

v01.0801

HMC121

GaAs MMIC VOLTAGE-VARIABLE ATTENUATOR, DC - 15 GHz

Typical Applications

- Base Station Infrustructure
- Portable Wireless, CATV & DBS
- MMDS & Wireless LAN
- Wireless Local Loop
- Military, Space, & Test Equipment

Functional Diagram

Features

Wide Bandwidth: DC - 15 GHz Low Phase Shift vs. Attenuation 30 dB Attenuation Range Simplified Voltage Control

General Description

The HMC121 chip is an absorptive voltage variable attenuator. It features an on-chip reference attenuator for use with an external op-amp to provide simple single voltage attenuation control. The device is ideal in designs where an analog control signal must control RF signal levels over a 30 dB range, such as AGC circuits and in temperature compensation of multiple gain stages. See SMT packaged versions HMC121G8 (hermetic) and HMC121C8 (non hermetic).

Electrical Specifications, $T_A = +25^{\circ} C$, 50 ohm system

Parameter		Тур.	Max.	Units
DC - 8 DC - 15	GHz: GHz:	1.8 2	2.8 3.5	dB dB
Attenuation Range	25	30		dB
Return Loss DC - 8 DC - 15 Switching Characteristics tRISE, tFALL (10/90%	GHz: 13 6 GHz: 10 6 RF):	18 15 3		dB dB ns
tON, tOFF (50% CTL to 10/90% Input Power for 0.25 dB Compression (0.5 - 15 GHz) Min Atten. :	6 RF): Atten: >2 dB:	6 +10 -2		ns dBm dBm
Input Third Order Intercept (0.5 - 15 GHz) (Two - tone Input Power = 8 dBm Each Tone) Atten. :	Atten: >2 dB:	+25 +10		dBm dBm

For price, delivery, and to place orders, please contact Hittite Microwave Corporation: 12 Elizabeth Drive, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Visit us at www.hittite.com, or Email at sales@hittite.com

HMC121

GaAs MMIC VOLTAGE-VARIABLE ATTENUATOR, DC - 15 GHz

6

8

FREQUENCY (GHz)

10

12

14

16

4

Return Loss

Relative Attenuation vs. Control Voltage

2

Relative Attenuation

0

-10

-20

-30

-40

0

ATTENUATION (dB)

For price, delivery, and to place orders, please contact Hittite Microwave Corporation: 12 Elizabeth Drive, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Visit us at www.hittite.com, or Email at sales@hittite.com

GaAs MMIC VOLTAGE-VARIABLE ATTENUATOR, DC - 15 GHz

Absolute Maximum Ratings

RF Input Power	+16 dBm	
Control Voltage Range	+1.0 to -6.0 Vdc	
Storage Temperature	-65 to +150 deg C	
Operating Temperature	-55 to +125 deg C	

v01.0801

Single-Line Control Driver

External op-amp control circuit maintains impedance match while attenuation is varied. Input control ranges from 0 Volts (min. attenuation) to -2.5 Volts (max. attenuation).

Outline Drawing

ALL DIMENSIONS ARE: ± 0.025 (0.001) DIE THICKNESS IS 0.10 (0.004), BACKSIDE IS GROUND BOND PADS ARE 0.10 (0.004) SQUARE ALL DIMENSIONS IN MILLIMETERS (INCHES) BOND PAD METALLIZATION: GOLD BACKSIDE METALLIZATION: GOLD

For price, delivery, and to place orders, please contact Hittite Microwave Corporation: 12 Elizabeth Drive, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Visit us at www.hittite.com, or Email at sales@hittite.com

HMC121

GaAs MMIC VOLTAGE-VARIABLE ATTENUATOR, DC - 15 GHz

Handling Precautions

Follow these precautions to avoid permanent damage.

Cleanliness: Handle the chips in a clean environment. DO NOT attempt to clean the chip using liquid cleaning systems.

Static Sensitivity: Follow ESD precautions to protect against > \pm 250V ESD strikes.

Transients: Suppress instrument and bias supply transients while bias is applied. Use shielded signal and bias cables to minimize inductive pick-up.

General Handling: Handle the chip along the edges with a vacuum collet or with a sharp pair of bent tweezers. The surface of the chip has fragile air bridges and should not be touched with vacuum collet, tweezers, or fingers.

Mounting

The chip is back-metallized and can be die mounted with AuSn eutectic preforms or with electrically conductive epoxy. The mounting surface should be clean and flat.

Eutectic Die Attach:

A 80/20 gold tin preform is recommended with a work surface temperature of 255 deg. C and a tool temperature of 265 deg. C. When hot 90/10 nitrogen/hydrogen gas is applied, tool tip temperature should be 290 deg. C.

DO NOT expose the chip to a temperature greater than 320 deg. C for more than 20 seconds. No more than 3 seconds of scrubbing should be required for attachment.

Epoxy Die Attach:

Apply a minimum amount of epoxy to the mounting surface so that a thin epoxy fillet is observed around the perimeter of the chip once it is placed into position. Cure epoxy per the manufacturer's schedule.

Wire Bonding

Ball or wedge bond with 0.025 mm (1 mil) diameter pure gold wire (DC Bias) or ribbon bond (RF ports) 0.076 mm x 0.013 mm (3 mil x 0.5 mil) size is recommended. Thermosonic wirebonding with a nominal stage temperature of 150 deg. C and a ball bonding force of 40 to 50 grams or wedge bonding force of 18 to 22 grams is recommended. Use the minimum level of ultrasonic energy to achieve reliable wirebonds.

Wirebonds should be started on the chip and terminated on the package or substrate. All bonds should be as short as possible <0.31 mm (12 mils).