16-bit Proprietary Microcontroller

CMOS

F²MC-16LX MB90550A/550B Series

MB90552A/552B/553A/553B/T552A/T553A MB90F553A/P553A/V550A

■ DESCRIPTION

Abstract

The MB90550A/550B series is a line of general-purpose, high-performance, 16 -bit microcontrollers designed for applications which require high-speed real-time processing, such as industrial machines, OA equipment, and process control systems. While inheriting the AT architecture of the $\mathrm{F}^{2} \mathrm{MC}^{*}-8$ family, the instruction set for the MB90550A/550B series incorporates additional instructions for high-level languages, supports extended addressing modes, and contains enhanced multiplication and division instructions as well as a substantial collection of improved bit manipulation instructions. In addition, the MB90550A/550B has an on-chip 32-bit accumulator which enables processing of long-word data. MB90552B and MB90553B are radiation noise decreased type. There are no change in the functional specification.

*: $\mathrm{F}^{2} \mathrm{MC}$ is the abbreviation of FUJITSU MICROELECTRONICS Flexible Microcontroller.

■ FEATURES

- Minimum instruction execution time: 62.5 ns (at oscillation of $4 \mathrm{MHz}, \times$ four times the PLL clock)
- Maximum memory space: 16 Mbytes
(Continued)

The information for microcontroller supports is shown in the following homepage. Be sure to refer to the "Check Sheet" for the latest cautions on development.

"Check Sheet" is seen at the following support page

"Check Sheet" lists the minimal requirement items to be checked to prevent problems beforehand in system development.
http://edevice.fujitsu.com/micom/en-support/

MB90550A/550B Series

(Continued)

- Instruction set optimized for controller applications Supported data types: Bit, byte, word and long word Typical addressing mode: 23 types Enhanced precision calculation realized by 32-bit accumulator Enhanced signed multiplication/division instruction and RETI instruction functions
- Instruction set designed for high level language (C) and multi-task operations Adoption of system stack pointer Symmetrical instruction set and barrel shift instructions
- Integrated address match detection function (for two address pointers)
- Faster execution speed: 4-byte queue
- Powerful interrupt functions (Eight priority levels programmable) External interrupt inputs: 8 channels
- Data transfer functions (Intelligent I/O service): Up to 16 channels DTP request inputs: 8 channels
- Embedded ROM size (EPROM, Flash: 128 Kbytes) Mask ROM: 64 Kbytes/128 Kbytes
- Embedded RAM size (EPROM, Flash: 4 Kbytes) Mask ROM: 2 Kbytes/4 Kbytes
- General-purpose ports: Up to 83 channels (Input pull-up resistor settable for: 16 channels; Open drain settable for: 8 channels; I/O open drains: 6 channels)
- A/D converter (RC successive approximation type): 8 channels (Resolution: 8 or 10 bits selectable; Conversion time of $26.3 \mu \mathrm{~s}$ minimum)
- UART: 1 channel
- Extended I/O serial interface: 2 channels
- I ${ }^{2} \mathrm{C}$ interface: 2 channels (Two channels, including one switchable between terminal input and output)
- 16 -bit reload timer: 2 channels
- 8/16-bit PPG timer: 3 channels (8 bits $\times 2$ channels; 16 bits $\times 1$ channel: Mode switching function provided)
- 16 -bit I/O timer (Input capture $\times 4$ channels, output compare $\times 4$ channels, free run timer $\times 1$ channel)
- Clock monitor function integrated (Delivering the oscillation clock divided by 21 to 28)
- Timebase timer/watchdog timer: 18 bits
- Low power consumption modes (sleep, stop, hardware standby, and CPU intermittent operation modes)
- Package: QFP-100, LQFP-100
- CMOS technology

MB90550A/550B Series

■ PRODUCT LINEUP

Part number Item		MB90552A	MB90553A MB90553B	MB90F553A	MB90P553A	MB90T552A	MB90T553A	MB90V550A
Classification		Mask ROM products		Flash ROM products	OTP	External ROM products		Evaluation product
		Mass Product						
ROM size		64 Kbytes	128 Kbytes			None		None
RAM size		2 Kbytes	4 Kbytes			2 Kbytes	4 Kbytes	6 Kbytes
CPU functions		The number of instructions: 340 Instruction bit length: 8 bits, 16 bits Instruction length: 1 byte to 7 bytes Data bit length: 1 bit, 8 bits, 16 bits Minimum execution time: 62.5 ns (at machine clock of 16 MHz) Interrupt processing time: $1.5 \mu \mathrm{~s}$ (at machine clock of 16 MHz , minimum value)						
Ports		General-purpose I/O ports (CMOS output): 53 General-purpose I/O ports (with pull-up resistor): 16 General-purpose I/O ports (N-channel open-drain output): 6 General-purpose I/O ports (N-channel open-drain function selectable): 8 Total: 83						
UART (SCl)		Clock synchronized transmission (62.5 Kbps to 2 Mbps) Clock asynchronized transmission (62500 bps to 9615 bps) Transmission can be performed by bi-directional serial transmission or by master/slave connection.						
8/10-bit A/D converter		Conversion precision: 8/10-bit can be selectively used. Number of inputs: 8 One-shot conversion mode (converts selected channel only once) Scan conversion mode (converts two or more successive channels and can program up to 8 channels.) Continuous conversion mode (converts selected channel continuously) Stop conversion mode (converts selected channel and stop operation repeatedly)						
8/16-bit PPG timer		Number of channels: 3 (8 -bit $\times 6$ channels) PPG operation of 8 -bit or 16 -bit A pulse wave of given intervals and given duty ratios can be output. Pulse interval: 62.5 ns to 1 ms (at oscillation of 4 MHz , machine clock of 16 MHz)						
16-bit 1/O timer	16-bit free run timer	Number of channels: 1 Overflow interrupts						
	Output compare (OCU)	Number of channels: 4 Pin input factor: A match signal of compare register						
	Input capture (ICU)	Number of channels: 4 Rewriting a register value upon a pin input (rising, falling or both edges)						

(Continued)

MB90550A/550B Series

Part number Item	$\begin{array}{\|l\|} \hline \text { MB90552A } \\ \text { MB90552B } \end{array}$	$\begin{aligned} & \text { MB90553A } \\ & \text { MB90553B } \end{aligned}$	MB90F553A	MB90P553A	MB90T552A	MB90T553A	MB90V550A
DTP/external interrupt circuit	Number of inputs: 8 Started by a rising edge, a falling edge, an "H" level input, or an "L" level input. External interrupt circuit or extended intelligent I/O service (EIOS) can be used.						
Extended I/O serial interface	Clock synchronized transmission (3125 bps to 1 Mbps) LSB first/MSB first						
${ }^{12} \mathrm{C}$ interface	Serial I/O port for supporting Inter IC BUS						
Timebase timer	18-bit counter Interrupt interval: $1.024 \mathrm{~ms}, 4.096 \mathrm{~ms}, 16.384 \mathrm{~ms}, 131.072 \mathrm{~ms}$ (at oscillation of 4 MHz)						
Watchdog timer	Reset generation interval: $3.58 \mathrm{~ms}, 14.33 \mathrm{~ms}, 57.23 \mathrm{~ms}, 458.75 \mathrm{~ms}$ (at oscillation of 4 MHz , minimum value)						
Process	CMOS						
Power supply voltage for operation*	4.5 V to 5.5 V						

*:Varies with conditions such as the operating frequency. (See section "■ ELECTRICAL CHARACTERISTICS") Assurance for the MB90V550A is given only for operation with a tool at a power voltage of 4.5 V to 5.5 V , an operating temperature of $0^{\circ} \mathrm{C}$ to $+25^{\circ} \mathrm{C}$, and an operating frequency of 1 MHz to 16 MHz .

- PACKAGE AND CORRESPONDING PRODUCTS

Package	MB90552A MB90552B	MB90553A MB90553B	MB90F553A	MB90P553A
FPT-100P-M20	\bigcirc	\bigcirc	\bigcirc	\times
FPT-100P-M06	\bigcirc	\bigcirc	\bigcirc	\bigcirc

\bigcirc : Available \times : Not available
Note:For more information about each package, see section "■ PACKAGE DIMENSIONS"

■ DIFFERENCES AMONG PRODUCTS

Memory Size

In evaluation with an evaluation product, note the difference between the evaluation product and the product actually used. The following items must be taken into consideration.

- The MB90V550A does not have an internal ROM. However, operations equivalent to those performed by a chip with an internal ROM can be evaluated by using a dedicated development tool, enabling selection of ROM size by setting the development tool.
- In the MB90V550A, images from FF4000н to FFFFFFн are mapped to bank 00, and FE0000н to FF3FFFн are mapped to bank FE and FF only. (This setting can be changed by configuring the development tool.)
- In the MB90F553A/553A/553B/552A/552B, images from FF4000н to FFFFFFн are mapped to bank 00, and FF0000н to FF3FFF to bank FF only.

