High-performance Video Signal Switchers

# Single Circuit Video Signal Switcher 

## BA7654F, BA7653AF/AFV ,BA7652AF

## -Description

The BA7654F, BA7653AF/AFV, or BA7652AF is a video signal (display signal) switch containing one 2-input or 3-input circuit.
Each of the input pin formats is "sync-tip clamp input" that matches the synchronous tips of video signals (display signals) to the same potential. The inputs have an high input impedance configuration, in which they can utilize a small clamp capacitor ( $0.01 \mu \mathrm{~F}(\mathrm{FZ})$ ceramic capacitor is recommended).

## -Features

1) Low value clamp capacitance can be used (Min. 3000 pF Recommended $0.01 \mu \mathrm{~F}$ (FZ) ceramic capacitor)
2) Low voltage operation is possible (Operating range 4.0~7.0V)
3) Superimposed can be applied since switching speed of SW is fast and there is little switching noise (Typ. 70ns)
4) Low power consumption (Typ. 25mW when Vcc=5V)
5) Large dynamic range (Typ. 3.1 $\mathrm{V}_{\mathrm{P}-\mathrm{p}}$ when $\mathrm{Vcc}=5 \mathrm{~V}$ )
6) Good frequency characteristics (Typ. 10 MHz 0 dB )
7) Low interchannel crosstalk (Typ. -70 dB )
8) Voltage can be applied to the CTL pin without a VCC voltage.
9) Built-in mute function (BA7652AF)

## - Applications

VCR, TV, and other applications that use display signals.

- Product lineup

| Part No. | Input type | Mute | Supply voltage(V) |
| :--- | :---: | :---: | :---: |
| BA7654F | 2 in 1 Circuit | - | $4.0 \sim 7.0$ |
| BA7653AF/AFV | 3 in 1 Circuit | - |  |
| BA7652AF | 3 in 1 Circuit | $\bigcirc$ |  |


| Parameter | Symbol | Limits |  |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | BA7654F | BA7653AF | BA7653AFV | BA7652AF |  |
| Supply voltage | Vcc | 9 |  |  |  | V |
| Power dissipation | Pd | 500*1 | $500^{1}$ | $350{ }^{2}$ | 500*1 | mW |
| Operating temperature | Topr | $-25 \sim+75$ | $-30 \sim+80$ | $-30 \sim+80$ | $-30 \sim+80$ | ${ }^{\circ} \mathrm{C}$ |
| Storage temperature | Tstg | -55~+125 |  |  |  | ${ }^{\circ} \mathrm{C}$ |

${ }^{* 1}$ Reduce by $5.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$, when mounted on a $50 \mathrm{~mm} \times 50 \mathrm{~mm}$ PCB board. (BA7654F, BA7653AF, BA7652AF)
$*^{2}$ Reduce by $3.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$, when mounted on a $50 \mathrm{~mm} \times 50 \mathrm{~mm}$ PCB board.(BA7653AFV)

- Operating range $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

| Parameter | Symbol | Limits | Unit |
| :---: | :---: | :---: | :---: |
| Supply voltage | Vcc | $4.0 \sim 7.0$ | V |

Note: This IC is not designed to be radiation-resistant.

- Electrical characteristics (Unless otherwise noted, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V}$ )

| Parameter | Symbol | Min. | Typ. | Max. | Unit | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Circuit current | Icc | 2.7 | 5.0 | 8.2 | mA |  |
| Maximum output level | Vom | 2.6 | 3.1 | - | $V_{\text {P-P }}$ | $\mathrm{f}=1 \mathrm{kHz}, \mathrm{THD}=1.0 \%$ |
| Voltage gain | Gv | -0.5 | 0 | +0.5 | dB | $\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\text {IN }}=1.0 \mathrm{~V}_{\text {P-P }}$ |
| Inter channel crosstalk | Cta | - | -70 | - | dB | $\mathrm{f}=4.43 \mathrm{MHz}, \mathrm{V}_{\text {IN }}=1.0 \mathrm{~V}_{\text {P-P }}$ |
| Frequency characteristics | Cf | -3.0 | 0 | +1.0 | dB | $\mathrm{f}=10 \mathrm{MHz} / 1 \mathrm{MHz}, \mathrm{V}_{\text {IN }}=1.0 \mathrm{~V}_{\text {P-P }}$ |
| CTL switching voltage | Vth L | - | - | 1.0 | V | $\mathrm{V}_{\mathrm{TH}}=(\mathrm{Vcc}-0.75) \times 0.44$ |
|  | VTH H | 2.5 | - | - |  |  |

