HIGH-VOLTAGE HIGH-CURRENT DARLINGTON TRANSISTOR ARRAYS

The KK2003A are monolithic high-voltage, high-current Darlington transistor arrays. Each consists of seven n-p-n Darlington pairs that feature high-voltage outputs with commoncathode clamp diodes for switching inductive loads. The collectorcurrent rating of a single Darlington pair is 500 mA. The Darlington pairs may be paralleled for higher current capability. Applications include relay drivers, hammer drivers, lamp drivers, display drivers (LED and gas discharge), line drivers, and logic buffers.

The KK2003A has a 2.7-k series base resistor for each Darlington pair for operation directly with TTL or 5-V CMOS devices.

- 500-mA Rated Collector Current (Single Output)
- High-Voltage Outputs . . . 50 V
- Output Clamp Diodes
- Inputs Compatible With Various Types of Logic
- Relay Driver Applications

LOGIC SYSBOL

KK2003A

SCHEMATICS (each Darlington Pair)

All resistor values shown are nominal.

ILN2003A:
$$R_B = 2.7 \text{ kW}$$

LOGIC DIAGRAM

Absolute maximum ra	atings at 25°C free-a	ir temperature	(unless otherwise ne	oted)
---------------------	-----------------------	----------------	----------------------	-------

50 V
30 V Peak
500 mA
500 mA
-2.5 A
See Dissipation Rating Table
-20° C to 85° C
–65°C to 150°C
260°C

NOTE 1: All voltage values are with respect to the emitter/substrate terminal E, unless otherwise noted.

DISSIPATION RATING TABLE					
PACKAGE	T _A = 25℃ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 85℃ POWER RATING		
D	950 mW	7.6 mW/⁰C	494 mW		
Ν	1150 mW	9.2 mW/ºC	598 mW		

Electrical characteristics, TA = 25°C (unless otherwise noted)

PARAMETER		TEST TEST CON			ILN2003A				
		FIGURE	TEST CONDITIONS		MIN	TYP	MAX	UNIT	
				I _C = 125 mA					
				I _C = 200 mA			2.4		
V	On-state input voltage	6	V = 2 V	I _C = 250 mA			2.7	v	
VI(0N)	Off-state input voltage	0	VCE - 2 V	I _C = 275 mA					
				I _C = 300 mA			3		
				I _C = 350 mA					
			Ij = 250 μA,	I _C = 100 mA		0.9	1.1		
V _{CE(sat)}	Collector-emitter	5	I _I = 350 μA,	I _C = 200 mA		1	1.3	v	
	Second to Auge		Ij = 500 μA,	I _C = 350 mA		1.2	1.6		
		1	V _{CE} = 50 V,	lj = 0			50		
ICEX	Collector cutoff current	2	2 VCE = 50 TA = 70°C	V _{CE} = 50 V,	l _l = 0			100	μA
				T _A = 70°C	VI = 1 V				
VF	Clamp forward voltage	8	I _F = 350 mA			1.7	2	v	
l(off)	Off-state Input current	3	V _{CE} = 50 V, T _A = 70°C	I _C = 500 μA,	50	65		μA	
lj input			V _I = 3.85 V			0.93	1.35		
	Input current	4	4	Vj = 5 V					mA
			Vj = 12 V						
	Clamp reverse current	7	V _R = 50 V				50		
R			V _R = 50 V,	T _A = 70°C			100	μΑ	
CI	Input capacitance		V _I = 0,	1 = 1 MHz		15	25	pF	

switching characteristics, T_A = 25°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output	Soo Elguro 9		0.25	1	μS
t _{PHL}	Propagation delay time, high-to-low-level output	dee rigule a		0.25	1	μS
Vон	High-level output voltage after switching	V_S = 50 V, $I_O \approx$ 300 mA, See Figure 10	VS-20			mV

PARAMETER MEASUREMENT INFORMATION

Figure 1. I_{CEX} Test Circuit

Figure 2. I_{CEX} Test Circuit

Figure 3. Il(off) Test Circuit

Figure 4. I_I Test Circuit

Figure 6. VI(on) Test Circuit

Figure 5. hFE, VCE(sat) Test Circuit

Figure 8. V_F Test Circuit

VOLTAGE WAVEFORMS

Figure 9. Propagation Delay-Time Waveforms

NOTES: A. The pulse generator has the following characteristics: PRR = 12.5 kHz, $Z_0 = 50$. B. C_L includes probe and jig capacitance. C. $V_{IH} = 3 V;$

Figure 10. Latch-Up Test Circuit and Voltage Waveforms

TYPICAL CHARACTERISTICS

COLLECTOR-EMITTER COLLECTOR-SATURATION VOLTAGE **EMITTER** vs SATURATION VOLTAGE COLLECTOR CURRENT vs (ONE DARLINGTON) TOTAL COLLECTOR CURRENT . 2.5 2.5 V_{CE}(sat) - Collector-Emitter Saturation Voltage - V V_{CE}(sat) - Collector-Emitter Saturation Voltage - V T_A = 25°C TA = 25°C IJ = 250 μA 2 2 Ij = 350 μA l₁ = 250 μA lj = 350 μA 1.5 Ij = 500 μA 1.5 lj = 500 μA 1 1 0.5 0.5 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 IC(tot) - Total Collector Current - mA I_C – Collector Current – mA Figure 12 Figure 11

> COLLECTOR CURRENT vs INPUT CURRENT

Figure 13

D PACKAGE N PACKAGE MAXIMUM COLLECTOR CURRENT MAXIMUM COLLECTOR CURRENT Vs vs **DUTY CYCLE** DUTY CYCLE 600 600 I_C – Maximum Collector Current – mA 500 I_C - MaxImum collector current - mA 500 Ν 2 Ν N = 1 N 400 400 N = 4 N 3 300 300 N = 52 N = 6 N = 7 N = 200 N = 7 200 N = 5 I 100 T_A = 70°C 100 TA = 85°C N = Number of Outputs Conducting Simultaneously N = Number of Outputs Conducting Simultaneous 0 0 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 Duty Cycle – % Duty Cycle – % Figure 14 Figure 15

THERMAL INFORMATION

APPLICATION INFORMATION

Figure 16. TTL to Load

Figure 17. Use of Pullup Resistors to Increase Drive Current

N SUFFIX PLASTIC DIP (MS - 001BB)

A	►
<u>Γ Λ Λ Λ Λ Λ Λ</u>	1
16 9	T f
Þ.	В
<u> </u>	[

NOTES:

 Dimensions "A", "B" do not include mold flash or protrusions. Maximum mold flash or protrusions 0.25 mm (0.010) per side.

	Dimension, mm			
Symbol	MIN	MAX		
Α	18.67	19.69		
В	6.10	7.11		
С		5.33		
D	0.36	0.56		
F	1.14	1.78		
G	2.54			
Η	7.62			
J	0°	10°		
K	2.92	3.81		
L	7.62	8.26		
Μ	0.20	0.36		
Ν	0.38			

D SUFFIX SOIC

(MS - 012AC)

NOTES:

- 1. Dimensions A and B do not include mold flash or protrusion.
- 2. Maximum mold flash or protrusion 0.15 mm (0.006) per side for A; for B 0.25 mm (0.010) per side.

	Dimension, mm			
Symbol	MIN	MAX		
Α	9.80	10.00		
В	3.80	4.00		
С	1.35	1.75		
D	0.33	0.51		
F	0.40 1.27			
G	1.27			
Н	5.	72		
J	0°	8°		
K	0.10	0.25		
М	0.19 0.25			
Р	5.80 6.20			
R	0.25 0.50			