

Powerline Communication Solution

Features

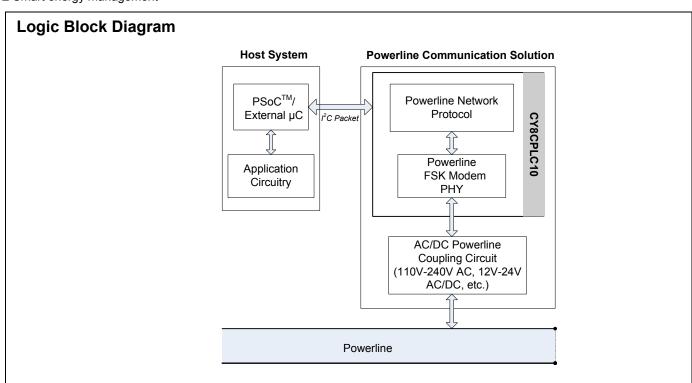
- Integrated Powerline Modem PHY
- 2400 bps Frequency Shift Keying Modulation
- Powerline Optimized Network Protocol
- Integrates Data Link, Transport, and Network Layers
- Supports Bidirectional Half-Duplex Communication
- CRC Error Detection to Minimize Data Loss
- I²C enabled Powerline Application Layer
- Supports I²C Frequencies of 50, 100, and 400 kHz
- Reference Designs for 110V to 240V AC, 12V to 24V AC/DC Coupling Circuits
- Reference Designs Comply with CENELEC EN50065-1:2001 and FCC Part 15

Applications

- Residential and commercial lighting control
- Home automation
- Automatic meter reading
- Industrial control and signage
- Smart energy management

Functional Overview

The CY8CPLC10 is an integrated Powerline Communication solution with the Powerline Modem PHY and Powerline Network Protocol Stack on the same chip. This helps in robust communication between different nodes on a Powerline.


Powerline Transmitter

The application residing on a host microcontroller generates messages to be transmitted on the Powerline. These messages are delivered to the CY8CPLC10 over an I²C serial link.

The Powerline Network Layer residing on the CY8CPLC10 receives these I²C messages and generates a Powerline Transceiver (PLT) packet. These packets are modulated by the FSK Modem and coupled with Powerline by the external coupling circuit.

Powerline Receiver

Powerline signals are received by the coupling circuit and demodulated by the FSK Modem PHY. These PLT packets are decoded by the Powerline Network Protocol and then transferred to the external host microcontroller in an I²C format.

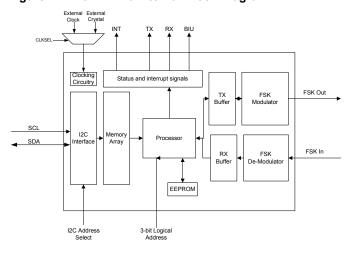
Cypress Semiconductor Corporation
Document Number: 001-50001 Rev *C

198 Champion Court

San Jose, CA 95134-1709

408-943-2600

Revised August 21, 2009


Robust Communication using Cypress's PLC Solution

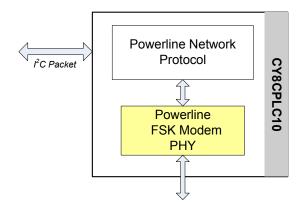
Powerlines are one of the world's most widely available communication mediums for PLC technology. The pervasiveness of Powerlines also makes it difficult to predict the characteristics and operation of PLC products. Because of the variable quality of Powerline around the world, implementing robust communication over Powerline is an engineering challenge. Keeping this in mind, Cypress's PLC solution is designed to enable secure and reliable communication over Powerline. Cypress PLC features that enable robust communication over Powerline include:

- Integrated Powerline PHY modem with optimized filters and amplifiers to work with lossy high voltage and low voltage Powerlines.
- Powerline optimized Network Protocol that supports bidirectional communication with acknowledgement based signaling. In case of data packet loss due to bursty noise on the Powerline, the transmitter can retransmit data.
- The Powerline Network Protocol also supports 8-bit CRC for error detection and data packet retransmission.
- A Carrier Sense Multiple Access (CSMA) scheme, built into the Network Protocol, minimizes collisions between packet transmissions on the Powerline. This provides support for multiple masters and reliable communication on a bigger network.

Detailed Description

Figure 1. CY8CPLC10 Internal Block Diagram

The CY8CPLC10 consists of two main functional components:


- Powerline Modem PHY
- Powerline Network Protocol

The application resides on a host system such as $PSoC^{@}$, EZ-Color[™], or any other microcontroller. The messages generated by the application are communicated to the CY8CPLC10 over I^2C and processed by these functional components. The following sections present a brief description of each of these components.

Powerline Modem PHY

Figure 2. CY8CPLC10: FSK Modem PHY

Powerline Communication Solution

The physical layer of Cypress's PLC solution is implemented using an FSK modem that enables half duplex communication on a Powerline. This modem supports raw data rates up to 2400 bps.

Figure 3. CY8CPLC10: FSK Modem PHY Block Diagram

Transmitter Section

Digital data from the network layer is serialized by the digital transmitter and fed as input to the modulator. The modulator divides the local oscillator frequency by a definite factor depending on whether the input data is high level logic '1' or low level logic '0'. It then generates a sine wave at 133.3 kHz (Logic '0') or 131.8 kHz (Logic '1'), which is fed to the Programmable Gain Amplifier to generate FSK modulated signals. The logic '1' frequency can also be configured as 130.4 kHz for wider FSK bandwidth. The device also provides a provision to bypass the internal TX filter and output a square wave at the respective FSK frequencies.