- Guaranteed design parameters (Unless otherwise noted, $\quad \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V}$ )

| Parameter | Symbol | Min. | Typ. | Max. | Unit | Conditions |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Differential phase | DG | - | 0 | 0.5 | $\%$ | $\mathrm{~V}_{\mathbb{I}}=1.0 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$, standard staircase signal |
| Differential gain | DP | - | 0.5 | 1.0 | deg | $\mathrm{V}_{\mathbb{I N}}=1.0 \mathrm{~V}_{\mathrm{P}-\mathrm{P},}$, standard staircase signal |

## - Block diagram



Fig. 1 BA7654F


Fig. 2 BA7653AF/AFV


Fig. 3 BA7652AF
-Control Pin Settings

| BA7654F |  |
| :---: | :---: |
| CTL | OUT |
| L | IN1 |
| H | IN2 |


| BA7653AF/AFV |  |  |
| :---: | :---: | :---: |
| CTLa | CTLb | OUT |
| L | L | IN1 |
| H | L | IN2 |
| L | H | IN3 |
| H | H | IN3 |


| BA7652AF |  |  |
| :---: | :---: | :---: |
| CTLa | CTLb | OUT |
| L | L | IN1 |
| H | L | IN2 |
| L | H | IN3 |
| H | H | MUTE |

-Pin descriptions $1 / 2$ (BA7654F)

| BA7654F |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Pin No. | Pin name | DC voltage (Vcc=5V) | Input/output impedance | Equivalent circuit |
| 1 <br> (3) | IN1 <br> (IN2) | 1.65 V | $10 \mathrm{M} \Omega$ or more |  |
| 2 | CTL | - | - |  |
| 4 <br> (8) | GND | OV | - |  |
| 5 | N.C. | open | open | - |
| 6 | Vcc | 5 V | - |  |
| 7 | OUT | 0.95 V | $26 \Omega$ |  |

-Pin descriptions $2 / 2$ (BA7653AF/53AFV/52AF)

| BA7653AF/53AFV/52AF |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Pin No. | Pin name | DC voltage (Vcc=5V) | Input/output impedance | Equivalent circuit |
| 1 <br> (3) <br> (5) | IN1 <br> (IN2) <br> (IN3) | 1.65 V | $10 \mathrm{M} \Omega$ or more |  |
| 2 | CTLa | - | - |  |
| 4 | CTLb | - | - |  |
| 6 | Vcc | 5.0 V | - |  |
| 7 | OUT | 0.95 V | $26 \Omega$ |  |
| 8 | GND | OV | - |  |

-Application circuit 1/2 (BA7654F)


Fig. 4
(When superimpossion is used)


Fig. 5

## -Cautions on use

1. Numbers and data in entries are representative design values and are not guaranteed values of the items.
2. Although ROHM is confident that the example application circuit reflects the best possible recommendations, be sure to verify circuit characteristics for your particular application. Modification of constants for other externally connected circuits may cause variations in both static and transient characteristics for external components as well as this Rohm IC. Allow for sufficient margins when determining circuit constants.
3. Absolute maximum ratings

Use of the IC in excess of absolute maximum ratings, such as the applied voltage or operating temperature range (Topr), may result in IC damage. Assumptions should not be made regarding the state of the IC (short mode or open mode) when such damage is suffered. A physical safety measure, such as a fuse, should be implemented when using the IC at times where the absolute maximum ratings may be exceeded.
4. GND potential

Ensure a minimum GND pin potential in all operating conditions. Make sure that no pins are at a voltage below the GND at any time, regardless of whether it is a transient signal or not.
5. Thermal design

Perform thermal design, in which there are adequate margins, by taking into account the permissible dissipation (Pd) in actual states of use.
6. Short circuit between terminals and erroneous mounting

Pay attention to the assembly direction of the ICs. Wrong mounting direction or shorts between terminals, GND, or other components on the circuits, can damage the IC.
7. Operation in strong electromagnetic field

Using the ICs in a strong electromagnetic field can cause operation malfunction.
8. For clamp operation stability

Set the output impedance of the stage before a BA7654AF input pin no more than $1 \mathrm{k} \Omega$.
9. An input clamp capacitor will cause delay in operation at power on. Therefore, it is recommended to use a clamp capacitor no larger than $0.1 \mu \mathrm{~F}$ ( $\mathrm{A} 0.01 \mu \mathrm{~F}$ ( FZ ) ceramic capacitor is recommended).
10. CTL pin is in indeterminate status when left Open. Set it at "H" or "L" level.
11. For superimposed, a 1.7 v DC voltage should be applied directly to an input pin.
-Application circuit 2/2 (BA7653AF/53AFV/52AF)


