54SX Family FPGAs

Leading Edge Performance

- 320 MHz Internal Performance
- 3.7 ns Clock-to-Out (Pin-to-Pin)
- 0.1 ns Input Set-Up
- 0.25 ns Clock Skew

Specifications

- 12,000 to 48,000 System Gates
- Up to 249 User-Programmable I/O Pins
- Up to 1080 Flip-Flops
- 0.35μ CMOS

Features

- 66 MHz PCl
- CPLD and FPGA Integration
- Single Chip Solution
- 100% Resource Utilization with 100% Pin Locking
- 3.3V Operation with 5.0V Input Tolerance
- Very Low Power Consumption
- Deterministic, User-Controllable Timing
- Unique In-System Diagnostic and Debug capability with Silicon Explorer II
- Boundary Scan Testing in Compliance with IEEE Standard 1149.1 (JTAG)
- Secure Programming Technology Prevents Reverse Engineering and Design Theft

SX Product Profile

	A54SX08	A54SX16	A54SX16P	A54SX32
Capacity				
Typical Gates	8,000	16,000	16,000	32,000
System Gates	12,000	24,000	24,000	48,000
Logic Modules	768	1,452	1,452	2,880
Combinatorial Cells	512	924	924	1800
Register Cells (Dedicated Flip-Flops)	256	528	528	1,080
Maximum User I/Os	130	175	175	249
Clocks	3	3	3	3
JTAG	Yes	Yes	Yes	Yes
PCl	-	-	Yes	-
Clock-to-Out	3.7 ns	3.9 ns	4.4 ns	4.6 ns
Input Set-Up (External)	0.8 ns	0.5 ns	0.5 ns	0.1 ns
Speed Grades	Std, -1, -2, -3			
Temperature Grades	C, I, M	C, I, M	C, I, M	C, I, M
Packages (by pin count)				
PLCC	84	-	-	-
PQFP	208	208	208	208
VQFP	100	100	100	-
TQFP	144, 176	176	144, 176	144, 176
PBGA	-	-	-	313, 329
FBGA	144	-	-	-

General Description

Actel's SX family of FPGAs features a sea-of-modules architecture that delivers device performance and integration levels not currently achieved by any other FPGA architecture. SX devices greatly simplify design time, enable dramatic reductions in design costs and power consumption, and further decrease time to market for performance-intensive applications.
Actel's SX architecture features two types of logic modules, the combinatorial cell (C -cell) and the register cell (R -cell), each optimized for fast and efficient mapping of synthesized logic functions. The routing and interconnect resources are in the metal layers above the logic modules, providing optimal use of silicon. This enables the entire floor of the device to be spanned with an uninterrupted grid of fine-grained, synthesis-friendly logic modules (or "sea-of-modules"), which reduces the distance signals have to travel between logic modules. To minimize signal propagation delay, SX devices employ both local and general routing resources. The high-speed local routing resources (DirectConnect and FastConnect) enable very fast local signal propagation that is optimal for fast counters, state
machines, and datapath logic. The general system of segmented routing tracks allows any logic module in the array to be connected to any other logic or I/O module. Within this system, propagation delay is minimized by limiting the number of antifuse interconnect elements to five (90 percent of connections typically use only three antifuses). The unique local and general routing structure featured in SX devices gives fast and predictable performance, allows 100 percent pin-locking with full logic utilization, enables concurrent PCB development, reduces design time, and allows designers to achieve performance goals with minimum effort.
Further complementing SX's flexible routing structure is a hard-wired, constantly loaded clock network that has been tuned to provide fast clock propagation with minimal clock skew. Additionally, the high performance of the internal logic has eliminated the need to embed latches or flip-flops in the I/O cells to achieve fast clock-to-out or fast input set-up times. SX devices have easy-to-use I/O cells that do not require HDL instantiation, facilitating design re-use and reducing design and verification time.

Ordering Information

A54SX16

Product Plan

	Speed Grade*				Application		
	Std	-1	-2	-3	C	${ }^{\dagger}$	M ${ }^{\text {+ }}$
A54SX08 Device							
84-Pin Plastic Leaded Chip Carrier (PLCC)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-
100-Pin Very Thin Plastic Quad Flat Pack (VQFP)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-
144-Pin Thin Quad Flat Pack (TQFP)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-
144-Pin Fine Pitch Ball Grid Array (FBGA)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-
176-Pin Thin Quad Flat Pack (TQFP)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-
208-Pin Plastic Quad Flat Pack (PQFP)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-
A54SX16 Device							
100-Pin Very Thin Plastic Quad Flat Pack (VQFP)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	P
176-Pin Thin Quad Flat Pack (TQFP)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	P
208-Pin Plastic Quad Flat Pack (PQFP)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	P
A54SX16P Device							
100-Pin Very Thin Plastic Quad Flat Pack (VQFP)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-
144-Pin Thin Quad Flat Pack (TQFP)	\checkmark	\checkmark	\checkmark	\checkmark	v	\checkmark	-
176-Pin Thin Quad Flat Pack (TQFP)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-
208-Pin Plastic Quad Flat Pack (PQFP)	\checkmark	\checkmark	\checkmark	\checkmark	v	\checkmark	-
A54SX32 Device							
144-Pin Thin Quad Flat Pack (TQFP)	\checkmark	\checkmark	\checkmark	\checkmark	v	\checkmark	P
176-Pin Thin Quad Flat Pack (TQFP)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	P
208-Pin Plastic Quad Flat Pack (PQFP)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	P
313-Pin Plastic Ball Grid Array (PBGA)	v	\checkmark	\checkmark	\checkmark	v	v	-
329-Pin Plastic Ball Grid Array (PBGA)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

Contact your Actel sales representativefor product availability.

Applications:C $=$ CommercialAvailability: \downarrow			$=$ Available*Speed Grade:-1				Approx. 15\%faster than Standard
			$=$	Planned	-2		Approx. 25\%faster than Standard
M	$=$ Military	-		Not Planned	-3		Approx. 35\%faster than Standard
				\dagger Only Std - Only Std	2 Speed		

Plastic Device Resources

Device User I/Os (including clock buffers) PLCC 84-Pin VQFP 100-Pin PQFP 208-Pin TQFP 144-Pin TQFP 176-Pin A54SX08 69 81 130 113 128 313-Pin	PBGA 329-Pin	FBGA 144-Pin						
	-	81	175	-	147	-	-	111
	-	81	175	113	147	-	-	-
A54SX32	-	-	174	113	147	249	249	-

Package Definitions (Consult your local Actel sales representative for product availability.)
PLCC = Plastic Leaded Chip Carrier, PQFP = Plastic Quad Flat Pack, TQFP = Thin Quad Flat Pack, VQFP = Very Thin Quad Flat Pack, PBGA $=$ Plastic Ball Grid Array, FBGA $=$ Fine Pitch (1.0 mm) Ball Grid Array

SX Family Architecture

The SX family architecture was designed to satisfy next-generation performance and integration requirements for production-volume designs in a broad range of applications.

Programmable Interconnect Element

The SX family provides efficient use of silicon by locating the routing interconnect resources between the Metal 2 (M2) and Metal 3 (M3) layers (Figure 1). This completely eliminates the channels of routing and interconnect resources between logic modules (as implemented on SRAM FPGAs and previous generations of antifuse FPGAs), and enables the entire floor of the device to be spanned with an uninterrupted grid of logic modules.
Interconnection between these logic modules is achieved using Actel's patented metal-to-metal programmable
antifuse interconnect elements, which are embedded between the M2 and M3 layers. The antifuses are normally open circuit and, when programmed, form a permanent low-impedance connection.
The extremely small size of these interconnect elements gives the SX family abundant routing resources and provides excellent protection against design pirating. Reverse engineering is virtually impossible because it is extremely difficult to distinguish between programmed and unprogrammed antifuses, and there is no configuration bitstream to intercept.
Additionally, the interconnect (i.e., the antifuses and metal tracks) have lower capacitance and lower resistance than any other device of similar capacity, leading to the fastest signal propagation in the industry.

Figure 1 •SX Family Interconnect Elements

Logic Module Design

The SX family architecture is described as a "sea-of-modules" architecture because the entire floor of the device is covered with a grid of logic modules with virtually no chip area lost to interconnect elements or routing. Actel's SX family provides two types of logic modules, the register cell (R-cell) and the combinatorial cell (C-cell).

The R-cell contains a flip-flop featuring asynchronous clear, asynchronous preset, and clock enable (using the S0 and S1 lines) control signals (Figure 2 on page 5). The R-cell registers feature programmable clock polarity selectable on a register-by-register basis. This provides additional flexibility while allowing mapping of synthesized functions into the SX FPGA. The clock source for the R-cell can be chosen from either the hard-wired clock or the routed clock.

The C-cell implements a range of combinatorial functions up to 5 -inputs (Figure 3). Inclusion of the DB input and its associated inverter function dramatically increases the number of combinatorial functions that can be implemented in a single module from 800 options in previous architectures to more than 4,000 in the $S X$ architecture. An example of the improved flexibility
enabled by the inversion capability is the ability to integrate a 3 -input exclusive-OR function into a single C-cell. This facilitates construction of 9 -bit parity-tree functions with 2 ns propagation delays. At the same time, the C-cell structure is extremely synthesis friendly, simplifying the overall design and reducing synthesis time.

Figure 2 - R-Cell

Figure 3 - C-Cell

Chip Architecture

The SX family's chip architecture provides a unique approach to module organization and chip routing that delivers the best register/logic mix for a wide variety of new and emerging applications.

Module Organization

Actel has arranged all C-cell and R-cell logic modules into horizontal banks called Clusters. There are two types of Clusters: Type 1 contains two C -cells and one R-cell, while

Type 2 contains one C-cell and two R-cells.
To increase design efficiency and device performance, Actel has further organized these modules into SuperClusters (Figure 4 on page 6). SuperCluster 1 is a two-wide grouping of Type 1 clusters. SuperCluster 2 is a two-wide group containing one Type 1 cluster and one Type 2 cluster. SX devices feature more SuperCluster 1 modules than SuperCluster 2 modules because designers typically require significantly more combinatorial logic than flip-flops.

Type 1 SuperCluster
Type 2 SuperCluster
Figure 4 - Cluster Organization

Routing Resources

Clusters and SuperClusters can be connected through the use of two innovative local routing resources called FastConnect and DirectConnect, which enable extremely fast and predictable interconnection of modules within Clusters and SuperClusters (Figure 5 and Figure 6 on page 7). This routing architecture also dramatically reduces the number of antifuses required to complete a circuit, ensuring the highest possible performance.
DirectConnect is a horizontal routing resource that provides connections from a C-cell to its neighboring R-cell in a given SuperCluster. DirectConnect uses a hard-wired signal path requiring no programmable interconnection to achieve its fast signal propagation time of less than 0.1 ns .

FastConnect enables horizontal routing between any two logic modules within a given SuperCluster and vertical routing with the SuperCluster immediately below it. Only one programmable connection is used in a FastConnect path, delivering maximum pin-to-pin propagation of 0.4 ns .

In addition to DirectConnect and FastConnect, the architecture makes use of two globally oriented routing resources known as segmented routing and high-drive routing. Actel's segmented routing structure provides a variety of track lengths for extremely fast routing between SuperClusters. The exact combination of track lengths and antifuses within each path is chosen by the 100 percent automatic place and route software to minimize signal propagation delays.
Actel's high-drive routing structure provides three clock networks. The first clock, called HCLK, is hard wired from the HCLK buffer to the clock select MUX in each R-cell. This provides a fast propagation path for the clock signal, enabling the 3.7 ns clock-to-out (pin-to-pin) performance of the SX devices. The hard-wired clock is tuned to provide clock skew as low as 0.25 ns. The remaining two clocks (CLKA, CLKB) are global clocks that can be sourced from external pins or from internal logic signals within the SX device.

Other Architectural Features

Technology

Actel's SX family is implemented on a high-voltage twin-well CMOS process using 0.35μ design rules. The metal-to-metal antifuse is made up of a combination of amorphous silicon
and dielectric material with barrier metals and has a programmed ("on" state) resistance of 25Ω with capacitance of 1.0 fF for low signal impedance.

Direct Connect

- No antifuses
- 0.1 ns routing delay

Fast Connect

- One antifuse
- 0.4 ns routing delay

Routing Segments

- Typically 2 antifuses
- Max. 5 antifuses

Figure 5 - DirectConnect and FastConnect for Type 1 SuperClusters

June 2 SunerCluctore
Figure 6 - DirectConnect and FastConnect for Type 2 SuperClusters

Performance

The combination of architectural features described above enables SX devices to operate with internal clock frequencies exceeding 300 MHz , enabling very fast execution of even complex logic functions. Thus, the SX family is an optimal platform upon which to integrate the functionality previously contained in multiple CPLDs. In addition, designs that previously would have required a gate array to meet performance goals can now be integrated into an SX device with dramatic improvements in cost and time to market. Using timing-driven place and route tools, designers can achieve highly deterministic device performance. With SX devices, designers do not need to use complicated performance-enhancing design techniques such as the use of redundant logic to reduce fanout on critical nets or the instantiation of macros in HDL code to achieve high performance.

I/O Modules

Each I/O on an SX device can be configured as an input, an output, a tristate output, or a bidirectional pin. Even without the inclusion of dedicated I/O registers, these I/Os, in combination with array registers, can achieve clock-to-out (pad-to-pad) timing as fast as 3.7 ns . I/O cells that have embedded latches and flip-flops require instantiation in HDL code; this is a design complication not encountered in SX FPGAs. Fast pin-to-pin timing ensures that the device will have little trouble interfacing with any other device in the system, which in turn enables parallel design of system components and reduces overall design time.

Power Requirements

The SX family supports 3.3 V operation and is designed to tolerate 5.0 V inputs. (Table 1). Power consumption is extremely low due to the very short distances signals are required to travel to complete a circuit. Power requirements are further reduced because of the small number of low-resistance antifuses in the path. The antifuse architecture does not require active circuitry to hold a charge (as do SRAM or EPROM), making it the lowest-power architecture on the market.

Table 1 - Supply Voltages

	$\mathbf{V}_{\text {CCA }}$	$\mathbf{v}_{\text {CCI }}$	$\mathbf{v}_{\text {CCR }}$	Maximum Input Tolerance	Maximum Output Drive
A54SX08					
A54SX16	3.3 V	3.3 V	5.0 V	5.0 V	3.3 V
A54SX32					
	3.3 V				
A54SX16-P	3.3 V	3.3 V	5.0 V	5.0 V	3.3 V
	3.3 V	5.0 V	5.0 V	5.0 V	5.0 V

Note: A54SX16-P has three different entries because it is capable of both a 3.3 V and a 5 V drive.

Boundary Scan Testing (BST)

All SX devices are IEEE 1149.1 compliant. SX devices offer superior diagnostic and testing capabilities by providing Boundary Scan Testing (BST) and probing capabilities. These functions are controlled through the special test pins in conjunction with the program fuse. The functionality of each pin is described in Table 2.In the dedicated test mode, TCK, TDI and TDO are dedicated pins and cannot be used as regular I/Os. In flexible mode, TMS should be set HIGH through a pull-up resistor of $10 \mathrm{k} \Omega$. TMS can be pulled LOW to initiate the test sequence.

The program fuse determines whether the device is in dedicated or flexible mode. The default (fuse not blown) is flexible mode.

Table 2 - Boundary Scan Pin Functionality

Program Fuse Blown (Dedicated Test Mode)	Program Fuse Not Blown (Flexible Mode)			
TCK, TDI, TDO are dedicated BST pins	TCK, TDI, TDO are flexible			
and may be used as I/Os		$	$	No need for pull-up resistor
:---	:---			
for TMS	\quad	Use a pull-up resistor of 10k		
:---				
Ω on TMS				

Development Tool Support

The SX devices are fully supported by Actel's line of FPGA development tools, including the Actel DeskTOP series and Designer Advantage tools. The Actel DeskTOP series is an integrated design environment for PCs that includes design entry, simulation, synthesis, and place and route tools. Designer Advantage, Actel's suite of FPGA development point tools for PCs and Workstations, includes the ACTgen Macro Builder, Designer with DirectTime timing driven place and route and analysis tools, and device programming software.

In addition, the SX devices contain ActionProbe circuitry that provides built-in access to every node in a design, enabling 100-percent real-time observation and analysis of a device's internal logic nodes without design iteration. The probe circuitry is accessed by Silicon Explorer II, an easy-to-use integrated verification and logic analysis tool that can sample data at 100 MHz (asynchronous) or 66 MHz (synchronous). Silicon Explorer II attaches to a PC's standard COM port, turning the PC into a fully functional 18-channel logic analyzer. Silicon Explorer II allows designers to complete the design verification process at their desks and reduces verification time from several hours per cycle to only a few seconds.

SX Probe Circuit Control Pins

The Silicon Explorer II tool uses the boundary scan ports (TDI, TCK, TMS and TDO) to select the desired nets for verification. The selected internal nets are assigned to the PRA/PRB pins for observation. Figure 7 illustrates the interconnection between Silicon Explorer II and the FPGA to perform in-circuit verification. The TRST pin is equipped with a pull-up resistor. To remove the boundary scan state machine from the reset state during probing, it is
recommended that the TRST pin be left floating.

Design Considerations

The TDI, TCK, TDO, PRA, and PRB pins should not be used as input or bidirectional ports. Because these pins are active during probing, critical signals input through these pins are not available while probing. In addition, the Security Fuse should not be programmed because doing so disables the Probe Circuitry.

Figure 7 • Probe Setup

3.3V/5V Operating Conditions

Absolute Maximum Ratings ${ }^{1}$

Symbol	Parameter	Limits	Units
$\mathrm{V}_{\mathrm{CCR}}{ }^{2}$	DC Supply Voltage 3	-0.3 to +6.0	V
$\mathrm{~V}_{\mathrm{CCA}}{ }^{2}$	DC Supply Voltage	-0.3 to +4.0	V
$\mathrm{~V}_{\mathrm{CCI}}{ }^{2}$	DC Supply Voltage (A54SX08, A54SX16, A54SX32)	-0.3 to +4.0	V
$\mathrm{~V}_{\mathrm{CCI}}{ }^{2}$	DC Supply Voltage (A54SX16P)	-0.3 to +6.0	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	-0.5 to +5.5	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage	-0.5 to +3.6	V
I_{IO}	I/O Source Sink Current		-30 to +5.0
$\mathrm{~T}_{\mathrm{STG}}$	Storage Temperature	-65 to +150	mA

Notes:

1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Device should not be operated outside the Recommended Operating Conditions.
2. $\quad \mathrm{V}_{\mathrm{CCR}}$ in the $\mathrm{A} 54 \mathrm{SX16P}$ must be greater than or equal to $\mathrm{V}_{\mathrm{CCI}}$ during power-up and power-down sequences and during normal operation.
3. Device inputs are normally high impedance and draw extremely low current. However, when input voltage is greater than $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ or less than GND -0.5 V , theinternal protection diodes will forward-bias and can draw excessive current.

Recommended Operating Conditions

Parameter	Commer cial	Industrial	Military	Units
Temperature Range 1	0 to +70	-40 to +85	-55 to +125	${ }^{\circ} \mathrm{C}$
3.3 V Power Supply Tolerance	± 10	± 10	± 10	$\% \mathrm{~V}_{\mathrm{C}}$
5.0V Power Supply Tolerance	± 5	± 10	± 10	$\% \mathrm{~V}_{\mathrm{C}}$
Note:			C	

1. Ambient temperature $\left(T_{A}\right)$ is used for commercial and industrial; case temperature $\left(T_{C}\right)$ is used for military.

Electrical Specifications

		Com		Ind		
Symbol	Parameter	Min.	Max.	Min.	Max.	Units
V_{OH}	$\begin{aligned} & \left(\mathrm{I}_{\mathrm{OH}}=-20 \mathrm{uA}\right)(\mathrm{CMOS}) \\ & \left(\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}\right)(\mathrm{TTL}) \\ & \left(\mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA}\right)(\mathrm{TTL}) \end{aligned}$	$\begin{gathered} \left(\mathrm{V}_{\mathrm{CCI}}-0.1\right) \\ 2.4 \end{gathered}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CCI}} \\ & \mathrm{~V}_{\mathrm{CCI}} \end{aligned}$	$\left(\mathrm{V}_{\mathrm{CCI}}-0.1\right)$ 2.4	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CCI}} \\ & \mathrm{~V}_{\mathrm{CCI}} \end{aligned}$	V
V_{OL}	$\begin{aligned} & \left(\mathrm{l}_{\mathrm{OL}}=20 \mathrm{uA}\right)(\mathrm{CMOS}) \\ & \left(\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}\right)(\mathrm{TTL}) \\ & \left(\mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA}\right)(\mathrm{TTL}) \end{aligned}$		$\begin{aligned} & 0.10 \\ & 0.50 \end{aligned}$		0.50	V
V_{IL}			0.8		0.8	V
V_{IH}		2.0		2.0		V
$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$	Input Transition Time $\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$		50		50	ns
$\mathrm{C}_{1 \mathrm{O}}$	$\mathrm{C}_{\text {IO }} \mathrm{I} / \mathrm{O}$ Capacitance		10		10	pF
I_{CC}	Standby Current, I_{CC}	4.0		4.0		mA
$\mathrm{I} \mathrm{CC}(\mathrm{D})$	$\mathrm{I}_{\mathrm{CC}(\mathrm{D})} \mathrm{I}_{\text {Dynamic }} \mathrm{V}_{\text {CC }}$ Supply Current	See "Evaluating Power in 54SX Devices" on page 18				

PCI Compliance for the 54SX Family

The 54SX family supports 3.3V and 5 V PCI and is compliant with the PCI Local Bus Specification Rev. 2.1.

A54SX16P DC Specifications (5.0V PCI Operation)

Symbol	Parameter	Condition	Min.	Max.	Units
$\mathrm{V}_{\text {CCA }}$	Supply Voltage for Array		3.0	3.6	V
$\mathrm{V}_{\text {CCR }}$	Supply Voltage required for Internal Biasing		4.75	5.25	V
$\mathrm{V}_{\mathrm{CCI}}$	Supply Voltage for IOs		4.75	5.25	V
$\mathrm{V}_{\text {IH }}$	Input High Voltage ${ }^{1}$		2.0	$\mathrm{V}_{\mathrm{Cc}}+0.5$	V
V_{IL}	Input Low Voltage ${ }^{1}$		-0.5	0.8	V
I_{IH}	Input High Leakage Current	$\mathrm{V}_{\mathrm{IN}}=2.7$		70	$\mu \mathrm{A}$
ILL	Input Low Leakage Current	$\mathrm{V}_{\mathrm{IN}}=0.5$		-70	$\mu \mathrm{A}$
V_{OH}	Output High Voltage	IOUT $=-2 \mathrm{~mA}$	2.4		V
V_{OL}	Output Low Voltage ${ }^{2}$	$\mathrm{I}_{\text {Out }}=3 \mathrm{~mA}, 6 \mathrm{~mA}$		0.55	V
$\mathrm{C}_{\text {IN }}$	Input Pin Capacitance ${ }^{3}$			10	pF
$\mathrm{C}_{\text {CLK }}$	CLK Pin Capacitance		5	12	pF
$\mathrm{C}_{\text {IDSEL }}$	IDSEL Pin Capacitance ${ }^{4}$			8	pF

Notes:

1. Input leakage currents includehi-Z output leakage for all bi-directional buffers with tri-stateoutputs.
2. Signals without pull-up resistors must have 3 mA low output current. Signals requiring pull up must have 6 mA ; the latter include, FRAME\#, IRDY\#, TRDY\#, DEVSEL\#, STOP\#, SERR\#, PERR\#, LOCK\#, and, when used AD[63::32], C/BE[7::4]\#, PAR64, REQ64\#, and ACK64\#.
3. Absolutemaximum pin capacitancefor a PCl input is 10 pF (except for CLK).
4. Lower capacitanceon this input-only pin allows for non-resistive coupling to $A D[x x]$.