Receiver Section

The incoming FSK signal from the Powerline is input to a High Frequency (HF) Band Pass Filter that filters out-of-band frequency components and outputs filtered signal within the desired spectrum of 125 kHz to 140 kHz for further demodulation. The Mixer block multiplies the filtered FSK signals with a locally generated signal to produce heterodyned frequencies.

The Intermediate Frequency (IF) Band Pass Filters further remove out-of-band noise as required for further demodulation. This signal is fed to the correlator which produces a DC component (consisting of Logic '1' and '0') and a higher frequency component.

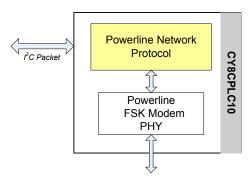
The output of the correlator is fed to a Low Pass Filter (LPF) that outputs only the demodulated digital data at 2400 baud and suppresses all other higher frequency components generated in the correlation process. The output of the LPF is digitized by the hysteresis comparator. This eliminates the effects of correlator delay and false logic triggers due to noise. The Digital Receiver deserializes this data and outputs to the Network Layer for interpretation.

The receiver also implements Automatic Gain Control (AGC). This functionality enables the receiver to adjust its gain automatically depending on the signal strength of the input FSK signal.

Coupling Circuit Reference Design

The coupling circuit couples low voltage signals from CY8CPLC10 to the Powerline. The topology of this circuit is determined by the voltage on the Powerline and design constraints mandated by Powerline usage regulations.

Cypress provides reference designs for a range of Powerline voltages such as 110V AC, 240V AC, 12V DC, 24V DC, and 24V AC. The 110V AC and 240V AC designs are compliant to the following Powerline usage regulations:


- FCC part 15 for North America
- EN50065-1:2001

Powerline Network Protocol

Cypress's Powerline optimized Network Protocol performs the functions of the data link, network, and transport layers in an ISO/OSI Equivalent Model.

Figure 4. CY8CPLC10: Powerline Network Protocol

Powerline Communication Solution

The Network Protocol implemented on the CY8CPLC10 chip supports the following features:

- Bidirectional half-duplex communication
- Master and slave and peer-to-peer network of Powerline nodes
- Multiple masters on Powerline network
- 8-bit logical addressing supports up to 256 Powerline nodes
- 16-bit extended logical addressing supports up to 65530 Powerline nodes
- 64-bit physical addressing supports up to 2⁶⁴ Powerline nodes
- Individual broadcast or group mode addressing
- Carrier Sense Multiple Access (CSMA)
- Full control over transmission parameters
 - Acknowledged
 - Unacknowledged
 - □ Repeated transmit
 - Sequence numbering

CSMA and Timing Parameters

- CSMA: The protocol provides the random selection of a period between 85 and 115 ms (out of seven possible values in this range) in which the band in use detector must indicate that the line is not in use, before attempting a transmission
- Band-In-Use (BIU): A Band-In-Use detector, as defined under CENELEC EN 50065-1, is active whenever a signal that exceeds 86 dBuVrms in the range 131.5 KHz to 133.5 KHz is present for at least 4 ms. This threshold can be configured for different end-system applications not requiring CENELEC compliance. The modem tries to retransmit after every 85 to 115 ms when the Band is in use. The Transmitter times out after 1.1 seconds and generates an interrupt to indicate that the transmitter was unable to acquire the Powerline.

Page 3 of 25

■ Throughput: Each unit of data (symbol) consists of 10 bits because each character requires one start bit and one stop bit and eight bits of data. At 2400 baud, this gives a throughput of 240 bytes/sec.

240 bytes/sec = 4.167 ms/byte = 66.6 ms/16 byte-packet Eq. 1

Assuming back to back transmission, this corresponds to:

240 bps/16 byte-packet =15 packets per second Eq. 2

Powerline Transceiver Packet

The Powerline Network Protocol defines a Powerline Transceiver (PLT) packet structure, which is used for data transfer between nodes across the Powerline. Packet formation and data transmission across the Powerline network is implemented internally in CY8CPLC10.

A PLT Packet is apportioned into a variable length header (minimum 6 bytes to maximum 20 bytes) and variable length payload (minimum 0 bytes to maximum 31 bytes).

This packet is then transmitted by the Powerline Modem PHY and the external coupling circuit across the Powerline.

The format of the PLT packet is shown in Table 1.

Table 1. Powerline Transceiver (PLT) Packet Structure

Byte Offset	Bit Offset							
	7	6	5	4	3	2	1	0
0x00	SA Type	DA '	Туре	Service Type	RS	VD	Response	RSVD
0x01	(8-	bit Lo	ogical		•	ded L	ss ogical or 64	-bit
0x02	(8-	bit Lo	ogical	Source Address al, 16-bit Extended Logical or 64-bit Physical)				
0x03				Cor	nmar	nd		
0x04	R	SVD		Payload Length				
0x05		Sec	Nun	Powerline Packet Header CRC				
0x06	Payload (0 to 31 Bytes)							
		Р	owerl	ine Trans	ceive	r Pac	ket CRC	

Packet Header

The Packet Header comprises the first six bytes of the packet when 1-byte logical addressing is used. When 8-byte physical addressing is used, the source and destination addresses each contain eight bytes. In this case, the header can consist of a maximum of 20 bytes. Unused fields marked RSVD are for future expansion and are transmitted as bit 0. Table 2 describes the PLT Packet Header fields in detail.