Fig. 6
(When superimpossion is used) BA7653AF/53AFV/52AF


Fig. 7

## -Cautions on use

1. Numbers and data in entries are representative design values and are not guaranteed values of the items.
2. Although ROHM is confident that the example application circuit reflects the best possible recommendations, be sure to verify circuit characteristics for your particular application. Modification of constants for other externally connected circuits may cause variations in both static and transient characteristics for external components as well as this Rohm IC. Allow for sufficient margins when determining circuit constants.
3. Absolute maximum ratings

Use of the IC in excess of absolute maximum ratings, such as the applied voltage or operating temperature range (Topr), may result in IC damage. Assumptions should not be made regarding the state of the IC (short mode or open mode) when such damage is suffered. A physical safety measure, such as a fuse, should be implemented when using the IC at times where the absolute maximum ratings may be exceeded.
4. GND potential

Ensure a minimum GND pin potential in all operating conditions. Make sure that no pins are at a voltage below the GND at any time, regardless of whether it is a transient signal or not.
5. Thermal design

Perform thermal design, in which there are adequate margins, by taking into account the permissible dissipation (Pd) in actual states of use.
6. Short circuit between terminals and erroneous mounting

Pay attention to the assembly direction of the ICs. Wrong mounting direction or shorts between terminals, GND, or other components on the circuits, can damage the IC.
7. Operation in strong electromagnetic field

Using the ICs in a strong electromagnetic field can cause operation malfunction.
8. For clamp operation stability

Set the output impedance of the stage before a BA7653AF/53AFV/52AF input pin no more than $1 \mathrm{k} \Omega$.
9. An input clamp capacitor will cause delay in operation at power on. Therefore, it is recommended to use a clamp capacitor no larger than $0.1 \mu \mathrm{~F}$ ( $\mathrm{A} 0.01 \mu \mathrm{~F}$ ( $\mathrm{FZ)}$ ) ceramic capacitor is recommended).
10. The BA7653AF/53AFV/52AF is a 3 -input, 1-output switch. If it is used as a 2 -input, 1 -output switch, by leaving one input Open and unused, the Open input pin will oscillate. However, this does not affect other pins and is not particularly a problem for operation. If necessary, connect the input pin to GND via a capacitor or connect the input pin directly to $\mathrm{V}_{\mathrm{cc}}$ to stop oscillation.
11. CTL pin is in indeterminate status when left Open. Set it at "H" or "L" level.
12. For superimposed, a 1.7 v DC voltage should be applied directly to an input pin.

## - Selection of order type



SOP8


| <Tape and Reel information>  <br> Tape Embossed carrier tape <br> Quantity 2500 pcs <br> Direction <br> of feed E2 <br> (The direction is the 1pin of product is at the upper left when you hold <br> reel on the left hand and you pull out the tape on the right hand) |
| :--- | :--- |



SSOP-B8



```
The contents described herein are correct as of August, 2008
The contents described herein are subject to change without notice. For updates of the latest information, please contact and confirm with ROHM CO ,LTD.
- Any part of this application note must not be duplicated or copied without our permission.
Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding
upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams and information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any
warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such
infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, implied right or license to practice or commercially exploit any intellectual property rights or other
proprietary rights owned or controlled by ROHM CO., LTD. is granted to any such buyer
The products described herein utilize silicon as the main material.
The products described herein are not designed to be X ray proof.
```

The products listed in this catalog are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