A54SX16P AC Specifications for (PCI Operation)

Symbol	Parameter	Condition	Min.	Max.	Units
${ }^{\mathrm{I}} \mathrm{OH}(\mathrm{AC})$	Switching Current High	$0<\mathrm{V}_{\text {OUT }} \leq 1.4{ }^{1}$	-44		mA
		$1.4 \leq \mathrm{V}_{\text {OUT }}<2.4^{1,2}$	$-44+\left(\mathrm{V}_{\text {OUT }}-1.4\right) / 0.024$		mA
		$3.1<\mathrm{V}_{\text {OUT }}<\mathrm{V}_{\text {CC }}{ }^{1,3}$		Equation A: on page 13	
	(Test Point)	$\mathrm{V}_{\text {OUT }}=3.1^{3}$		-142	mA
$\mathrm{I}_{\text {OL(AC) }}$	Switching Current High	$\mathrm{V}_{\text {OUT }} \geq 2.2^{1}$	95		mA
		$2.2>\mathrm{V}_{\text {OUT }}>0.55^{1}$	$\mathrm{V}_{\text {OUT }} / 0.023$		
		$0.71>\mathrm{V}_{\text {OUT }}>0^{1,3}$		Equation B : on page 13	mA
	(Test Point)	$\mathrm{V}_{\text {OUT }}=0.71^{3}$		206	mA
I_{CL}	Low Clamp Current	$-5<\mathrm{V}_{\text {IN }} \leq-1$	$-25+\left(\mathrm{V}_{\text {IN }}+1\right) / 0.015$		mA
slew $_{\text {R }}$	Output Rise Slew Rate	0.4 V to 2.4 V load 4	1	5	V/ns
slew $_{\text {F }}$	Output Fall Slew Rate	2.4 V to 0.4V load 4	1	5	V/ns

Notes:

1. Refer to theV/I curves in Figure 8. Switching current characteristics for REQ\#and GNT\#are permitted to be onehalf of that specified here; i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST\#which are system outputs. "Switching Current High" specification are not relevant to SERR\#, INTA\#, INTB\#, INTC\#, and INTD\#which areopen drain outputs.
2. Note that this segment of the minimum current curve is drawn from the $A C$ drive point directly to the $D C$ drive point rather than toward thevoltage rail (as is donein thepull-down curve). This differenceis intended to allow for an optional N -channel pull-up.
3. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (A and B) are provided with the respective diagrams in Figure8. The equation defined maxima should be met by design. In order to facilitate component testing, a maximum current test point is defined for each side of theoutput driver.
4. This parameter is to be interpreted as the cumulative edge rateacr oss the specified range, rather than the instantaneous rateat any point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to mect this parameter with an unloaded output per revision 2.0 of the PCI Local Bus Specification. However, adherence to both maximum and minimum parameters is now required (the maximum is no longer simply a guideline). Since adherence to the maximum slew rate was not required prior to revision 2.1 of the specification, there may be components in the market for some time that have faster edge rates; therefore, motherboard designers must bear in mind that rise and fall times faster than this specification could occur, and should ensure that signal integrity modeling accounts for this. Riseslew rate does not apply to open drain outputs.

Figure 8 shows the $5.0 \mathrm{~V} \mathrm{PCI} \mathrm{V} / \mathrm{I}$ curve and the minimum and maximum PCI drive characteristics of the A54SX16P family.

Figure 8 - 5.0V PCI Curvefor A54SX16P Family

Equation A :

$$
\begin{gathered}
I_{\text {OH }}=11.9 *\left(V_{\text {OUT }}-5.25\right) *\left(V_{\text {OUT }}+2.45\right) \\
\quad \text { for } V_{\text {CC }}>V_{\text {OUT }}>3.1 V
\end{gathered}
$$

Equation B:

$$
\begin{gathered}
\mathrm{I}_{\text {OL }}=78.5 * \mathrm{~V}_{\text {OUT }} *\left(4.4-\mathrm{V}_{\text {OUT }}\right) \\
\\
\text { for } \mathrm{OV}<\mathrm{V}_{\text {OUT }}<0.71 \mathrm{~V}
\end{gathered}
$$

A54SX16P DC Specifications (3.3V PCI Operation)

Symbol	Parameter	Condition	Min.	Max.	Units
$\mathrm{V}_{\text {CCA }}$	Supply Voltage for Array		3.0	3.6	V
$\mathrm{V}_{\text {CCR }}$	Supply Voltage required for Internal Biasing		3.0	3.6	V
$\mathrm{V}_{\text {CCI }}$	Supply Voltage for IOs		3.0	3.6	V
V_{IH}	Input High Voltage		$0.5 \mathrm{~V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage		-0.5	$0.3 \mathrm{~V}_{\text {CC }}$	V
IIPU	Input Pull-up Voltage ${ }^{\text {¹ }}$		$0.7 \mathrm{~V}_{\mathrm{CC}}$		V
ILL	Input Leakage Current ${ }^{2}$	$0<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\mathrm{CC}}$		± 10	$\mu \mathrm{A}$
V_{OH}	Output High Voltage	IOUT $=-500 \mu \mathrm{~A}$	$0.9 \mathrm{~V}_{\text {CC }}$		V
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	$\mathrm{I}_{\text {OUT }}=1500 \mu \mathrm{~A}$		$0.1 \mathrm{~V}_{\mathrm{CC}}$	V
$\mathrm{C}_{\text {IN }}$	Input Pin Capacitance ${ }^{3}$			10	pF
$\mathrm{C}_{\text {CLK }}$	CLK Pin Capacitance		5	12	pF
$\mathrm{C}_{\text {IDSEL }}$	IDSEL Pin Capacitance ${ }^{4}$			8	pF

Notes:

1. This specification should be guaranteed by design. It is the minimum voltage to which pull-up resistors are calculated to pull a floated network. Applications sensitive to static power utilization should assure that the input buffer is conducting minimum current at this input voltage.
2. Input leakagecurrents includehi-Z output leakage for all bi-directional buffers with tri-state outputs.
3. Absolutemaximum pin capacitance for a PCl input is 10 pF (except for CLK).
4. Lower capacitance on this input-only pin allows for non-resistive coupling to $A D[x x]$.

A 54SX16P AC Specifications (3.3V PCI Operation)

Symbol	Parameter	Condition	Min.	Max.	Units
	Switching Current High	$0<\mathrm{V}_{\text {OUT }} \leq 0.3 \mathrm{~V}_{\text {CC }}{ }^{1}$			mA
		$0.3 \mathrm{~V}_{\mathrm{CC}} \leq \mathrm{V}_{\text {OUT }}<0.9 \mathrm{~V}_{\mathrm{CC}}{ }^{1}$	$-12 V_{C C}$		mA
$\mathrm{I}^{\mathrm{OH}(\mathrm{AC})}$		$0.7 \mathrm{~V}_{\mathrm{CC}}<\mathrm{V}_{\text {OUT }}<\mathrm{V}_{\mathrm{CC}}{ }^{1,2}$	$-17.1+\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{OUT}}\right)$	Equation C : on page 16	
	(Test Point)	$\mathrm{V}_{\text {OUT }}=0.7 \mathrm{~V}_{\text {CC }}{ }^{2}$		$-32 V_{\text {CC }}$	mA
	Switching Current High	$\mathrm{V}_{\text {CC }}>\mathrm{V}_{\text {OUT }} \geq 0.6 \mathrm{~V}_{\text {CC }}{ }^{1}$			mA
		$0.6 \mathrm{~V}_{\mathrm{CC}}>\mathrm{V}_{\text {OUT }}>0.1 \mathrm{~V}_{\mathrm{CC}}{ }^{1}$	16 V CC		mA
$\mathrm{IOL}(\mathrm{AC})$		$0.18 \mathrm{~V}_{\mathrm{CC}}>\mathrm{V}_{\text {OUT }}>0^{1,2}$	$26.7 \mathrm{~V}_{\text {OUT }}$	on page 16	mA
	(Test Point)	$\mathrm{V}_{\text {OUT }}=0.18 \mathrm{~V}_{\text {CC }}{ }^{2}$		$38 \mathrm{~V}_{\mathrm{CC}}$	
I_{CL}	Low Clamp Current	$-3<\mathrm{V}_{\text {IN }} \leq-1$	$-25+\left(\mathrm{V}_{\text {IN }}+1\right) / 0.015$		mA
I_{CH}	High Clamp Current	$-3<\mathrm{V}_{\text {IN }} \leq-1$	$25+\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}-1\right) / 0.015$		mA
slew $_{\text {R }}$	Output Rise Slew Rate ${ }^{3}$	$0.2 \mathrm{~V}_{\mathrm{CC}}$ to $0.6 \mathrm{~V}_{\mathrm{CC}}$ load	1	4	V / ns
slew $_{\text {F }}$	Output Fall Slew Rate ${ }^{3}$	$0.6 \mathrm{~V}_{\text {CC }}$ to $0.2 \mathrm{~V}_{\text {CC }}$ load	1	4	V / ns

Notes:

1. Refer to the V/I curves in Figure9. Switching current characteristics for REQ\#and GNT\#are per mitted to be onehalf of that specified here; i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST\#which are system outputs. "Switching Current High" specification arenot relevant to SERR\#, INTA\#, INTB\#, INTC\#, and INTD\#which areopen drain outputs.
2. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (C and D) are provided with the respective diagrams in Figure9. The equation defined maxima should be met by design. In order to facilitate component testing, a maximum current test point is defi ned for each side of the output driver.
3. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an unloaded output per the latest revision of the PCl Local Bus Specification. However, adherence to both maximum and minimum parameters is required (themaximum is no longer simply a guideline). Rise slew rate does not apply to open drain outputs.

Figure 9 shows the $3.3 \mathrm{~V} P \mathrm{PCI} \mathrm{V} / \mathrm{c}$ curve and the minimum and maximum PCl drive characteristics of the A54SX16P family.

Figure 9 • 3.3V PCI Curvefor A54SX16P Family

Equation C :

$$
\begin{gathered}
\mathrm{I}_{\text {OH }}=\left(98.0 / \mathrm{V}_{\mathrm{CC}}\right) *\left(\mathrm{~V}_{\text {OUT }}-\mathrm{V}_{\mathrm{CC}}\right) *\left(\mathrm{~V}_{\text {OUT }}+0.4 \mathrm{~V}_{\text {CC }}\right) \\
\text { for } \mathrm{V}_{\mathrm{CC}}>\mathrm{V}_{\text {OUT }}>0.7 \mathrm{~V}_{\mathrm{CC}}
\end{gathered}
$$

Equation D:

$$
\begin{aligned}
I_{O L}= & \left(256 / V_{C C}\right) * V_{\text {OUT }} *\left(V_{C C}-V_{\text {OUT }}\right) \\
& \text { for } 0 \mathrm{~V}<V_{\text {OUT }}<0.18 V_{\text {CC }}
\end{aligned}
$$

Power-Up Sequencing

$\mathrm{V}_{\text {cca }}$	$\mathrm{V}_{\text {cCR }}$	$\mathrm{V}_{\mathrm{ccI}}$	Power-Up Sequence	Comments
A54SX08, A54SX16, A54SX32				
3.3 V	5.0V	3.3 V	5.0V First 3.3V Second	No possible damage to device.
			3.3V First 5.0V Second	Possible damage to device.
A54SX16P				
3.3 V	3.3 V	3.3 V	3.3V Only	No possible damage to device.
3.3 V	5.0V	3.3 V	5.0V First 3.3V Second	No possible damage to device.
			3.3V First 5.0V Second	Possible damage to device.
3.3 V	5.0 V	5.0V	5.0V First 3.3V Second	No possible damage to device.
			3.3V First 5.0V Second	No possible damage to device.

Power-Down Sequencing

$\mathrm{V}_{\text {ccA }}$	$\mathrm{V}_{\text {CCR }}$	$\mathrm{v}_{\mathrm{CCI}}$	Power-Down Sequence	Comments
A54SX08, A54SX16, A54SX32				
3.3 V	5.0 V	3.3 V	5.0V First 3.3V Second	No possible damage to device.
			3.3V First 5.0V Second	Possible damage to device.
A54SX16P				
3.3 V	3.3 V	3.3 V	3.3V Only	No possible damage to device.
3.3 V	5.0V	3.3 V	5.0V First 3.3V Second	Possible damage to device.
			3.3V First 5.0V Second	No possible damage to device.
3.3 V	5.0 V	5.0V	5.0V First 3.3V Second	No possible damage to device.
			3.3V First 5.0V Second	No possible damage to device.

Evaluating Power in 54SX Devices

A critical element of system reliability is the ability of electronic devices to safely dissipate the heat generated during operation. The thermal characteristics of a circuit depend on the device and package used, the operating temperature, the operating current, and the system's ability to dissipate heat.

You should complete a power evaluation early in the design process to help identify potential heat-related problems in the system and to prevent the system from exceeding the device's maximum allowed junction temperature.
The actual power dissipated by most applications is significantly lower than the power the package can dissipate. However, a thermal analysis should be performed for all projects. To perform a power evaluation, follow these steps:

- Estimate the power consumption of the application.
- Calculate the maximum power allowed for the device and package.
- Compare the estimated power and maximum power values.

Estimating Power Consumption

The total power dissipation for the 54SX family is the sum of the DC power dissipation and the AC power dissipation. Use Equation 1 to calculate the estimated power consumption of your application.
$P_{\text {Total }}=P_{D C}+P_{A C}$

DC Power Dissipation

The power due to standby current is typically a small component of the overall power. The Standby power is shown below for commercial, worst case conditions $\left(70^{\circ} \mathrm{C}\right)$.

Table 3 •

ICC	V CC	Power
4 mA	3.6 V	14.4 mW

The DC power dissipation is defined in Equation 2 as follows:
$P_{D C}=\left(I_{\text {standby }}\right) * V_{C C A}+\left(I_{\text {standby }}\right) * V_{C C R}+$
$\left(\mathrm{I}_{\text {standby }}\right) * \mathrm{~V}_{\mathrm{CCI}}+\mathrm{x}^{*} \mathrm{~V}_{\mathrm{OL}} \mathrm{I}_{\mathrm{OL}}+\mathrm{y}^{*}\left(\mathrm{~V}_{\mathrm{CCI}}-\mathrm{V}_{\mathrm{OH}}\right) * \mathrm{~V}_{\mathrm{OH}}$