Table 2. Powerline Transceiver (PLT) Packet Header

Field Name	No. of Bits	Tag	Description
SA Type	1	Source Address Type	0 - Logical Addressing 1- Physical Addressing
DA Type	2	Destination Address Type	00 - Logical Addressing 01 - Group Addressing 10 - Physical Addressing 11 - Invalid
Service Type	1		0 - Unacknowledged Messaging 1 - Acknowledged Messaging
Seq Num	4	Sequence Number	Four bit Unique Identifier for each packet between source and destination
Header CRC	4		Four bit CRC Value. This enables the receiver to suspend receiving the rest of the packet if its header is corrupted

Payload

The packet payload has a length of 0 to 31 bytes. Payload content is user defined and can be read or written through I²C.

Packet CRC

The last byte of the packet is an 8-Bit CRC value used to check packet data integrity. This CRC calculation includes the header and payload portions of the packet and is in addition to the Powerline Packet Header CRC.

Addressing

The logical address of the PLC node is set through software by the external host controller or by a remote node on the Powerline. The logical address can also be set through hardware with the 3-bit LOG_ADDR (Logical Address) Port (for example, an on-board 3-bit DIP switch). However, it is overwritten when set in software. Every PLC node also has a unique 64-bit physical address which is used for assigning the logical addresses.

All the address pins are logically inverted, that is, applying a high voltage on these pins corresponds to writing a logic '0' and vice versa.

Group Membership

Group Membership enables the user to multicast messages to select groups. The CY8CPLC10 supports two types of group addressing.

- Single Group Membership: The Network protocol supports up to 256 different groups on the network in this mode. In this mode, each PLC node can only be part of a single group. For example, multiple PLC nodes can be part of Group 131.
- Multiple Group Membership: The Network protocol supports eight different groups in this mode and each PLC node can be a part of multiple groups. For example, a single PLC node can be a part of Group 3, Group 4, and Group 7at the same time.

Both these modes can also be used together for Group membership. For example, a single PLC node can be a part of Group 131 and also multiple groups such as Group 3, Group 4, and Group 7.

The Group membership ID for broadcasting messages to all nodes in the network is 0x00.

The Service Type is always set to Unacknowledgment Mode in Group Addressing Mode. This is to avoid Acknowledgment flooding on the Powerline during multicast.

Table 3. CY8CPLC10 Memory Map

CY8CPLC10 Memory Map

Table 3 gives the detailed CY8CPLC10 memory location information. This information can be used for application development on an external host controller. Several PLC Commands are instantiated from the Powerline Network Protocol based on which memory location is written.

Offset	Register Name	Access	7	6	5	4	3	2	1	0
0x00	INT_Enable	RW	INT_Clear	INT_Polarity	INT_UnableTo TX	INT_TX_ NO_ACK	INT_TX_ NO_RESP	INT_RX_ Packet_ Dropped	INT_RX_ Data_ Available	INT_TX_ Data_ Sent
0x01	Local_LA_ LSB	RW		;	8 - bit Logical A	ddress/LSB fo	or extended	16-bit addre	ess	
0x02	Local_LA_ MSB	RW			MSB	for 16-bit Ex	tended Addre	ess		
0x03	Local_Group	RW				8-bit Group	Address			
0x04	Local_Group_Ho t	RW		One Hot Enc	oded (e.g. if byt	e = 0b000100	001, then me	mber of gro	oups #5 and # ²	1)
0x05	PLC_Mode	RW	TX_Enable	RX_Enable	Lock_ Configuration	Disable_ BIU	Rx_ Overwrite	Set_Ext_ Address	Promiscuous _MASK	Promiscuous _CRC_MAS _K
0x06	TX_Message_ Length	RW	Send_ Message	Rep	peater		Payl	oad_Lengt	h_MASK	
0x07	TX_Config	RW	TX_SA_ TX_DA_Type TX_Service TX_Retry Type							
80x0	TX_DA	RW	Remote Node Destination Address (8 bytes)							
0x10	TX_CommandID	RW				TX Comm	nand ID			
0x11	TX_Data	RW				TX Data (3	1 bytes)			
0x30	Threshold_Noise	RW	Reserved	Auto_BIU_ Threshold		Reserved		BIL	J_Threshold_C	onstant
0x31	Modem_Config	RW	Reserved	TX_	Delay	Reserved	Modem_F SKBW_MA SK	Reserve d	Modem_B	PS_MASK
0x32	TX_Gain	RW		Res	erved			Т	X_Gain	
0x33	RX_Gain	RW	Reserved		CMP		Reserved		PGA	
0x34-0x3F	Reserved	RW				Reser	ved			
0x40	RX_Message_ INFO	R	New_RX_ Msg	RX_DA_ Type	RX_SA_ Type		F	RX_Msg_Le	ength	
0x41	RX_SA	R	Remote Node Source Address (8 Bytes)							
0x49	RX CommandID	R	RX Command ID							
0x4a	RX_Data	R	RX Data (31 bytes)							
0x69	INT_Status	R	Status_Valu e_Change	Reserved	Status_BUSY	Status_TX_ NO_ACK	Status_TX NO_RESP	Status_ RX_Pack et_Dropp ed	Status_RX_ Data_Availab le	Status_TX_D ata_ Sent
0x6A	Local_PA	R	Physical Address (8 bytes), "0x6A -> MSB"							
0x72	Local_FW	R				Version N	lumber			

Table 4 gives the description of the various fields outlined in Table 3 on page 5.