|  | Contact us for further information about the products. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | San Diego | TEL: +1-858-625-3630 | FAX: +1-858-625-3670 | Tianjin | TEL: +86-22-23029181 | FAX: +86-22-23029183 |
|  | Atlanta | TEL: +1-770-754-5972 | FAX : +1-770-754-0691 | Shanghai | TEL: +86-21-6279-2727 | FAX: +86-21-6247-2066 |
|  | Boston | TEL: +1-978-371-0382 | FAX: +1-928-438-7164 | Hangzhou | TEL: +86-571-87658072 | FAX: +86-571-87658071 |
|  | Chicago | TEL: +1-847-368-1006 | FAX : +1-847-368-1008 | Nanjing | TEL: +86-25-8689-0015 | FAX: +86-25-8689-0393 |
|  | Dallas | TEL: +1-469-287-5366 | FAX: +1-469-362-7973 | Ningbo | TEL: +86-574-87654201 | FAX: +86-574-87654208 |
|  | Denver | TEL: +1-303-708-0908 | FAX: +1-303-708-0858 | aingdao | TEL: +86-532-5779-312 | FAX:+86-532-5779-653 |
| Excellence in Electronics | Detroit | TEL: +1 -248-348-9920 | FAX: +1-248-348-9942 | Suzhou | TEL: +86-512-6807-1300 | FAX: +86-512-6807-2300 |
|  | Nashville | TEL: +1-615-620-6700 | FAX: +1-615-620-6702 | Wuxi | TEL: +86-510-82702693 | FAX: +86-510-82702992 |
|  | Mexico | TEL: +52-33-3123-2001 | FAX: +52-33-3123-2002 | Shenzhen | TEL: +86-755-8307-3008 | FAX: +86-755-8307-3003 |
|  | Düsseldorf | TEL: +49-2154-9210 | FAX: +49-2154-921400 | Dongguan | TEL: +86-769-8393-3320 | FAX: +86-769-8398-4140 |
|  | Munich | TEL: +49-8999-216168 | FAX: +49-8999-216176 | Fuzhou | TEL: +86-591-8801-8698 | FAX: +86-591-8801-8690 |
|  | Stuttgart | TEL: +49-711-7272-370 | FAX: +49-711-7272-3720 | Guangzhou | TEL: +86-20-3878-8100 | FAX: +86-20-3825-5965 |
|  | France | TEL: +33-1-5697-3060 | FAX: +33-1-5697-3080 | Huizhou | TEL: +86 -752-205-1054 | FAX: +86-752-205-1059 |
|  | United Kingdom | TEL: +44-1-998-306700 | FAX: +44-1-908-235788 | Xiamen | TEL: +86-592-238-5705 | FAX: +86-592-239-8380 |
|  | Denmark | TEL: +45-3694-4739 | FAX: +45-3694-4789 | zhuhai | TEL: +86-756-3232-480 | FAX: +86-756-3232-460 |
|  | Espoo | TEL: +358-9725-54491 | FAX: +358-9-7255-4499 | Hong Kong | TEL: +852-2-740-6262 | FAX: +852-2-375-8971 |
| ROHM CO., LTD. | Salo | TEL: + $358-2-7332234$ | FAX: $+358-2.7332237$ | Taipei | TEL: +886-2-2500-6956 | FAX: +886-2-2503-2869 |
|  | Oulu | TEL: $+358-8-5372930$ | FAX: $+358-8.5372931$ | Kaohsiung | TEL: +886-7-237-0881 | FAX: $+886-7-238-7332$ |
|  | Barcelona | TEL: + $34-9375-24320$ | FAX: $+34-9375-24410$ | Singapore | TEL: +65-6332-2322 | FAX: +65-6332-5662 |
| 21 Sain Mizosaki-cho, Ukyo-ku, Kyoto615-8585, Japan | Hungary | TEL: +36-1-4719338 | FAX: $+36-1-4719339$ | Philippines | TEL: +63-2-807-6872 | FAX: $+63-2-809-1422$ |
|  | Poland | TEL: +48-22-5757213 | FAX: +48-22-5757001 | Thailand | TEL: +66-2-254-4890 | FAX: +66-2-256-6334 |
|  | Russia | TEL: +7-495-739-41-74 | FAX: +7-495-739-41-74 | Kuala Lumpur | TEL: +60-3-7958-8355 | FAX: $+60-3-7958-8377$ |
| TEL: +81-75-311-2121 FAX:+81-75-315-0172 URL http:// www. rohm. com | Seoul | TEL: +82-2-8182-700 | FAX: +82-2-8182-715 | Penang | TEL: +60-4-2286453 | FAX: +60-4-2286452 |
|  | Masan | TEL: +82-55-240-6234 | FAX: $\mathrm{t} 82-55-240-6236$ | Kyoto | TEL: +81-75-365-1218 | FAX : +81-75-365-1228 |
| Published by <br> KTC LSI Development Headquarters <br> LSI Business Pomotion Group | Dalian | TEL: +86-411-8230-8549 | FAX: $+86-411-8230-8537$ | Yokohama | TEL: +81-45-476-2290 | FAX: +81-45-476-2295 |
|  | Beijing | TEL: +86-10-8525-2483 | FAX: +86-10-8525-2489 |  |  |  |
|  |  |  |  |  | Catalog No. 08 | T298A '08.8 ROHM |