MB90550A/550B Series

PIN ASSIGNMENTS

(Continued)

MB90550A/550B Series

(Continued)
(Top view)

(FPT-100P-M20)

MB90550A/550B Series

- PIN DESCRIPTION

Pin no.		Pin name	Circuit type	Function
QFP	LQFP			
82	80	X0	A	Oscillation pin
83	81	X1	A	Oscillation pin
77	75	$\overline{R S T}$	B	Reset input pin
52	50	FST	C	Hardware standby input pin

(Continued)

MB90550A/550B Series

Pin no.		Pin name	Circuit type	Function
QFP	LQFP			
14	12	P34	$\begin{gathered} \text { E } \\ (\mathrm{CMOS}) \end{gathered}$	General-purpose I/O port. This function is enabled in single-chip mode
		HRQ		Hold request input pin. This function is enabled in an external-bus enabled mode.
15	13	P35	$\begin{gathered} \text { E } \\ (\mathrm{CMOS}) \end{gathered}$	General-purpose I/O port. This function is enabled in single-chip mode.
		$\overline{\text { HAK }}$		Hold acknowledge output pin. This function is enabled in an external-bus enabled mode.
16	14	P36	$\begin{gathered} \mathrm{E} \\ (\mathrm{CMOS}) \end{gathered}$	General-purpose I/O port. This function is enabled in single-chip mode.
		RDY		Ready signal input pin. This function is enabled in an external-bus enabled mode.
17	15	P37	$\begin{gathered} \text { E } \\ \text { (CMOS) } \end{gathered}$	General-purpose I/O port. This function is enabled in single-chip mode.
		CLK		CLK output pin. This function is enabled in an external-bus enabled mode.
18	16	P40	$\begin{gathered} \mathrm{F} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port. Serves as an open-drain output port (OD40 $=1$) depending on the setting of the open-drain control setting register (ODR4). (D40 = 0: Disabled when the port is set for input.)
		SCK		UART serial clock I/O pin. This function is enabled with the UART clock output enabled.
19	17	P41	$\begin{gathered} \mathrm{F} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port. Serves as an open-drain output port (OD41 $=1$) depending on the setting of the open-drain control setting register (ODR4). (D41 = 0: Disabled when the port is set for input.)
		SOT		UART serial data output pin. This function is enabled with the UART serial data output enabled.
20	18	P42	$\begin{gathered} \text { F } \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port. Serves as an open-drain output port (OD42 $=1$) depending on the setting of the open-drain control setting register (ODR4). (D42 = 0: Disabled when the port is set for input.)
		SIN		UART serial data input pin. Since this input is used as required while the UART is operating for input, the output by any other function must be off unless used intentionally.
21	19	P43	$\underset{(\mathrm{CMOS} / \mathrm{H})}{\mathrm{F}}$	General-purpose I/O port. Serves as an open-drain output port (OD43 = 1) depending on the setting of the open-drain control setting register (ODR4). (D43 = 0: Disabled when the port is set for input.)
		SCK1		Extended I/O serial clock I/O pin. This function is enabled with the extended I/O serial clock output enabled.

(Continued)

MB90550A/550B Series

Pin no.		Pin name	Circuit type	Function
QFP	LQFP			
22	20	P44	$\begin{gathered} \text { F } \\ \text { (CMOS/H) } \end{gathered}$	General-purpose I/O port. Serves as an open-drain output port (OD44 = 1) depending on the setting of the open-drain control setting register (ODR4). (D44 = 0: Disabled when the port is set for input.)
		SOT1		Extended I/O serial data output pin. This function is enabled with the extended I/O serial data output enabled.
24	22	P45	$\begin{gathered} \text { F } \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port. Serves as an open-drain output port (OD45 = 1) depending on the setting of the open-drain control setting register (ODR4). (D45 = 0: Disabled when the port is set for input.)
		SIN1		Extended I/O serial data input pin. Since this input is used as required while the extended I/O serial interface is operating for input, the output by any other function must be off unless used intentionally.
25	23	P46	$\begin{gathered} \text { F } \\ (\text { CMOS/H }) \end{gathered}$	General-purpose I/O port. Serves as an open-drain output port (O D46 $=1$) depending on the setting of the open-drain control setting register (ODR4). (D46 = 0: Disabled when the port is set for input.)
		ADTG		A/D converter external trigger input pin. Since this input is used as required while the A / D converter is operating for input, the output by any other function must be off unless used intentionally.
26	24	P47	$\begin{gathered} \mathrm{F} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port. Serves as an open-drain output port (OD47 = 1) depending on the setting of the open-drain control setting register (ODR4). D47 = 0: Disabled when the port is set for input.
		SCKO		Extended I/O serial clock I/O pin. This function is enabled with the extended I/O serial clock output enabled.
27	25	C	-	Capacitance pin for regulating the power supply. Connect an external ceramic capacitor of about $0.1 \mu \mathrm{~F}$.
28	26	P50	$\underset{(\mathrm{NchOD} / \mathrm{H})}{\mathrm{G}}$	N-channel open-drain I/O port.
		SDA0		$I^{2} \mathrm{C}$ interface data I / O pin. This function is enabled with the ${ }^{2} \mathrm{C}$ interface enabled for operation. While the $I^{2} C$ interface is operating, place the port output in the $\mathrm{Hi}-\mathrm{Z}$ state ($\mathrm{PDR}=1$).
		SOTO		Extended I/O serial data output pin. This function is enabled with the extended I/O serial data output enabled.

(Continued)

MB90550A/550B Series

Pin no.		Pin name	Circuit type	Function
QFP	LQFP			
29	27	P51	$\underset{(\mathrm{NchOD} / \mathrm{H})}{\mathrm{G}}$	N-channel open-drain I/O port.
		SCLO		${ }^{12} \mathrm{C}$ interface clock I/O pin. This function is enabled with the ${ }^{2} \mathrm{C}$ interface enabled for operation. While the $I^{2} \mathrm{C}$ interface is operating, place the port output in the $\mathrm{Hi}-\mathrm{Z}$ state ($\mathrm{PDR}=1$).
		SIN0		Extended I/O serial data input pin. Since this input is used as required while the extended I/O serial interface is operating for input, the output by any other function must be off unless used intentionally.
30,32	28,30	P52,P54	$\underset{(\mathrm{NchOD} / \mathrm{H})}{\mathrm{G}}$	N-channel open-drain I/O ports.
		SDA1,SDA2		${ }^{12} \mathrm{C}$ interface data I / O pins. This function is enabled with the $1^{2} \mathrm{C}$ interface enabled for operation. While the $I^{2} \mathrm{C}$ interface is operating, place the port output in the $\mathrm{Hi}-\mathrm{Z}$ state ($\mathrm{PDR}=1$).
31,33	29,31	P53,P55	$\underset{(\mathrm{NchOD} / \mathrm{H})}{\mathrm{G}}$	N-channel open-drain I/O ports.
		SCL1,SCL2		${ }^{2} \mathrm{C}$ interface clock I/O pins. This function is enabled with the ${ }^{12} \mathrm{C}$ interface enabled for operation. While the $I^{2} C$ interface is operating, place the port output in the Hi-Z state ($\mathrm{PDR}=1$).
$\left\|\begin{array}{l} 38 \text { to } 41 \\ 43 \text { to } 46 \end{array}\right\|$	36 to 39,41 to 44	P60 to P67	$\begin{gathered} \mathrm{H} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O ports.
		AN0 to AN7		A/D converter analog input pin. This function is enabled with the analog input enabled.
$\begin{gathered} 47,48, \\ 53 \text { to } 58 \end{gathered}$	$\begin{gathered} 45,46, \\ 51 \text { to } 56 \end{gathered}$	P70 to P77	$\begin{gathered} \text { I } \\ \text { (CMOS/H) } \end{gathered}$	General-purpose I/O ports.
		IRQ0 to IRQ7		External interrupt request input pins. Since this input is used as required while external interrupts remain enabled, the output by any other function must be off unless used intentionally.
59,60	57,58	P80,P81	$\underset{(\mathrm{CMOS} / \mathrm{H})}{\mathrm{J}}$	General-purpose I/O ports.
		TIN0,TIN1		Reload timer event input pins. Since this input is used as required while the reload timer is operating for input, the output by any other function must be off unless used intentionally.
61,62	59,60	P82,P83	$\stackrel{\text { J }}{\text { (CMOS/H) }}$	General-purpose I/O ports.
		TOT0,TOT1		Reload timer output pins.This function is enabled with reload timer output enabled.
63 to 66	61 to 64	P84 to P87	$\stackrel{J}{\text { (CMOS/H) }}$	General-purpose I/O ports.
		INO to IN3		Input capture trigger input pins. Since this input is used as required while the input capture unit is operating for input, the output by any other function must be off unless used intentionally.
67,68	65,66	P90,P91	$\underset{(C M O S / H)}{J}$	General-purpose I/O ports.
		OUT0,OUT1		Output compare event output pins.

(Continued)

MB90550A/550B Series

(Continued)

Pin no.		Pin name	Circuit type	Function
QFP	LQFP			
69 to 74	67 to 72	P92 to P97	$\stackrel{J}{\text { (CMOS/H) }}$	General-purpose I/O ports.
		$\begin{aligned} & \text { PPG0 to } \\ & \text { PPG5 } \end{aligned}$		PPG output pins. This function is enabled with the PPG output enabled.
75,76	73,74	PA0,PA1	$\underset{(\mathrm{CMOS} / \mathrm{H})}{\mathrm{J}}$	General-purpose I/O ports.
		OUT2,OUT3		Output compare event output pins.
78,79	76,77	PA2,PA3	$\stackrel{\mathrm{J}}{(\mathrm{CMOS} / \mathrm{H})}$	General-purpose I/O ports.
80	78	PA4	$\underset{(\mathrm{CMOS} / \mathrm{H})}{\mathrm{J}}$	General-purpose I/O port.
		CKOT		Serves as the CKOT output while the CKOT is operating.
34	32	AVcc	-	A/D converter power-supply pin.
35	33	AVRH	-	A/D converter external reference voltage source pin.
36	34	AVRL	-	A/D converter external reference voltage source pin.
37	35	AVss	-	A/D converter power-supply pin.
49,50	47,48	MD0,MD1	C	Operation mode setting input pins. Connect these pins directly to Vcc or Vss.
51	49	MD2	K	Operation mode setting input pin. Connect this pin directly to Vcc or Vss. (MB90552A/552B/553A/ 553B/V550A)
			C	Operation mode setting input pin. Connect this pin directly to Vcc or Vss. (MB90P553A/F553A)
23,84	21,82	Vcc	-	Power (5 V) input pins.
$\begin{gathered} \hline 11,42, \\ 81 \end{gathered}$	$\begin{gathered} 9,40, \\ 79 \end{gathered}$	Vss	-	Power (0 V) input pins.