Table 4. Memory Field Description

Field Name	No. of Bits	Description
	INT_Enable	e Register (0x00)
INT_Clear	1	0 - INT Cleared (W) 1 - INT Triggered (Set Internally)
INT_Polarity	1	0 - Active High 1 - Active Low
INT_UnableToTX	1	Enable Interrupt for BIU Timeout and the Modem is unable to Transmit if Disable BIU = 0
INT_TX_NO_ACK	1	Enable Interrupt for no acknowledgment received if Service Type = 1 (Ack Mode)
INT_TX_NO_RESP	1	Enable Interrupt for No Response Received
INT_RX_Packet_Dropped	1	Enable Interrupt when RX Packet is dropped because RX Buffer is full
INT_RX_Data_Available	1	Enable Interrupt when RX buffer has new data
INT_TX_Data_Sent	1	Enable Interrupt when TX data is sent successfully
	PLC_Mode	Register (0x05)
TX_Enable	1	0 - TX Disabled (Can send ACKs only) 1 - TX Enabled
RX_Enable	1	0 - RX Disabled (Can Receive ACKs only) 1 - RX Enabled
Lock_Configuration	1	0 - Allow Remote Access to change config (TX Enable, Ext Address, Disable BIU, Threshold Value, Logical Address, Group Membership) 1 - Lock Remote Access to change config
Disable_BIU	1	0 - Enables Band-In-Use 1 - Disables Band-In-Use
RX_Overwrite	1	0 - If RX Buffer is full, new RX Message is dropped 1 - If RX Buffer is full, new RX Message overwrites RX Buffer
Set_Ext_Address	1	0 - 8-bit Addressing Mode 1 - Extended 16-bit Addressing Mode Note: This mode should be the same in all the devices in the network
Promiscuous_MASK	1	0 - Drops the RX Message if Destination Address does not match the Local Address 1- Ignores Destination Address match and accepts all CRC-verified RX Messages
Promiscuous_CRC_MASK	1	0 - Drops the RX Message if CRC fails 1- Ignores CRC and accepts all RX Messages if Destination Address matches Local Address
	TX_Message_L	ength Register (0x06)
Send_Message	1	0 - Transmitter is idle. Automatically cleared after each Transmit 1 - Triggers the Transmit to send message in TX Data across Powerline Note: The registers TX Config, TX Destination Address, TX Command ID and TX Data need to be set before the user sets this bit to Logic 1
Payload_Length_MASK	5	5-bit value for variable payload length. The payload length can vary from 0 to 31. TX_Configuration Register (0x07)

Table 4. Memory Field Description (continued)

Field Name	No. of Bits	Description
	TX_Config	Register(0x07.)
TX_SA_Type	1	0 - Logical Address 1 - Physical Address
TX_DA_Type	2	00 - Logical Address 01 - Group Address 10 - Physical Address 11 - Invalid
TX_Service_Type	1	0 - Unacknowledgement mode 1 - Acknowledgement Mode
TX_Retry	4	4-bit value for variable TX Retry Count
	TX_DA Regis	ster (0x08 - 0x0F)
8-bit Logical Address		0x08
16-bit Logical Address		0x08 - LSB 0x09 - MSB
64-bit Physical Address		0x08 - MSB
		 0x0F - LSB
	Threshold_Noi	se Register (0x30)
Auto_BIU_Threshold	1	0 - Auto Set Threshold is disabled 1 - Auto Set Threshold is enabled. This state overrides the Threshold Values in Register 0x30.
BIU_Threshold_Constant	3	0000 - 64 dBuV 0001 - 70 dBuV 0010 - 76 dBuV 0011 - 83 dBuV 0100 - 85 dBuV 0101 - 88 dBuV 0110 - 91 dBuV 0111 - 93 dBuV
	Modem_Confi	ig Register (0x31)
TX_Delay	2	00 - 6 ms 01 - 12 ms 10 - 18 ms 11 - 24 ms
Modem_FSK_BW_MASK	1	0 - Logic '0' - 133.3kHz Logic '1' - 131.8kHz 1 - Logic '0' - 133.3kHz Logic '1' - 130.4kHz
Modem_BPS_MASK	2	00 - 600bps 01 - 1200bps 10 - 1800bps 11 - 2400bps (default)
	TX_Gain F	Register (0x32)

Table 4. Memory Field Description (continued)

Field Name	No. of Bits	Description
TX_Gain	4	0000 - 0.008 0001 - 0.012 0010 - 0.020 0011 - 0.027 0100 - 0.039 0101 - 0.055 0110 - 0.078 0111 - 0.109 1000 - 0.156 1001 - 0.219 1010 - 0.313 1011 - 0.375 1100 - 0.500 1101 - 0.711 1110 - 1.000
		Register (0x33)
CMP	3	000 - 0.021 001 - 0.042 010 - 0.062 011 - 0.125 100 - 0.250 101 - 0.375 110 - 0.500 111 - 0.625
PGA	3	000 - 1.0 001 - 1.0 010 - 2.0 011 - 4.0 100 - 8.0 101 - 16.0 110 - 24.0 111 - 48.0
	RX_Message_II	NFO Register (0x40)
New_RX_Msg	1	 0 - No Packet received 1 - New Packet received Note: User sets this bit to Logic 0 after reading the RX Message. This allows the device to receive a new RX message
RX_DA_Type	1	0 - Logical / Physical Addressing 1 - Group Addressing
RX_SA_Type	1	0 - Logical Address 1 - Physical Address
RX_Msg_Length	5	5-bit value for variable payload length. The payload length can vary from 0 to 31.
	RX_SA Regis	ster (0x41 - 0x48)
8-bit Logical Address		0x41
16-bit Logical Address		0x41 - LSB 0x42 - MSB
64-bit Physical Address		0x41 - MSB 0x48 - LSB
		Register (0x69) en the user sets INT_Clear to Logic 0