AC Power Dissipation

The power dissipation of the 54SX Family is usually dominated by the dynamic power dissipation. Dynamic power dissipation is a function of frequency, equivalent capacitance and power supply voltage. The AC power
dissipation is defined as follows:

```
\(P_{\text {AC }}=P_{\text {Module }}+P_{\text {RCLKA Net }}+P_{\text {RCLKB Net }}+P_{\text {HCLK Net }}+\)
\(P_{\text {Output Buffer }}+P_{\text {Input Buffer }}\)
\(P_{A C}=V_{C C A}{ }^{2} *\left[\left(m * C_{E Q M} * f_{m}\right)_{\text {Module }}+\right.\)
\(\left(n * C_{E Q Q} * f_{n}\right)_{\text {Input Buffer }}+\left(p^{*}\left(C_{E Q O}+C_{L}\right) * f_{p}\right)_{\text {Output Buffer }}+\)
\(\left(0.5 *\left(q_{1} * C_{E Q C R} * f_{q 1}\right)+\left(r_{1} * f_{q 1}\right)\right)_{R C L K A}+\)
\(\left(0.5 *\left(q_{2} * C_{E Q C R} * f_{q 2}\right)+\left(r_{2} * f_{q 2}\right)\right)_{\text {RCLKB }}+\)
\(\left.\left(0.5 *\left(\mathrm{~s}_{1} * \mathrm{C}_{\mathrm{EQHV}} * \mathrm{f}_{\mathrm{S} 1}\right)+\left(\mathrm{C}_{\mathrm{EQHF}} * \mathrm{f}_{\mathrm{S} 1}\right)\right)_{\mathrm{HCLK}}\right]\)

\section*{Definition of Terms Used in Formula}
\begin{tabular}{|c|c|}
\hline m & \(=\) Number of logic modules switching at \(\mathrm{f}_{\mathrm{m}}\) \\
\hline n & \(=\) Number of input buffers switching at \(f_{n}\) \\
\hline p & \(=\) Number of output buffers switching at \(\mathrm{f}_{\mathrm{p}}\) \\
\hline \(\mathrm{q}_{1}\) & ```
= Number of clock loads on the first routed array
    clock
``` \\
\hline \(q_{2}\) & = Number of clock loads on the second routed array clock \\
\hline X & \(=\) Number of I/Os at logic low \\
\hline y & \(=\) Number of I/Os at logic high \\
\hline \(\mathrm{r}_{1}\) & ```
= Fixed capacitance due to first routed array
 clock
``` \\
\hline \(r_{2}\) & \(=\) Fixed capacitance due to second routed array clock \\
\hline \(\mathrm{S}_{1}\) & \(=\) Number of clock loads on the dedicated array clock \\
\hline \(\mathrm{C}_{\text {EQM }}\) & = Equivalent capacitance of logic modules in pF \\
\hline \(\mathrm{C}_{\mathrm{EQI}}\) & = Equivalent capacitance of input buffers in pF \\
\hline \(\mathrm{C}_{\text {EQO }}\) & \(=\) Equivalent capacitance of output buffers in pF \\
\hline \(\mathrm{C}_{\text {EQCR }}\) & = Equivalent capacitance of routed array clock in pF \\
\hline \(\mathrm{C}_{\text {EQHV }}\) & = Variable capacitance of dedicated array clock \\
\hline \(\mathrm{C}_{\text {EQHF }}\) & = Fixed capacitance of dedicated array clock \\
\hline \(C_{L}\) & = Output lead capacitance in pF \\
\hline \(\mathrm{f}_{\mathrm{m}}\) & = Average logic module switching rate in MHz \\
\hline \(\mathrm{f}_{\mathrm{n}}\) & = Average input buffer switching rate in MHz \\
\hline \(\mathrm{f}_{\mathrm{p}}\) & = Average output buffer switching rate in MHz \\
\hline \(\mathrm{f}_{\mathrm{q} 1}\) & = Average first routed array clock rate in MHz \\
\hline \(\mathrm{f}_{\mathrm{q} 2}\) & = Average second routed array clock rate in MHz \\
\hline & = Average dedicated array clock rate in MHz \\
\hline
\end{tabular}

\section*{A54SX08 A54SX16 A54SX16P A54SX 32}
\begin{tabular}{lllll}
\(C_{E Q M}(p F)\) & 4.0 & 4.0 & 4.0 & 4.0 \\
\(C_{E Q I}(p F)\) & 3.4 & 3.4 & 3.4 & 3.4 \\
\(C_{E Q O}(p F)\) & 4.7 & 4.7 & 4.7 & 4.7 \\
\(C_{E Q C R}(p F)\) & 1.6 & 1.6 & 1.6 & 1.6 \\
\(C_{E Q H V}\) & 0.615 & 0.615 & 0.615 & 0.615 \\
\(C_{E Q H F}\) & 60 & 96 & 96 & 140 \\
\(r_{1}(p F)\) & 87 & 138 & 138 & 171 \\
\(r_{2}(p F)\) & 87 & 138 & 138 & 171
\end{tabular}

\section*{Guidelines for Calculating Power Consumption}

The following guidelines are meant to represent worst-case scenarios so that they can be generally used to predict the upper limits of power dissipation. These guidelines are as follow:
\begin{tabular}{|c|c|}
\hline Logic Modules (m) & = \(20 \%\) of modules \\
\hline Inputs Switching ( n ) & = \#inputs/4 \\
\hline Outputs Switching (p) & = \#output/4 \\
\hline First Routed Array Clock Loads ( \(\mathrm{q}_{1}\) ) & \[
\begin{aligned}
& =20 \% \text { of register } \\
& \text { cells }
\end{aligned}
\] \\
\hline Second Routed Array Clock Loads & \(=20 \%\) of register cells \\
\hline Load Capacitance ( \(\mathrm{C}_{\mathrm{L}}\) ) & \(=35 \mathrm{pF}\) \\
\hline Average Logic Module Switching ( \(f_{m}\) ) & \[
e=f / 10
\] \\
\hline Average Input Switching Rate ( \(\mathrm{f}_{\mathrm{n}}\) ) & = f/5 \\
\hline Average Output Switching Rate ( \(\mathrm{f}_{\mathrm{p}}\) ) & = f/10 \\
\hline Average First Routed Array Clock R ( \(\mathrm{f}_{\mathrm{q} 1}\) ) & \[
e=f / 2
\] \\
\hline Average Second Routed Array Cl Rate ( \(\mathrm{f}_{\mathrm{q} 2}\) ) & \[
=f / 2
\] \\
\hline Average Dedicated Array Clock Rate ( \(\mathrm{f}_{\mathrm{s} 1}\) ) & \\
\hline Dedicated Clock Array clock loads (s & \(=20 \%\) of regular modules \\
\hline
\end{tabular}

\section*{Sample Power Calculation}

One of the designs used to characterize the A54SX family was a 528 bit serial in serial out shift register. The design utilized \(100 \%\) of the dedicated flip-flops of an A54SX16P device. A pattern of 0101... was clocked into the device at frequencies ranging from 1 MHz to 200 MHz . Shifting in a series of 0101 ... caused \(50 \%\) of the flip-flops to toggle from low to high at every clock cycle.
Follow the steps below to estimate power consumption. The values provided for the sample calculation below are for the shift register design above. This method for estimating power consumption is conservative and the actual power consumption of your design may be less than the estimated power consumption.
The total power dissipation for the 54SX family is the sum of the AC power dissipation and the DC power dissipation.
\(P_{\text {Total }}=P_{A C}\) (dynamic power) \(+P_{D C}\) (static power)

\section*{AC Power Dissipation}
\[
\begin{align*}
& P_{\text {AC }}=P_{\text {Module }}+P_{\text {RCLKA Net }}+P_{\text {RCLKB Net }}+P_{\text {HCLK Net }}+ \\
& P_{\text {Output Buffer }}+P_{\text {Input Buffer }}  \tag{6}\\
& P_{A C}=V_{C C A}{ }^{2} *\left[\left(m * C_{E Q M} * f_{m}\right)_{\text {Module }}+\right. \\
& \left(n^{*} C_{E Q I}^{*} f_{n}\right)_{\text {Input Buffer }}+\left(p^{*}\left(C_{E Q O}+C_{L}\right) * f_{p}\right)_{\text {output }} \\
& \text { Buffer }{ }^{+} \\
& \left(0.5 *\left(q_{1} * C_{E Q C R} * f_{q 1}\right)+\left(r_{1} * f_{q 1}\right)\right)_{R C L K A}+ \\
& \left(0.5 *\left(q_{2} * C_{\text {EQCR }} * f_{q_{2}}\right)+\left(r_{2} * f_{q 2}\right)\right)_{\text {RCLKB }}+ \\
& \left.\left(0.5 *\left(\mathrm{~s}_{1} * \mathrm{C}_{\text {EQHV }} * \mathrm{f}_{\mathrm{S} 1}\right)+\left(\mathrm{C}_{\text {EQHF }} * \mathrm{f}_{\mathrm{S} 1}\right)\right)_{\text {HCLK }}\right] \tag{7}
\end{align*}
\]

Step \#1: Define Terms Used in Formula
\(V_{\text {CCA }}\)

\section*{3.3}

Module
Number of logic modules switching at \(\mathrm{f}_{\mathrm{m}} \quad \mathrm{m} \quad 264\)
(Used 50\%)
Average logic modules switching rate \(\quad f_{m} \quad 20\)
\(\mathrm{f}_{\mathrm{m}}(\mathrm{MHz})\) (Guidelines: \(\mathrm{f} / 10\) )
Module capacitance \(\mathrm{C}_{\mathrm{EQM}}(\mathrm{pF}) \quad \mathrm{C}_{\mathrm{EQM}} 4.0\)
Input Buffer
\(\begin{array}{lll}\text { Number of input buffers switching at } f_{n} & n & 1\end{array}\)
Average in put switching rate \(f_{n}(M H z) \quad f_{n} \quad 40\)
(Guidelines: f/5)
Input buffer capacitance \(\mathrm{C}_{\mathrm{EQI}}(\mathrm{pF}) \quad \mathrm{C}_{\mathrm{EQI}} \quad 3.4\)
Output Buffer
Number of output buffers switching at \(f_{p} \quad p \quad 1\)
Average output buffers switching rate \(\quad f_{p} \quad 20\)
\(\mathrm{f}_{\mathrm{p}}(\mathrm{MHz})\) (Guidelines: \(\mathrm{f} / 10\) )
Output buffers buffer Capacitance \(\mathrm{C}_{\mathrm{EQO}}(\mathrm{pF}) \mathrm{C}_{\mathrm{EQO}} 4.7\)
Output Load capacitance \(C_{L}(\mathrm{pF}) \quad C_{L} \quad 35\)
RCLKA
Number of Clock loads \(q_{1} \quad q_{1} \quad 528\)
Capacitance of routed array clock (pF) \(\quad \mathrm{C}_{\mathrm{EQCR}} 1.6\)
Average clock rate (MHz) \(\quad \mathrm{f}_{\mathrm{q} 1} \quad 200\)
Fixed capacitance (pF) \(\quad r_{1} 138\)
RCLKB
\(\begin{array}{lll}\text { Number of Clock loads } \mathrm{q}_{2} & \mathrm{q}_{2} & 0 \\ \text { Capacitance of routed array clock (pF) } & \mathrm{C}_{\mathrm{EQCR}} & 1.6 \\ \text { Average clock rate }(\mathrm{MHz}) & \mathrm{f}_{\mathrm{q} 2} & 0 \\ \text { Fixed capacitance }(\mathrm{pF}) & \mathrm{r}_{2} & 138\end{array}\)
HCLK
Number of Clock loads \(\quad s_{1} 0\)
Variable capacitance of dedicated \(\quad \mathrm{C}_{\mathrm{EOHV}} 0.615\)
array clock (pF)
Fixed capacitance of dedicated \(\quad\) C \(_{\text {EQHF }} 96\)
array clock (pF)
Average clock rate (MHz) \(\quad \mathrm{f}_{\mathrm{s} 1} \quad 0\)

Step \#2: Calculate Dynamic Power Consumption
\(V_{C C A} V_{\text {CCA }}\)
\(m^{*} f_{m}{ }^{*} C_{E Q M}\)
10.89
n*f * \(\mathrm{C}_{\text {Eal }} 0.00013\)
\(p^{*} f_{p}{ }^{*}\left(C_{E Q O}+C_{L}\right)\)
\(0.5 *\left(q_{1}{ }^{*} C_{E Q C R}{ }^{* f_{1}}\right)+\left(r_{1}{ }^{*} f_{q_{1}}\right)\)
\(0.5 *\left(q_{2}{ }^{*} C_{E Q C R}{ }^{* f} q_{2}\right)+\left(r_{2}{ }^{* f} \mathrm{f}_{2}\right)\)
\(0.5 *\left(\mathrm{~s}_{1} * \mathrm{C}_{\text {EQHV }} * \mathrm{f}_{\mathrm{S} 1}\right)+\left(\mathrm{C}_{\text {EQHF }} * \mathrm{f}_{\mathrm{S} 1}\right)\)
\(P_{A C}=1.461 \mathrm{~W}\)

\section*{Step \#3: Calculate DC Power Dissipation}

\section*{DC Power Dissipation}
\(P_{D C}=\left(I_{\text {standby }}\right) * V_{C C A}+\left(I_{\text {standby }}\right) * V_{C C R}+\left(I_{\text {standby }}\right) * V_{C C I}+\) \(X * V_{O L}{ }^{*} \mathrm{IOL}_{\mathrm{OL}}+\mathrm{Y}^{*}\left(\mathrm{~V}_{\mathrm{CCI}}-\mathrm{V}_{\mathrm{OH}}\right) * \mathrm{~V}_{\mathrm{OH}}\)
For a rough estimate of DC Power Dissipation, only use \(P_{D C}=\left(I_{\text {standby }}\right) * V_{C C A}\). The rest of the formula provides a very small number that can be considered negligible.
\(P_{D C}=\left(I_{\text {standby }}\right) * V_{C C A}\)
\(P_{D C}=.55 \mathrm{~mA} * 3.3 \mathrm{~V}\)
\(P_{D C}=0.001815 \mathrm{~W}\)
Step \#4: Calculate Total Power Consumption
\(P_{\text {Total }}=P_{A C}+P_{D C}\)
\(P_{\text {Total }}=1.461+0.001815\)
\(\mathrm{P}_{\text {Total }}=1.4628 \mathrm{~W}\)

\section*{Step \#5: Compare E stimated Power Consumption against Characterized Power Consumption}

The estimated total power consumption for this design is 1.46 W . The characterized power consumption for this design at 200 MHz is 1.0164 W . Figure 10 shows the characterized power dissipation numbers for the shift register design using frequencies ranging from 1 MHz to 200 MHz .


Figure 10 • Power Dissipation

Junction Temperature ( \(\mathrm{T}_{\mathrm{J}}\) )
The temperature that you select in Designer Series software is the junction temperature, not ambient temperature. This is an important distinction because the heat generated from dynamic power consumption is usually hotter than the ambient temperature. Use the equation below to calculate junction temperature.
\[
\text { Junction Temperature }=\Delta \mathrm{T}+\mathrm{T}_{\mathrm{a}}
\]

Where:
\(T_{a}=\) Ambient Temperature
\(\Delta \mathrm{T}=\) Temperature gradient between junction (silicon) and ambient
\(\Delta \mathrm{T}=\theta_{\mathrm{ja}} * \mathrm{P}\)

P = Power calculated from Estimating Power Consumption section
\(\theta_{\mathrm{ja}}=\) Junction to ambient of package. \(\theta_{\mathrm{ja}}\) numbers are located in Package Thermal Characteristics section.

\section*{Package Thermal Characteristics}

The device junction to case thermal characteristic is \(\theta_{\mathrm{jc}}\), and the junction to ambient air characteristic is \(\theta_{\mathrm{ja}}\). The thermal characteristics for \(\theta_{\mathrm{ja}}\) are shown with two different air flow rates.
The maximum junction temperature is \(150^{\circ} \mathrm{C}\).
A sample calculation of the absolute maximum power dissipation allowed for a TQFP 176-pin package at commercial temperature and still air is as follows:

Maximum Power Allowed \(=\frac{\text { Max. junction temp. }\left({ }^{\circ} \mathrm{C}\right)-\text { Max. ambient temp. }\left({ }^{\circ} \mathrm{C}\right)}{\theta_{j a}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)}=\frac{150^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}}{28^{\circ} \mathrm{C} / \mathrm{W}}=2.86 \mathrm{~W}\)
\begin{tabular}{|lccccc|}
\hline Package Type & Pin Count & \(\theta_{\text {jc }}\) & \begin{tabular}{c}
\(\theta_{\text {ja }}\) \\
Still Air
\end{tabular} & \begin{tabular}{c}
\(\theta_{\mathbf{j a}}\) \\
\(\mathbf{3 0 0} \mathbf{f t} / \mathbf{m i n}\)
\end{tabular} & Units \\
\hline Plastic Leaded Chip Carrier (PLCC) & 84 & 12 & 32 & 22 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Thin Quad Flat Pack (TQFP) & 144 & 11 & 32 & 24 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Thin Quad Flat Pack (TQFP) & 176 & 11 & 28 & 21 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Very Thin Quad Flatpack (VQFP) & 100 & 10 & 38 & 32 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Plastic Quad Flat Pack (PQFP) without Heat Spreader & 208 & 8 & 30 & 23 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Plastic Quad Flat Pack (PQFP) with Heat Spreader & 208 & 3.8 & 20 & 17 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Plastic Ball Grid Array (PBGA) & 272 & 3 & 20 & 14.5 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Plastic Ball Grid Array (PBGA) & 313 & 3 & 23 & 17 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Plastic Ball Grid Array (PBGA) & 329 & 3 & 18 & 13.5 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Fine Pitch Ball Grid Array (FBGA) & 144 & 3.8 & 38.8 & 26.7 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline
\end{tabular}

Note:
SX08 does not havea heat spreader.

\section*{54SX Timing Model*}

*Values shown for A54SX08-3, worst-case commercial conditions.

\section*{Hard-Wired Clock}

External Set-Up \(=t_{I N Y}+t_{\text {IRD1 }}+t_{\text {SUD }}-t_{\text {HCKH }}\)
\[
=1.5+0.3+0.5-1.0=1.3 \mathrm{~ns}
\]

Clock-to-Out (Pin-to-Pin)
\[
\begin{aligned}
& =t_{\mathrm{HCKH}}+t_{\mathrm{RCO}}+t_{\mathrm{RD1}}+t_{\mathrm{DHL}} \\
& =1.0+0.8+0.3+1.6=3.7 \mathrm{~ns}
\end{aligned}
\]

\section*{Routed Clock}

External Set-Up \(=t_{\text {INY }}+t_{\text {IRDI }}+t_{\text {SUD }}-t_{\text {RCKH }}\)
\[
=1.5+0.3+0.5-1.5=0.8 \mathrm{~ns}
\]

Clock-to-Out (Pin-to-Pin)
\[
\begin{aligned}
& =\mathrm{t}_{\mathrm{RCKH}}+\mathrm{t}_{\mathrm{RCO}}+\mathrm{t}_{\mathrm{RD1}}+\mathrm{t}_{\mathrm{DHL}} \\
& =1.52+0.8+0.3+1.6=4.2 \mathrm{~ns}
\end{aligned}
\]

\section*{Output Buffer Delays}


\section*{AC Test Loads}

Load 1
(Used to measure propagation delay)
To the output under test


Load 2
(Used to measure enable delays)


Load 3 (Used to measure disable delays)


Input Buffer Delays


C-Cell Delays


\section*{Register Cell Timing Characteristics}

\section*{Flip-Flops}


\section*{Timing Characteristics}

Timing characteristics for 54SX devices fall into three categories: family-dependent, device-dependent, and design-dependent. The input and output buffer characteristics are common to all 54SX family members. Internal routing delays are device dependent. Design dependency means actual delays are not determined until after placement and routing of the user's design is complete. Delay values may then be determined by using the DirectTime Analyzer utility or performing simulation with post-layout delays.

\section*{Critical Nets and Typical Nets}

Propagation delays are expressed only for typical nets, which are used for initial design performance evaluation. Critical net delays can then be applied to the most time-critical paths. Critical nets are determined by net property assignment prior to placement and routing. Up to \(6 \%\) of the nets in a design may be designated as critical, while \(90 \%\) of the nets in a design are typical.

\section*{Long Tracks}

Some nets in the design use long tracks. Long tracks are special routing resources that span multiple rows, columns, or modules. Long tracks employ three and sometimes five antifuse connections. This increases capacitance and resistance, resulting in longer net delays for macros connected to long tracks. Typically up to \(6 \%\) of nets in a fully utilized device require long tracks. Long tracks contribute approximately 4 ns to 8.4 ns delay. This additional delay is represented statistically in higher fanout ( \(F O=24\) ) routing delays in the data sheet specifications section.

\section*{Timing Derating}

