrm{VDD}_{\mathrm{DD}} \\ 0.5 \end{gathered}$	-	VDD	V
	VoL		"L" level output Driving voltage (low) loL $=3 \mathrm{~mA}$, Driving voltage (high) loL $=7 \mathrm{~mA}$	Vss	-	0.4	V
Pull-up resistance	Rpu	OE, PEX	-	25	50	200	k Ω
Load capacitance	Cin	$\begin{aligned} & \text { XIN, OE, } \\ & \text { PEX } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{a}}=+25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{1}=0.0 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	-	-	16	pF

- AC characteristics (1)

$$
\left(\mathrm{T}_{\mathrm{a}}=-20^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \mathrm{VDD}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V} \text { Ss }=0.0 \mathrm{~V}\right)
$$

Parameter	Symbol	Pin name	Conditions		Value			Unit
					Min	Typ	Max	
Crystal oscillation frequency	f_{x}	$\begin{gathered} \text { XIN, } \\ \text { XOUT } \end{gathered}$	Fundamental oscillation		10	-	40	MHz
Input frequency	fin	XIN	-		10	-	40	MHz
Internal oscillation frequency	fvco	-	-		20	-	134	MHz
Output frequency	fout	OUT	Operation in PLL mode and at non modulation		1	-	134	MHz
			Operation at modulation		16	-	134	
Output slewing rate	SR		0.4 V to 2.4 V load capacitan Driving ability at 1 MHz to 60 put Driving ability at 60 MHz to output	ce 15 pF small: MHz outlarge: 134 MHz	0.3	-	-	V/ns
Output impedance	Zo		Driving ability	small	-	75	-	Ω
			Driving ability	large	-	38	-	
Output clock duty cycle	tocc		VCO clock ou	tput	45	-	55	\%
	tocr		At reference clock output		tocl-10*	-	toci+10*	
Modulation frequency (number of clocks par one modulation)	$\begin{aligned} & \text { fмод } \\ & \text { (пмоо) } \end{aligned}$		-		$\left\lvert\, \begin{gathered} \mathrm{fin} /(224 \times \\ (\mathrm{L}+1)) \\ (224 \times(\mathrm{L}+1)) \end{gathered}\right.$	$\begin{gathered} \text { fin/ (266× } \\ (\mathrm{L}+1)) \\ (266 \times(\mathrm{L}+1)) \end{gathered}$	$\left\|\begin{array}{c} \operatorname{fin} /(308 \times \\ (L+1)) \\ (308 \times(L+1)) \end{array}\right\|$	$\begin{gathered} \mathrm{kHz} \\ \text { (clks) } \end{gathered}$
Power supply time	tr	VDD	0.2 V to 3.0 V		0.05	-	20	ms
Lock-up time	tLk	OUT	-		-	270/fin +5	270/fin+10	ms
Cycle-cycle jitter	tuc		No load capacitance, $\mathrm{T}_{\mathrm{a}}=+25^{\circ} \mathrm{C}$ $V_{D D}=3.3 \mathrm{~V}$	$\begin{aligned} & \text { fout } \geq \\ & 2 \mathrm{MHz} \end{aligned}$	-	-	100	$\begin{aligned} & \text { ps- } \\ & \text { rms } \end{aligned}$
				fout< 2 MHz	-	-	150	
Output stop time from OE exit.	tod		$\mathrm{ta}_{\text {a }}=1 /$ fout		-	-	$2 \times \mathrm{ta}_{\text {a }}$	ns
Output start time after OE entry	toe		$\mathrm{ta}_{\text {a }}=1 /$ fout		-	-	$2 \times \mathrm{ta}$	ns

*: The duty cycle value (tocr) of the source clock output depends on the duty cycle of input clock tocl. Either case of A or B will be guaranteed.
A. Resonator
: Oscillating with the resonator connected with XIN, XOUT
B. External clock input : The input level is Full - swing (Vss - VDD).

DEFINITION of MODULATION FREQUENCY and NUMBER of INPUT CLOCKS PER MODULATION

This product contains the modulation period to realize the efficient EMI reduction.
The modulation period $\mathrm{F}_{\text {mod }}$ depends on the input frequency and changes between $\mathrm{Fmod}_{\text {(}}$ (Min) and Fmod (Max). Furthermore, the typical value of the electrical characteristics is equivalent to the average value of the modulation period Fмод.

TURNING ON POWER SUPPLY AND LOCK-UP TIME

OUTPUT CLOCK DUTY CYCLE ($\mathbf{t o c c}=\mathbf{t}_{\mathrm{b}} / \mathrm{t}_{\mathrm{a}}$)

INPUT FREQUENCY ($\mathrm{fin}_{\mathrm{in}}=\mathbf{1} / \mathrm{t}_{\mathrm{in}}$)

OUTPUT SLEW RATE (SR)

Note: $\mathrm{SR}=(2.4-0.4) / \mathrm{tr}_{\mathrm{r}}, \mathrm{SR}=(2.4-0.4) / \mathrm{t}_{\mathrm{t}}$

