

- Robust construction allows for IR/VP processes •
- 1500 Vrms Isolation •
- Enhanced Common Mode Attenuation to pass FCC Class B •

Electrical Parameters @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Cut-off Frequency (Typ.)		Insertion Loss (dB Max.)	Return Loss (dB Min.)	Attenuation (dB Min.)		
Lower Band	Upper Band	$4.25-9.75 \mathrm{MHz}$	$4.25-9.75 \mathrm{MHz}$	$@ 1.1 \mathrm{MHz}$	$@ 22 \mathrm{MHz}$	$@ 54 \mathrm{MHz}$
3.5	11.5	-2.2	-8	-60	-35	-50

- Characteristic Filter Impedance : 100Ω -

Input Impedance

With 100Ω load across pins 1 and 2 , please refer to the table below. The magnitude of the input impedance shall be $>10 \Omega$ from $0-30 \mathrm{MHz}$ and shall conform to the following lower-bound mask:

Frequency Range (KHz)	Minimum Impedance $\boldsymbol{\Omega}$	Frequency Range (KHz)	Minimum Impedance $\boldsymbol{\Omega}$
$0<\mathrm{f}<=0.285$	1 M	$1000<\mathrm{f}<=1400$	175
$0.285<\mathrm{f}<=2.85$	100 K	$1400<\mathrm{f}<=2300$	100
$2.85<\mathrm{f}<=28.5$	10 K	$2300<\mathrm{f}<=2850$	50
$28.5<\mathrm{f}<=95$	4.0 K	$2850<\mathrm{f}<=3085$	25
$95<\mathrm{f}<=190$	2.0 K	$3085<\mathrm{f}<=3725$	10
$190<\mathrm{f}<=285$	1.4 K	$3725<\mathrm{f}<=3935$	25
$285<\mathrm{f}<=380$	1.0 K	$3935<\mathrm{f}<=4000$	50
$380<\mathrm{f}<=475$	850	$10000<\mathrm{f}<=10450$	40
$475<\mathrm{f}<=570$	700	$10450<\mathrm{f}<=10925$	25
$570<\mathrm{f}<=665$	600	$10925<\mathrm{f}<=13125$	10
$665<\mathrm{f}<=760$	525	$13125<\mathrm{f}<=14175$	25
$760<\mathrm{f}<=855$	450	$14175<\mathrm{f}<=16800$	50
$855<\mathrm{f}<=950$	400	$16800<\mathrm{f}<=21000$	100
$950<\mathrm{f}<=1000$	350	$21000<\mathrm{f}<=30000$	50

Dimensions

Dim.	(Inches)			(Millimeters)		
	Min.	Max.	Nom.	Min.	Max.	Nom.
A	990	1.01	1.00	25.15	25.65	25.40
B	. 470	. 490	. 480	11.94	12.45	12.19
C	. 250	. 270	. 260	6.35	6.86	6.60
D	---	---	. 700	---	---	17.78
E	010	. 015	. 012	254	. 381	. 305
F	---	---	. 100			2.54
G	590	. 610	600	14.99	15.49	15.24
H	. 016	. 022	. 018	. 406	. 559	. 457
I	. 008	. 012	. 010	. 203	. 305	. 254
J	---	---	. 150	---	---	3.81
K	0°	8°	4°	0°	8°	4°
L	. 025	. 045	. 035	. 635	1.14	. 889
M	---	---	. 030	---	---	. 762
N	---	---	. 100	---	---	2.54
P	---	---	. 090	---	---	2.29
Q	---	---	670	---	---	17.02