54SX devices are manufactured in a CMOS process. Therefore, device performance varies according to temperature, voltage, and process variations. Minimum timing parameters reflect maximum operating voltage, minimum operating temperature, and best-case processing. Maximum timing parameters reflect minimum operating voltage, maximum operating temperature, and worst-case processing.

Temperature and Voltage Derating Factors
(Normalized to Worst-Case Commercial, \(\mathbf{T}_{\mathrm{J}}=\mathbf{7 0}{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CCA}}=\mathbf{3 . 0 V}\) )
\begin{tabular}{|c|ccccc|c|c|}
\hline & \multicolumn{7}{|c|}{ Junction Temperature ( \(\mathbf{T}_{\mathbf{J}}\) ) } \\
\cline { 2 - 9 } \(\mathbf{V}_{\text {CCA }}\) & \(\mathbf{- 5 5}\) & \(\mathbf{- 4 0}\) & \(\mathbf{0}\) & \(\mathbf{2 5}\) & \(\mathbf{7 0}\) & \(\mathbf{8 5}\) & \(\mathbf{1 2 5}\) \\
\hline \(\mathbf{3 . 0}\) & 0.75 & 0.78 & 0.87 & 0.89 & 1.00 & 1.04 & 1.16 \\
\(\mathbf{3 . 3}\) & 0.70 & 0.73 & 0.82 & 0.83 & 0.93 & 0.97 & 1.08 \\
\hline \(\mathbf{3 . 6}\) & 0.66 & 0.69 & 0.77 & 0.78 & 0.87 & 0.92 & 1.02 \\
\hline
\end{tabular}

\section*{A54SX08 Timing Characteristics}
(Worst-Case Commercial Conditions, \(\mathrm{V}_{\mathrm{CCR}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCA}}, \mathrm{V}_{\mathrm{CCI}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=70^{\circ} \mathrm{C}\) )


\section*{Notes:}
1. For dual-modulemacros, use \(t_{P D}+t_{R D 1}+t_{P D n}, t_{R C O}+t_{R D 1}+t_{P D n}\) or \(t_{P D 1}+t_{R D 1}+t_{S U D}\), whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on thedevice prior to shipment.

\section*{A54SX08 Timing Characteristics (continued)}
(Worst-Case Commercial Conditions)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{2}{|l|}{'-3' Speed} & \multicolumn{2}{|l|}{'-2' Speed} & \multicolumn{2}{|l|}{'-1' Speed} & \multicolumn{2}{|l|}{'Std' Speed} & \\
\hline Parameter & Description & Min. & Max. & Min. & Max. & Min. & Max. & Min. & Max. & Units \\
\hline \multicolumn{11}{|l|}{Dedicated (Hard-Wired) Array Clock Network} \\
\hline \(\mathrm{t}_{\text {HCKH }}\) & Input LOW to HIGH (Pad to R-Cell Input) & & 1.0 & & 1.1 & & 1.3 & & 1.5 & ns \\
\hline \(\mathrm{t}_{\text {HCKL }}\) & Input HIGH to LOW (Pad to R-Cell Input) & & 1.0 & & 1.2 & & 1.4 & & 1.6 & ns \\
\hline \(\mathrm{t}_{\text {HPWH }}\) & Minimum Pulse Width HIGH & 1.4 & & 1.6 & & 1.8 & & 2.1 & & ns \\
\hline \(\mathrm{t}_{\text {HPWL }}\) & Minimum Pulse Width LOW & 1.4 & & 1.6 & & 1.8 & & 2.1 & & ns \\
\hline tHCKSW & Maximum Skew & & 0.1 & & 0.2 & & 0.2 & & 0.2 & ns \\
\hline \(\mathrm{t}_{\mathrm{HP}}\) & Minimum Period & 2.7 & & 3.1 & & 3.6 & & 4.2 & & ns \\
\hline \(\mathrm{f}_{\text {HMAX }}\) & Maximum Frequency & & 350 & & 320 & & 280 & & 240 & MHz \\
\hline \multicolumn{11}{|l|}{Routed Array Clock Networks} \\
\hline \(\mathrm{t}_{\text {RCKH }}\) & Input LOW to HIGH (Light Load) (Pad to R-Cell Input) & & 1.3 & & 1.5 & & 1.7 & & 2.0 & ns \\
\hline \(\mathrm{t}_{\text {RCKL }}\) & Input HIGH to LOW (Light Load) (Pad to R-Cell Input) & & 1.4 & & 1.6 & & 1.8 & & 2.1 & ns \\
\hline \(\mathrm{t}_{\text {RCKH }}\) & Input LOW to HIGH (50\% Load) (Pad to R-Cell Input) & & 1.4 & & 1.7 & & 1.9 & & 2.2 & ns \\
\hline \(\mathrm{t}_{\text {RCKL }}\) & Input HIGH to LOW (50\% Load) (Pad to R-Cell Input) & & 1.5 & & 1.7 & & 2.0 & & 2.3 & ns \\
\hline \(t_{\text {RCKH }}\) & Input LOW to HIGH (100\% Load) (Pad to R-Cell Input) & & 1.5 & & 1.7 & & 1.9 & & 2.2 & ns \\
\hline \(\mathrm{t}_{\text {RCKL }}\) & Input HIGH to LOW (100\% Load) (Pad to R-Cell Input) & & 1.5 & & 1.8 & & 2.0 & & 2.3 & ns \\
\hline \(\mathrm{t}_{\text {RPWH }}\) & Min. Pulse Width HIGH & 2.1 & & 2.4 & & 2.7 & & 3.2 & & ns \\
\hline \(\mathrm{t}_{\text {RPWL }}\) & Min. Pulse Width LOW & 2.1 & & 2.4 & & 2.7 & & 3.2 & & ns \\
\hline \(t_{\text {RCKSW }}\) & Maximum Skew (Light Load) & & 0.1 & & 0.2 & & 0.2 & & 0.2 & ns \\
\hline \(t_{\text {RCKSW }}\) & Maximum Skew (50\% Load) & & 0.3 & & 0.3 & & 0.4 & & 0.4 & ns \\
\hline trcksw & Maximum Skew (100\% Load) & & 0.3 & & 0.3 & & 0.4 & & 0.4 & ns \\
\hline \multicolumn{11}{|l|}{TTL Output Module Timing \({ }^{1}\)} \\
\hline \(\mathrm{t}_{\text {DLH }}\) & Data-to-Pad LOW to HIGH & & 1.6 & & 1.9 & & 2.1 & & 2.5 & ns \\
\hline \(\mathrm{t}_{\mathrm{DHL}}\) & Data-to-Pad HIGH to LOW & & 1.6 & & 1.9 & & 2.1 & & 2.5 & ns \\
\hline \(t_{\text {ENZL }}\) & Enable-to-Pad, Z to L & & 2.1 & & 2.4 & & 2.8 & & 3.2 & ns \\
\hline tenzi & Enable-to-Pad, Z to H & & 2.3 & & 2.7 & & 3.1 & & 3.6 & ns \\
\hline tenlz & Enable-to-Pad, L to Z & & 1.4 & & 1.7 & & 1.9 & & 2.2 & ns \\
\hline tENHZ & Enable-to-Pad, H to Z & & 1.3 & & 1.5 & & 1.7 & & 2.0 & ns \\
\hline
\end{tabular}

Note:
1. Delays based on 35 pF loading, except \(\mathrm{t}_{\text {ENZL }}\) and \(\mathrm{t}_{\text {ENZH }}\). For \(\mathrm{t}_{\text {ENZL }}\) and \(\mathrm{t}_{\text {ENZH }}\) the loading is 5 pF .

\section*{A54SX16 Timing Characteristics}
(Worst-Case Commercial Conditions, \(\mathrm{V}_{\mathrm{CCR}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCA}}, \mathrm{V}_{\mathrm{CCI}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=70^{\circ} \mathrm{C}\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{2}{|l|}{'-3' Speed} & \multicolumn{2}{|l|}{'-2' Speed} & \multicolumn{2}{|l|}{' -1 ' Speed} & \multicolumn{2}{|l|}{'Std' Speed} & \\
\hline Parameter & Description & Min. & Max. & Min. & Max. & Min. & Max. & Min. & Max. & Units \\
\hline \multicolumn{2}{|l|}{C-Cell Propagation Delays \({ }^{1}\)} & & & & & & & & & \\
\hline \(\mathrm{t}_{\text {PD }}\) & Internal Array Module & & 0.6 & & 0.7 & & 0.8 & & 0.9 & ns \\
\hline \multicolumn{2}{|l|}{Predicted Routing Delays \({ }^{2}\)} & & & & & & & & & \\
\hline \begin{tabular}{l}
\(t_{D C}\) \\
\(t_{\text {FC }}\) \\
\(t_{\text {RD1 }}\) \\
\(t_{\text {RD2 }}\) \\
\(\mathrm{t}_{\mathrm{RD} 3}\) \\
\(t_{\text {RD4 }}\) \\
\(t_{\text {RD8 }}\) \\
\(t_{\text {RD12 }}\)
\end{tabular} & \begin{tabular}{l}
FO=1 Routing Delay, Direct Connect \\
FO=1 Routing Delay, Fast Connect \\
FO=1 Routing Delay \\
FO=2 Routing Delay \\
FO=3 Routing Delay \\
FO=4 Routing Delay \\
FO=8 Routing Delay \\
FO=12 Routing Delay
\end{tabular} & & \[
\begin{aligned}
& 0.1 \\
& 0.3 \\
& 0.3 \\
& 0.6 \\
& 0.8 \\
& 1.0 \\
& 1.9 \\
& 2.8
\end{aligned}
\] & & \[
\begin{aligned}
& 0.1 \\
& 0.4 \\
& 0.4 \\
& 0.7 \\
& 0.9 \\
& 1.2 \\
& 2.2 \\
& 3.2
\end{aligned}
\] & & \[
\begin{aligned}
& 0.1 \\
& 0.4 \\
& 0.4 \\
& 0.8 \\
& 1.0 \\
& 1.4 \\
& 2.5 \\
& 3.7
\end{aligned}
\] & & \[
\begin{aligned}
& 0.1 \\
& 0.5 \\
& 0.5 \\
& 0.9 \\
& 1.2 \\
& 1.6 \\
& 2.9 \\
& 4.3
\end{aligned}
\] & ns ns ns ns ns ns ns ns \\
\hline \multicolumn{2}{|l|}{R-Cell Timing} & & & & & & & & & \\
\hline \begin{tabular}{l}
\(\mathrm{t}_{\mathrm{RCO}}\) \\
\(t_{C L R}\) \\
tpRESET \\
\(t_{\text {SUD }}\) \\
\(t_{H D}\) \\
twasyn
\end{tabular} & \begin{tabular}{l}
Sequential Clock-to-Q \\
Asynchronous Clear-to-Q \\
Asynchronous Preset-to-Q \\
Flip-Flop Data Input Set-Up \\
Flip-Flop Data Input Hold \\
Asynchronous Pulse Width
\end{tabular} & \[
\begin{aligned}
& 0.5 \\
& 0.0 \\
& 1.4
\end{aligned}
\] & \[
\begin{aligned}
& 0.8 \\
& 0.5 \\
& 0.7
\end{aligned}
\] & \[
\begin{aligned}
& 0.5 \\
& 0.0 \\
& 1.6
\end{aligned}
\] & \[
\begin{aligned}
& 1.1 \\
& 0.6 \\
& 0.8
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 0.0 \\
& 1.8
\end{aligned}
\] & \[
\begin{aligned}
& 1.2 \\
& 0.7 \\
& 0.9
\end{aligned}
\] & \[
\begin{aligned}
& 0.8 \\
& 0.0 \\
& 2.1
\end{aligned}
\] & \[
\begin{aligned}
& 1.4 \\
& 0.8 \\
& 1.0
\end{aligned}
\] & ns ns ns ns ns ns \\
\hline \multicolumn{2}{|l|}{Input Module Propagation Delays} & & & & & & & & & \\
\hline \begin{tabular}{l}
\(\mathrm{t}_{\mathrm{INYH}}\) \\
\(\mathrm{t}_{\mathrm{INYL}}\)
\end{tabular} & Input Data Pad-to-Y HIGH Input Data Pad-to-Y LOW & & \[
\begin{aligned}
& 1.5 \\
& 1.5
\end{aligned}
\] & & \[
\begin{aligned}
& 1.7 \\
& 1.7
\end{aligned}
\] & & \[
\begin{aligned}
& 1.9 \\
& 1.9
\end{aligned}
\] & & \[
\begin{aligned}
& 2.2 \\
& 2.2
\end{aligned}
\] & ns ns \\
\hline \multicolumn{2}{|l|}{Predicted Input Routing Delays \({ }^{2}\)} & & & & & & & & & \\
\hline \begin{tabular}{l}
\(\mathrm{t}_{\mathrm{IRD}} 1\) \\
\(\mathrm{t}_{\mathrm{IRD} 2}\) \\
\(\mathrm{t}_{\text {IRD3 }}\) \\
\(\mathrm{t}_{\text {IRD4 }}\) \\
tIRD8 \\
\(t_{\text {IRD12 }}\)
\end{tabular} & FO=1 Routing Delay FO=2 Routing Delay FO=3 Routing Delay FO=4 Routing Delay FO=8 Routing Delay FO=12 Routing Delay & & \[
\begin{aligned}
& \hline 0.3 \\
& 0.6 \\
& 0.8 \\
& 1.0 \\
& 1.9 \\
& 2.8
\end{aligned}
\] & & \[
\begin{aligned}
& \hline 0.4 \\
& 0.7 \\
& 0.9 \\
& 1.2 \\
& 2.2 \\
& 3.2
\end{aligned}
\] & & \[
\begin{aligned}
& 0.4 \\
& 0.8 \\
& 1.0 \\
& 1.4 \\
& 2.5 \\
& 3.7
\end{aligned}
\] & & 0.5
0.9
1.2
1.6
2.9
4.3 & ns
ns
ns
ns
ns
ns \\
\hline
\end{tabular}

\section*{Notes:}
1. For dual-modulemacros, use \(t_{P D}+t_{R D 1}+t_{P D n}, t_{R C O}+t_{R D 1}+t_{P D n}\) or \(t_{P D 1}+t_{R D 1}+t_{S U D}\), whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on thedevice prior to shipment.

\section*{A54SX16 Timing Characteristics (continued)}
(Worst-Case Commercial Conditions)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{2}{|l|}{' -3 ' Speed} & \multicolumn{2}{|l|}{'-2' Speed} & \multicolumn{2}{|l|}{'-1' Speed} & \multicolumn{2}{|l|}{'Std' Speed} & \\
\hline Parameter & Description & Min. & Max. & Min. & Max. & Min. & Max. & Min. & Max. & Units \\
\hline \multicolumn{11}{|l|}{Dedicated (Hard-Wired) Array Clock Network} \\
\hline \(\mathrm{t}_{\text {HCKH }}\) & Input LOW to HIGH (Pad to R-Cell Input) & & 1.2 & & 1.4 & & 1.5 & & 1.8 & ns \\
\hline \(\mathrm{t}_{\mathrm{HCKL}}\) & Input HIGH to LOW (Pad to R-Cell Input) & & 1.2 & & 1.4 & & 1.6 & & 1.9 & ns \\
\hline \(\mathrm{t}_{\text {HPWH }}\) & Minimum Pulse Width HIGH & 1.4 & & 1.6 & & 1.8 & & 2.1 & & ns \\
\hline \(\mathrm{t}_{\text {HPWL }}\) & Minimum Pulse Width LOW & 1.4 & & 1.6 & & 1.8 & & 2.1 & & ns \\
\hline \(\mathrm{t}_{\text {HCKSW }}\) & Maximum Skew & & 0.2 & & 0.2 & & 0.3 & & 0.3 & ns \\
\hline \(\mathrm{t}_{\mathrm{HP}}\) & Minimum Period & 2.7 & & 3.1 & & 3.6 & & 4.2 & & ns \\
\hline \(\mathrm{f}_{\text {HMAX }}\) & Maximum Frequency & & 350 & & 320 & & 280 & & 240 & MHz \\
\hline \multicolumn{11}{|l|}{Routed Array Clock Networks} \\
\hline \(\mathrm{t}_{\text {RCKH }}\) & Input LOW to HIGH (Light Load) (Pad to R-Cell Input) & & 1.6 & & 1.8 & & 2.1 & & 2.5 & ns \\
\hline \(\mathrm{t}_{\text {RCKL }}\) & Input HIGH to LOW (Light Load) (Pad to R-Cell Input) & & 1.8 & & 2.0 & & 2.3 & & 2.7 & ns \\
\hline \(\mathrm{t}_{\text {RCKH }}\) & Input LOW to HIGH (50\% Load) (Pad to R-Cell Input) & & 1.8 & & 2.1 & & 2.5 & & 2.8 & ns \\
\hline \(\mathrm{t}_{\text {RCKL }}\) & Input HIGH to LOW (50\% Load) (Pad to R-Cell Input) & & 2.0 & & 2.2 & & 2.5 & & 3.0 & ns \\
\hline \(t_{\text {RCKH }}\) & Input LOW to HIGH ( \(100 \%\) Load) (Pad to R-Cell Input) & & 1.8 & & 2.1 & & 2.4 & & 2.8 & ns \\
\hline \(\mathrm{t}_{\text {RCKL }}\) & Input HIGH to LOW (100\% Load) (Pad to R-Cell Input) & & 2.0 & & 2.2 & & 2.5 & & 3.0 & ns \\
\hline \(\mathrm{t}_{\text {RPWH }}\) & Min. Pulse Width HIGH & 2.1 & & 2.4 & & 2.7 & & 3.2 & & ns \\
\hline \(\mathrm{t}_{\text {RPWL }}\) & Min. Pulse Width LOW & 2.1 & & 2.4 & & 2.7 & & 3.2 & & ns \\
\hline \(t_{\text {RCKSW }}\) & Maximum Skew (Light Load) & & 0.5 & & 0.5 & & 0.5 & & 0.7 & ns \\
\hline trcksw & Maximum Skew (50\% Load) & & 0.5 & & 0.6 & & 0.7 & & 0.8 & ns \\
\hline trcksw & Maximum Skew (100\% Load) & & 0.5 & & 0.6 & & 0.7 & & 0.8 & ns \\
\hline \multicolumn{11}{|l|}{TTL Output ModuleTiming \({ }^{1}\)} \\
\hline \(\mathrm{t}_{\text {DLH }}\) & Data-to-Pad LOW to HIGH & & 1.6 & & 1.9 & & 2.1 & & 2.5 & ns \\
\hline \(t_{\text {DHL }}\) & Data-to-Pad HIGH to LOW & & 1.6 & & 1.9 & & 2.1 & & 2.5 & ns \\
\hline \(\mathrm{t}_{\text {ENZL }}\) & Enable-to-Pad, Z to L & & 2.1 & & 2.4 & & 2.8 & & 3.2 & ns \\
\hline tenzi & Enable-to-Pad, Z to H & & 2.3 & & 2.7 & & 3.1 & & 3.6 & ns \\
\hline \(t_{\text {ENLZ }}\) & Enable-to-Pad, L to Z & & 1.4 & & 1.7 & & 1.9 & & 2.2 & ns \\
\hline \(t_{\text {ENHZ }}\) & Enable-to-Pad, H to Z & & 1.3 & & 1.5 & & 1.7 & & 2.0 & ns \\
\hline
\end{tabular}

Note:
1. Delays based on 35 pF loading, except \(\mathrm{t}_{\text {ENZL }}\) and \(\mathrm{t}_{\text {ENZH }}\). For \(\mathrm{t}_{\text {ENZL }}\) and \(\mathrm{t}_{\text {ENZH }}\) the loading is 5 pF .

\section*{A54SX16P Timing Characteristics}
(Worst-Case Commercial Conditions, \(\mathrm{V}_{\mathrm{CCR}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCA}}, \mathrm{V}_{\mathrm{CCI}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=70^{\circ} \mathrm{C}\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{2}{|l|}{'-3' Speed} & \multicolumn{2}{|l|}{'-2' Speed} & \multicolumn{2}{|l|}{'-1' Speed} & \multicolumn{2}{|l|}{'Std' Speed} & \\
\hline Parameter & Description & Min. & Max. & Min. & Max. & Min. & Max. & Min. & Max. & Units \\
\hline \multicolumn{2}{|l|}{C-Cell Propagation Delays \({ }^{1}\)} & & & & & & & & & \\
\hline \(\mathrm{t}_{\text {PD }}\) & Internal Array Module & & 0.6 & & 0.7 & & 0.8 & & 0.9 & ns \\
\hline \multicolumn{2}{|l|}{Predicted Routing Delays \({ }^{2}\)} & & & & & & & & & \\
\hline \begin{tabular}{l}
\(t_{D C}\) \\
\(t_{F C}\) \\
\(t_{\text {RD1 }}\) \\
\(\mathrm{t}_{\mathrm{RD} 2}\) \\
\(t_{\text {RD3 }}\) \\
\(\mathrm{t}_{\mathrm{RD} 4}\) \\
\(t_{\text {RD8 }}\) \\
\(t_{\text {RD12 }}\)
\end{tabular} & \begin{tabular}{l}
FO=1 Routing Delay, Direct Connect \\
FO=1 Routing Delay, Fast Connect \\
FO=1 Routing Delay \\
FO=2 Routing Delay \\
FO=3 Routing Delay \\
FO=4 Routing Delay \\
FO=8 Routing Delay \\
FO=12 Routing Delay
\end{tabular} & & \[
\begin{aligned}
& 0.1 \\
& 0.3 \\
& 0.3 \\
& 0.6 \\
& 0.8 \\
& 1.0 \\
& 1.9 \\
& 2.8
\end{aligned}
\] & & \[
\begin{aligned}
& 0.1 \\
& 0.4 \\
& 0.4 \\
& 0.7 \\
& 0.9 \\
& 1.2 \\
& 2.2 \\
& 3.2
\end{aligned}
\] & & \[
\begin{aligned}
& 0.1 \\
& 0.4 \\
& 0.4 \\
& 0.8 \\
& 1.0 \\
& 1.4 \\
& 2.5 \\
& 3.7
\end{aligned}
\] & & \[
\begin{aligned}
& 0.1 \\
& 0.5 \\
& 0.5 \\
& 0.9 \\
& 1.2 \\
& 1.6 \\
& 2.9 \\
& 4.3
\end{aligned}
\] & ns ns ns ns ns ns ns ns \\
\hline \multicolumn{2}{|l|}{R-Cell Timing} & & & & & & & & & \\
\hline \begin{tabular}{l}
\(\mathrm{t}_{\mathrm{RCO}}\) \\
\(t_{C L R}\) \\
tpRESET \\
\(t_{\text {SUD }}\) \\
\(t_{H D}\) \\
\(t_{\text {WASYN }}\)
\end{tabular} & \begin{tabular}{l}
Sequential Clock-to-Q \\
Asynchronous Clear-to-Q \\
Asynchronous Preset-to-Q \\
Flip-Flop Data Input Set-Up \\
Flip-Flop Data Input Hold \\
Asynchronous Pulse Width
\end{tabular} & \begin{tabular}{l}
0.5 \\
0.0 \\
1.4
\end{tabular} & \[
\begin{aligned}
& 0.9 \\
& 0.5 \\
& 0.7
\end{aligned}
\] & \[
\begin{aligned}
& 0.5 \\
& 0.0 \\
& 1.6
\end{aligned}
\] & \[
\begin{aligned}
& 1.1 \\
& 0.6 \\
& 0.8
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 0.0 \\
& 1.8
\end{aligned}
\] & \[
\begin{aligned}
& 1.3 \\
& 0.7 \\
& 0.9
\end{aligned}
\] & \[
\begin{aligned}
& 0.8 \\
& 0.0 \\
& 2.1
\end{aligned}
\] & \[
\begin{aligned}
& 1.4 \\
& 0.8 \\
& 1.0
\end{aligned}
\] & ns ns ns ns ns ns \\
\hline \multicolumn{2}{|l|}{Input Module Propagation Delays} & & & & & & & & & \\
\hline \begin{tabular}{l}
\(\mathrm{t}_{\mathrm{INYH}}\) \\
\(\mathrm{t}_{\mathrm{INYL}}\)
\end{tabular} & Input Data Pad-to-Y HIGH Input Data Pad-to-Y LOW & & \[
\begin{aligned}
& 1.5 \\
& 1.5
\end{aligned}
\] & & \[
\begin{aligned}
& 1.7 \\
& 1.7
\end{aligned}
\] & & \[
\begin{aligned}
& 1.9 \\
& 1.9
\end{aligned}
\] & & \[
\begin{aligned}
& 2.2 \\
& 2.2
\end{aligned}
\] & ns ns \\
\hline \multicolumn{2}{|l|}{Predicted Input Routing Delays \({ }^{2}\)} & & & & & & & & & \\
\hline \begin{tabular}{l}
\(\mathrm{t}_{\mathrm{IRD}} 1\) \\
\(\mathrm{t}_{\mathrm{IRD} 2}\) \\
\(\mathrm{t}_{\text {IRD3 }}\) \\
\(\mathrm{t}_{\text {IRD4 }}\) \\
tIRD8 \\
\(t_{\text {IRD12 }}\)
\end{tabular} & FO=1 Routing Delay FO=2 Routing Delay FO=3 Routing Delay FO=4 Routing Delay FO=8 Routing Delay FO=12 Routing Delay & & \[
\begin{aligned}
& \hline 0.3 \\
& 0.6 \\
& 0.8 \\
& 1.0 \\
& 1.9 \\
& 2.8
\end{aligned}
\] & & \[
\begin{aligned}
& \hline 0.4 \\
& 0.7 \\
& 0.9 \\
& 1.2 \\
& 2.2 \\
& 3.2
\end{aligned}
\] & & \[
\begin{aligned}
& 0.4 \\
& 0.8 \\
& 1.0 \\
& 1.4 \\
& 2.5 \\
& 3.7
\end{aligned}
\] & & 0.5
0.9
1.2
1.6
2.9
4.3 & ns
ns
ns
ns
ns
ns \\
\hline
\end{tabular}

\section*{Notes:}
1. For dual-modulemacros, use \(t_{P D}+t_{R D 1}+t_{P D n}, t_{R C O}+t_{R D 1}+t_{P D n}\) or \(t_{P D 1}+t_{R D 1}+t_{S U D}\), whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on thedevice prior to shipment.