Table 4. Memory Field Description (continued)

Field Name	No. of Bits	Description
Status_Value_Change	1	0 - No Change 1 - Change
Status_BUSY	1	0 - No BIU Timeout 1- BIU Timeout and the Modem is unable to Transmit, if Disable BIU = 0
Status_TX_NO_ACK	1	If Service Type = 1 (ACK Mode) 0 - ACK Received (when TX Data sent = 1) 1 - No ACK received (when TX Data sent = 0) Note: The timeout window for receiving the ACK is 500ms
Status_TX_NO_RESP	1	0 - Response Received (when TX Data sent = 1) 1 - No Response Received (when TX Data sent = 0) Note:The timeout window for receiving Responses is 3s
Status_RX_Packet_Dropped	1	If RX Overwrite = 0 0 - No RX Packet is dropped 1- RX Packet is dropped because RX Buffer is full
Status_RX_Data_Available	1	0 - No new data available in RX buffer 1- RX buffer has new data available
Status_TX_Data_Sent	1	0 - No TX data sent 1- TX data sent successfully

External Host Application

The application residing on the external host microcontroller has direct access to the local PLC memory over I²C. The I²C communication enables the host controller to instantiate several PLC functions by reading or writing to the appropriate memory locations in the PLC chip. Thus the host application can configure the CY8CPLC10, read status and configuration information, and transmit data to remote Powerline nodes. Refer to the CY8CPLC10 application note (AN52478) on how to build a PLC command set using the CY8CPLC10 memory map. The device has a dedicated pin (I2C_ADDR) for selecting the I²C slave address while communicating with the external controller. The two I²C slave addresses available are 0x01 and 0x7F.

The PLC commands can be classified into two types based on which Powerline node they are designated to: local node or remote node.

Local Commands

These commands act solely on the attached local PLC device. No transmissions are sent over the Powerline to a remote PLC device when executing these local transceiver commands. These commands are used for configuring the local PLC node such as setting the local logical address or reading the status and configuration information.

Remote Commands

These commands initiate transmission over the Powerline to a remote PLC node. These commands when instantiated over I²C enable the host application to send and receive data over Powerline. Along with the data payload, the I²C packets also carry additional information for the Powerline transmission to a remote node:

- Destination address (8-bit logical, 16-bit extended logical, or 64-bit physical)
- Transmission retries
- Payload length

Variable header and payload definitions enable flexibility in application development. The available remote commands are described in Table 5 with the respective Command IDs.

EEPROM Back Up for Remote Reset

The device also has an EEPROM to back up Memory Registers 0x00-0x05 and 0x30-0x32. When the device is reset remotely by the SetRemote_Reset command (described in Table 5), it clears its memory map and loads from the EEPROM and returns to idle mode.

Table 5. Remote Commands

Cmd ID	Command Name	Description	Payload (TX Data)	Response (RX Data)
0x01	SetRemote_TXEnable	Sets the TX Enable bit in the PLC Mode Register. Rest of the PLC Mode register is unaffected	0 - Disable Remote TX 1 - Enable Remote TX	If Remote Lock Config = 0, Response = 00 (Success) If Remote Lock Config = 1, Response = 01 (Denied)
0x02	SetRemote_Reset	Reset the Remote Node Configuration	None	If Remote Lock Config = 0, Response = 00 (Success) If Remote Lock Config = 1, Response = 01 (Denied)
0x03	SetRemote_ExtendedAddr	Set the Addressing to Extended Addressing Mode	None	If Remote Lock Config = 0, Response = 00 (Success) If Remote Lock Config = 1, Response = 01 (Denied)
0x04	SetRemote_LogicalAddr	Assigns the specified logical address to the remote PLC node	If Ext Address = 0, Payload = 8-bit Logical Address If Ext Address = 1, Payload = 16-bit Logical Address	If Remote Lock Config = 0, Response = 00 (Success) If Remote Lock Config = 1, Response = 01 (Denied)
0x05	GetRemote_LogicalAddr	Get the Logical Address of the remote PLC node	None	If Remote TX Enable = 0, Response = None If Remote TX Enable = 1, {If Ext Address = 0, Response = 8-bit Logical Address If Ext Address = 1, Response = 16-bit Logical Address}
0x06	GetRemote_PhysicalAddr	Get the Physical Address of the remote PLC node	None	If Remote TX Enable = 0, Response = None If Remote TX Enable = 1, Response = 64-bit Physical Address

Document Number: 001-50001 Rev. *D Page 10 of 25

 Table 5. Remote Commands (continued)