MB90550A/550B Series

I/O CIRCUIT TYPE

Type	Circuit	Remarks
A		- 3 MHz to 32 MHz - Oscillator recovery resistor approx. $1 \mathrm{M} \Omega$
B		- CMOS level hysteresis input - Pull-up resistor provided Resistor: About $50 \mathrm{k} \Omega$
C	W	- CMOS level hysteresis input
D		- CMOS level output - CMOS level input - Standby control provided - Input pull-up resistor control provided Resistor: About $50 \mathrm{k} \Omega$

(Continued)

MB90550A/550B Series

Type	Circuit	Remarks
E		- CMOS level output - CMOS level input - Standby control provided
F		- CMOS level output - CMOS level hysteresis input - Open-drain control provided
G		- N-channel open-drain output - CMOS level hysteresis input - Standby control provided Note: Unlike normal CMOS I/O pins, this pin is not provided with any P-channel transistor. Therefore the pin does not allow a current to flow to the Vcc side even when applied with a voltage from an external device with the IC's power supply left off.
H		- CMOS level output - CMOS level hysteresis input - Standby control provided - Analog input

(Continued)

MB90550A/550B Series

(Continued)

Type	Circuit	Remarks
1		- CMOS level output - CMOS level hysteresis input - Standby control provided
J		- CMOS level output - CMOS level hysteresis input - Standby control provided
K		- CMOS level hysteresis input - Pull-up resistor provided Resistor: About $50 \mathrm{k} \Omega$

MB90550A/550B Series

■ HANDLING DEVICES

1. Preventing Latchup

CMOS ICs may cause latchup in the following situations:

- When a voltage higher than Vcc or lower than Vss is applied to input or output pins.
- When a voltage exceeding the rating is applied between Vcc and Vss.
- When AVcc power is supplied prior to the Vcc voltage.

If latchup occurs, the power supply current increases rapidly, sometimes resulting in thermal breakdown of the device. Use meticulous care not to let it occur.
For the same reason, also be careful not to let the analog power-supply voltage exceed the digital power-supply voltage.

2. Handling unused input pins

Leaving unused input pins open may cause a malfunction or latch-up which leads to fatal damage to the device. Therefore they must be pulled up or pulled down through at least $2 \mathrm{k} \Omega$ resistance. Also, unused input/output pins should be left open in output state or handled in the same way as unused input pins.

3. Notes on Using External Clock

In using the external clock, drive X0 pin only and leave X1 pin open.

- Using external clock

4. Power Supply Pins ($\mathbf{V c c} / \mathbf{V s s}$)

In products with multiple $V_{c c}$ or $V_{s s}$ pins, the pins of a same potential are internally connected in the device to avoid abnormal operations including latch-up. However, the pins should be connected to external power and ground lines to lower the electro-magnetic emission level and abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total current rating.
Make sure to connect V_{cc} and $\mathrm{V}_{\text {ss }}$ pins via lowest impedance to power lines.
It is recommended that a bypass capacitor of around $0.1 \mu \mathrm{~F}$ be placed between the V_{cc} and $\mathrm{V}_{\text {ss }}$ pins near the device.

- Using power supply pins

MB90550A/550B Series

5. Crystal Oscillator Circuit

Noise around X0 or X1 pins may cause abnormal operations. Make sure to provide bypass capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure that lines of oscillation circuit do not cross the lines of other circuits.
A printed circuit board artwork surrounding the X0 and X1 pins with grand area for stabilizing the operation is highly recommended.
6. Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs

Make sure to turn on the A/D converter power supply (AVcc, AVRH, AVRL) and analog inputs (ANO to AN7) after turning-on the digital power supply (V_{cc}).
Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure that AVRH does not exceed AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).

7. Connection of Unused Pins of A/D Converter

Connect unused pin of A / D converter to $\mathrm{AV} \mathrm{cc}=\mathrm{Vcc}, \mathrm{AV} \mathrm{ss}=\mathrm{AVRH}=\mathrm{AVRL}=\mathrm{V} \mathrm{ss}$.
8. N.C. Pin

The N.C. (internally connected) pin must be opened for use.

9. Notes on Energization

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at 50 $\mu \mathrm{s}$ or more.

10. Indeterminate outputs from ports $\mathbf{0}$ and $\mathbf{1}$

The outputs from ports 0 and 1 become indeterminate during oscillation setting time of step-down circuit (during a power-on reset) after the power is turned on. (MB90552A, MB90552B, MB90553A, MB90553B, MB90F553A, MB90V550A)
The series without built-in step-down circuit has no oscillation setting time of step-down circuit, so outputs should not become indeterminate. (MB90P553A)
Timing chart of indeterminate outputs from ports 0 and 1

[^0]
MB90550A/550B Series

11. Initialization

In the device, there are internal registers initialized only by a power-on reset. To initialize these registers, turn on the power again.

12. Return from standby state

If the power-supply voltage goes below the standby RAM holding voltage in the standby state, the device may fail to return from the standby state. In this case, reset the device via the external reset pin to return to the normal state.

13. Precautions for Use of "DIV A, Ri," and "DIVW A, Ri" Instructions

The signed multiplication-division instructions "DIV A, Ri," and "DIVW A, RWi" should be used when the corresponding bank registers (DTB, ADB, USB, SSB) are set to value "00н." If the corresponding bank registers (DTB, ADB, USB, SSB) are set to a value other than " OOH ," the remainder obtained after the execution of the instruction will not be placed in the instruction operand register.

14. Using of REALOS

The extended intelligent I/O service (EI2OS) cannot be used when using REALOS.

15. Caution on Operations during PLL Clock Mode

If the PLL clock mode is selected in the microcontroller, it may attempt to continue the operation using the freerunning frequency of the self oscillation circuit in the PLL circuitry even if the oscillator is out of place or the clock input is stopped.
Performance of this operation, however, cannot be guaranteed.

MB90550A/550B Series

BLOCK DIAGRAM

MB90550A/550B Series

*: The clock control circuit contains a watchdog timer, time-base timer, and a low power consumption control circuit.
Note : P00 to P07 (8 pins): Input pull-up resistor setting register provided P10 to P17 (8 pins): Input pull-up resistor setting register provided P40 to P47 (8 pins): Open-drain control setting register provided P50 to P55 (6 pins): N-channel open drain
Ports $0,1,2,3,4,6,7,8,9$, and A are CMOS level input/output ports.

MB90550A/550B Series

MEMORY MAP

The ROM data of bank FF is reflected in the upper address of bank 00, realizing effective use of the C compiler small model. The lower 16 -bit of bank FF and the lower 16 -bit of bank 00 are assigned to the same address, enabling reference of the table on the ROM without stating "far".
For example, if an attempt has been made to access 00 COOO н, the contents of the ROM at FFCOOOH are accessed. Since the ROM area of the FF bank exceeds 48 Kbytes, the whole area cannot be reflected in the image for the 00 bank. The ROM data at FF4000н to FFFFFFF looks, therefore, as if it were the image for 004000н to 00FFFFн. Thus, it is recommended that the ROM data table be stored in the area of FF4000н to FFFFFFF.

MB90550A/550B Series

F²MC-16LX CPU PROGRAMMING MODEL 2

- Dedicated registers

MB90550A/550B Series

I/O MAP

Address	Register name	Abbreviated register name	Read/write	Resource name	Initial value
00\%	Port 0 data register	PDR0	R/W	Port 0	XXXXXXXX
01н	Port 1 data register	PDR1	R/W	Port 1	XXXXXXXX
02н	Port 2 data register	PDR2	R/W	Port 2	XXXXXXXX
03H	Port 3 data register	PDR3	R/W	Port 3	XXXXXXXX
04н	Port 4 data register	PDR4	R/W	Port 4	XXXXXXXX
05H	Port 5 data register	PDR5	R/W	Port 5	-- 111111
06н	Port 6 data register	PDR6	R/W	Port 6	XXXXXXXX
07\%	Port 7 data register	PDR7	R/W	Port 7	XXXXXXXX
08H	Port 8 data register	PDR8	R/W	Port 8	XXXXXXXX
09н	Port 9 data register	PDR9	R/W	Port 9	XXXXXXXX
ОАн	Port A data register	PDRA	R/W	Port A	_-_XXXXX
$\begin{aligned} & \text { OBH to }^{0 F_{H}} \end{aligned}$	(Disabled)				
10 H	Port 0 direction register	DDR0	R/W	Port 0	00000000
11н	Port 1 direction register	DDR1	R/W	Port 1	00000000
12 H	Port 2 direction register	DDR2	R/W	Port 2	00000000
13H	Port 3 direction register	DDR3	R/W	Port 3	00000000
14H	Port 4 direction register	DDR4	R/W	Port 4	00000000
15 H	(Disabled)				
16H	Port 6 direction register	DDR6	R/W	Port 6	00000000
17\%	Port 7 direction register	DDR7	R/W	Port 7	00000000
18H	Port 8 direction register	DDR8	R/W	Port 8	00000000
19H	Port 9 direction register	DDR9	R/W	Port 9	00000000
1 Ан $^{\text {¢ }}$	Port A direction register	DDRA	R/W	Port A	---00000
1Вн	Port 4 output pin register	ODR4	R/W	Port 4	00000000
1 CH	Port 0 resistor setting register	RDR0	R/W	Port 0	00000000
1D	Port 1 resistor setting register	RDR1	R/W	Port 1	00000000
1Ен	(Disabled)				
1FH	Analog input enable register	ADER	R/W	Port 6, A/D converter	11111111
20 H	Serial mode register	SMR	R/W	UART	00000000
21H	Serial control register	SCR	R/W		00000100
22 н	Serial input data register / serial output data register	SIDR/SODR	R/W		XXXXXXXX
23H	Serial status register	SSR	R/W		00001 _00

(Continued)

MB90550A/550B Series

Address	Register name	Abbreviated register name	Read/write	Resource name	Initial value
24H	Serial mode control status register 0	SMCSO	R/W	Extended I/O serial interface 0	_-__0000
25 +	Serial mode control status register 0		R/W!		00000010
26н	Serial data register 0	SDR0	R/W		xxxxxxxx
27 H	Clock frequency-divider control register	CDCR	R/W	Communication prescaler	0 _-_ 1111
28н	Serial mode control status register 1	SMCS1	R/W	Extended I/O serial interface 1	---_0000
29н	Serial mode control status register 1		R/W!		00000010
2 Ан	Serial data register 1	SDR1	R/W		xxxxxxxx
2Вн	(Disabled)				
$2 \mathrm{CH}_{4}$	$1^{2} \mathrm{C}$ bus status register 0	IBSR0	R	${ }^{12} \mathrm{C}$ interface 0	00000000
2Dн	$1^{2} \mathrm{C}$ bus control register 0	IBCR0	R/W		00000000
2Ен	${ }^{2} \mathrm{C}$ C bus clock select register 0	ICCR0	R/W		__0XXXXX
$2 \mathrm{~F}_{\mathrm{H}}$	$1^{2} \mathrm{C}$ bus address register 0	IADR0	R/W		_ XXXXXXX
30н	$1^{2} \mathrm{C}$ bus data register 0	IDAR0	R/W		XXXXXXXX
31H	(Disabled)				
32н	${ }^{2} \mathrm{C}$ bus status register 1	IBSR1	R	${ }^{12} \mathrm{C}$ interface 1	0000000
33н	$1^{2} \mathrm{C}$ bus control register 1	IBCR1	R/W		00000000
34	${ }^{2} \mathrm{C}$ bus clock select register 1	ICCR1	R/W		-_0XXXXX
35	$1^{2} \mathrm{C}$ bus address register 1	IADR1	R/W		_ XXXXXXX
36н	$1^{2} \mathrm{C}$ bus data register 1	IDAR1	R/W		XXXXXXXX
37	${ }^{2} \mathrm{C}$ bus port select register	ISEL	R/W		--------0
38н	Interrupt/DTP enable register	ENIR	R/W	DTP/external interrupt	00000000
39н	Interrupt/DTP factor register	EIRR	R/W		XXXXXXXX
ЗАн	Request level setting register	ELVR	R/W		0000000
3Вн					0000000
$3 \mathrm{CH}_{4}$	Control status register	ADCS0	R/W	A/D convertor	0000000
3D		ADCS1	R/W!		00000000
ЗЕн	Data register	ADCR0	R		xxxxxxxx
$3 \mathrm{FH}_{\mathrm{H}}$		ADCR1	R/W!		00001_xx