\section*{A54SX16P Timing Characteristics (continued)}
(Worst-Case Commercial Conditions, \(\mathbf{V}_{\text {CCR }}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{cCA}}, \mathrm{V}_{\mathrm{CCI}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=70^{\circ} \mathrm{C}\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{2}{|l|}{'-3' Speed} & \multicolumn{2}{|l|}{'-2' Speed} & \multicolumn{2}{|l|}{' -1 ' Speed} & \multicolumn{2}{|l|}{'Std' Speed} & \\
\hline Parameter & Description & Min. & Max. & Min. & Max. & Min. & Max. & Min. & Max. & Units \\
\hline \multicolumn{2}{|l|}{Dedicated (Hard-Wired) Array Clock Network} & & & & & & & & & \\
\hline \({ }^{\text {tHCKH }}\) & Input LOW to HIGH (Pad to R-Cell Input) & & 1.2 & & 1.4 & & 1.5 & & 1.8 & ns \\
\hline \({ }^{\text {tHCKL }}\) & Input HIGH to LOW (Pad to R-Cell Input) & & 1.2 & & 1.4 & & 1.6 & & 1.9 & ns \\
\hline \(\mathrm{t}_{\text {HPWH }}\) & Minimum Pulse Width HIGH & 1.4 & & 1.6 & & 1.8 & & 2.1 & & ns \\
\hline \(\mathrm{t}_{\text {HPWL }}\) & Minimum Pulse Width LOW & 1.4 & & 1.6 & & 1.8 & & 2.1 & & ns \\
\hline thcksw & Maximum Skew & & 0.2 & & 0.2 & & 0.3 & & 0.3 & ns \\
\hline \(\mathrm{t}_{\mathrm{HP}}\) & Minimum Period & 2.7 & & 3.1 & & 3.6 & & 4.2 & & ns \\
\hline \(\mathrm{f}_{\text {HMAX }}\) & Maximum Frequency & & 350 & & 320 & & 280 & & 240 & MHz \\
\hline \multicolumn{2}{|l|}{Routed Array Clock Networks} & & & & & & & & & \\
\hline \(t_{\text {RCKH }}\) & Input LOW to HIGH (Light Load) (Pad to R-Cell Input) & & 1.6 & & 1.8 & & 2.1 & & 2.5 & ns \\
\hline \(\mathrm{t}_{\text {RCKL }}\) & Input HIGH to LOW (Light Load) (Pad to R-Cell Input) & & 1.8 & & 2.0 & & 2.3 & & 2.7 & ns \\
\hline \(t_{\text {RCKH }}\) & Input LOW to HIGH (50\% Load) (Pad to R-Cell Input) & & 1.8 & & 2.1 & & 2.5 & & 2.8 & ns \\
\hline \(\mathrm{t}_{\text {RCKL }}\) & Input HIGH to LOW (50\% Load) (Pad to R-Cell Input) & & 2.0 & & 2.2 & & 2.5 & & 3.0 & ns \\
\hline \({ }^{\text {RRCKH }}\) & Input LOW to HIGH (100\% Load) (Pad to R-Cell Input) & & 1.8 & & 2.1 & & 2.4 & & 2.8 & ns \\
\hline \(t_{\text {RCKL }}\) & Input HIGH to LOW (100\% Load) (Pad to R-Cell Input) & & 2.0 & & 2.2 & & 2.5 & & 3.0 & ns \\
\hline \(\mathrm{t}_{\text {RPWH }}\) & Min. Pulse Width HIGH & 2.1 & & 2.4 & & 2.7 & & 3.2 & & ns \\
\hline \(t_{\text {RPWL }}\) & Min. Pulse Width LOW & 2.1 & & 2.4 & & 2.7 & & 3.2 & & ns \\
\hline \(t_{\text {RCKSW }}\) & Maximum Skew (Light Load) & & 0.5 & & 0.5 & & 0.5 & & 0.7 & ns \\
\hline trcksw & Maximum Skew (50\% Load) & & 0.5 & & 0.6 & & 0.7 & & 0.8 & ns \\
\hline \(t_{\text {RCKSW }}\) & Maximum Skew (100\% Load) & & 0.5 & & 0.6 & & 0.7 & & 0.8 & ns \\
\hline \multicolumn{2}{|l|}{TTL Output Module Timing} & & & & & & & & & \\
\hline \({ }^{\text {tDLH }}\) & Data-to-Pad LOW to HIGH & & 2.4 & & 2.8 & & 3.1 & & 3.7 & ns \\
\hline \({ }^{\text {t }}\) HL & Data-to-Pad HIGH to LOW & & 2.3 & & 2.9 & & 3.2 & & 3.8 & ns \\
\hline \(\mathrm{t}_{\text {ENZL }}\) & Enable-to-Pad, Z to L & & 3.0 & & 3.4 & & 3.9 & & 4.6 & ns \\
\hline \(\mathrm{t}_{\text {ENZH }}\) & Enable-to-Pad, Z to H & & 3.3 & & 3.8 & & 4.3 & & 5.0 & ns \\
\hline \(\mathrm{t}_{\text {ENLZ }}\) & Enable-to-Pad, L to Z & & 2.3 & & 2.7 & & 3.0 & & 3.5 & ns \\
\hline \(\mathrm{t}_{\text {ENHZ }}\) & Enable-to-Pad, H to Z & & 2.8 & & 3.2 & & 3.7 & & 4.3 & ns \\
\hline \multicolumn{2}{|l|}{TTL/PCI Output Module Timing} & & & & & & & & & \\
\hline \({ }^{\text {t }}\) LL & Data-to-Pad LOW to HIGH & & 1.5 & & 1.7 & & 2.0 & & 2.3 & ns \\
\hline \(\mathrm{t}_{\text {DHL }}\) & Data-to-Pad HIGH to LOW & & 1.9 & & 2.2 & & 2.4 & & 2.9 & ns \\
\hline tenzl & Enable-to-Pad, Z to L & & 2.3 & & 2.6 & & 3.0 & & 3.5 & ns \\
\hline \(t_{\text {ENZH }}\) & Enable-to-Pad, Z to H & & 1.5 & & 1.7 & & 1.9 & & 2.3 & ns \\
\hline \(\mathrm{t}_{\text {ENLZ }}\) & Enable-to-Pad, L to Z & & 2.7 & & 3.1 & & 3.5 & & 4.1 & ns \\
\hline \(\mathrm{t}_{\text {ENHZ }}\) & Enable-to-Pad, H to Z & & 2.9 & & 3.3 & & 3.7 & & 4.4 & ns \\
\hline
\end{tabular}

\section*{A54SX16P Timing Characteristics (continued)}
(Worst-Case Commercial Conditions \(\mathbf{V}_{\text {CCR }}=\mathbf{3 . 0 V}, \mathbf{V}_{\text {CCA }}, \mathbf{V}_{\text {CCI }}=\mathbf{3 . 0 V}, \mathrm{T}_{\mathrm{J}}=\mathbf{7 0}{ }^{\circ} \mathrm{C}\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{2}{|l|}{\({ }^{-}-3\) ' Speed} & \multicolumn{2}{|l|}{'-2' Speed} & \multicolumn{2}{|l|}{'-1' Speed} & \multicolumn{2}{|l|}{'Std' Speed} & \\
\hline Parameter & Description & Min. & Max. & Min. & Max. & Min. & Max. & Min. & Max. & Units \\
\hline \multicolumn{2}{|l|}{PCI Output Module Timing \({ }^{1}\)} & & & & & & & & & \\
\hline \(\mathrm{t}_{\text {DLH }}\) & Data-to-Pad LOW to HIGH & & 1.8 & & 2.0 & & 2.3 & & 2.7 & ns \\
\hline \(\mathrm{t}_{\text {DHL }}\) & Data-to-Pad HIGH to LOW & & 1.7 & & 2.0 & & 2.2 & & 2.6 & ns \\
\hline \(\mathrm{t}_{\text {ENZL }}\) & Enable-to-Pad, Z to L & & 0.8 & & 1.0 & & 1.1 & & 1.3 & ns \\
\hline \(\mathrm{t}_{\text {ENZH }}\) & Enable-to-Pad, Z to H & & 1.2 & & 1.2 & & 1.5 & & 1.8 & ns \\
\hline \(t_{\text {ENLZ }}\) & Enable-to-Pad, L to Z & & 1.0 & & 1.1 & & 1.3 & & 1.5 & ns \\
\hline & Enable-to-Pad, H to Z & & 1.1 & & 1.3 & & 1.5 & & 1.7 & ns \\
\hline \multicolumn{2}{|l|}{TTL Output Module Timing} & & & & & & & & & \\
\hline \(\mathrm{t}_{\text {DLH }}\) & Data-to-Pad LOW to HIGH & & 2.1 & & 2.5 & & 2.8 & & 3.3 & ns \\
\hline \(\mathrm{t}_{\text {DHL }}\) & Data-to-Pad HIGH to LOW & & 2.0 & & 2.3 & & 2.6 & & 3.1 & ns \\
\hline tenzl & Enable-to-Pad, Z to L & & 2.5 & & 2.9 & & 3.2 & & 3.8 & ns \\
\hline \(t_{\text {ENZH }}\) & Enable-to-Pad, Z to H & & 3.0 & & 3.5 & & 3.9 & & 4.6 & ns \\
\hline tenlz & Enable-to-Pad, L to Z & & 2.3 & & 2.7 & & 3.1 & & 3.6 & ns \\
\hline \(\mathrm{t}_{\text {ENHZ }}\) & Enable-to-Pad, H to Z & & 2.9 & & 3.3 & & 3.7 & & 4.4 & ns \\
\hline
\end{tabular}

\section*{Note:}
1. Delays based on 10 pF loading.

\section*{A54SX32 Timing Characteristics}
(Worst-Case Commercial Conditions, \(\mathrm{V}_{\mathrm{CCR}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCA}}, \mathrm{V}_{\mathrm{CCI}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=70^{\circ} \mathrm{C}\) )
\begin{tabular}{|c|c|c|c|c|c|}
\hline & '-3' Speed & '-2' Speed & '-1' Speed & 'Std' Speed & \\
\hline Parameter Description & Min. Max. & Min. Max. & Min. Max. & Min. Max. & Units \\
\hline \multicolumn{6}{|l|}{C-Cell Propagation Delays \({ }^{1}\)} \\
\hline \(\mathrm{t}_{\text {PD }} \quad\) Internal Array Module & 0.6 & 0.7 & 0.8 & 0.9 & ns \\
\hline \multicolumn{6}{|l|}{Predicted Routing Delays \({ }^{2}\)} \\
\hline \begin{tabular}{ll}
\hline\(t_{\text {RC }}\) & \(F O=1\) Routing Delay, Direct Connect \\
\(t_{\text {FC }}\) & \(F O=1\) Routing Delay, Fast Connect \\
\(t_{\text {RD1 }}\) & \(F O=1\) Routing Delay \\
\(t_{\text {RD2 }}\) & \(F O=2\) Routing Delay \\
\(t_{\text {RD3 }}\) & \(F O=3\) Routing Delay \\
\(t_{\text {RD4 }}\) & \(F O=4\) Routing Delay \\
\(t_{\text {RD8 }}\) & \(F O=8\) Routing Delay \\
\(t_{\text {RD12 }}\) & \(F O=12\) Routing Delay
\end{tabular} & \[
\begin{aligned}
& \hline 0.1 \\
& 0.3 \\
& 0.3 \\
& 0.7 \\
& 1.0 \\
& 1.4 \\
& 2.7 \\
& 4.0
\end{aligned}
\] & \[
\begin{aligned}
& \hline 0.1 \\
& 0.4 \\
& 0.4 \\
& 0.8 \\
& 1.2 \\
& 1.6 \\
& 3.1 \\
& 4.7
\end{aligned}
\] & \[
\begin{aligned}
& \hline 0.1 \\
& 0.4 \\
& 0.4 \\
& 0.9 \\
& 1.4 \\
& 1.8 \\
& 3.5 \\
& 5.3
\end{aligned}
\] & \[
\begin{aligned}
& \hline 0.1 \\
& 0.5 \\
& 0.5 \\
& 1.0 \\
& 1.6 \\
& 2.1 \\
& 4.1 \\
& 6.2
\end{aligned}
\] & ns ns ns ns ns ns ns ns \\
\hline \multicolumn{6}{|l|}{R-Cell Timing} \\
\hline \begin{tabular}{ll}
\(\mathrm{t}_{\text {RCO }}\) & Sequential Clock-to-Q \\
\(\mathrm{t}_{\text {CLR }}\) & Asynchronous Clear-to-Q \\
\(\mathrm{t}_{\text {PRESET }}\) & Asynchronous Preset-to-Q \\
\(\mathrm{t}_{\text {SUD }}\) & Flip-Flop Data Input Set-Up \\
\(\mathrm{t}_{\text {HD }}\) & Flip-Flop Data Input Hold \\
\(\mathrm{t}_{\text {WASYN }}\) & Asynchronous Pulse Width
\end{tabular} & \begin{tabular}{ll} 
& 0.8 \\
& 0.5 \\
& 0.7 \\
0.5 & \\
0.0 & \\
1.4 &
\end{tabular} & \begin{tabular}{ll} 
& 1.1 \\
& 0.6 \\
& 0.8 \\
0.6 & \\
0.0 & \\
1.6 &
\end{tabular} & \begin{tabular}{ll} 
& 1.3 \\
& 0.7 \\
& 0.9 \\
0.7 & \\
0.0 & \\
1.8 &
\end{tabular} & \begin{tabular}{ll} 
& 1.4 \\
& 0.8 \\
& 1.0 \\
0.8 & \\
0.0 & \\
2.1 &
\end{tabular} & ns ns ns ns ns ns \\
\hline \multicolumn{6}{|l|}{Input Module Propagation Delays} \\
\hline \begin{tabular}{ll}
\(\mathrm{t}_{\text {INYH }}\) & Input Data Pad-to-Y HIGH \\
\(\mathrm{t}_{\text {INYL }}\) & Input Data Pad-to-Y LOW
\end{tabular} & \[
\begin{aligned}
& \hline 1.5 \\
& 1.5
\end{aligned}
\] & \[
\begin{aligned}
& \hline 1.7 \\
& 1.7
\end{aligned}
\] & \[
\begin{aligned}
& 1.9 \\
& 1.9
\end{aligned}
\] & \[
\begin{aligned}
& \hline 2.2 \\
& 2.2
\end{aligned}
\] & ns ns \\
\hline \multicolumn{6}{|l|}{Predicted Input Routing Delays \({ }^{2}\)} \\
\hline \begin{tabular}{ll}
\(\mathrm{t}_{\text {IRD1 }}\) & FO=1 Routing Delay \\
\(\mathrm{t}_{\text {IRD2 }}\) & FO=2 Routing Delay \\
\(\mathrm{t}_{\text {IRD3 }}\) & FO=3 Routing Delay \\
\(\mathrm{t}_{\text {IRD4 }}\) & FO=4 Routing Delay \\
\(\mathrm{t}_{\text {IRD8 }}\) & \(\mathrm{FO}=8\) Routing Delay \\
\(\mathrm{t}_{\text {IRD12 }}\) & FO=12 Routing Delay
\end{tabular} & \[
\begin{aligned}
& \hline 0.3 \\
& 0.7 \\
& 1.0 \\
& 1.4 \\
& 2.7 \\
& 4.0
\end{aligned}
\] & \[
\begin{aligned}
& \hline 0.4 \\
& 0.8 \\
& 1.2 \\
& 1.6 \\
& 3.1 \\
& 4.7
\end{aligned}
\] & \[
\begin{aligned}
& \hline 0.4 \\
& 0.9 \\
& 1.4 \\
& 1.8 \\
& 3.5 \\
& 5.3
\end{aligned}
\] & 0.5
1.0
1.6
2.1
4.1
6.2 & ns
ns
ns
ns
ns
ns \\
\hline
\end{tabular}

\section*{Notes:}
1. For dual-modulemacros, use \(t_{P D}+t_{R D 1}+t_{P D n}, t_{R C O}+t_{R D 1}+t_{P D n}\) or \(t_{P D 1}+t_{R D 1}+t_{S U D}\), whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

\section*{A54SX32 Timing Characteristics (continued)}
(Worst-Case Commercial Conditions)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{2}{|l|}{' -3 ' Speed} & \multicolumn{2}{|l|}{'-2' Speed} & \multicolumn{2}{|l|}{'-1' Speed} & \multicolumn{2}{|l|}{'Std' Speed} & \\
\hline Parameter & Description & Min. & Max. & Min. & Max. & Min. & Max. & Min. & Max. & Units \\
\hline \multicolumn{11}{|l|}{Dedicated (Hard-Wired) Array Clock Network} \\
\hline \(\mathrm{t}_{\text {HCKH }}\) & Input LOW to HIGH (Pad to R-Cell Input) & & 1.9 & & 2.1 & & 2.4 & & 2.8 & ns \\
\hline \(\mathrm{t}_{\mathrm{HCKL}}\) & Input HIGH to LOW (Pad to R-Cell Input) & & 1.9 & & 2.1 & & 2.4 & & 2.8 & ns \\
\hline \(\mathrm{t}_{\text {HPWH }}\) & Minimum Pulse Width HIGH & 1.4 & & 1.6 & & 1.8 & & 2.1 & & ns \\
\hline \(\mathrm{t}_{\text {HPWL }}\) & Minimum Pulse Width LOW & 1.4 & & 1.6 & & 1.8 & & 2.1 & & ns \\
\hline thCKSW & Maximum Skew & & 0.3 & & 0.4 & & 0.4 & & 0.5 & ns \\
\hline \(\mathrm{t}_{\mathrm{HP}}\) & Minimum Period & 2.7 & & 3.1 & & 3.6 & & 4.2 & & ns \\
\hline \(\mathrm{f}_{\text {HMAX }}\) & Maximum Frequency & & 350 & & 320 & & 280 & & 240 & MHz \\
\hline \multicolumn{11}{|l|}{Routed Array Clock Networks} \\
\hline \(\mathrm{t}_{\text {RCKH }}\) & Input LOW to HIGH (Light Load) (Pad to R-Cell Input) & & 2.4 & & 2.7 & & 3.0 & & 3.5 & ns \\
\hline \(\mathrm{t}_{\text {RCKL }}\) & Input HIGH to LOW (Light Load) (Pad to R-Cell Input) & & 2.4 & & 2.7 & & 3.1 & & 3.6 & ns \\
\hline \(\mathrm{t}_{\text {RCKH }}\) & Input LOW to HIGH (50\% Load) (Pad to R-Cell Input) & & 2.7 & & 3.0 & & 3.5 & & 4.1 & ns \\
\hline \(t_{\text {RCKL }}\) & Input HIGH to LOW (50\% Load) (Pad to R-Cell Input) & & 2.7 & & 3.1 & & 3.6 & & 4.2 & ns \\
\hline \(t_{\text {RCKH }}\) & Input LOW to HIGH (100\% Load) (Pad to R-Cell Input) & & 2.7 & & 3.1 & & 3.5 & & 4.1 & ns \\
\hline \(\mathrm{t}_{\text {RCKL }}\) & Input HIGH to LOW (100\% Load) (Pad to R-Cell Input) & & 2.8 & & 3.2 & & 3.6 & & 4.3 & ns \\
\hline \(\mathrm{t}_{\text {RPWH }}\) & Min. Pulse Width HIGH & 2.1 & & 2.4 & & 2.7 & & 3.2 & & ns \\
\hline \(\mathrm{t}_{\text {RPWL }}\) & Min. Pulse Width LOW & 2.1 & & 2.4 & & 2.7 & & 3.2 & & ns \\
\hline \(t_{\text {RCKSW }}\) & Maximum Skew (Light Load) & & 0.85 & & 0.98 & & 1.1 & & 1.3 & ns \\
\hline \(t_{\text {RCKSW }}\) & Maximum Skew (50\% Load) & & 1.23 & & 1.4 & & 1.6 & & 1.9 & ns \\
\hline trcksw & Maximum Skew (100\% Load) & & 1.30 & & 1.5 & & 1.7 & & 2.0 & ns \\
\hline \multicolumn{11}{|l|}{TTL Output Module Timing \({ }^{1}\)} \\
\hline \(\mathrm{t}_{\text {DLH }}\) & Data-to-Pad LOW to HIGH & & 1.6 & & 1.9 & & 2.1 & & 2.5 & ns \\
\hline \(\mathrm{t}_{\text {DHL }}\) & Data-to-Pad HIGH to LOW & & 1.6 & & 1.9 & & 2.1 & & 2.5 & ns \\
\hline \(\mathrm{t}_{\text {ENZL }}\) & Enable-to-Pad, Z to L & & 2.1 & & 2.4 & & 2.8 & & 3.2 & ns \\
\hline tenzi & Enable-to-Pad, Z to H & & 2.3 & & 2.7 & & 3.1 & & 3.6 & ns \\
\hline tenlz & Enable-to-Pad, L to Z & & 1.4 & & 1.7 & & 1.9 & & 2.2 & ns \\
\hline tenhz & Enable-to-Pad, H to Z & & 1.3 & & 1.5 & & 1.7 & & 2.0 & ns \\
\hline
\end{tabular}

\section*{Note:}
1. Delays based on \(35 p F\) loading, except \(t_{\text {ENZL }}\) and \(t_{E N Z H}\). For \(t_{E N Z L}\) and \(t_{\text {ENZH }}\) the loading is \(5 p F\).

\section*{Pin Description}

\section*{CLKA/B Clock A and B}

These pins are \(3.3 \mathrm{~V} / 5.0 \mathrm{~V}\) PCI/TTL clock inputs for clock distribution networks. The clock input is buffered prior to clocking the R-cells. If not used, this pin must be set LOW or HIGH on the board. It must not be left floating. (For A54SX72A, these clocks can be configured as bidirectional.)

\section*{GND}

\section*{Ground}

LOW supply voltage.

\section*{HCLK Dedicated (Hard-wired) Array Clock}

This pin is the \(3.3 \mathrm{~V} / 5.0 \mathrm{~V} \mathrm{PCI} / \mathrm{TTL}\) clock input for sequential modules. This input is directly wired to each R-cell and offers clock speeds independent of the number of R-cells being driven. If not used, this pin must be set LOW or HIGH on the board. It must not be left floating.

\section*{I/O Input/Output}

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Based on certain configurations, input and output levels are compatible with standard TTL, LVTTL, 3.3 V PCI or 5.0 V PCI specifications. Unused I/O pins are automatically tristated by the Designer Series software.

\section*{NC}

No Connection
This pin is not connected to circuitry within the device.

\section*{PRA, I/O Probe A}

The Probe A pin is used to output data from any user-defined design node within the device. This independent diagnostic pin can be used in conjunction with the Probe B pin to allow real-time diagnostic output of any signal path within the device. The Probe A pin can be used as a user-defined I/O when verification has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality.

\section*{PRB, I/O Probe B}

The Probe B pin is used to output data from any node within the device. This diagnostic pin can be used in conjunction with the Probe A pin to allow real-time diagnostic output of any signal path within the device. The Probe B pin can be used as a user-defined I/O when verification has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality.

\section*{TCK Test Clock}

Test clock input for diagnostic probe and device programming. In flexible mode, TCK becomes active when the TMS pin is set LOW ( refer to Table 2 on page 8). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state.

\section*{TDI Test Data Input}

Serial input for boundary scan testing and diagnostic probe. In flexible mode, TDI is active when the TMS pin is set LOW (refer to Table 2 on page 8). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state.

\section*{TDO Test Data Output}

Serial output for boundary scan testing. In flexible mode, TDO is active when the TMS pin is set LOW (refer to Table 2 on page 8). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state.

TMS

\section*{Test Mode Select}

The TMS pin controls the use of the IEEE 1149.1 Boundary Scan pins (TCK, TDI, TDO). In flexible mode when the TMS pin is set LOW, the TCK, TDI, and TDO pins are boundary scan pins (refer to Table 2 on page 8). Once the boundary scan pins are in test mode, they will remain in that mode until the internal boundary scan state machine reaches the "logic reset" state. At this point, the boundary scan pins will be released and will function as regular I/O pins. The "logic reset" state is reached 5 TCK cycles after the TMS pin is set HIGH. In dedicated test mode, TMS functions as specified in the IEEE 1149.1 specifications.