Cmd ID	Command Name	Description	Payload (TX Data)	Response (RX Data)
0x07	GetRemote_State	Request data from a Remote PLC node	None	If Remote TX Enable = 0, Response = None If Remote TX Enable = 1, Response = Remote PLC Mode register
0x08	GetRemote_Version	Get the Version Number of the Remote Node	None	If TX Enable = 0, Response = None If TX Enable = 1, Response = Remote Version register
0x09	SendRemote_Data	Transmit data to a Remote Node.	Payload = Local TX Data	If Local Service Type = 0, Response = None If Local Service Type = 1, Response = Ack
0x0A	RequestRemote_Data	Request data from a Remote Node	Payload = Local TX Data	If Remote TX Enable = 0, Response = None If Remote TX Enable = 1, Response = Remote TX Data
0x0B	ResponseRemote_Data	Transmit response data to a Remote Node.	Payload = Local TX Data	None
0x0C	SetRemote_BIU	Enables/Disables BIU functionality at the remote node		If Remote Lock Config = 0, Response = 00 (Success) If Remote Lock Config = 1, Response = 01 (Denied)
0x0D	SetRemote_ThresholdValue	Sets the Threshold Value at the Remote node	3-bit Remote Threshold Value	If Remote Lock Config = 0, Response = 00 (Success) If Remote Lock Config = 1, Response = 01 (Denied)
0x0E	SetRemote_GroupMembershi p	Sets the Group Membership of the Remote node	Byte0 - Remote SIngle Group Membership Address Byte1-Remote Multiple Group Membership Address	If Remote Lock Config = 0, Response = 00 (Success) If Remote Lock Config = 1, Response = 01 (Denied)
0x0F	GetRemote_GroupMembership	Gets the Group Membership of the Remote node	None	If Remote TX Enable = 0, Response = None If Remote TX Enable = 1, Response = Byte0 - Remote SIngle Group Membership Address Byte1- Remote Multiple Group Membership Address
0x10 - 0x2F	Reserved			
0x30 - 0xFF	User Defined Command Set			

Target Applications

Lighting Control

CY8CPLC10 enables control of incandescent, sodium vapor, fluorescent, and LED lighting fixtures over the existing Powerline. Cypress's Powerline communication solution easily integrates with wall-switch dimmers and lamp and appliance modules, enabling on and off, dimming, color mixing, and tunable white light control. When operating in master mode, the CY8CPLC10 can control individual or a group of lighting fixtures in a home or a commercial building. Elaborate lighting scenes can be created using application software. Household lighting fixtures can also be programmed to turn on and off at user defined intervals using a PC based Graphical User Interface.

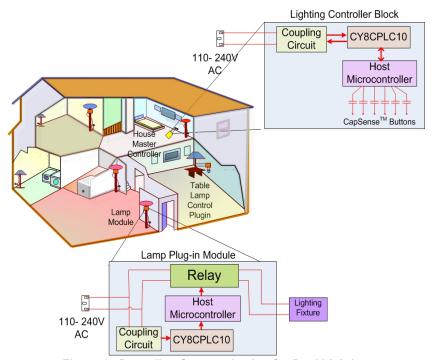
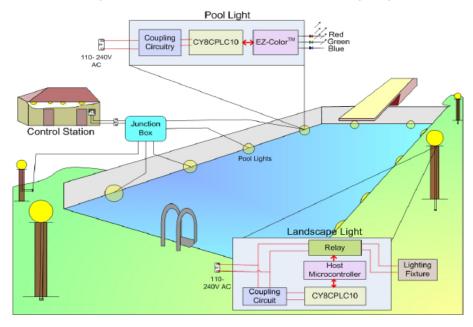



Figure 5. Powerline Communication for Home Lighting

Figure 6. Powerline Communication for Pool Lighting

Smart Energy Management

Using the CY8CPLC10, individual panels in a solar array can transmit diagnostic data over the existing DC powerlines. An Array Diagnostic Unit Controller can communicate with individual solar panels to have specific diagnostic information probed. When the diagnostic data is collected by the controller, it is transmitted across the Powerline to a data monitoring console. This makes it possible to acquire and transmit real time data regarding energy output of individual panels to the array controller and subsequently even to a solar farm control station over the Powerline.

Block Diagram of Solar Array Diagnostic Unit Block Diagram of Solar Panel Diagnostic Unit Powerline PSoC[™] or То Coupling 400V-600V DC External Microcontrolle owerine Circuitr Array Diagnostic Unit 00V-600V DC Coupling Solar Array Diagnostic Únit Solar Panel Diagnostic Unit DC Powerline Solar Panel

Figure 7. Powerline Communication for Smart Energy Management (Solar Diagnostics)

Automatic Meter Reading

The CY8CPLC10 can be designed in electric meters in household and industrial environments to transmit power usage information to a centralized billing system. The Cypress Powerline communication solution is ideally suited to handle multiple data sources because of the in-built Network Protocol Stack that enables individual addressing of multiple nodes on the same Powerline. In physical addressing mode, up to 2⁶⁴ power meters can transmit usage statistics to the local billing center. Application Layer software can be used to provide real time usage statistics to a customer. Energy utilities can improve customer service and control meter reading costs, especially in areas where accessing meters is difficult or unsafe, while making the invoicing process more efficient.

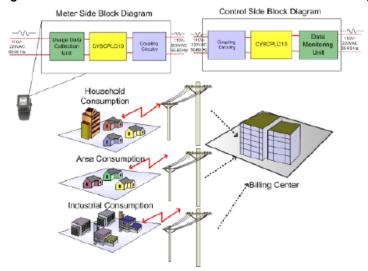


Figure 8. Powerline Communication for Automatic Meter Reading

Industrial Signage

An entire array of new convenience and advanced control features are available in automobiles today. It is projected that a high feature content car cannot have enough space to contain multiple wiring segments and connectors without compromising power loss and safety. One solution is to reduce the number of cables by using existing Powerline as the transmission medium of digital control signals. The CY8CPLC10 enables control of Automotive LED strobe, beacon, tail lights, and indicators over the existing direct current (DC) 12V to 42V battery Powerline. Combined with Cypress's EZ-Color lighting solution, dimming and color mixing of LED based automotive lighting fixtures in applications such as mobile LED displays is possible.