(Continued)

MB90550A/550B Series

Address	Register name	Abbreviated register name	Read/write	Resource name	Initial value
40н	Reload register L (ch.0)	PRLLO	R/W	8/16-bit PPGO/1	XXXXXXXX
41н	Reload register H (ch.0)	PRLH0	R/W		xXXXXXXX
42н	Reload register L (ch.1)	PRLL1	R/W		XXXXXXXX
43н	Reload register H (ch.1)	PRLH1	R/W		xxxxxxxx
44н	PPG0 operating mode control register	PPGC0	R/W		0_000_-1
45	PPG1 operating mode control register	PPGC1	R/W		0_000001
46н	PPG0 and 1 output control register	PPGE1	R/W		0000000
47 ${ }^{\text {r }}$	(Disabled)				
48н	Reload register L (ch.2)	PRLL2	R/W	8/16-bit PPG2/3	xXXXXXXX
49н	Reload register H (ch.2)	PRLH2	R/W		xxxxxxxx
4 А	Reload register L (ch.3)	PRLL3	R/W		XXXXXXXX
4 BH	Reload register H (ch.3)	PRLH3	R/W		XXXXXXXX
4 CH	PPG2 operating mode control register	PPGC2	R/W		0_000__ 1
4D ${ }_{\text {H }}$	PPG3 operating mode control register	PPGC3	R/W		0_000001
4Ен	PPG2 and 3 output control register	PPGE2	R/W		0000000
4Fн	(Disabled)				
50н	Reload register L (ch.4)	PRLL4	R/W	8/16-bit PPG4/5	XXXXXXXX
51н	Reload register H (ch.4)	PRLH4	R/W		xxxxxxxx
52н	Reload register L (ch.5)	PRLL5	R/W		XXXXXXXX
53н	Reload register H (ch.5)	PRLH5	R/W		xxxxxxxx
54,	PPG4 operating mode control register	PPGC4	R/W		0_000_-1
55	PPG5 operating mode control register	PPGC5	R/W		0_000001
56н	PPG4 and 5 output control register	PPGE3	R/W		0000000
57 ${ }^{\text {r }}$	(Disabled)				
58н	Clock output enable register	CLKR	R/W	Clock monitor function	-_-_0000
59н	(Disabled)				

(Continued)

MB90550A/550B Series

Address	Register name	Abbreviated register name	Read/write	Resource name	Initial value
5 Ан	Control status register 0	TMCSR0	R/W	$\begin{aligned} & 16 \text {-bit } \\ & \text { reload timer 0 } \end{aligned}$	0000000
5Вн					---_0000
5Сн	16 bit timer register 0 / 16 bit reload register 0	TMR0/ TMRLRO	R/W		XXXXXXXX
5D					xxxxxxxx
5Ен	Control status register 1	TMCSR1	R/W	16-bit reload timer 1	0000000
5FH					-_-_0000
60н	16 bit timer register 1/ 16 bit reload register 1	TMR1/ TMRLR1	R/W		XXXXXXXX
61н					xxxxxxxx
62н	Input capture register, channel-0 lower bits	IPCP0	R	16-bit l/O timer Input capture (ch. 0 to ch.3)	XXXXXXXX
63н	Input capture register, channel-0 upper bits				XXXXXXXX
64н	Input capture register, channel-1 lower bits	IPCP1	R		XXXXXXXX
65н	Input capture register, channel-1 upper bits				XXXXXXXX
66н	Input capture register, channel-2 lower bits	IPCP2	R		XXXXXXXX
67н	Input capture register, channel-2 upper bits				XXXXXXXX
68н	Input capture register, channel-3 lower bits	IPCP3	R		XXXXXXXX
69н	Input capture register, channel-3 upper bits				XXXXXXXX
6Ан	Input capture control status register	ICS01	R/W		0000000
6Вн	Input capture control status register	ICS23	R/W		00000000
6С	Timer data register, lower bits	TCDT	R/W	16-bit I/O timer free run timer	00000000
6D	Timer data register, upper bits		R/W		0000000
6Ен	Timer control status register	TCCS	R/W		0000000
6F\%	ROM mirroring function selection register	ROMM	W	ROM mirroring function	--------1

(Continued)

MB90550A/550B Series

Address	Register name	Abbreviated register name	Read/write	Resource name	Initial value
70н	Compare register, channel-0 lower bits			16-bit I/O timer output compare (ch. 0 to ch.3)	XXXXXXXX
71н	Compare register, channel-0 upper bits				XXXXXXXX
72н	Compare register, channel-1 lower bits	OCCP1	R/W		XXXXXXXX
73	Compare register, channel-1 upper bits				XXXXXXXX
74	Compare register, channel-2 lower bits	OCCP2	R/W		XXXXXXXX
75	Compare register, channel-2 upper bits				XXXXXXXX
76	Compare register, channel-3 lower bits	OCCP3	R/W		XXXXXXXX
77	Compare register, channel-3 upper bits				XXXXXXXX
78H	Compare control status register, channel-0	OCSO	R/W		0000 _ 00
79н	Compare control status register, channel-1	OCS1	R/W		_-00000
7Ан	Compare control status register, channel-2	OCS2	R/W		0000 _ 00
7Bн	Compare control status register, channel-3	OCS3	R/W		_-_00000
$\begin{aligned} & \text { 7CH to } \\ & 9 \mathrm{D}_{\mathrm{H}} \end{aligned}$	(Disabled)				
9Ен	Program address detection control register	PACSR	R/W	Address match detection function	0000000
9F\%	Delayed interrupt factor generation/cancellation register	DIRR	R/W	Delayed interrupt	-_-_-_-_0
$\mathrm{AOH}^{\text {H}}$	Low-power consumption mode control register	LPMCR	R/W!	Low power consumption control	00011000
A1н	Clock select register	CKSCR	R/W!	circuit	11111100
$\begin{aligned} & \text { A2н to } \\ & \text { А4 } \end{aligned}$	(Disabled)				
A5	Automatic ready function select register	ARSR	W	External bus pin control circuit	0011__00
A6	External address output control register	HACR	W		0000000
A7 ${ }^{\text {r }}$	Bus control signal select register	ECSR	W		0000000

(Continued)
FUjilisu

MB90550A/550B Series

Address	Register name	Abbreviated register name	Read/write	Resource name	Initial value
A8H	Watchdog timer control register	WDTC	R/W!	Watchdog timer	XXXXX 111
A9н	Timebase timer control register	TBTC	R/W!	Timebase timer	1__00100
ААн to AD	(Disabled)				
АЕн	Flash memory control status register	FMCS	R/W	Flash memory interface circuit	00000 _ 0
AFH	(Disabled)				
B0н	Interrupt control register 00	ICR00	R/W!	Interrupt controller	00000111
B1н	Interrupt control register 01	ICR01	R/W!		00000111
B2н	Interrupt control register 02	ICR02	R/W!		00000111
B3н	Interrupt control register 03	ICR03	R/W!		00000111
B4н	Interrupt control register 04	ICR04	R/W!		00000111
B5 ${ }^{\text {}}$	Interrupt control register 05	ICR05	R/W!		00000111
B6	Interrupt control register 06	ICR06	R/W!		00000111
B7	Interrupt control register 07	ICR07	R/W!		00000111
B8н	Interrupt control register 08	ICR08	R/W!		00000111
B9 ${ }_{\text {- }}$	Interrupt control register 09	ICR09	R/W!		00000111
ВАн	Interrupt control register 10	ICR10	R/W!		00000111
BB_{H}	Interrupt control register 11	ICR11	R/W!		00000111
BCH	Interrupt control register 12	ICR12	R/W!		00000111
BD	Interrupt control register 13	ICR13	R/W!		00000111
ВЕн	Interrupt control register 14	ICR14	R/W!		00000111
BFH	Interrupt control register 15	ICR15	R/W!		00000111
$\begin{aligned} & \mathrm{COH}_{\mathrm{H}} \text { o } \\ & \mathrm{FF}_{\mathrm{H}} \end{aligned}$	(External area)				
$\begin{gathered} 100 \text { to } \\ \# н \end{gathered}$	(RAM area)				
$\begin{gathered} \hline \text { \#н to } \\ \text { 1FEFF }_{H} \end{gathered}$	(Reserved area)				

(Continued)

MB90550A/550B Series

(Continued)

Address	Register name	Abbreviated register name	Read/write	Resource name	Initial value
1FF0н	Program address detection register 0	PADR0	R/W	Address match detection function	XXXXXXXX
1FF1н	Program address detection register 1		R/W		XXXXXXXX
1FF2н	Program address detection register 2		R/W		XXXXXXXX
1FF3H	Program address detection register 3	PADR1	R/W		XXXXXXXX
1FF4н	Program address detection register 4		R/W		XXXXXXXX
1FF5 ${ }_{\text {H }}$	Program address detection register 5		R/W		XXXXXXXX
1FF6 to 1FFFH	(Reserved area)				

- Initial value representations

0 : Initial value of 0
1: Initial value of 1
X: Initial value undefined
_: Initial value undefined (none)

- Addresses that follow 00FFH are the reserved areas.
- The boundary \#н between the RAM and reserved areas is different depending on each product.