\section*{\(\mathbf{V}_{\text {cci }} \quad\) Supply Voltage}

Supply voltage for I/Os. See Table 1 on page 8.

\section*{\(\mathbf{V}_{\text {cca }} \quad\) Supply Voltage}

Supply voltage for Array. See Table 1 on page 8.

\section*{\(\mathbf{V}_{\text {CCR }} \quad\) Supply Voltage}

Supply voltage for input tolerance (required for internal biasing) See Table 1 on page 8.

\section*{Package Pin Assignments}

84-Pin PLCC (Top View)


\section*{84-Pin PLCC Package}
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Pin } \\
\text { Number }
\end{gathered}
\] & A54SX08 Function & \[
\begin{gathered}
\text { Pin } \\
\text { Number }
\end{gathered}
\] & A54SX08 Function \\
\hline 1 & \(\mathrm{V}_{\text {CCR }}\) & 43 & \(\mathrm{V}_{\text {CCR }}\) \\
\hline 2 & GND & 44 & I/O \\
\hline 3 & \(\mathrm{V}_{\text {CCA }}\) & 45 & HCLK \\
\hline 4 & PRA, I/O & 46 & I/O \\
\hline 5 & I/O & 47 & I/O \\
\hline 6 & I/O & 48 & I/O \\
\hline 7 & \(\mathrm{V}_{\mathrm{CCI}}\) & 49 & 1/0 \\
\hline 8 & I/O & 50 & 1/0 \\
\hline 9 & I/O & 51 & I/O \\
\hline 10 & I/O & 52 & TDO, I/O \\
\hline 11 & TCK, I/O & 53 & I/O \\
\hline 12 & TDI, I/O & 54 & I/O \\
\hline 13 & I/O & 55 & I/O \\
\hline 14 & I/O & 56 & I/O \\
\hline 15 & I/O & 57 & 1/0 \\
\hline 16 & TMS & 58 & I/O \\
\hline 17 & I/O & 59 & \(\mathrm{V}_{\text {CCA }}\) \\
\hline 18 & I/O & 60 & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline 19 & I/O & 61 & GND \\
\hline 20 & I/O & 62 & I/O \\
\hline 21 & 1/0 & 63 & I/O \\
\hline 22 & I/O & 64 & I/O \\
\hline 23 & I/O & 65 & I/O \\
\hline 24 & I/O & 66 & 1/0 \\
\hline 25 & I/O & 67 & I/O \\
\hline 26 & I/O & 68 & \(\mathrm{V}_{\text {CCA }}\) \\
\hline 27 & GND & 69 & GND \\
\hline 28 & \(\mathrm{V}_{\mathrm{CCI}}\) & 70 & I/O \\
\hline 29 & I/O & 71 & I/O \\
\hline 30 & I/O & 72 & I/O \\
\hline 31 & I/O & 73 & I/O \\
\hline 32 & I/O & 74 & 1/0 \\
\hline 33 & I/O & 75 & I/O \\
\hline 34 & I/O & 76 & I/O \\
\hline 35 & I/O & 77 & I/O \\
\hline 36 & I/O & 78 & I/O \\
\hline 37 & 1/0 & 79 & I/O \\
\hline 38 & I/O & 80 & I/O \\
\hline 39 & I/O & 81 & 1/0 \\
\hline 40 & PRB, I/O & 82 & I/O \\
\hline 41 & \(\mathrm{V}_{\text {CCA }}\) & 83 & CLKA \\
\hline 42 & GND & 84 & CLKB \\
\hline
\end{tabular}

\section*{Package Pin Assignments (continued)}

\section*{208-Pin PQFP (Top View)}


\section*{208-Pin PQFP}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Pin Number & A54SX08 Function & \[
\begin{gathered}
\hline \text { A54SX16, } \\
\text { A54SX16P } \\
\text { Function }
\end{gathered}
\] & A54SX32 Function & Pin Number & A54SX08 Function & A54SX16, A54SX16P Function & A54SX32 Function \\
\hline 1 & GND & GND & GND & 54 & 1/0 & I/O & 1/O \\
\hline 2 & TDI, I/O & TDI, I/O & TDI, I/O & 55 & I/O & I/O & I/O \\
\hline 3 & I/O & I/O & I/O & 56 & I/O & I/O & I/O \\
\hline 4 & NC & I/O & I/O & 57 & I/O & I/O & I/O \\
\hline 5 & 1/0 & 1/0 & I/O & 58 & I/O & //O & 1/0 \\
\hline 6 & NC & I/O & 1/0 & 59 & I/O & 1/0 & I/O \\
\hline 7 & 1/0 & I/O & 1/0 & 60 & \(\mathrm{V}_{\mathrm{Cl}}\) & \(\mathrm{V}_{\mathrm{ClI}}\) & \(\mathrm{V}_{\mathrm{ClI}}\) \\
\hline 8 & 1/0 & I/O & 1/0 & 61 & NC & I/O & I/O \\
\hline 9 & I/O & I/O & 1/0 & 62 & I/O & 1/0 & I/O \\
\hline 10 & I/O & I/O & 1/0 & 63 & 1/0 & I/O & I/O \\
\hline 11 & TMS & TMS & TMS & 64 & NC & I/O & I/O \\
\hline 12 & \(\mathrm{V}_{\mathrm{CCI}}\) & \(\mathrm{V}_{\mathrm{ClI}}\) & \(\mathrm{V}_{\mathrm{ClI}}\) & \(65^{*}\) & I/O & I/O & NC* \\
\hline 13 & I/O & 1/0 & I/O & 66 & I/O & I/O & I/O \\
\hline 14 & NC & I/O & I/O & 67 & NC & I/O & I/O \\
\hline 15 & I/O & I/O & I/O & 68 & I/O & I/O & I/O \\
\hline 16 & I/O & I/O & I/O & 69 & I/O & I/O & I/O \\
\hline 17 & NC & I/O & 1/0 & 70 & NC & 1/0 & I/O \\
\hline 18 & 1/0 & 1/0 & 1/0 & 71 & 1/0 & 1/0 & 1/0 \\
\hline 19 & 1/0 & I/O & 1/0 & 72 & I/O & 1/0 & I/O \\
\hline 20 & NC & I/O & 1/0 & 73 & NC & I/O & I/O \\
\hline 21 & I/O & I/O & 1/0 & 74 & I/O & I/O & I/O \\
\hline 22 & I/O & I/O & 1/0 & 75 & NC & I/O & I/O \\
\hline 23 & NC & 1/0 & 1/0 & 76 & PRB, I/O & PRB, I/O & PRB, I/O \\
\hline 24 & I/O & I/O & I/O & 77 & GND & GND & GND \\
\hline 25 & \(\mathrm{V}_{\text {CCR }}\) & \(\mathrm{V}_{\text {CCR }}\) & \(\mathrm{V}_{\text {CCR }}\) & 78 & \(\mathrm{V}_{\text {CCA }}\) & \(\mathrm{V}_{\text {cCA }}\) & \(\mathrm{V}_{\text {cCA }}\) \\
\hline 26 & GND & GND & GND & 79 & GND & GND & GND \\
\hline 27 & \(\mathrm{V}_{\text {CCA }}\) & \(\mathrm{V}_{\text {CCA }}\) & \(\mathrm{V}_{\text {CCA }}\) & 80 & \(\mathrm{V}_{\text {CCR }}\) & \(\mathrm{V}_{\text {CCR }}\) & \(\mathrm{V}_{\text {CCR }}\) \\
\hline 28 & GND & GND & GND & 81 & I/O & I/O & \[
1 / 0
\] \\
\hline 29 & I/O & 1/0 & I/O & 82 & HCLK & HCLK & HCLK \\
\hline 30 & 1/0 & I/O & 1/0 & 83 & I/O & I/O & I/O \\
\hline 31 & NC & I/O & I/O & 84 & I/O & I/O & I/O \\
\hline 32 & I/O & I/O & 1/0 & 85 & NC & I/O & 1/0 \\
\hline 33 & I/O & I/O & 1/0 & 86 & I/O & I/O & 1/0 \\
\hline 34 & I/O & I/O & I/O & 87 & I/O & I/O & I/O \\
\hline 35 & NC & I/O & 1/0 & 88 & NC & I/O & I/O \\
\hline 36 & 1/0 & 1/0 & 1/0 & 89 & I/O & I/O & 1/0 \\
\hline 37 & 1/0 & I/O & 1/0 & 90 & I/O & I/O & I/O \\
\hline 38 & I/O & I/O & I/O & 91 & NC & I/O & I/O \\
\hline 39 & NC & I/O & I/O & 92 & I/O & I/O & 1/0 \\
\hline 40 & \(\mathrm{v}_{\mathrm{CCI}}\) & \(\mathrm{v}_{\mathrm{CCI}}\) & \(\mathrm{v}_{\mathrm{CCI}}\) & 93 & 1/0 & I/O & I/O \\
\hline 41 & \(\mathrm{V}_{\text {CCA }}\) & \(\mathrm{V}_{\text {CCA }}\) & \(\mathrm{V}_{\text {CCA }}\) & 94 & NC & I/O & I/O \\
\hline 42 & I/O & 1/0 & 1/0 & 95 & 1/0 & 1/0 & 1/0 \\
\hline 43 & 1/0 & 1/0 & 1/0 & 96 & 1/0 & 1/0 & 1/0 \\
\hline 44 & 1/0 & 1/0 & 1/0 & 97 & NC & 1/O & I/O \\
\hline 45 & 1/0 & I/O & 1/0 & 98 & \(\mathrm{v}_{\mathrm{cCl}}\) & \(\mathrm{v}_{\mathrm{CCI}}\) & \(\mathrm{v}_{\mathrm{ClI}}\) \\
\hline 46 & 1/0 & 1/0 & I/O & 99 & I/O & 1/0 & I/O \\
\hline 47 & 1/0 & 1/0 & 1/0 & 100 & I/O & I/O & I/O \\
\hline 48 & NC & I/O & 1/0 & 101 & 1/0 & 1/0 & I/O \\
\hline 49 & 1/0 & 1/0 & 1/0 & 102 & 1/0 & 1/O & I/O \\
\hline 50 & NC & 1/0 & 1/0 & 103 & TDO, I/O & TDO, I/O & TDO, //O \\
\hline 51 & I/O & 1/0 & 1/0 & 104 & I/O & //O & I/O \\
\hline 52 & GND & GND & GND & 105 & GND & GND & GND \\
\hline 53 & 1/0 & 1/0 & I/O & 106 & NC & I/O & I/O \\
\hline
\end{tabular}
* Please notethat Pin 65 in the A54SX32- PQ208 is a no connect (NC).

\section*{208-Pin PQFP (Continued)}
\begin{tabular}{|c|c|c|c|}
\hline Pin Number & A54SX08 Function & A54SX16, A54SX16P Function & \begin{tabular}{l}
A54SX32 \\
Function
\end{tabular} \\
\hline 107 & I/O & I/O & I/O \\
\hline 108 & NC & 1/O & 1/O \\
\hline 109 & I/O & 1/O & 1/O \\
\hline 110 & I/O & 1/O & I/O \\
\hline 111 & I/O & 1/O & 1/O \\
\hline 112 & I/O & 1/O & 1/O \\
\hline 113 & I/O & I/O & I/O \\
\hline 114 & \(\mathrm{V}_{\text {CCA }}\) & \(\mathrm{V}_{\text {CCA }}\) & \(\mathrm{V}_{\text {CCA }}\) \\
\hline 115 & \(\mathrm{V}_{\mathrm{CCI}}\) & \(\mathrm{V}_{\mathrm{CCI}}\) & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline 116 & NC & I/O & I/O \\
\hline 117 & I/O & 1/O & I/O \\
\hline 118 & I/O & 1/O & I/O \\
\hline 119 & NC & 1/O & I/O \\
\hline 120 & I/O & 1/O & I/O \\
\hline 121 & I/O & 1/O & I/O \\
\hline 122 & NC & 1/O & I/O \\
\hline 123 & I/O & 1/O & I/O \\
\hline 124 & I/O & 1/O & I/O \\
\hline 125 & NC & 1/O & I/O \\
\hline 126 & I/O & I/O & I/O \\
\hline 127 & I/O & 1/O & I/O \\
\hline 128 & I/O & I/O & I/O \\
\hline 129 & GND & GND & GND \\
\hline 130 & \(V_{\text {CCA }}\) & \(\mathrm{V}_{\text {CCA }}\) & \(\mathrm{V}_{\text {CCA }}\) \\
\hline 131 & GND & GND & GND \\
\hline 132 & \(\mathrm{V}_{\text {CCR }}\) & \(V_{\text {CCR }}\) & \(\mathrm{V}_{\text {CCR }}\) \\
\hline 133 & I/O & I/O & I/O \\
\hline 134 & 1/O & 1/O & I/O \\
\hline 135 & NC & I/O & I/O \\
\hline 136 & I/O & I/O & I/O \\
\hline 137 & 1/O & I/O & 1/O \\
\hline 138 & NC & I/O & 1/O \\
\hline 139 & I/O & I/O & I/O \\
\hline 140 & 1/O & I/O & I/O \\
\hline 141 & NC & I/O & I/O \\
\hline 142 & I/O & I/O & I/O \\
\hline 143 & NC & I/O & I/O \\
\hline 144 & I/O & I/O & I/O \\
\hline 145 & \(\mathrm{V}_{\text {CCA }}\) & \(\mathrm{V}_{\text {CCA }}\) & \(\mathrm{V}_{\text {CCA }}\) \\
\hline 146 & GND & GND & GND \\
\hline 147 & I/O & I/O & I/O \\
\hline 148 & \(\mathrm{V}_{\mathrm{CCI}}\) & \(\mathrm{V}_{\mathrm{CCI}}\) & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline 149 & I/O & I/O & I/O \\
\hline 150 & 1/O & 1/O & I/O \\
\hline 151 & 1/O & 1/O & I/O \\
\hline 152 & 1/O & I/O & I/O \\
\hline 153 & 1/O & I/O & I/O \\
\hline 154 & I/O & I/O & I/O \\
\hline 155 & NC & I/O & I/O \\
\hline 156 & NC & I/O & I/O \\
\hline 157 & GND & GND & GND \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Pin Number & A54SX08 Function & A54SX16, A54SX16P Function & \begin{tabular}{l}
A54SX32 \\
Function
\end{tabular} \\
\hline 158 & I/O & I/O & I/O \\
\hline 159 & I/O & 1/O & I/O \\
\hline 160 & I/O & I/O & I/O \\
\hline 161 & I/O & 1/O & I/O \\
\hline 162 & I/O & I/O & 1/O \\
\hline 163 & I/O & I/O & I/O \\
\hline 164 & \(\mathrm{V}_{\mathrm{CCI}}\) & \(\mathrm{V}_{\mathrm{CCI}}\) & \(\mathrm{V}_{\mathrm{CCl}}\) \\
\hline 165 & I/O & I/O & I/O \\
\hline 166 & I/O & I/O & 1/O \\
\hline 167 & NC & 1/O & 1/O \\
\hline 168 & I/O & 1/O & 1/O \\
\hline 169 & I/O & I/O & 1/O \\
\hline 170 & NC & 1/O & 1/O \\
\hline 171 & I/O & 1/O & I/O \\
\hline 172 & I/O & I/O & I/O \\
\hline 173 & NC & 1/O & 1/O \\
\hline 174 & I/O & I/O & I/O \\
\hline 175 & I/O & I/O & I/O \\
\hline 176 & NC & 1/O & I/O \\
\hline 177 & I/O & I/O & 1/O \\
\hline 178 & I/O & 1/O & I/O \\
\hline 179 & I/O & I/O & I/O \\
\hline 180 & CLKA & CLKA & CLKA \\
\hline 181 & CLKB & CLKB & CLKB \\
\hline 182 & \(\mathrm{V}_{\text {CCR }}\) & \(\mathrm{V}_{\text {CCR }}\) & \(\mathrm{V}_{\text {CCR }}\) \\
\hline 183 & GND & GND & GND \\
\hline 184 & \(V_{\text {CCA }}\) & \(V_{\text {CCA }}\) & \(V_{\text {CCA }}\) \\
\hline 185 & GND & GND & GND \\
\hline 186 & PRA, I/O & PRA, I/O & PRA, I/O \\
\hline 187 & I/O & I/O & I/O \\
\hline 188 & I/O & 1/O & I/O \\
\hline 189 & NC & I/O & I/O \\
\hline 190 & I/O & I/O & I/O \\
\hline 191 & I/O & 1/O & I/O \\
\hline 192 & NC & 1/O & I/O \\
\hline 193 & I/O & I/O & I/O \\
\hline 194 & I/O & I/O & I/O \\
\hline 195 & NC & 1/O & I/O \\
\hline 196 & I/O & 1/O & I/O \\
\hline 197 & I/O & 1/O & 1/O \\
\hline 198 & NC & I/O & 1/O \\
\hline 199 & I/O & I/O & 1/O \\
\hline 200 & I/O & I/O & I/O \\
\hline 201 & \(\mathrm{V}_{\mathrm{CCI}}\) & \(\mathrm{V}_{\mathrm{CCI}}\) & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline 202 & NC & I/O & I/O \\
\hline 203 & NC & I/O & I/O \\
\hline 204 & I/O & I/O & 1/O \\
\hline 205 & NC & I/O & 1/O \\
\hline 206 & I/O & I/O & I/O \\
\hline 207 & I/O & I/O & I/O \\
\hline 208 & TCK, I/O & TCK, I/O & TCK, I/O \\
\hline
\end{tabular}

Package Pin Assignments (continued)
144-Pin TQFP (Top View)


144-Pin TQFP
\begin{tabular}{|c|c|c|c|}
\hline Pin Number & A54SX08 Function & A54SX16P Function & A54SX32 Function \\
\hline 1 & GND & GND & GND \\
\hline 2 & TDI, I/O & TDI, I/O & TDI, I/O \\
\hline 3 & I/O & I/O & I/O \\
\hline 4 & I/O & I/O & I/O \\
\hline 5 & I/O & I/O & I/O \\
\hline 6 & I/O & I/O & I/O \\
\hline 7 & I/O & I/O & I/O \\
\hline 8 & I/O & I/O & I/O \\
\hline 9 & TMS & TMS & TMS \\
\hline 10 & \(\mathrm{V}_{\mathrm{CCI}}\) & \(\mathrm{V}_{\mathrm{CCI}}\) & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline 11 & GND & GND & GND \\
\hline 12 & I/O & I/O & I/O \\
\hline 13 & I/O & I/O & I/O \\
\hline 14 & I/O & I/O & I/O \\
\hline 15 & I/O & I/O & I/O \\
\hline 16 & I/O & I/O & I/O \\
\hline 17 & I/O & I/O & I/O \\
\hline 18 & I/O & I/O & I/O \\
\hline 19 & \(\mathrm{V}_{\text {CCR }}\) & \(\mathrm{V}_{\text {CCR }}\) & \(\mathrm{V}_{\text {CCR }}\) \\
\hline 20 & \(\mathrm{V}_{\text {CCA }}\) & \(\mathrm{V}_{\text {CCA }}\) & \(\mathrm{V}_{\text {CCA }}\) \\
\hline 21 & I/O & I/O & I/O \\
\hline 22 & I/O & I/O & I/O \\
\hline 23 & I/O & I/O & I/O \\
\hline 24 & I/O & I/O & I/O \\
\hline 25 & I/O & I/O & I/O \\
\hline 26 & I/O & I/O & I/O \\
\hline 27 & I/O & I/O & I/O \\
\hline 28 & GND & GND & GND \\
\hline 29 & \(\mathrm{V}_{\mathrm{CCI}}\) & \(\mathrm{V}_{\mathrm{CCI}}\) & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline 30 & \(\mathrm{V}_{\text {CCA }}\) & \(\mathrm{V}_{\text {CCA }}\) & \(\mathrm{V}_{\text {CCA }}\) \\
\hline 31 & I/O & I/O & I/O \\
\hline 32 & I/O & I/O & I/O \\
\hline 33 & I/O & I/O & I/O \\
\hline 34 & I/O & I/O & I/O \\
\hline 35 & I/O & I/O & I/O \\
\hline 36 & GND & GND & GND \\
\hline 37 & I/O & I/O & I/O \\
\hline 38 & I/O & I/O & I/O \\
\hline 39 & I/O & I/O & I/O \\
\hline 40 & I/O & I/O & I/O \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Pin Number & A54SX08 Function & A54SX16P Function & \begin{tabular}{l}
A54SX32 \\
Function
\end{tabular} \\
\hline 41 & I/O & I/O & I/O \\
\hline 42 & 1/O & I/O & I/O \\
\hline 43 & I/O & I/O & I/O \\
\hline 44 & \(\mathrm{V}_{\mathrm{CCI}}\) & \(\mathrm{V}_{\mathrm{CCI}}\) & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline 45 & I/O & I/O & I/O \\
\hline 46 & I/O & I/O & I/O \\
\hline 47 & I/O & I/O & I/O \\
\hline 48 & I/O & I/O & I/O \\
\hline 49 & I/O & I/O & I/O \\
\hline 50 & I/O & I/O & I/O \\
\hline 51 & I/O & I/O & I/O \\
\hline 52 & I/O & I/O & I/O \\
\hline 53 & I/O & I/O & I/O \\
\hline 54 & PRB, I/O & PRB, I/O & PRB, I/O \\
\hline 55 & I/O & I/O & I/O \\
\hline 56 & \(\mathrm{V}_{\text {CCA }}\) & \(\mathrm{V}_{\text {CCA }}\) & \(\mathrm{V}_{\text {CCA }}\) \\
\hline 57 & GND & GND & GND \\
\hline 58 & \(\mathrm{V}_{\text {CCR }}\) & \(V_{\text {CCR }}\) & \(\mathrm{V}_{\text {CCR }}\) \\
\hline 59 & I/O & I/O & I/O \\
\hline 60 & HCLK & HCLK & HCLK \\
\hline 61 & I/O & I/O & I/O \\
\hline 62 & I/O & I/O & I/O \\
\hline 63 & I/O & I/O & I/O \\
\hline 64 & 1/O & I/O & I/O \\
\hline 65 & I/O & I/O & I/O \\
\hline 66 & I/O & I/O & I/O \\
\hline 67 & I/O & I/O & I/O \\
\hline 68 & \(\mathrm{V}_{\mathrm{CCI}}\) & \(\mathrm{V}_{\mathrm{CCI}}\) & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline 69 & 1/O & 1/O & I/O \\
\hline 70 & I/O & I/O & I/O \\
\hline 71 & TDO, I/O & TDO, I/O & TDO, I/O \\
\hline 72 & I/O & I/O & I/O \\
\hline 73 & GND & GND & GND \\
\hline 74 & I/O & I/O & I/O \\
\hline 75 & I/O & I/O & I/O \\
\hline 76 & I/O & I/O & I/O \\
\hline 77 & I/O & I/O & I/O \\
\hline 78 & I/O & I/O & I/O \\
\hline 79 & \(\mathrm{V}_{\text {CCA }}\) & \(\mathrm{V}_{\text {CCA }}\) & \(\mathrm{V}_{\text {CCA }}\) \\
\hline 80 & \(\mathrm{V}_{\mathrm{CCI}}\) & \(\mathrm{V}_{\mathrm{CCI}}\) & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline
\end{tabular}

144-Pin TQFP (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Pin Number & A54SX08 Function & A54SX16P Function & A54SX32 Function & Pin Number & A54SX08 Function & A54SX16P Function & A54SX32 Function \\
\hline 81 & GND & GND & GND & 113 & I/O & I/O & I/O \\
\hline 82 & I/O & I/O & I/O & 114 & I/O & I/O & I/O \\
\hline 83 & 1/0 & 1/0 & 1/0 & 115 & \(\mathrm{v}_{\mathrm{CCI}}\) & \(\mathrm{V}_{\mathrm{ClI}}\) & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline 84 & 1/0 & 1/0 & 1/0 & 116 & I/O & 1/0 & I/O \\
\hline 85 & 1/0 & 1/0 & 1/0 & 117 & 1/0 & 1/0 & 1/0 \\
\hline 86 & 1/0 & I/O & 1/0 & 118 & 1/0 & 1/0 & 1/0 \\
\hline 87 & 1/0 & 1/0 & 1/0 & 119 & 1/0 & 1/0 & 1/0 \\
\hline 88 & I/O & I/O & I/O & 120 & 1/0 & 1/0 & 1/0 \\
\hline 89 & \(\mathrm{V}_{\text {CCA }}\) & \(\mathrm{V}_{\text {CCA }}\) & \(\mathrm{V}_{\text {CCA }}\) & 121 & 1/0 & 1/0 & 1/0 \\
\hline 90 & \(\mathrm{V}_{\text {CCR }}\) & \(\mathrm{V}_{\text {CCR }}\) & \(\mathrm{V}_{\text {CCR }}\) & 122 & 1/0 & 1/0 & I/O \\
\hline 91 & I/O & I/O & 1/0 & 123 & 1/0 & 1/0 & 1/0 \\
\hline 92 & 1/0 & 1/0 & 1/0 & 124 & I/O & I/O & 1/O \\
\hline 93 & 1/0 & I/O & 1/0 & 125 & CLKA & CLKA & CLKA \\
\hline 94 & 1/0 & I/O & I/O & 126 & CLKB & CLKB & CLKB \\
\hline 95 & 1/0 & I/O & 1/0 & 127 & \(\mathrm{V}_{\text {CCR }}\) & \(\mathrm{V}_{\text {CCR }}\) & \(\mathrm{V}_{\text {CCR }}\) \\
\hline 96 & I/O & I/O & 1/0 & 128 & GND & GND & GND \\
\hline 97 & 1/O & I/O & I/O & 129 & \(\mathrm{V}_{\text {CCA }}\) & \(\mathrm{V}_{\text {CCA }}\) & \(\mathrm{V}_{\text {CCA }}\) \\
\hline 98 & \(\mathrm{V}_{\text {CCA }}\) & \(\mathrm{V}_{\text {CCA }}\) & \(\mathrm{V}_{\text {CCA }}\) & 130 & I/O & I/O & I/O \\
\hline 99 & GND & GND & GND & 131 & PRA, I/O & PRA, I/O & PRA, I/O \\
\hline 100 & I/O & I/O & I/O & 132 & I/O & I/O & I/O \\
\hline 101 & GND & GND & GND & 133 & 1/0 & I/O & 1/0 \\
\hline 102 & \(\mathrm{V}_{\mathrm{CCI}}\) & \(\mathrm{V}_{\mathrm{CCI}}\) & \(\mathrm{V}_{\mathrm{CCI}}\) & 134 & 1/0 & 1/0 & 1/0 \\