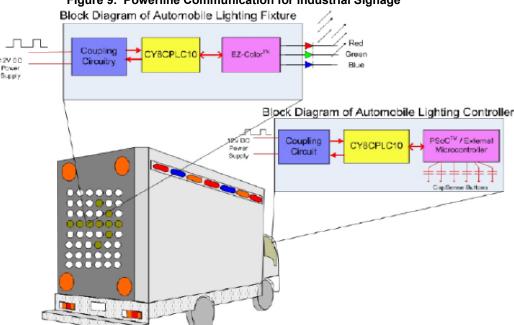


Figure 9. Powerline Communication for Industrial Signage

Pinouts

Figure 10. CY8CPLC10 28-Pin SSOP

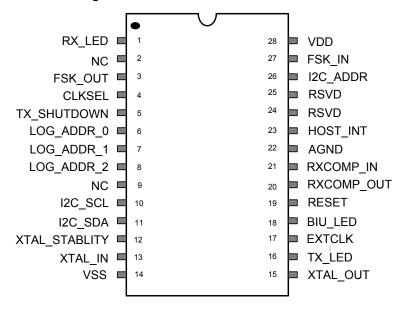


Table 6. Pin Definitions

Pin Number	Pin Name	I/O	Description
1	RX_LED	Output	RX Indicator LED
2	NC	Not Connected	Pin not connected
3	FSK_OUT	Analog Output	Analog FSK Output. This signal is coupled to the powerline through an external coupling circuit
4	CLKSEL	Input (Internal Pull up)	Clock Source Select Logic '0' – External Clock Oscillator (EXTCLK) selected Logic '1' – External Crystal (XTAL_IN, XTAL_OUT) selected
5	TX_SHUTDOWN	Output	Output to Disable Transmit circuitry during Receive Mode. Logic '0' - TX Shutdown
6	LOG_ADDR_0	Input (Internal Pull up)	Connected to the Least Significant Bit of the 3-bit Logical Address. This is an inverted pin; applying a high voltage on this pin corresponds to writing a logic '0' and vice versa.
7	LOG_ADDR_1	Input (Internal Pull up)	Connected to the 2nd Most Significant Bit of the 3-bit Logical Address. This is an inverted pin; applying a high voltage on this pin corresponds to writing a logic '0' and vice versa.
8	LOG_ADDR_2	Input (Internal Pull up)	Connected to the Most Significant Bit of the 8-bit DIP Switch. This is an inverted pin; applying a high voltage on this pin corresponds to writing a logic '0' and vice versa.
9	NC	Not Connected	Pin not connected
10	I2C_SCL	Input	I ² C Serial Clock
11	I2C_SDA	Input/Output	I ² C Serial Data
12	XTAL_STABILITY	Input/Output	External Crystal Stability
13	XTAL_IN	Input	External Crystal Input. This is the input clock from an external crystal oscillator
14	Vss	Ground	Ground
15	XTAL_OUT	Output	External Crystal Output. This pin is used along with XTAL_IN to connect to the external oscillator

Table 6. Pin Definitions (continued)

Pin Number	Pin Name	1/0	Description	
16	TX_LED	Output	TX Indicator LED	
17	EXTCLK	Input	Optional external 24 MHz clock oscillator input	
18	BIU_LED	Output	BIU Indicator LED	
19	RESET	Reset	Reset Pin	
20	RXCOMP_OUT	Analog Output	Analog Output to the external Low Pass Filter circuitry	
21	RXCOMP_IN	Analog Input	Analog Input from the external Low Pass Filter circuitry	
22	AGND	Ground	Analog Ground	
23	HOST_INT	Output	Interrupt Output to Host Controller to enable interrupt based serial comminication	
24	RSVD	Reserved	Reserved Pin	
25	RSVD	Reserved	Reserved Pin	
26	I2C_ADDR	Input (Internal Pull up)	Set I2C Slave Address. Logic '0' - Slave Address '0x01' Logic '1' - Slave Address '0x7F' This is an inverted pin i.e. applying a high voltage on this pin corresponds to writing a logic '0' and vice versa.	
27	FSK_IN	Input	Analog FSK Input.This is the input signal from the Powerline.	
28	VDD	Power	Supply Voltage. 5V ± 10%	

Electrical Specifications

This chapter presents the DC and AC electrical specifications of the CY8CPLC10 PLC device. For the most up to date electrical specifications, confirm that you have the most recent data sheet by going to the web at http://www.cypress.com.

Specifications are valid for -40°C $\leq T_{A} \leq 85^{o}C$ and $T_{J} \leq 100^{o}C,$ except where noted.

The following table lists the units of measure that are used in this chapter.