Note : For writable bits, the initial value column contains the initial value to which the bit is initialized at a reset.
Notice that it is not the value read from the bit.
The LPMCR, CKSCR, and WDTC registers may be initialized or not initialized, depending on the type of the reset. Their initial values in the above list are those to which the registers are initialized.
"R/W!" in the access column indicates that the register contains read-only or write-only bits.
If a read-modify-write instruction (such as a bit setting instruction) is used to access a register marked " R / W!", or "W" in the access column, the bit focused on by the instruction is set to the desired value but a malfunction occurs if the other bits contain a write-only bit. Do not use such instructions to access those registers.

MB90550A/550B Series

■ INTERRUPT FACTORS

INTERRUPT VECTORS, INTERRUPT CONTROL REGISTERS

Interrupt source	$\mathrm{El}^{2} \mathrm{OS}$ support	Interrupt vectors		Interrupt control registers	
		Number	Address	ICR	Address
Reset	\times	\# 08	FFFFDCH	-	-
INT9 instruction	\times	\# 09	FFFFD8н	-	-
Exception	\times	\# 10	FFFFD4н	-	-
A/D converter	\bigcirc	\# 11	FFFFD0н	ICR00	0000B0н
Timebase timer	\times	\# 12	FFFFCCH		
DTP0 (external interrupt 0)	\bigcirc	\# 13	FFFFC8H	ICR01	0000B1н
DTP4/5 (external interrupt 4/5)	\bigcirc	\# 14	FFFFC4н		
DTP1 (external interrupt 1)	\bigcirc	\# 15	FFFFCOH	ICR02	0000В2н
8/16-bit PPG timer0 counter borrow	\times	\# 16	FFFFBC		
DTP2 (external interrupt 2)	\bigcirc	\# 17	FFFFB8\%	ICR03	0000В3н
8/16-bit PPG timer 1 counter borrow	\times	\# 18	FFFFB4н		
DTP3 (external interrupt 3)	\bigcirc	\# 19	FFFFB0н	ICR04	0000B4н
8/16-bit PPG timer 2 counter borrow	\times	\# 20	FFFFACн		
Extended I/O serial interface 0	\bigcirc	\# 21	FFFFA8н	ICR05	0000B5н
8/16-bit PPG timer 3 counter borrow	\times	\# 22	FFFFA4н		
Extended I/O serial interface 1	\bigcirc	\# 23	FFFFA0н	ICR06	0000B6н
16-bit free-run timer (I/O timer) overflow	\bigcirc	\# 24	FFFF9C ${ }_{\text {¢ }}$		
16-bit re-load timer 0	\bigcirc	\# 25	FFFF98н	ICR07	0000B7н
DTP6/7 (external interrupt 6/7)	\bigcirc	\# 26	FFFF94н		
16-bit re-load timer 1	\bigcirc	\# 27	FFFF90н	ICR08	0000B8н
8/16-bit PPG timer 4/5 counter borrow	\times	\# 28	FFFF8C ${ }_{\text {н }}$		
Input capture (ch.0) include (l/O timer)	\bigcirc	\# 29	FFFFF88н	ICR09	0000B9н
Input capture (ch.1) include (l/O timer)	\bigcirc	\# 30	FFFF84н		
Input capture (ch.2) include (l/O timer)	\bigcirc	\# 31	FFFF80н	ICR10	0000ВАн
Input capture (ch.3) include (l/O timer)	\bigcirc	\# 32	FFFF7C ${ }_{\text {¢ }}$		
Output compare (ch.0) match (Output timer)	\bigcirc	\#33	FFFF78н	ICR11	0000ВВн
Output compare (ch.1) match (Output timer)	\bigcirc	\# 34	FFFFF74		
Output compare (ch.2) match (Output timer)	\bigcirc	\# 35	FFFFF70н	ICR12	0000BCн
Output compare (ch.3) match (Output timer)	\bigcirc	\# 36	FFFF6C ${ }_{\text {н }}$		
UART transmission complete	\bigcirc	\# 37	FFFF68 ${ }_{\text {¢ }}$	ICR13	0000BDн
$I^{2} \mathrm{C}$ interface 0	\times	\# 38	FFFF64н		
UART0 reception complete	()	\# 39	FFFF60н	ICR14	0000ВЕн
${ }^{2} \mathrm{C}$ C interface 1	\times	\# 40	FFFF5CH		
Flash memory status	\times	\# 41	FFFF58н	ICR15	0000BFH
Delayed interrupt generation module	\times	\# 42	FFFF54н		

© :The interrupt request flag is cleared by the $\mathrm{El}^{2} \mathrm{OS}$ interrupt clear signal. The stop request is available.
\bigcirc :The interrupt request flag is cleared by the $\mathrm{El}^{2} \mathrm{OS}$ interrupt clear signal.
$\times \quad$:The interrupt request flag is not cleared by the $\mathrm{El}^{2} \mathrm{OS}$ interrupt clear signal.

MB90550A/550B Series

Note: On using the EI²OS Function with Extended I/O Serial Interface 2
If a resource has two interrupt sources for the same interrupt number, both of the interrupt request flags are cleared by the $\mathrm{El}^{2} \mathrm{OS}$ interrupt clear signal. When the $\mathrm{El}^{2} \mathrm{OS}$ function is used for one of the two interrupt sources, therefore, the other interrupt function cannot be used. Set the interrupt request enable bit for the relevant resource to " 0 " for software polling processing.

Interrupt source	Interrupt No.	Interrupt control register	Resource interrupt request
Extended I/O serial interface 1	$\# 23$	ICR06	Enabled
16-bit free-run timer (I/O timer) overflow	$\# 24$		Disabled

MB90550A/550B Series

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

$\left(\mathrm{V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}\right)$

Parameter	Symbol	Value		Unit	Remarks
		Min	Max		
Power supply voltage	Vcc	Vss - 0.3	Vss +6.0	V	
	AV cc	Vss - 0.3	Vss +6.0	V	$\mathrm{V}_{\mathrm{cc}} \geq \mathrm{AV}_{\mathrm{cc}} \quad{ }^{* 1}$
	AVRH	Vss - 0.3	Vss +6.0	V	AV cc $\geq \mathrm{AVRH} \geq \mathrm{AVRL}$
	AVRL	Vss - 0.3	Vss +6.0	V	
Input voltage	V_{1}	Vss - 0.3	Vss +6.0	V	*5
Output voltage	Vo	Vss - 0.3	Vss +6.0	V	* 5
Maximum clamp current	Iclamp	-2.0	+ 2.0	mA	MB90552A/2B/3A/3B*6
		- 200	+ 200	$\mu \mathrm{A}$	MB90F553A*6
Total maximum clamp current	$\Sigma \mid$ Iclamp \|	-	20	mA	MB90552A/2B/3A/3B*6
		-	2	mA	MB90F553A*6
"L" level maximum output current *2	lol1	-	10	mA	Other than P20 to P27
	loL2	-	20	mA	P20 to P27
"L" level average output current	lolav1	-	4	mA	Other than P20 to P27
	lolav2	-	12	mA	P20 to P27
"L" level total maximum output current	EloL	-	150	mA	
"L" level total average output current	Elolav	-	80	mA	
"H" level maximum output current *2	Іон	-	-15	mA	
"H" level average output current *3	lohav	-	-4	mA	
"H" level total maximum output current	Σ Іон	-	-100	mA	
"H" level total average output current *4	Elohav	-	-50	mA	
Power consumption	PD	-	550	mW	MB90P553A
			450	mW	MB90F553A
			200	mW	MB90553A/553B
			180	mW	MB90552A/552B
Operating temperature	TA	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tsta	-55	+150	${ }^{\circ} \mathrm{C}$	

*1 : Care must be taken that AVcc, AVRH, AVRL do not exceed Vcc.
Also, care must be taken that AVRH and AVRL do not exceed AVCC, and AVRL does not exceed AVRH.
*2 : The maximum output current is a peak value for a corresponding pin.
*3 : Average output current is an average current value observed for a 100 ms period for a corresponding pin.
*4 : Total average current is an average current value observed for a 100 ms period for all corresponding pins.
*5 : Vı and Vo should not exceed $\mathrm{Vcc}+0.3 \mathrm{~V}$.
*6 : • Applicable to pins : P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P60 to P67, P70 to P77, P80 to P87, P90 to P97, PA0 to PA4
(Continued)

MB90550A/550B Series

(Continued)

- Use within recommended operating conditions.
- Use at DC voltage (current) .
- The +B signal should always be applied with a limiting resistance placed between the +B signal and the microcontroller.
- Set the value of the limiting resistance as the current to be input to the microcontroller at +B input is below the rated value, either instantaneously or for the prolonged periods.
- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the V_{cc} pin, and this may affect other devices.
- Note that if a +B signal is input when the microcontroller current is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that is the +B input is applied during power-on, the power supply is provided from the pins and resulting supply voltage may not be sufficient to operate the power-on reset.
- Care must be taken not to leave the +B input pin open.
- Note that analog system input/output pins other than the A/D input pins (LCD drive pins, comparator input pins, etc.) cannot accept +B signal input.
- Sample recommended circuits :
- Input/output equivalent circuits

Note: Average output current $=$ operating current \times operating efficiency

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

MB90550A/550B Series

2. Recommended Operating Conditions

$$
\left(\mathrm{V}_{\mathrm{ss}}=\mathrm{A} \mathrm{~V}_{\mathrm{ss}}=0.0 \mathrm{~V}\right)
$$

Parameter	Symbol	Value		Unit	Remarks
		Min	Max		
Power supply voltage	Vcc AVcc	4.5	5.5	V	Normal operation (MB90F553A, MB90P553A, MB90V550A)
		3.5	5.5	V	Normal operation (MB90553A, MB90553B, MB90552A, MB90552B)
		3.5	5.5	V	Retains status at the time of operation stop
Smoothing capacitor	Cs	0.1	1.0	$\mu \mathrm{F}$	*
Operating temperature	TA	-40	+85	${ }^{\circ} \mathrm{C}$	

*: Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The smoothing capacitor to be connected to the Vcc pin must have a capacitance value higher than Cs.
For connecting smoothing capacitor Cs , see the diagram below:

- C pin connection circuit

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

MB90550A/550B Series

3. DC Characteristics

$\left(\mathrm{V}\right.$ cc $=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{Ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min	Typ	Max		
" H " level input voltage	V_{IH}	CMOS input pin	-	0.7 Vcc	-	Vcc+0.3	V	*1
	$\mathrm{V}_{\text {IHS }}$	CMOS hysteresys input pin	-	0.8 Vcc	-	Vcc+0.3	V	*2
	VIHM	MD pin input	-	V cc -0.3	-	$\mathrm{Vcc}+0.3$	V	*
"L" level input voltage	VIL	CMOS input pin	-	Vss -0.3	-	0.3 Vcc	V	*1
	VILs	CMOS hysteresys input pin	-	Vss -0.3	-	0.2 V cc	V	*2
	VILM	MD pin input	-	Vss -0.3	-	Vss +0.3	V	*3
Open-drain output pin voltage	V	P50 to P55	-	Vss - 0.3	-	Vss +6.0	V	
"H" level output voltage	Vон	$\begin{aligned} & \text { Other than } \\ & \text { P50 to P55 } \end{aligned}$	$\begin{aligned} & \mathrm{V} \mathrm{CC}=4.5 \mathrm{~V}, \\ & \mathrm{loH}=-4.0 \mathrm{~mA} \end{aligned}$	Vcc-0.5	-	-	V	
"L" level output voltage 1	Volı	Other than P20 to P27	$\begin{aligned} & \mathrm{V} \mathrm{cc}=4.5 \mathrm{~V}, \\ & \mathrm{loL}=4.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	
"L" level output voltage 2	Vol2	P20 to P27	$\begin{aligned} & \mathrm{V} \mathrm{cc}=4.5 \mathrm{~V}, \\ & \mathrm{loL}=12.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	
Input leakage current	IIL	All output pins	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{ss}}<\mathrm{V}_{1}<\mathrm{V}_{\mathrm{cc}} \end{aligned}$	-5	-	5	$\mu \mathrm{A}$	
Power supply current *4	Icc	V cc	Internal operation at 16 MHz $\mathrm{Vcc}=5.5 \mathrm{~V}$ Normal operation	-	30	40	mA	MB90V550A
				-	80	110	mA	MB90P553A
				-	60	90	mA	MB90F553A
				-	30	40	mA	MB90553A/B
				-	25	35	mA	MB90552A/B
			When data written in flash mode	-	100	150	mA	MB90F553A
	Iccs		Internal operation at 16 MHz $\mathrm{Vcc}=5.5 \mathrm{~V}$ In sleep mode	-	7	10	mA	MB90V550A
				-	25	30	mA	MB90P553A
				-	10	20	mA	MB90F553A
				-	7	10	mA	MB90553A/B
				-	7	10	mA	MB90552A/B
	Icch		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \text { In stop mode } \end{aligned}$	-	5	20	$\mu \mathrm{A}$	MB90V550A
				-	0.1	10	$\mu \mathrm{A}$	MB90P553A
				-	5	20	$\mu \mathrm{A}$	MB90F553A
				-	5	20	$\mu \mathrm{A}$	MB90553A/B
				-	5	20	$\mu \mathrm{A}$	MB90552A/B
Input capacitance	Cin	Other than $A V c c$, $A V_{s s}, C, V_{c c}$ and $V_{s s}$	-	-	10	-	pF	
Open-drain output leakage current	leak	P50 to P55	-	-	0.1	5	$\mu \mathrm{A}$	
Pull-up resistance	Rup	P00 to P07 and P10 to P17 (In pull-up setting),RST	-	25	50	100	k Ω	Other than MB90V550A
				20	40	100	$\mathrm{k} \Omega$	MB90V550A
Pull-down resistance	Roown	MD2	-	25	50	100	k Ω	Only for mask ROM product

MB90550A/550B Series

*1 : P00 to P07, P10 to P17, P20 to P27, P30 to P37
*2 : X0, $\overline{\text { HST }}, \overline{R S T}, \mathrm{P} 40$ to P47, P50 to P55, P60 to P67, P70 to P77, P80 to P87, P90 to P97, PA0 to PA4
*3: MD0, MD1 and MD2
*4 : The current value is preliminary value and may be subject to change for enhanced characteristics without previous notice. The power supply current is measured with an external clock.

MB90550A/550B Series

4. AC Characteristics

(1) Clock Timing
$\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Value			Unit	Unit
			Min	Typ	Max		
Oscillation clock frequency	Fc	X0, X1	3	-	16	MHz	
Oscillation clock cycle time	tc	X0, X1	62.5	-	333	ns	
Frequency fluctuation rate locked*	Δf	-	-	-	5	\%	
Input clock pulse width	$\begin{aligned} & \text { Pwh } \\ & \text { PwL } \end{aligned}$	X0	10	-	-	ns	Recommended duty ratio of 40% to 60%
Input clock rising/falling time	tcr, tcF	X0	-	-	5	ns	External clock operation
Internal operating clock frequency	Fcp	-	8.0	-	16	MHz	PLL operation
			1.5	-	16	MHz	Main clock operation
Internal operating clock cycle time	tcp	-	62.5	-	125	ns	PLL operation
			62.5	-	666	ns	Main clock operation

*: The frequency fluctuation rate is the maximum deviation rate of the preset center frequency when the multiplied PLL signal is locked.

$$
\Delta f=\frac{|\alpha|}{f o} \times 100(\%) \quad \text { Center frequency }
$$

- X0, X1 clock timing

MB90550A/550B Series

- PLL operation guarantee range

Relationship between internal operating clock frequency and power supply voltage

Relationship between oscillation clock frequency and internal operating clock frequency

The AC ratings are measured for the following measurement reference voltages.

- Input signal waveform

Hystheresis input pin

- Output signal waveform

Output pin

Pins other than hystheresis input / MD input
0.7 Vcc
0.3 Vcc

MB90550A/550B Series

(2) Clock Output Timing
$\left(\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Value		Unit	Remarks
			Min	Max		
Cycle time	tovc	CLK	62.5	-	ns	
CLK $\uparrow \rightarrow$ CLK \downarrow time	tchcl		tcp/2-20	tcp/2+20	ns	

MB90550A/550B Series

(3) Reset, Hardware Standby Input Timing

Parameter	Symbol	Pin name	Value		Unit	Remarks
			Min	Max		
Reset input time	trstı	$\overline{\text { RST }}$	16 tcp	-	ns	Under normal operation
			Oscillation time of oscillator* +16 tcp	-	ms	In stop mode
Hardware standby input time	thstL	HST	16 tcp	-	ns	Under normal operation

*: Oscillation time of oscillator is time that the amplitude reached the 90%.
In the crystal oscillator, the oscillation time is between several ms to tens of ms. In ceramic oscillator, the oscillation time is between hundreds of $\mu \mathrm{s}$ to several ms . In the external clock, the oscillation time is 0 ms .

- Under normal operation

- In stop mode

MB90550A/550B Series

(4) Specification for Power-on Reset

Parameter	Symbol	Pin name	Value		Unit	Remarks
			Min	Max		
Power supply rising time	tR	Vcc	0.05	30	ms	
Power-supply start voltage	Voff		-	0.2	V	
Power-supply end voltage	Von		2.7	-	V	
Power supply cut-off time	toff		4	-	ms	Due to repeated operations

Notes: • Vcc must be kept lower than 0.2 V before power-on.

- The above values are used for creating a power-on reset.
- Some registers in the device are initialized only upon a power-on reset. To initialize these register, turn on the power supply using the above values.

Sudden changes in the power supply voltage may cause a power-on reset.
To change the power supply voltage while the device is in operation, it is recommended to raise the voltage smoothly to suppress fluctuations as shown below.
In this case, change the supply voltage with the PLL clock not used. If the voltage drop is 1 V or fewer per second, however, you can use the PLL clock.

MB90550A/550B Series

(5) Bus Read Timing
$\left(\mathrm{V}\right.$ cc $=5.0 \mathrm{~V} \pm 10 \%$, $\mathrm{V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{Ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Value		Unit	Remarks
			Min	Max		
ALE pulse width	tLнLL	ALE	tcp/2-20	-	ns	
Effective address \rightarrow ALE \downarrow time	tavil	ALE, A23 to A16, AD15 to AD00	tcp/2-20	-	ns	
ALE $\downarrow \rightarrow$ address effective time	tılax	ALE, AD15 to AD00	tcp/2-15	-	ns	
Effective address $\rightarrow \overline{\mathrm{RD}} \downarrow$ time	tavgl	$\begin{aligned} & \text { A23 to A16, } \\ & \text { AD15 to AD00, } \overline{\text { RD }} \end{aligned}$	tcp - 15	-	ns	
Effective address \rightarrow valid data input	tavov	$\begin{aligned} & \text { A23 to A16, } \\ & \text { AD15 to AD00 } \end{aligned}$	-	5 tcp/2-60	ns	
$\overline{\mathrm{RD}}$ pulse width	trLRH	$\overline{\mathrm{RD}}$	$3 \mathrm{tcp} / 2-20$	-	ns	
$\overline{\mathrm{RD}} \downarrow \rightarrow$ valid data input	trldv	$\overline{\mathrm{RD}}, \mathrm{AD} 15$ to AD00	-	3 tcp/2-60	ns	
$\overline{\mathrm{RD}} \uparrow \rightarrow$ data hold time	trhox	$\overline{\mathrm{RD}}, \mathrm{AD} 15$ to AD00	0	-	ns	
$\overline{\mathrm{RD}} \uparrow \rightarrow \mathrm{ALE} \uparrow$ time	trHLL	$\overline{\mathrm{RD}}, \mathrm{ALE}$	tcp/2-15	-	ns	
$\overline{\mathrm{RD}} \uparrow \rightarrow$ address effective time	trhax	ALE, A23 to A16	tcp/2-10	-	ns	
Effective address \rightarrow CLK \uparrow time	tavch	A23 to A16, AD15 to AD00, CLK	tcp/2-20	-	ns	
$\overline{\overline{R D}} \downarrow \rightarrow$ CLK \uparrow time	trLCH	$\overline{\mathrm{RD}}, \mathrm{CLK}$	tcp/2-20	-	ns	
ALE $\downarrow \rightarrow \overline{\mathrm{RD}} \downarrow$ time	tLLRL	ALE, $\overline{\mathrm{RD}}$	tcp/2-15	-	ns	