\hline 103 & I/O & I/O & I/O & 135 & 1/0 & 1/0 & 1/0 \\
\hline 104 & 1/0 & 1/0 & 1/0 & 136 & 1/0 & 1/0 & 1/0 \\
\hline 105 & 1/0 & I/O & 1/0 & 137 & 1/0 & I/O & I/O \\
\hline 106 & 1/0 & 1/0 & 1/0 & 138 & 1/0 & 1/0 & 1/0 \\
\hline 107 & 1/0 & 1/0 & 1/0 & 139 & 1/0 & I/O & I/O \\
\hline 108 & 1/0 & I/O & I/O & 140 & \(\mathrm{v}_{\mathrm{CCI}}\) & \(\mathrm{v}_{\mathrm{CCI}}\) & \(\mathrm{v}_{\mathrm{CCI}}\) \\
\hline 109 & GND & GND & GND & 141 & I/O & I/O & I/O \\
\hline 110 & I/O & I/O & I/O & 142 & 1/0 & 1/0 & 1/0 \\
\hline 111 & 1/0 & 1/0 & 1/0 & 143 & 1/0 & 1/0 & 1/0 \\
\hline 112 & 1/0 & 1/0 & 1/0 & 144 & TCK, I/O & TCK, I/O & TCK, I/O \\
\hline 113 & 1/0 & 1/0 & 1/0 & & & & \\
\hline
\end{tabular}

\section*{Package Pin Assignments (continued)}

\section*{176-Pin TQFP (Top View)}


176-Pin TQFP
\begin{tabular}{|c|c|c|c|}
\hline Pin Number & A54SX08 Function & A54SX16, A54SX16P Function & \begin{tabular}{l}
A54SX32 \\
Function
\end{tabular} \\
\hline 1 & GND & GND & GND \\
\hline 2 & TDI, I/O & TDI, I/O & TDI, I/O \\
\hline 3 & NC & I/O & I/O \\
\hline 4 & I/O & I/O & I/O \\
\hline 5 & I/O & I/O & I/O \\
\hline 6 & I/O & I/O & I/O \\
\hline 7 & I/O & I/O & I/O \\
\hline 8 & I/O & I/O & I/O \\
\hline 9 & I/O & I/O & I/O \\
\hline 10 & TMS & TMS & TMS \\
\hline 11 & \(\mathrm{V}_{\mathrm{CCI}}\) & \(\mathrm{V}_{\mathrm{CCI}}\) & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline 12 & NC & I/O & I/O \\
\hline 13 & I/O & I/O & I/O \\
\hline 14 & I/O & I/O & I/O \\
\hline 15 & I/O & I/O & I/O \\
\hline 16 & I/O & I/O & I/O \\
\hline 17 & I/O & I/O & I/O \\
\hline 18 & I/O & I/O & I/O \\
\hline 19 & I/O & I/O & I/O \\
\hline 20 & I/O & I/O & I/O \\
\hline 21 & GND & GND & GND \\
\hline 22 & \(V_{\text {CCA }}\) & \(\mathrm{V}_{\text {CCA }}\) & \(\mathrm{V}_{\text {CCA }}\) \\
\hline 23 & GND & GND & GND \\
\hline 24 & I/O & I/O & I/O \\
\hline 25 & I/O & I/O & I/O \\
\hline 26 & I/O & I/O & I/O \\
\hline 27 & I/O & I/O & I/O \\
\hline 28 & I/O & I/O & I/O \\
\hline 29 & 1/O & I/O & I/O \\
\hline 30 & I/O & I/O & I/O \\
\hline 31 & I/O & I/O & I/O \\
\hline 32 & \(\mathrm{V}_{\mathrm{CCI}}\) & \(\mathrm{V}_{\mathrm{CCI}}\) & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline 33 & \(\mathrm{V}_{\text {CCA }}\) & \(\mathrm{V}_{\text {CCA }}\) & \(\mathrm{V}_{\text {CCA }}\) \\
\hline 34 & I/O & I/O & I/O \\
\hline 35 & I/O & I/O & I/O \\
\hline 36 & I/O & I/O & I/O \\
\hline 37 & I/O & I/O & I/O \\
\hline 38 & I/O & I/O & I/O \\
\hline 39 & I/O & I/O & I/O \\
\hline 40 & NC & I/O & I/O \\
\hline 41 & I/O & I/O & I/O \\
\hline 42 & NC & I/O & I/O \\
\hline 43 & I/O & I/O & I/O \\
\hline 44 & GND & GND & GND \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Pin Number & A54SX08 Function & \[
\begin{aligned}
& \hline \text { A54SX16, } \\
& \text { A54SX16P } \\
& \text { Function }
\end{aligned}
\] & A54SX32 Function \\
\hline 45 & I/O & I/O & I/O \\
\hline 46 & I/O & I/O & I/O \\
\hline 47 & 1/0 & 1/0 & I/O \\
\hline 48 & I/O & I/O & I/O \\
\hline 49 & 1/0 & 1/0 & 1/0 \\
\hline 50 & I/O & I/O & I/O \\
\hline 51 & I/O & I/O & I/O \\
\hline 52 & \(\mathrm{V}_{\mathrm{CCI}}\) & \(\mathrm{v}_{\mathrm{CCl}}\) & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline 53 & I/O & I/O & I/O \\
\hline 54 & NC & 1/0 & 1/0 \\
\hline 55 & 1/0 & 1/0 & I/O \\
\hline 56 & 1/0 & 1/0 & I/O \\
\hline 57 & NC & 1/0 & 1/0 \\
\hline 58 & 1/0 & I/O & I/O \\
\hline 59 & 1/0 & 1/0 & I/O \\
\hline 60 & 1/0 & I/O & I/O \\
\hline 61 & 1/0 & 1/0 & I/O \\
\hline 62 & 1/0 & I/O & I/O \\
\hline 63 & I/O & I/O & I/O \\
\hline 64 & PRB, I/O & PRB, I/O & PRB, I/O \\
\hline 65 & GND & GND & GND \\
\hline 66 & \(V_{\text {CCA }}\) & \(\mathrm{V}_{\text {CCA }}\) & \(\mathrm{V}_{\text {CCA }}\) \\
\hline 67 & \(\mathrm{V}_{\text {CCR }}\) & \(\mathrm{V}_{\text {CCR }}\) & \(\mathrm{V}_{\text {CCR }}\) \\
\hline 68 & I/O & I/O & I/O \\
\hline 69 & HCLK & HCLK & HCLK \\
\hline 70 & I/O & I/O & I/O \\
\hline 71 & I/O & I/O & 1/0 \\
\hline 72 & I/O & I/O & I/O \\
\hline 73 & 1/0 & 1/0 & 1/0 \\
\hline 74 & 1/0 & I/O & 1/0 \\
\hline 75 & I/O & I/O & 1/0 \\
\hline 76 & I/O & I/O & I/O \\
\hline 77 & I/O & 1/0 & 1/0 \\
\hline 78 & 1/0 & I/O & 1/0 \\
\hline 79 & NC & I/O & I/O \\
\hline 80 & I/O & 1/0 & I/O \\
\hline 81 & NC & I/O & I/O \\
\hline 82 & \(\mathrm{V}_{\mathrm{CCI}}\) & \(\mathrm{V}_{\mathrm{CCI}}\) & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline 83 & I/O & I/O & I/O \\
\hline 84 & 1/0 & 1/0 & 1/0 \\
\hline 85 & I/O & I/O & I/O \\
\hline 86 & 1/0 & 1/0 & I/O \\
\hline 87 & TDO, I/O & TDO, I/O & TDO, I/O \\
\hline 88 & I/O & I/O & I/O \\
\hline
\end{tabular}

176-Pin TQFP (Continued)
\begin{tabular}{|c|c|c|c|}
\hline Pin Number & \begin{tabular}{l}
A54SX08 \\
Function
\end{tabular} & A54SX16, A54SX16P Function & \begin{tabular}{l}
A54SX32 \\
Function
\end{tabular} \\
\hline 89 & GND & GND & GND \\
\hline 90 & NC & I/O & I/O \\
\hline 91 & NC & I/O & I/O \\
\hline 92 & I/O & I/O & I/O \\
\hline 93 & I/O & I/O & I/O \\
\hline 94 & I/O & I/O & I/O \\
\hline 95 & I/O & I/O & I/O \\
\hline 96 & I/O & I/O & I/O \\
\hline 97 & I/O & I/O & I/O \\
\hline 98 & \(\mathrm{V}_{\text {CCA }}\) & \(\mathrm{V}_{\text {CCA }}\) & \(\mathrm{V}_{\text {CCA }}\) \\
\hline 99 & \(\mathrm{V}_{\mathrm{CCI}}\) & \(\mathrm{V}_{\mathrm{CCI}}\) & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline 100 & I/O & I/O & I/O \\
\hline 101 & I/O & I/O & I/O \\
\hline 102 & I/O & I/O & I/O \\
\hline 103 & I/O & I/O & I/O \\
\hline 104 & I/O & I/O & I/O \\
\hline 105 & I/O & I/O & I/O \\
\hline 106 & I/O & I/O & I/O \\
\hline 107 & I/O & I/O & I/O \\
\hline 108 & GND & GND & GND \\
\hline 109 & \(\mathrm{V}_{\text {CCA }}\) & \(\mathrm{V}_{\text {CCA }}\) & \(V_{\text {CCA }}\) \\
\hline 110 & GND & GND & GND \\
\hline 111 & I/O & I/O & I/O \\
\hline 112 & I/O & I/O & I/O \\
\hline 113 & I/O & I/O & I/O \\
\hline 114 & I/O & I/O & I/O \\
\hline 115 & I/O & I/O & I/O \\
\hline 116 & I/O & I/O & I/O \\
\hline 117 & I/O & I/O & I/O \\
\hline 118 & NC & I/O & I/O \\
\hline 119 & I/O & I/O & I/O \\
\hline 120 & NC & I/O & I/O \\
\hline 121 & NC & I/O & I/O \\
\hline 122 & \(\mathrm{V}_{\text {CCA }}\) & \(\mathrm{V}_{\text {CCA }}\) & \(\mathrm{V}_{\text {CCA }}\) \\
\hline 123 & GND & GND & GND \\
\hline 124 & \(\mathrm{V}_{\mathrm{CCI}}\) & \(\mathrm{V}_{\mathrm{CCI}}\) & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline 125 & I/O & I/O & I/O \\
\hline 126 & I/O & I/O & I/O \\
\hline 127 & I/O & I/O & I/O \\
\hline 128 & I/O & I/O & I/O \\
\hline 129 & I/O & I/O & I/O \\
\hline 130 & I/O & I/O & I/O \\
\hline 131 & NC & I/O & I/O \\
\hline 132 & NC & I/O & I/O \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Pin Number & A54SX08 Function & \[
\begin{aligned}
& \hline \text { A54SX16, } \\
& \text { A54SX16P } \\
& \text { Function }
\end{aligned}
\] & A54SX32 Function \\
\hline 133 & GND & GND & GND \\
\hline 134 & I/O & I/O & I/O \\
\hline 135 & I/O & I/O & I/O \\
\hline 136 & I/O & I/O & 1/0 \\
\hline 137 & I/O & I/O & 1/0 \\
\hline 138 & I/O & I/O & 1/0 \\
\hline 139 & I/O & I/O & I/O \\
\hline 140 & \(\mathrm{V}_{\mathrm{CCl}}\) & \(\mathrm{V}_{\mathrm{CCl}}\) & \(\mathrm{V}_{\mathrm{CCl}}\) \\
\hline 141 & I/O & I/O & I/O \\
\hline 142 & 1/0 & 1/0 & 1/0 \\
\hline 143 & I/O & I/O & 1/0 \\
\hline 144 & I/O & 1/0 & I/O \\
\hline 145 & I/O & I/O & 1/0 \\
\hline 146 & I/O & 1/0 & I/O \\
\hline 147 & I/O & I/O & 1/0 \\
\hline 148 & I/O & I/O & I/O \\
\hline 149 & I/O & 1/0 & I/O \\
\hline 150 & I/O & I/O & 1/0 \\
\hline 151 & 1/0 & I/O & I/O \\
\hline 152 & CLKA & CLKA & CLKA \\
\hline 153 & CLKB & CLKB & CLKB \\
\hline 154 & \(\mathrm{V}_{\text {CCR }}\) & \(\mathrm{V}_{\text {CCR }}\) & \(\mathrm{V}_{\text {CCR }}\) \\
\hline 155 & GND & GND & GND \\
\hline 156 & \(\mathrm{V}_{\text {CCA }}\) & \(\mathrm{V}_{\text {CCA }}\) & \(\mathrm{V}_{\text {CCA }}\) \\
\hline 157 & PRA, I/O & PRA, I/O & PRA, I/O \\
\hline 158 & I/O & I/O & I/O \\
\hline 159 & 1/0 & I/O & I/O \\
\hline 160 & I/O & 1/0 & 1/0 \\
\hline 161 & I/O & 1/0 & 1/0 \\
\hline 162 & 1/0 & I/O & 1/0 \\
\hline 163 & I/O & I/O & 1/0 \\
\hline 164 & I/O & I/O & 1/0 \\
\hline 165 & I/O & I/O & 1/0 \\
\hline 166 & I/O & 1/0 & 1/0 \\
\hline 167 & 1/O & 1/0 & I/O \\
\hline 168 & NC & I/O & I/O \\
\hline 169 & \(\mathrm{V}_{\mathrm{CCI}}\) & \(\mathrm{V}_{\mathrm{CCI}}\) & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline 170 & I/O & I/O & I/O \\
\hline 171 & NC & I/O & 1/0 \\
\hline 172 & NC & I/O & 1/0 \\
\hline 173 & NC & I/O & 1/0 \\
\hline 174 & I/O & 1/0 & 1/0 \\
\hline 175 & I/O & I/O & I/O \\
\hline 176 & TCK, I/O & TCK, I/O & TCK, I/O \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & 54SX Family FPGAs \\
\hline
\end{tabular}

Package Pin Assignments (continued) 100-Pin VQFP (Top View)


100-VQFP
\begin{tabular}{|c|c|c|c|c|c|}
\hline Pin Number & A54SX08 Function & \[
\begin{gathered}
\text { A54SX16, } \\
\text { A54SX16P } \\
\text { Function }
\end{gathered}
\] & Pin Number & A54SX08 Function & A54SX16
A54SX16P
Function \\
\hline 1 & GND & GND & 51 & GND & GND \\
\hline 2 & TDI, I/O & TDI, I/O & 52 & I/O & I/O \\
\hline 3 & I/O & I/O & 53 & I/O & I/O \\
\hline 4 & I/O & 1/0 & 54 & 1/0 & 1/0 \\
\hline 5 & I/O & I/O & 55 & 1/0 & I/O \\
\hline 6 & I/O & 1/0 & 56 & I/O & I/O \\
\hline 7 & TMS & TMS & 57 & \(\mathrm{V}_{\text {CCA }}\) & \(\mathrm{V}_{\text {CCA }}\) \\
\hline 8 & \(\mathrm{V}_{\mathrm{CCI}}\) & \(\mathrm{V}_{\mathrm{CCI}}\) & 58 & \(\mathrm{V}_{\mathrm{CCI}}\) & \(\mathrm{V}_{\mathrm{cCl}}\) \\
\hline 9 & GND & GND & 59 & 1/0 & 1/0 \\
\hline 10 & I/O & I/O & 60 & I/O & I/O \\
\hline 11 & 1/0 & I/O & 61 & 1/0 & 1/0 \\
\hline 12 & I/O & 1/0 & 62 & I/O & I/O \\
\hline 13 & I/O & I/O & 63 & I/O & I/O \\
\hline 14 & I/O & I/O & 64 & I/O & I/O \\
\hline 15 & I/O & I/O & 65 & I/O & I/O \\
\hline 16 & 1/0 & 1/0 & 66 & I/O & I/O \\
\hline 17 & I/O & 1/0 & 67 & \(\mathrm{V}_{\text {CCA }}\) & \(\mathrm{V}_{\text {CCA }}\) \\
\hline 18 & I/O & 1/0 & 68 & GND & GND \\
\hline 19 & I/O & I/O & 69 & GND & GND \\
\hline 20 & \(\mathrm{V}_{\mathrm{ccI}}\) & \(\mathrm{V}_{\mathrm{CCI}}\) & 70 & 1/0 & 1/0 \\
\hline 21 & 1/0 & I/O & 71 & 1/0 & I/O \\
\hline 22 & I/O & I/O & 72 & 1/0 & I/O \\
\hline 23 & 1/0 & 1/0 & 73 & 1/0 & I/O \\
\hline 24 & I/O & I/O & 74 & I/O & I/O \\
\hline 25 & 1/0 & 1/0 & 75 & I/O & 1/0 \\
\hline 26 & I/O & I/O & 76 & 1/0 & 1/0 \\
\hline 27 & I/O & I/O & 77 & 1/0 & 1/0 \\
\hline 28 & I/O & I/O & 78 & 1/0 & I/O \\
\hline 29 & I/O & I/O & 79 & I/O & I/O \\
\hline 30 & 1/0 & 1/0 & 80 & 1/0 & 1/0 \\
\hline 31 & I/O & I/O & 81 & I/O & I/O \\
\hline 32 & 1/0 & 1/0 & 82 & \(\mathrm{V}_{\mathrm{CCI}}\) & \(\mathrm{V}_{\mathrm{ClI}}\) \\
\hline 33 & I/O & I/O & 83 & I/O & 1/0 \\
\hline 34 & PRB, I/O & PRB, I/O & 84 & 1/0 & 1/0 \\
\hline 35 & \(\mathrm{V}_{\text {CCA }}\) & \(\mathrm{V}_{\text {CCA }}\) & 85 & 1/0 & 1/0 \\
\hline 36 & GND & GND & 86 & I/O & I/O \\
\hline 37 & \(\mathrm{V}_{\text {CCR }}\) & \(\mathrm{V}_{\text {CCR }}\) & 87 & CLKA & CLKA \\
\hline 38 & I/O & I/O & 88 & CLKB & CLKB \\
\hline 39 & HCLK & HCLK & 89 & \(\mathrm{V}_{\text {CCR }}\) & \(\mathrm{V}_{\text {CCR }}\) \\
\hline 40 & I/O & I/O & 90 & \(V_{\text {cca }}\) & \(\mathrm{V}_{\text {cca }}\) \\
\hline 41 & 1/O & 1/0 & 91 & GND & GND \\
\hline 42 & 1/0 & 1/0 & 92 & PRA, I/O & PRA, I/O \\
\hline 43 & I/O & I/O & 93 & I/O & I/O \\
\hline 44 & \(\mathrm{V}_{\mathrm{ClI}}\) & \(\mathrm{V}_{\mathrm{CCI}}\) & 94 & 1/0 & 1/0 \\
\hline 45 & 1/0 & 1/0 & 95 & I/O & I/O \\
\hline 46 & 1/O & 1/0 & 96 & I/O & I/O \\
\hline 47 & 1/O & 1/0 & 97 & I/O & I/O \\
\hline 48 & 1/O & 1/0 & 98 & 1/0 & 1/0 \\
\hline 49 & TDO, I/O & TDO, I/O & 99 & I/O & I/O \\
\hline 50 & I/O & 1/0 & 100 & TCK, I/O & TCK, I/O \\
\hline
\end{tabular}

Package Pin Assignments (continued)
313-Pin PBGA (Top View)


313-Pin PBGA
\begin{tabular}{|c|c|c|c|}
\hline Pin Number & \begin{tabular}{l}
A54SX32 \\
Function
\end{tabular} & Pin Number & \begin{tabular}{l}
A54SX32 \\
Function
\end{tabular} \\
\hline A1 & GND & AC15 & I/O \\
\hline A3 & NC & AC17 & I/O \\
\hline A5 & I/O & AC19 & I/O \\
\hline A7 & I/O & AC21 & I/O \\
\hline A9 & I/O & AC23 & I/O \\
\hline A11 & I/O & AC25 & NC \\
\hline A13 & \(\mathrm{V}_{\text {CCR }}\) & AD2 & GND \\
\hline A15 & I/O & AD4 & I/O \\
\hline A17 & I/O & AD6 & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline A19 & I/O & AD8 & I/O \\
\hline A21 & I/O & AD10 & I/O \\
\hline A23 & NC & AD12 & PRB, I/O \\
\hline A25 & GND & AD14 & I/O \\
\hline AA1 & I/O & AD16 & I/O \\
\hline AA3 & I/O & AD18 & I/O \\
\hline AA5 & NC & AD20 & I/O \\
\hline AA7 & I/O & AD22 & NC \\
\hline AA9 & NC & AD24 & I/O \\
\hline AA11 & I/O & AE1 & NC \\
\hline AA13 & I/O & AE3 & I/O \\
\hline AA15 & I/O & AE5 & I/O \\
\hline AA17 & I/O & AE7 & I/O \\
\hline AA19 & I/O & AE9 & I/O \\
\hline AA21 & I/O & AE11 & I/O \\
\hline AA23 & NC & AE13 & \(\mathrm{V}_{\text {CCA }}\) \\
\hline AA25 & I/O & AE15 & I/O \\
\hline AB2 & NC & AE17 & I/O \\
\hline AB4 & NC & AE19 & I/O \\
\hline AB6 & I/O & AE21 & I/O \\
\hline AB8 & I/O & AE23 & TDO, I/O \\
\hline AB10 & I/O & AE25 & GND \\
\hline AB12 & I/O & B2 & TCK, I/O \\
\hline AB14 & I/O & B4 & I/O \\
\hline AB16 & I/O & B6 & I/O \\
\hline AB18 & \(\mathrm{V}_{\mathrm{CCI}}\) & B8 & I/O \\
\hline AB20 & NC & B10 & I/O \\
\hline AB22 & I/O & B12 & I/O \\
\hline AB24 & I/O & B14 & I/O \\
\hline AC1 & I/O & B16 & I/O \\
\hline AC3 & I/O & B18 & I/O \\
\hline AC5 & I/O & B20 & I/O \\
\hline AC7 & I/O & B22 & I/O \\
\hline AC9 & I/O & B24 & I/O \\
\hline AC11 & I/O & C1 & TDI, I/O \\
\hline AC13 & \(\mathrm{V}_{\text {CCR }}\) & C3 & I/O \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Pin Number & \begin{tabular}{l}
A54SX32 \\
Function
\end{tabular} \\
\hline C5 & NC \\
\hline C7 & I/O \\
\hline C9 & I/O \\
\hline C11 & I/O \\
\hline C13 & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline C15 & I/O \\
\hline C17 & I/O \\
\hline C19 & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline C21 & I/O \\
\hline C23 & I/O \\
\hline C25 & NC \\
\hline D2 & I/O \\
\hline D4 & NC \\
\hline D6 & I/O \\
\hline D8 & I/O \\
\hline D10 & I/O \\
\hline D12 & I/O \\
\hline D14 & I/O \\
\hline D16 & I/O \\
\hline D18 & I/O \\
\hline D20 & I/O \\
\hline D22 & I/O \\
\hline D24 & NC \\
\hline E1 & I/O \\
\hline E3 & NC \\
\hline E5 & I/O \\
\hline E7 & I/O \\
\hline E9 & I/O \\
\hline E11 & I/O \\
\hline E13 & \(\mathrm{V}_{\text {CCA }}\) \\
\hline E15 & I/O \\
\hline E17 & I/O \\
\hline E19 & I/O \\
\hline E21 & I/O \\
\hline E23 & I/O \\
\hline E25 & I/O \\
\hline F2 & I/O \\
\hline F4 & I/O \\
\hline F6 & NC \\
\hline F8 & I/O \\
\hline F10 & NC \\
\hline F12 & I/O \\
\hline F14 & I/O \\
\hline F16 & NC \\
\hline F18 & I/O \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Pin Number & A54SX32 Function \\
\hline F20 & I/O \\
\hline F22 & I/O \\
\hline F24 & I/O \\
\hline G1 & I/O \\
\hline G3 & TMS \\
\hline G5 & I/O \\
\hline G7 & I/O \\
\hline G9 & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline G11 & I/O \\
\hline G13 & CLKB \\
\hline G15 & I/O \\
\hline G17 & I/O \\
\hline G19 & I/O \\
\hline G21 & I/O \\
\hline G23 & I/O \\
\hline G25 & I/O \\
\hline H2 & I/O \\
\hline H4 & I/O \\
\hline H6 & I/O \\
\hline H8 & I/O \\
\hline H10 & I/O \\
\hline H12 & PRA, I/O \\
\hline H14 & I/O \\
\hline H16 & I/O \\
\hline H18 & NC \\
\hline H20 & I/O \\
\hline H22 & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline H24 & I/O \\
\hline J1 & I/O \\
\hline J3 & I/O \\
\hline J5 & I/O \\
\hline J7 & NC \\
\hline J9 & I/O \\
\hline J11 & I/O \\
\hline J13 & CLKA \\
\hline J15 & I/O \\
\hline J17 & I/O \\
\hline J19 & I/O \\
\hline J21 & GND \\
\hline J23 & I/O \\
\hline J25 & I/O \\
\hline K2 & I/O \\
\hline K4 & I/O \\
\hline K6 & I/O \\
\hline K8 & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline
\end{tabular}

\section*{313-Pin PBGA (Continued)}
\begin{tabular}{|c|c|c|c|}
\hline Pin Number & \begin{tabular}{l}
A54SX32 \\
Function
\end{tabular} & Pin Number & A54SX32 Function \\
\hline K10 & I/O & N3 & \(\mathrm{V}_{\text {CCA }}\) \\
\hline K12 & I/O & N5 & \(\mathrm{V}_{\text {CCR }}\) \\
\hline K14 & I/O & N7 & I/O \\
\hline K16 & I/O & N9 & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline K18 & I/O & N11 & GND \\
\hline K20 & \(\mathrm{V}_{\text {CCA }}\) & N13 & GND \\
\hline K22 & I/O & N15 & GND \\
\hline K24 & I/O & N17 & I/O \\
\hline L1 & I/O & N19 & I/O \\
\hline L3 & I/O & N21 & I/O \\
\hline L5 & I/O & N23 & \(\mathrm{V}_{\text {CCR }}\) \\
\hline L7 & I/O & N25 & \(\mathrm{V}_{\text {CCA }}\) \\
\hline L9 & I/O & P2 & I/O \\