CYCLE-CYCLE JITTER ($\left.\mathbf{t}_{\mathrm{sc}}=\left|\mathrm{t}_{\mathrm{n}}-\mathbf{t}_{\mathrm{n}+1}\right|\right)$

MB88R157

OUTPUT TIMING AT OE CHANGE

- Output stop time from OE exit

- Output start time after OE entry

MB88R157

- AC characteristics (2) (Serial interface timing)

Parameter	Symbol	Pin name	Conditions	Value			Unit
				Min	Typ	Max	
Cycle time of transfer and receiver	tscyc	OE	-	$\begin{gathered} (\operatorname{tin} \times 512) \\ \times 0.93 \end{gathered}$	tin $\times 512$	$\begin{gathered} (\operatorname{tin} \times 512) \\ \times 1.025 \end{gathered}$	$\mu \mathrm{S}$
Read operation Read command receive \rightarrow OE in read data output	troo		-	15	-	-	$\mu \mathrm{S}$
Read operation Final read data output \rightarrow OE pin input mode exchanged	totı		-	-	-	65	$\mu \mathrm{s}$

- Command / write data transfer

- Read operation

INTERCONNECTION CIRCUIT EXAMPLE

C1 : Capacitor of $10 \mu \mathrm{~F}$ or higher
C2 : Capacitor of about $0.01 \mu \mathrm{~F}$ (connect a capacitor of good high frequency property (ex. laminated ceramic capacitor) to close to this device)
R1 : Impedance matching resistor for board pattern

CRYSTAL OSCILLATION CIRCUIT

The figure below shows the connection example about general resonator. The oscillation circuit has the built-in feedback resistor ($500 \mathrm{k} \Omega$) and oscillation stabilization capacitance (C1 and C2).
C1 and C2 value can be changeable by setting bit49 to bit55 and bit56 to bit62 in memory. It is necessary to set suitable parameter for each resonator.
To use an external clock signal (without using the resonator), input the clock signal to the XIN pin with the XOUT pin connected to nothing.

>	Fundamental resonator

MB88R157

ORDERING INFORMATION

Part number	Package
MB88R157PNF-G-JNE1	8-pin plastic SOP (FPT-8P-M02)
MB88R157PNF-G-JN-ERE1	

MB88R157

PACKAGE DIMENSION

8-pin plastic SOP	Lead pitch	1.27 mm
Package width \times package length	$3.9 \times 5.05 \mathrm{~mm}$	
	Geallwing shape	Plastic mold
	Wounting height	1.75 mm MAX
		0.06 g

8-pin plastic SOP
(FPT-8P-M02)

\square

Note 1) *1: These dimensions include resin protrusion.
Note 2) *2 : These dimensions do not include resin protrusion. Note 3) Pins width and pins thickness include plating thickness. Note 4) Pins width do not include tie bar cutting remainder.
$\rightarrow \int \frac{0.22_{-0.07}^{+0.03}}{\left(.009_{-.003}^{.001}\right)}$

Dimensions in mm (inches) Note: The values in parentheses are reference values.

Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/package/en-search/

MEMO

FUJITSU MICROELECTRONICS LIMITED

Shinjuku Dai-Ichi Seimei Bldg., 7-1, Nishishinjuku 2-chome,
Shinjuku-ku, Tokyo 163-0722, Japan
Tel: +81-3-5322-3329
http://jp.fujitsu.com/fml/en/
For further information please contact:

North and South America

FUJITSU MICROELECTRONICS AMERICA, INC.
1250 E. Arques Avenue, M/S 333
Sunnyvale, CA 94085-5401, U.S.A.
Tel: +1-408-737-5600 Fax: +1-408-737-5999
http://www.fma.fujitsu.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH
Pittlerstrasse 47, 63225 Langen, Germany
Tel: +49-6103-690-0 Fax: +49-6103-690-122
http://emea.fujitsu.com/microelectronics/

Korea

FUJITSU MICROELECTRONICS KOREA LTD.
206 Kosmo Tower Building, 1002 Daechi-Dong, Gangnam-Gu, Seoul 135-280, Republic of Korea
Tel: +82-2-3484-7100 Fax: +82-2-3484-7111
http://kr.fujitsu.com/fmk/

Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE. LTD. 151 Lorong Chuan, \#05-08 New Tech Park 556741 Singapore
Tel : +65-6281-0770 Fax : +65-6281-0220
http://www.fmal.fujitsu.com/

FUJITSU MICROELECTRONICS SHANGHAI CO., LTD.
Rm. 3102, Bund Center, No. 222 Yan An Road (E), Shanghai 200002, China
Tel : +86-21-6146-3688 Fax : +86-21-6335-1605
http://cn.fujitsu.com/fmc/
FUJITSU MICROELECTRONICS PACIFIC ASIA LTD.
10/F., World Commerce Centre, 11 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel : +852-2377-0226 Fax : +852-2376-3269
http://cn.fujitsu.com/fmc/en/

Specifications are subject to change without notice. For further information please contact each office.

All Rights Reserved.

The contents of this document are subject to change without notice.
Customers are advised to consult with sales representatives before ordering.
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.
FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information.
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.
The company names and brand names herein are the trademarks or registered trademarks of their respective owners.
Edited: Sales Promotion Department