- Bus read timing

MB90550A/550B Series

(6) Bus Write Timing

$$
\left(\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Value		Unit	Remarks
			Min	Max		
Effective address $\rightarrow \overline{\mathrm{WR}} \downarrow$ time	tavwL	A23 to A16, AD15 to AD00, $\overline{W R H}, \overline{W R L}$	tcp - 15	-	ns	
$\overline{\text { WR }}$ pulse width	twlwh	$\overline{\text { WRH, }}$ WRL	3 tcp/2-20	-	ns	
valid data output $\rightarrow \overline{\mathrm{WR}} \uparrow$ time	tovwh	AD15 to AD00, WRH, WRL	$3 \mathrm{tcp} / 2-20$	-	ns	
$\overline{\mathrm{WR}} \uparrow \rightarrow$ data hold time	twhdx	AD15 to AD00, $\overline{\text { WRH, }}$ WRL	20	-	ns	Multiplex mode
$\overline{\mathrm{WR}} \uparrow \rightarrow$ address effective time	twhax	$\frac{\text { A23 to A16, }}{\overline{\text { WRH }}, \overline{\text { WRL }}}$	tcp/2-10	-	ns	
$\overline{\mathrm{WR}} \uparrow \rightarrow$ ALE \uparrow time	twhLH	$\overline{\text { WRH, }}$, $\overline{\text { WRL }}$, ALE	tcp/2-15	-	ns	
$\overline{\overline{W R}} \downarrow \rightarrow$ CLK \uparrow time	twlch	$\overline{\mathrm{WRH}}, \overline{\mathrm{WRL}}, \mathrm{CLK}$	tcp/2-20	-	ns	

- Bus write timing

MB90550A/550B Series

(7) Ready Input Timing
$\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{Vs}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Value		Unit	Remarks
			Min	Max		
RDY setup time	tRYHs	RDY	45	-	ns	
RDY hold time	tRYнH	CLK	0	-	ns	

Note : Use the automatic ready function when the setup time for the rising edge of the RDY signal is not sufficient.

- Ready input timing

MB90550A/550B Series

(8) Hold Timing
$\left(\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV}\right.$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Value		Unit	Remarks
			Min	Max		
Pins in floating status $\rightarrow \overline{\mathrm{HAK}} \downarrow$ time	txhal	HAK	30	tcp	ns	
$\overline{\text { HAK }} \uparrow \rightarrow$ pin valid time	thatv		tcp	2 tcp	ns	

Note : More than 1 machine cycle is needed before HAK changes after HRQ pin is fetched.

- Hold timing

(9) UART, Extended I/O Serial 0, 1 Timing
$\left(\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=\mathrm{AV}\right.$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min	Max		
Serial clock cycle time	tscyc	SCK0 to SCK2	Internal shift clock mode $\mathrm{CL}=80 \mathrm{pF}$ +1 TTL for an output pin	8 tcp	-	ns	
SCK $\downarrow \rightarrow$ SOT delay time	tsıov	SCK0 to SCK2, SOT0 to SOT2		-80	80	ns	
Valid SIN \rightarrow SCK \uparrow	tivsh	SCK0 to SCK2, SINO to SIN2		100	-	ns	
SCK $\uparrow \rightarrow$ valid SIN hold time	tshlx	SCK0 to SCK2, SINO to SIN2		tcp	-	ns	
Serial clock "H" pulse width	tshsL	SCK0 to SCK2	External shift clock mode $\mathrm{CL}=80 \mathrm{pF}$ +1 TTL for an output pin	4 tcp	-	ns	
Serial clock "L" pulse width	tsLsh	SCK0 to SCK2		4 tcp	-	ns	
SCK $\downarrow \rightarrow$ SOT delay time	tsıov	SCK0 to SCK2, SOT0 to SOT2		-	150	ns	
Valid SIN \rightarrow SCK \uparrow	tıvsh	SCK0 to SCK2, SIN0 to SIN2		60	-	ns	
SCK $\uparrow \rightarrow$ valid SIN hold time	tshix	SCK0 to SCK2, SIN0 to SIN2		60	-	ns	

Notes: - These are AC ratings in the CLK synchronous mode.

- C_{L} is the load capacitance value connected to pins while testing.

MB90550A/550B Series

- Internal shift clock mode

- External shift clock mode

(10) Timer Input Timing
$\left(\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{Vs}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Value		Unit	Remarks
			Max			
Input pulse width	ttiwh triwL	TIN0, TIN1 IN0 to IN3	4 tcp	-	ns	

- Timer input timing

TINO, TIN1 INO to IN3

tTIWL \qquad

MB90550A/550B Series

(11) Timer Output Timing
$\left(\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V} \mathrm{ss}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Value		Unit	Remarks
			Min	Max		
CLK $\uparrow \rightarrow$ Tout transition time	tто	TOT0,TOT1,OUT0, OUT1,PPGO to PPG5	30	-	ns	

- Timer output timing

(12) Trigger Input Timing

Parameter	Symbol	Pin name	Value		Unit	Remarks
			Min	Max		
Input pulse width	ttrgh ttrgl	IRQ0 to IRQ7	5 tcp	-	ns	Under normal operation
			1	-	$\mu \mathrm{s}$	In stop mode

- Trigger input timing

MB90550A/550B Series

(13) I²C Interface

Parameter	Symbol	Pin name	$\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%$, V	$=\mathrm{AV}_{\text {ss }}=0.0$		$0^{\circ} \mathrm{C}$ to $\left.+85{ }^{\circ} \mathrm{C}\right)$
			Value		Unit	Remarks
			Min	Max		
Internal clock cycle time	tcp	-	62.5	666	ns	All products
Start condition output	tstao	SDA0 to SDA2 SCL0 toSCL2	tcp $\times \mathrm{m} \times \mathrm{n} / 2-20$	tcp $\times \mathrm{m} \times \mathrm{n} / 2+20$	ns	Only as master
Stop condition output	tstoo		$\begin{gathered} \operatorname{tcp}(\mathrm{m} \times \mathrm{n} / 2+4) \\ -20 \end{gathered}$	$\begin{gathered} \operatorname{tcp}(\mathrm{m} \times \mathrm{n} / 2+4) \\ +20 \end{gathered}$	ns	
Start condition detection	tstal		$3 \mathrm{tcp}+40$	-	ns	Only as slave
Stop condition detection	tstol		$3 \mathrm{tcp}+40$	-	ns	
SCL output "L" width	tıowo	SCL0 to SCL2	tcp $\times \mathrm{m} \times \mathrm{n} / 2-20$	tcp $\times \mathrm{m} \times \mathrm{n} / 2+20$	ns	Only as master
SCL output "H" width	tніно		$\begin{gathered} \operatorname{tcp}(\mathrm{m} \times \mathrm{n} / 2+4) \\ -20 \end{gathered}$	$\begin{gathered} \operatorname{tcp}(\mathrm{m} \times \mathrm{n} / 2+4) \\ +20 \end{gathered}$	ns	
SDA output delay time	tooo	SDA0 to SDA2 SCL0 to SCL2	2 tcp - 20	2 tcp + 20	ns	
Setup after SDA output interrupt period	toosuo		4 tcp - 20	-	ns	
SCL input "L" width	tıowi	SCL0 to SCL2	$3 \mathrm{tcp}+40$	-	ns	
SCL input "H" width	thigh		tcp +40	-	ns	
SDA input setup time	tsul	SDA0 to SDA2 SCL0 to SCL2	40	-	ns	
SDA input hold time	tноı		0	-	ns	

Notes: • " m " and " n " in the above table represent the values of shift clock frequency setting bits (CS4 to CSO) in the clock control register "ICCR". For details, refer to the register description in the hardware manual.

- toosuo represents the minimum value when the interrupt period is equal to or greater than the SCL "L" width.
- The SDA and SCL output values indicate that that rise time is 0 ns .

MB90550A/550B Series

- $I^{2} C$ interface [data transmitter (master/slave)]

- $I^{2} \mathrm{C}$ interface [data receiver (master/slave)]

SCL

MB90550A/550B Series

5. A/D Converter

(1)Electrical Characteristics
(4.5 V $\leq \mathrm{AVRH}-\mathrm{AVRL}, \mathrm{V} \mathrm{cc}=\mathrm{AV} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%$, $\mathrm{V} \mathrm{ss}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin name	Value			Unit	Remarks
			Min	Typ	Max		
Resolution	-	-	-	10	-	bit	
Total error	-	-	-	-	± 5.0	LSB	
Non-linearity error	-	-	-	-	± 2.5	LSB	
Differential linearity error	-	-	-	-	± 1.9	LSB	
Zero transition voltage	Vot	AN0 to AN7	$\begin{aligned} & \text { AVRL- } \\ & \text { 3.5LSB } \end{aligned}$	$\begin{aligned} & \text { AVRL+ } \\ & 0.5 \mathrm{LSB} \end{aligned}$	$\begin{aligned} & \text { AVRL+ } \\ & \text { 4.5LSB } \end{aligned}$	V	$\begin{aligned} & \text { 1LSB= } \\ & \text { (AVRH-AVRL) } \\ & / 1024 \end{aligned}$
Full-scale transition voltage	Vfst	AN0 to AN7	$\begin{aligned} & \text { AVRH- } \\ & 6.5 \mathrm{LSB} \end{aligned}$	$\begin{aligned} & \hline \text { AVRH- } \\ & 1.5 \mathrm{LSB} \end{aligned}$	$\begin{aligned} & \text { AVRH+ } \\ & 1.5 \mathrm{LSB} \end{aligned}$	V	
Sampling period	tsmp	-	64	-	4096	tcp	
Compare time	tcmp	-	22	-	-	$\mu \mathrm{s}$	*1
A/D Conversion time	tcnv	-	26.3	-	-	$\mu \mathrm{s}$	*2
Analog port input current	Iain	AN0 to AN7	-	-	10	$\mu \mathrm{A}$	
Analog input voltage	$\mathrm{V}_{\text {AIN }}$	AN0 to AN7	AVRL	-	AVRH	V	
Reference voltage	-	AVRH	AVRL + 4.5	-	AV ${ }_{\text {cc }}$	V	
	-	AVRL	0	-	AVRH - 4.5	V	
Power supply current	IA	AVcc	-	3.5	7.0	mA	
	ІАН		-	-	5	$\mu \mathrm{A}$	*3
Reference voltage supply current	IR	AVRH	-	300	500	$\mu \mathrm{A}$	
	Івн		-	-	5	$\mu \mathrm{A}$	*3
Offset between channels	-	AN0 to AN7	-	-	4	LSB	

*1: When Fcp $=8 \mathrm{MHz}$, tcmp $=176 \times$ tcp. When Fcp $=16 \mathrm{MHz}$, tcmp $=352 \times$ tcp.
*2: Equivalent to the time for conversion per channel if "tsmp $=64 \times$ tcp" or "tcmp $=352 \times$ tcp" is selected when Fcp $=$ 16 MHz .
*3: Specifies the power-supply current $(\mathrm{Vcc}=\mathrm{AVcc}=\mathrm{AVRH}=5.0 \mathrm{~V})$ when the A / D converter is inactive and the CPU has been stopped.