\hline L11 & I/O & P4 & I/O \\
\hline L13 & GND & P6 & I/O \\
\hline L15 & I/O & P8 & I/O \\
\hline L17 & I/O & P10 & I/O \\
\hline L19 & I/O & P12 & GND \\
\hline L21 & I/O & P14 & GND \\
\hline L23 & I/O & P16 & I/O \\
\hline L25 & I/O & P18 & I/O \\
\hline M2 & I/O & P20 & NC \\
\hline M4 & I/O & P22 & I/O \\
\hline M6 & I/O & P24 & I/O \\
\hline M8 & I/O & R1 & I/O \\
\hline M10 & I/O & R3 & I/O \\
\hline M12 & GND & R5 & I/O \\
\hline M14 & GND & R7 & I/O \\
\hline M16 & \(\mathrm{V}_{\mathrm{CCI}}\) & R9 & I/O \\
\hline M18 & I/O & R11 & I/O \\
\hline M20 & I/O & R13 & GND \\
\hline M22 & I/O & R15 & I/O \\
\hline M24 & I/O & R17 & I/O \\
\hline N1 & I/O & R19 & I/O \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Pin Number & A54SX32 Function \\
\hline R21 & I/O \\
\hline R23 & I/O \\
\hline R25 & I/O \\
\hline T2 & I/O \\
\hline T4 & I/O \\
\hline T6 & I/O \\
\hline T8 & I/O \\
\hline T10 & I/O \\
\hline T12 & I/O \\
\hline T14 & HCLK \\
\hline T16 & I/O \\
\hline T18 & I/O \\
\hline T20 & I/O \\
\hline T22 & I/O \\
\hline T24 & I/O \\
\hline U1 & I/O \\
\hline U3 & I/O \\
\hline U5 & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline U7 & I/O \\
\hline U9 & I/O \\
\hline U15 & I/O \\
\hline U17 & I/O \\
\hline U19 & I/O \\
\hline U21 & I/O \\
\hline U23 & I/O \\
\hline U25 & I/O \\
\hline V2 & \(\mathrm{V}_{\text {CCA }}\) \\
\hline V4 & I/O \\
\hline V6 & I/O \\
\hline V8 & I/O \\
\hline V10 & I/O \\
\hline V12 & I/O \\
\hline V14 & I/O \\
\hline V16 & NC \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Pin Number & A54SX32 Function \\
\hline V18 & I/O \\
\hline V20 & I/O \\
\hline V22 & \(\mathrm{V}_{\text {CCA }}\) \\
\hline V24 & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline W1 & I/O \\
\hline W3 & I/O \\
\hline W5 & I/O \\
\hline W7 & NC \\
\hline W9 & I/O \\
\hline W11 & I/O \\
\hline W13 & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline W15 & I/O \\
\hline W17 & I/O \\
\hline W19 & I/O \\
\hline W21 & I/O \\
\hline W23 & I/O \\
\hline W25 & I/O \\
\hline Y2 & I/O \\
\hline Y4 & I/O \\
\hline Y6 & I/O \\
\hline Y8 & I/O \\
\hline Y10 & I/O \\
\hline Y12 & I/O \\
\hline Y14 & I/O \\
\hline Y16 & I/O \\
\hline Y18 & I/O \\
\hline Y20 & NC \\
\hline Y22 & I/O \\
\hline Y24 & NC \\
\hline
\end{tabular}

\section*{Package Pin Assignments (continued)}

\section*{329-Pin PBGA (Top View)}
\begin{tabular}{|c|c|}
\hline A & OOOOOOOOOOOOOOOOOOOOO \\
\hline в &  \\
\hline c & ००००००००००००००००००००००० \\
\hline D & OOOOOOOOOOOOOOOOOOOOOOO \\
\hline E & OOOO 0000 \\
\hline F & OOOO OOOO \\
\hline G & OOOO OOOO \\
\hline н & OOOO 0000 \\
\hline J & OOOO OOOO \\
\hline к & OOOO OOOOO OOOO \\
\hline L & 0000 00000 0000 \\
\hline M & 0000 00000 0000 \\
\hline N & OOOO OOOOO OOOO \\
\hline p & OOOO OOOOO OOOO \\
\hline R & OOOO OOOO \\
\hline T & OOOO OOOO \\
\hline \(\cup\) & OOOO OOOO \\
\hline \(v\) & OOOO OOOO \\
\hline w & OOOO OOOO \\
\hline & OOOOOOOOOOOOOOOOOOOOOOO \\
\hline AA & O0000000000000000000000 \\
\hline AB & ○○○○○○○○○○○○○○○○○○○○○○○ \\
\hline AC & ○OOOOOOOOOOOOOOOOOOOOOO \\
\hline
\end{tabular}

\section*{329-Pin PBGA}
\begin{tabular}{|c|c|}
\hline Pin Number & A54SX32 Function \\
\hline A1 & GND \\
\hline A2 & GND \\
\hline A3 & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline A4 & NC \\
\hline A5 & I/O \\
\hline A6 & I/O \\
\hline A7 & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline A8 & NC \\
\hline A9 & I/O \\
\hline A10 & 1/0 \\
\hline A11 & 1/0 \\
\hline A12 & I/O \\
\hline A13 & CLKB \\
\hline A14 & I/O \\
\hline A15 & 1/0 \\
\hline A16 & 1/0 \\
\hline A17 & 1/0 \\
\hline A18 & I/O \\
\hline A19 & 1/0 \\
\hline A20 & I/O \\
\hline A21 & NC \\
\hline A22 & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline A23 & GND \\
\hline AA1 & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline AA2 & I/O \\
\hline AA3 & GND \\
\hline AA4 & I/O \\
\hline AA5 & 1/0 \\
\hline AA6 & 1/0 \\
\hline AA7 & I/O \\
\hline AA8 & I/O \\
\hline AA9 & 1/0 \\
\hline AA10 & I/O \\
\hline AA11 & 1/0 \\
\hline AA12 & I/O \\
\hline AA13 & I/O \\
\hline AA14 & I/O \\
\hline AA15 & 1/0 \\
\hline AA16 & 1/0 \\
\hline AA17 & 1/0 \\
\hline AA18 & I/O \\
\hline AA19 & I/O \\
\hline AA20 & TDO, I/O \\
\hline AA21 & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline AA22 & I/O \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Pin Number & A54SX32 Function & Pin Number & A54SX32 Function \\
\hline AA23 & \(\mathrm{V}_{\mathrm{CCI}}\) & AC22 & \(\mathrm{V}_{\mathrm{CCl}}\) \\
\hline AB1 & I/O & AC23 & GND \\
\hline AB2 & GND & B1 & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline AB3 & I/O & B2 & GND \\
\hline AB4 & 1/0 & B3 & I/O \\
\hline AB5 & 1/0 & B4 & 1/0 \\
\hline AB6 & 1/0 & B5 & I/O \\
\hline AB7 & 1/0 & B6 & 1/0 \\
\hline AB8 & I/O & B7 & I/O \\
\hline AB9 & 1/0 & B8 & 1/0 \\
\hline AB10 & 1/0 & B9 & I/O \\
\hline AB11 & PRB, I/O & B10 & 1/0 \\
\hline AB12 & I/O & B11 & 1/0 \\
\hline AB13 & HCLK & B12 & PRA, I/O \\
\hline AB14 & I/O & B13 & CLKA \\
\hline AB15 & 1/0 & B14 & I/O \\
\hline AB16 & I/O & B15 & I/O \\
\hline AB17 & I/O & B16 & 1/0 \\
\hline AB18 & 1/0 & B17 & I/O \\
\hline AB19 & 1/0 & B18 & 1/0 \\
\hline AB20 & 1/0 & B19 & 1/0 \\
\hline AB21 & I/O & B20 & I/O \\
\hline AB22 & GND & B21 & I/O \\
\hline AB23 & I/O & B22 & GND \\
\hline AC1 & GND & B23 & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline AC2 & \(\mathrm{V}_{\mathrm{CCI}}\) & C1 & NC \\
\hline AC3 & NC & C2 & TDI, I/O \\
\hline AC4 & I/O & C3 & GND \\
\hline AC5 & 1/0 & C4 & I/O \\
\hline AC6 & 1/0 & C5 & 1/0 \\
\hline AC7 & 1/0 & C6 & 1/0 \\
\hline AC8 & I/O & C7 & 1/0 \\
\hline AC9 & \(\mathrm{V}_{\mathrm{CCI}}\) & C8 & I/O \\
\hline AC10 & I/O & C9 & 1/0 \\
\hline AC11 & 1/0 & C10 & 1/0 \\
\hline AC12 & 1/0 & C11 & 1/0 \\
\hline AC13 & 1/0 & C12 & 1/0 \\
\hline AC14 & 1/0 & C13 & 1/0 \\
\hline AC15 & NC & C14 & I/O \\
\hline AC16 & I/O & C15 & 1/0 \\
\hline AC17 & 1/0 & C16 & 1/0 \\
\hline AC18 & I/O & C17 & 1/0 \\
\hline AC19 & 1/0 & C18 & 1/0 \\
\hline AC20 & I/O & C19 & 1/0 \\
\hline AC21 & NC & C20 & 1/0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Pin Number & A54SX32 Function \\
\hline C21 & \(\mathrm{V}_{\mathrm{CCl}}\) \\
\hline C22 & GND \\
\hline C23 & NC \\
\hline D1 & I/O \\
\hline D2 & 1/0 \\
\hline D3 & I/O \\
\hline D4 & TCK, I/O \\
\hline D5 & I/O \\
\hline D6 & 1/0 \\
\hline D7 & 1/0 \\
\hline D8 & 1/0 \\
\hline D9 & 1/0 \\
\hline D10 & I/O \\
\hline D11 & \(\mathrm{V}_{\text {CCA }}\) \\
\hline D12 & \(\mathrm{V}_{\mathrm{CCR}}\) \\
\hline D13 & I/O \\
\hline D14 & I/O \\
\hline D15 & 1/0 \\
\hline D16 & 1/0 \\
\hline D17 & 1/0 \\
\hline D18 & 1/0 \\
\hline D19 & I/O \\
\hline D20 & I/O \\
\hline D21 & 1/0 \\
\hline D22 & 1/0 \\
\hline D23 & 1/O \\
\hline E1 & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline E2 & I/O \\
\hline E3 & 1/0 \\
\hline E4 & 1/0 \\
\hline E20 & 1/0 \\
\hline E21 & 1/0 \\
\hline E22 & 1/0 \\
\hline E23 & I/O \\
\hline F1 & I/O \\
\hline F2 & TMS \\
\hline F3 & I/O \\
\hline F4 & 1/0 \\
\hline F20 & I/O \\
\hline F21 & I/O \\
\hline F22 & 1/0 \\
\hline F23 & 1/0 \\
\hline G1 & I/O \\
\hline G2 & 1/0 \\
\hline G3 & 1/0 \\
\hline
\end{tabular}

329-Pin PBGA
\begin{tabular}{|c|c|}
\hline Pin Number & \begin{tabular}{l}
A54SX32 \\
Function
\end{tabular} \\
\hline G4 & I/O \\
\hline G20 & I/O \\
\hline G21 & I/O \\
\hline G22 & I/O \\
\hline G23 & GND \\
\hline H1 & I/O \\
\hline H2 & I/O \\
\hline H3 & I/O \\
\hline H4 & I/O \\
\hline H20 & \(\mathrm{V}_{\text {CCA }}\) \\
\hline H21 & I/O \\
\hline H22 & I/O \\
\hline H23 & I/O \\
\hline J1 & NC \\
\hline J2 & I/O \\
\hline J3 & I/O \\
\hline J4 & I/O \\
\hline J20 & I/O \\
\hline J21 & I/O \\
\hline J22 & I/O \\
\hline J23 & I/O \\
\hline K1 & I/O \\
\hline K2 & I/O \\
\hline K3 & I/O \\
\hline K4 & I/O \\
\hline K10 & GND \\
\hline K11 & GND \\
\hline K12 & GND \\
\hline K13 & GND \\
\hline K14 & GND \\
\hline K20 & I/O \\
\hline K21 & I/O \\
\hline K22 & I/O \\
\hline K23 & I/O \\
\hline L1 & I/O \\
\hline L2 & I/O \\
\hline L3 & I/O \\
\hline L4 & \(\mathrm{V}_{\text {CCR }}\) \\
\hline L10 & GND \\
\hline L11 & GND \\
\hline L12 & GND \\
\hline L13 & GND \\
\hline L14 & GND \\
\hline L20 & \(\mathrm{V}_{\text {CCR }}\) \\
\hline L21 & I/O \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Pin Number & A54SX32 Function \\
\hline L22 & I/O \\
\hline L23 & NC \\
\hline M1 & I/O \\
\hline M2 & I/O \\
\hline M3 & I/O \\
\hline M4 & \(\mathrm{V}_{\text {CCA }}\) \\
\hline M10 & GND \\
\hline M11 & GND \\
\hline M12 & GND \\
\hline M13 & GND \\
\hline M14 & GND \\
\hline M20 & \(\mathrm{V}_{\text {CCA }}\) \\
\hline M21 & I/O \\
\hline M22 & I/O \\
\hline M23 & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline N1 & I/O \\
\hline N2 & I/O \\
\hline N3 & I/O \\
\hline N4 & I/O \\
\hline N10 & GND \\
\hline N11 & GND \\
\hline N12 & GND \\
\hline N13 & GND \\
\hline N14 & GND \\
\hline N20 & NC \\
\hline N21 & I/O \\
\hline N22 & I/O \\
\hline N23 & I/O \\
\hline P1 & I/O \\
\hline P2 & I/O \\
\hline P3 & I/O \\
\hline P4 & I/O \\
\hline P10 & GND \\
\hline P11 & GND \\
\hline P12 & GND \\
\hline P13 & GND \\
\hline P14 & GND \\
\hline P20 & I/O \\
\hline P21 & I/O \\
\hline P22 & I/O \\
\hline P23 & I/O \\
\hline R1 & I/O \\
\hline R2 & I/O \\
\hline R3 & I/O \\
\hline R4 & I/O \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Pin Number & \begin{tabular}{l}
A54SX32 \\
Function
\end{tabular} \\
\hline R20 & I/O \\
\hline R21 & I/O \\
\hline R22 & I/O \\
\hline R23 & I/O \\
\hline T1 & I/O \\
\hline T2 & I/O \\
\hline T3 & I/O \\
\hline T4 & I/O \\
\hline T20 & I/O \\
\hline T21 & I/O \\
\hline T22 & I/O \\
\hline T23 & I/O \\
\hline U1 & I/O \\
\hline U2 & I/O \\
\hline U3 & \(\mathrm{V}_{\text {CCA }}\) \\
\hline U4 & I/O \\
\hline U20 & I/O \\
\hline U21 & \(\mathrm{V}_{\text {CCA }}\) \\
\hline U22 & I/O \\
\hline U23 & I/O \\
\hline V1 & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline V2 & I/O \\
\hline V3 & I/O \\
\hline V4 & I/O \\
\hline V20 & I/O \\
\hline V21 & I/O \\
\hline V22 & I/O \\
\hline V23 & I/O \\
\hline W1 & I/O \\
\hline W2 & I/O \\
\hline W3 & I/O \\
\hline W4 & I/O \\
\hline W20 & I/O \\
\hline W21 & I/O \\
\hline W22 & I/O \\
\hline W23 & NC \\
\hline Y1 & NC \\
\hline Y2 & I/O \\
\hline Y3 & I/O \\
\hline Y4 & GND \\
\hline Y5 & I/O \\
\hline Y6 & I/O \\
\hline Y7 & I/O \\
\hline Y8 & I/O \\
\hline Y9 & I/O \\
\hline
\end{tabular}
\begin{tabular}{|cc|}
\hline Pin Number & \begin{tabular}{c} 
A54SX32 \\
Function
\end{tabular} \\
\hline Y10 & \(\mathrm{I} / \mathrm{O}\) \\
Y11 & \(\mathrm{I} / \mathrm{O}\) \\
Y12 & \(\mathrm{V}_{\mathrm{CCA}}\) \\
Y13 & \(\mathrm{V}_{\mathrm{CCR}}\) \\
Y14 & \(\mathrm{I} / \mathrm{O}\) \\
Y15 & \(\mathrm{I} / \mathrm{O}\) \\
Y16 & \(\mathrm{I} / \mathrm{O}\) \\
Y17 & \(\mathrm{I} / \mathrm{O}\) \\
Y18 & \(\mathrm{I} / \mathrm{O}\) \\
Y19 & \(\mathrm{I} / \mathrm{O}\) \\
Y20 & GND \\
Y21 & \(\mathrm{I} / \mathrm{O}\) \\
Y22 & \(\mathrm{I} / \mathrm{O}\) \\
Y23 & \(\mathrm{I} / \mathrm{O}\) \\
\hline
\end{tabular}

\section*{Package Pin Assignments (Continued)}

\section*{144-Pin FBGA (Top View)}


144-Pin FBGA
\begin{tabular}{|c|c|}
\hline Pin Number & A54SX08 Function \\
\hline A1 & I/O \\
\hline A2 & I/O \\
\hline A3 & I/O \\
\hline A4 & I/O \\
\hline A5 & \(\mathrm{V}_{\text {CCA }}\) \\
\hline A6 & GND \\
\hline A7 & CLKA \\
\hline A8 & I/O \\
\hline A9 & I/O \\
\hline A10 & I/O \\
\hline A11 & I/O \\
\hline A12 & I/O \\
\hline B1 & I/O \\
\hline B2 & GND \\
\hline B3 & I/O \\
\hline B4 & I/O \\
\hline B5 & I/O \\
\hline B6 & I/O \\
\hline B7 & CLKB \\
\hline B8 & I/O \\
\hline B9 & I/O \\
\hline B10 & 1/O \\
\hline B11 & GND \\
\hline B12 & I/O \\
\hline C1 & I/O \\
\hline C2 & I/O \\
\hline C3 & TCK, I/O \\
\hline C4 & I/O \\
\hline C5 & 1/O \\
\hline C6 & PRA, I/O \\
\hline C7 & I/O \\
\hline C8 & I/O \\
\hline C9 & 1/0 \\
\hline C10 & 1/0 \\
\hline C11 & I/O \\
\hline C12 & I/O \\
\hline D1 & I/O \\
\hline D2 & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline D3 & TDI, I/O \\
\hline D4 & I/O \\
\hline D5 & 1/0 \\
\hline D6 & 1/0 \\
\hline D7 & I/O \\
\hline D8 & 1/0 \\
\hline D9 & I/O \\
\hline D10 & I/O \\
\hline D11 & I/O \\
\hline D12 & 1/0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Pin Number & A54SX08 Function \\
\hline E1 & I/O \\
\hline E2 & I/O \\
\hline E3 & I/O \\
\hline E4 & I/O \\
\hline E5 & TMS \\
\hline E6 & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline E7 & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline E8 & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline E9 & \(\mathrm{V}_{\text {CCA }}\) \\
\hline E10 & I/O \\
\hline E11 & GND \\
\hline E12 & I/O \\
\hline F1 & I/O \\
\hline F2 & 1/O \\
\hline F3 & \(\mathrm{V}_{\text {CCR }}\) \\
\hline F4 & I/O \\
\hline F5 & GND \\
\hline F6 & GND \\
\hline F7 & GND \\
\hline F8 & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline F9 & I/O \\
\hline F10 & GND \\
\hline F11 & I/O \\
\hline F12 & 1/O \\
\hline G1 & 1/O \\
\hline G2 & GND \\
\hline G3 & I/O \\
\hline G4 & I/O \\
\hline G5 & GND \\
\hline G6 & GND \\
\hline G7 & GND \\
\hline G8 & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline G9 & I/O \\
\hline G10 & 1/O \\
\hline G11 & 1/O \\
\hline G12 & 1/O \\
\hline H1 & 1/O \\
\hline H2 & 1/O \\
\hline H3 & 1/O \\
\hline H4 & I/O \\
\hline H5 & \(\mathrm{V}_{\text {CCA }}\) \\
\hline H6 & \(\mathrm{V}_{\text {CCA }}\) \\
\hline H7 & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline H8 & \(\mathrm{V}_{\mathrm{CCI}}\) \\
\hline H9 & \(\mathrm{V}_{\text {CCA }}\) \\
\hline H10 & I/O \\
\hline H11 & 1/O \\
\hline H12 & \(\mathrm{V}_{\text {CCR }}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Pin Number & A54SX08 Function \\
\hline J1 & I/O \\
\hline J2 & I/O \\
\hline J3 & I/O \\
\hline J4 & 1/0 \\
\hline J5 & I/O \\
\hline J6 & PRB, I/O \\
\hline J7 & I/O \\
\hline J8 & 1/0 \\
\hline J9 & 1/0 \\
\hline J10 & 1/0 \\
\hline J11 & I/O \\
\hline J12 & \(\mathrm{V}_{\text {CCA }}\) \\
\hline K1 & I/O \\
\hline K2 & 1/0 \\
\hline K3 & 1/0 \\
\hline K4 & I/O \\
\hline K5 & 1/0 \\
\hline K6 & 1/O \\
\hline K7 & GND \\
\hline K8 & I/O \\
\hline K9 & I/O \\
\hline K10 & GND \\
\hline K11 & I/O \\
\hline K12 & I/O \\
\hline L1 & GND \\
\hline L2 & I/O \\
\hline L3 & I/O \\
\hline L4 & 1/0 \\
\hline L5 & 1/0 \\
\hline L6 & I/O \\
\hline L7 & HCLK \\
\hline L8 & I/O \\
\hline L9 & 1/0 \\
\hline L10 & I/O \\
\hline L11 & I/O \\
\hline L12 & I/O \\
\hline M1 & I/O \\
\hline M2 & I/O \\
\hline M3 & I/O \\
\hline M4 & I/O \\
\hline M5 & I/O \\
\hline M6 & I/O \\
\hline M7 & \(\mathrm{V}_{\text {CCA }}\) \\
\hline M8 & I/O \\
\hline M9 & 1/0 \\
\hline M10 & I/O \\
\hline M11 & TDO, I/O \\
\hline M12 & I/O \\
\hline
\end{tabular}

\section*{List of Changes}

The following table lists critical changes that were made in the current version of the document.
\begin{tabular}{|l|l|l|}
\hline Previous version & Changes in current version (v3.1) & Page \\
\hline \multirow{2}{*}{ v3.0.1 } & \begin{tabular}{l} 
The storage temperature in the "Absolute Maximum Ratings"" table on page 10 was \\
updated.
\end{tabular} & page 10 \\
\cline { 2 - 3 } & Table 1 on page 8 was updated. & page 8 \\
\hline
\end{tabular}

\section*{Datasheet Categories}

In order to provide the latest information to designers, some datasheets are published before data has been fully characterized. Datasheets are designated as "Product Brief," "Advanced," "Production." The definition of these categories are as follows:

\section*{Product Brief}

The product brief is a modified version of an advanced datasheet containing general product information. This brief summarizes specific device and family information for unreleased products.

\section*{Advanced}

This datasheet version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates but not for production.

\section*{Unmarked (production)}

This datasheet version contains information that is considered to be final.

Actel and the Actel logo are registered trademarks of Actel Corporation.
All other trademarks are the property of their owners.

http://www.actel.com


955 East Arques Avenue Sunnyvale, California 94086 USA
Tel: (408) 739-1010
Fax: (408) 739-1540

Actel Europe Ltd.
Dunlop House, Riverside Way Camberley, Surrey GU15 3YL United Kingdom
Tel: +44 (0)1276 401450
Fax: +44 (0)1276 401490

\section*{Actel Japan}

EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Tel: +81 03-3445-7671
Fax: +81 03-3445-7668

Actel Hong Kong
39th Floor
One Pacific Place 88 Queensway
Admiralty, Hong Kong
Tel: 852-22735712```