Notes: • The error becomes larger relatively as |AVRH-AVRL| becomes smaller.

- Use the output impedance rs of the external circuit for analog input under the following condition: External circuit output impedance $\mathrm{rs}=10 \mathrm{k} \Omega$ Max.
- If the output impedance of the external circuit is too high, the analog voltage sampling time may be insufficient.
- If you insert a DC-blocking capacitor between the external circuit and the input pin, select a capacitance that is about several thousands times the sampling capacitance Csн in the chip to suppress the effect of capacity potential division with Csh.

MB90550A/550B Series

- Analog input circuit model

Microcontroller internal circuit

<Recommended/reference values for device parameters>
$\mathrm{rs}=10 \mathrm{k} \Omega$ or less
RsH $=$ About $3 \mathrm{k} \Omega$
Csh = About 25 pF
Note: Device parameter values are provided as reference values for design purposes; they are not guaranteed.

MB90550A/550B Series

(2) Definitions of Terms

- Resolution: Analog transition identifiable by the A/D converter.

Analog voltage can be divided into $1024\left(2^{10}\right)$ components at 10 -bit resolution.

- Total error: Difference between actual and logical values. This error is the sum of an offset error, gain error, non-linearity error and an error caused by noise.
- Linearity error: Deviation of the straight line drawn between the zero transition point (0000000000 <-> 00 0000 0001) and the full-scale transition point (11 11111110 <-> 111111 1111) of the device from actual conversion characteristics
- Differential linearity error: Deviation from the ideal input voltage required to shift output code by one LSB

- 10-bit A/D converter conversion characteristics

$$
\begin{aligned}
1 \mathrm{LSB} & =\frac{\mathrm{V}_{\mathrm{FST}}-\mathrm{V}_{\mathrm{OT}}}{1022} \\
\text { Linearity error } & =\frac{\mathrm{V}_{\mathrm{NT}}-\left(1 \mathrm{LSB} \times \mathrm{N}+\mathrm{V}_{\mathrm{OT}}\right)}{1 \mathrm{LSB}}[\mathrm{LSB}] \\
\text { Differential linearity error } & =\frac{\mathrm{V}(\mathrm{~N}+1) \mathrm{T}-\mathrm{V}_{\mathrm{NT}}}{1 \mathrm{LSB}}-1[\mathrm{LSB}]
\end{aligned}
$$

MB90550A/550B Series

6. Flash Memory Program/Erase Characteristics

Parameter	Condition	Value			Unit	Remarks
		Min	Typ	Max		
Sector erase time	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{cc}}=5.0 \mathrm{~V} \end{aligned}$	-	1.5	30	s	Excludes 00 H programming prior erasure
Chip erase time		-	10.5	-	s	Excludes 00 H programming prior erasure
Word (16-bit width) programming time		-	16	500	$\mu \mathrm{s}$	Excludes system-level overhead
Program/Erase cycle	-	100,000	-	-	cycle	Guaranteed 100,000 cycles
		10,000	-	-	cycle	Guaranteed 10,000 cycles
Data hold time	-	100,000	-	-	h	

MB90550A/550B Series

EXAMPLE CHARACTERISTICS

1. "L" level output voltage

Vol - lol
Other than P20 to P27

Vol-lol
P20 to P27

MB90550A/550B Series

2. "H" level output voltage
(Vcc - Voн) - Іон
Other than P50 to P55

3. "H" level input voltage / "L" level input voltage (CMOS input)

$$
V_{H H} / V_{I L}-V_{c C}
$$

MB90550A/550B Series

4. "H" level input voltage / "L" level input voltage (CMOS hysteresis input)

MB90550A/550B Series

5. Power supply current

(fcp = internal operating clock frequency)

- MB90552A/B
- Measurement conditions: External clock mode, ROM read loop operation, without resource operation, Typ sample, internal operating frequency $=4 \mathrm{MHz}$ (external rectangular wave clock at 8 MHz), $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

$$
\mathrm{Icc}-\mathrm{V}_{\mathrm{cc}}
$$

Iccs - Vcc

MB90550A/550B Series

(Continued)

- MB90F553A
- Measurement conditions: External clock mode, ROM read loop operation, without resource operation, Typ sample,
internal operating frequency $=4 \mathrm{MHz}$ (external rectangular wave clock at 8 MHz), $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

$$
\mathrm{Icc}-\mathrm{V}_{\mathrm{cc}}
$$

Iccs - Vcc

MB90550A/550B Series

6. Pull-up resistance

Pull-up resistance - Vcc

MB90550A/550B Series

ORDERING INFORMATION

Part number	Package	Remarks
MB90552APF		
MB90552BPF		
MB90553APF	100-pin plastic QFP	
MB90553BPF	(FPT-100P-M06)	
MB90T552APF		
MB90T553APF		
MB90F553APF		
MB90P553APF		
MB90552APMC		
MB90552BPMC		
MB90533APMC	100-pin plastic LQFP	
MB90533BPMC	(FPT-100P-M20)	
MB90T553APMC		
MB90F553APMC		
MB90P553APMC		

MB90550A/550B Series

PACKAGE DIMENSIONS

100-pin plastic LQFP	Lead pitch	0.50 mm
Package width \times package length	$14.0 \mathrm{~mm} \times 14.0 \mathrm{~mm}$	
Lead shape	Gullwing	
Sealing method	Plastic mold	
Mounting height	1.70 mm Max	
Weight	0.65 g	
	Code (Reference)	P-LFQFP100-14×14-0.50

Please confirm the latest Package dimension by following URL.
http://edevice.fujitsu.com/package/en-search/

MB90550A/550B Series

(Continued)

100-pin plastic QFP	Lead pitch	0.65 mm
	Package width \times package length	$14.00 \times 20.00 \mathrm{~mm}$
	Lead shape	Gullwing
	Sealing method	Plastic mold
	Mounting height	3.35 mm MAX
	Code (Reference)	P-QFP100-14×20-0.65
(FPT-100P-M06)		

Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/package/en-search/

MB90550A/550B Series

MAIN CHANGES IN THIS EDITION

Page	Section	Change Results
-	-	The package code is changed. (FPT-100P-M05 \rightarrow FPT-100P-M20)
59	■ ORDERING INFORMATION	Order informations are changed. (MB90552APFV \rightarrow MB90552APMC MB90552BPFV \rightarrow MB90552BPMC MB90553APFV \rightarrow MB90553APMC MB90553BPFV \rightarrow MB90553BPMC MB90T552APFV \rightarrow MB90T552APMC MB90T553APFV \rightarrow MB90T553APMC MB90F553APFV \rightarrow MB90F553APMC MB90P553APFV \rightarrow MB90P553APMC)
60	■ PACKAGE DIMENSIONS	The package figure is changed. (FPT-100P-M05 \rightarrow FPT-100P-M20)

The vertical lines marked in the left side of the page show the changes.

MB90550A/550B Series

MEMO

FUJITSU MICROELECTRONICS LIMITED

7-1, Nishishinjuku 2-chome, Shinjuku Dai-Ichi Seimei Bldg.,
Shinjuku-ku, Tokyo 163-0722, JAPAN
Tel: +81-3-5322-3347 Fax: +81-3-5322-3387
http://jp.fujitsu.com/fml/en/
For further information please contact:

North and South America

FUJITSU MICROELECTRONICS AMERICA, INC.
1250 E. Arques Avenue, M/S 333
Sunnyvale, CA 94085-5401, U.S.A.
Tel: +1-408-737-5600 Fax: +1-408-737-5999
http://www.fma.fujitsu.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Pittlerstrasse 47, 63225 Langen, F. R. GERMANY
Tel: +49-6103-690-0 Fax:+49-6103-690-122
http://emea.fujitsu.com/microelectronics/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 1002 Daechi-Dong, 206 KOSMO TOWER, Kangnam-Gu, Seoul 135-280, KOREA
Tel: +82-2-3484-7100 Fax: +82-2-3484-7111
http://www.fmk.fujitsu.com/

Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE LTD.
151 Lorong Chuan, \#05-08 New Tech Park,
Singapore 556741, SINGAPORE
Tel: +65-6281-0770 Fax: +65-6281-0220
http://www.fujitsu.com/sg/services/micro/semiconductor/

FUJITSU MICROELECTRONICS SHANGHAI CO., LTD.
No. 222 Yan An Road(E), Rm.3102, Bund Center, Shanghai 200002, P. R. CHINA
Tel: +86-21-6335-1560 Fax: +86-21-6335-1605
http://cn.fujitsu.com/fmc/

FUJITSU MICROELECTRONICS PACIFIC ASIA LTD.
11 Canton Road, 10/F., World Commerce Centre, Tsimshatsui, Kowloon, HONG KONG
Tel: +852-2377-0226 Fax: +852-2376-3269
http://cn.fujitsu.com/fmc/tw

[^1]Edited Business \& Media Promotion Dept.

[^0]: *1: Step-down circuit setting time ${ }^{17 /} /$ oscillation clock frequency (oscillation clock frequency of $16 \mathrm{MHz}: 8.19 \mathrm{~ms}$)
 *2: Oscillation setting time
 $2^{18} /$ oscillation clock frequency (oscillation clock frequency of $16 \mathrm{MHz}: 16.38 \mathrm{~ms}$)

[^1]: All Rights Reserved.
 The contents of this document are subject to change without notice.
 Customers are advised to consult with sales representatives before ordering.
 The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.
 FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information.
 Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
 The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
 Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
 Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
 Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.
 The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