Table 7. Units of Measure

Symbol	Unit of Measure	Symbol	Unit of Measure
°С	degree Celsius	μW	microwatts
dB	decibels	mA	milli-ampere
fF	femto farad	ms	milli-second
Hz	hertz	mV	milli-volts
KB	1024 bytes	nA	nanoampere
Kbit	1024 bits	ns	nanosecond
kHz	kilohertz	nV	nanovolts
kΩ	kilohm	Ω	ohm
MHz	megahertz	pA	picoampere
ΜΩ	megaohm	pF	picofarad
μΑ	microampere	рр	peak-to-peak
μF	microfarad	ppm	parts per million
μН	microhenry	ps	picosecond
μS	microsecond	sps	samples per second
μV	microvolts	S	sigma: one standard deviation
μVrms	microvolts root-mean-square	V	volts

Absolute Maximum Ratings

Table 8. Absolute Maximum Ratings

Symbol	Description	Min	Тур	Max	Units	Notes
T _{STG}	Storage Temperature	-55	25	+100	°C	Higher storage temperatures reduces data retention time. Recommended storage temperature is +25°C ± 25°C. Extended duration storage temperatures above 65°C degrades reliability.
T _A	Ambient Temperature with Power Applied	-40	_	+85	°C	
Vdd	Supply Voltage on Vdd Relative to Vss	-0.5	-	+6.0	V	
V _{IO}	DC Input Voltage	Vss - 0.5	_	Vdd + 0.5	V	
V _{IOZ}	DC Voltage Applied to Tristate	Vss - 0.5	_	Vdd + 0.5	V	
I _{MIO}	Maximum Current into any Input/Output Pin	-25	_	+50	mA	
I _{MAIO}	Maximum Current into any Input/Output Pin Configured as Analog Driver	-50	_	+50	mA	
ESD	Electro Static Discharge Voltage	2000	_	_	V	Human Body Model ESD.
LU	Latch up Current	_	_	200	mA	

Document Number: 001-50001 Rev. *D Page 17 of 25

Operating Temperature

Table 9. Operating Temperature

Symbol	Description	Min	Тур	Max	Units	Notes
T _A	Ambient Temperature	-40	_	+85	°C	
TJ	Junction Temperature	-40	-	+100		The temperature rise from ambient to junction is package specific. See Thermal Impedances. The user must limit the power consumption to comply with this requirement.

DC Electrical Characteristics

DC Power Supply

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}\text{C} \leq T_{A} \leq 85^{\circ}\text{C}$. Typical parameters apply to 5V at 25°C and are for design guidance only.

Table 10. DC Power Supply

Symbol	Description	Min	Тур	Max	Units	Notes
V_{DD}	Supply Voltage	4.75	-	5.25	V	
I _{DD} (TX Mode)	Supply current (TX Mode)		30		mA	Conditions are 5.0V, T _A = 25°C
I _{DD} (RX Mode)	Supply current (RX Mode)		41		mA	Conditions are 5.0V, T _A = 25°C

DC I/O Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}\text{C} \leq T_{A} \leq 85^{\circ}\text{C}$. Typical parameters apply to 5V at 25°C and are for design guidance only.

Table 11. DC I/O Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
R _{PU}	Pull Up Resistor	4	5.6	8	kΩ	
R _{PD}	Pull Down Resistor	4	5.6	8	kΩ	
V _{OH}	High Output Level	Vdd - 1.0	-	-	V	IOH = 10 mA
V _{OL}	Low Output Level	_	-	0.75	V	IOL = 25 mA
V _{IL}	Input Low Level	-	-	0.8	V	
V _{IH}	Input High Level	2.1	-		V	
V _H	Input Hysterisis	_	60	-	mV	
I _{IL}	Input Leakage (Absolute Value)	-	1	_	nA	Gross tested to 1 μA.
C _{IN}	Capacitive Load on Pins as Input	_	3.5	10	pF	Package and pin dependent. Temp = 25°C.
C _{OUT}	Capacitive Load on Pins as Output	-	3.5	10	pF	Package and pin dependent. Temp = 25°C.

AC Electrical Characteristics

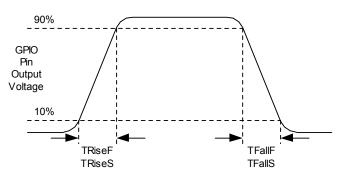
AC Chip-Level Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}\text{C} \leq T_{A} \leq 85^{\circ}\text{C}$. Typical parameters apply to 5V at 25°C and are for design guidance only.

Note See the individual user module data sheets for information on maximum frequencies for user modules.

Table 12. AC Chip-Level Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{32K2}	External Crystal Oscillator	_	32.768	-	kHz	Accuracy is capacitor and crystal dependent. 50% duty cycle.
T _{OS}	External Crystal Oscillator Startup to 1%	-	250	500	ms	
T _{OSACC}	External Crystal Oscillator Startup to 100 ppm	1	300	600	ms	The crystal oscillator frequency is within 100 ppm of its final value by the end of the T _{osacc} period. Correct operation assumes a properly loaded 1 uW maximum drive level 32.768 kHz crystal, -40 °C £ T _A £ 85 °C.
T _{XRST}	External Reset Pulse Width	10	_	_	μS	
T _{RAMP}	Supply Ramp Time	0	_	_	μS	


AC I/O Specifications

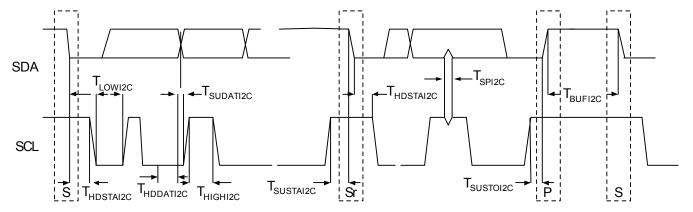
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}\text{C} \leq T_{A} \leq 85^{\circ}\text{C}$. Typical parameters apply to 5V at 25°C and are for design guidance only.

Table 13. AC I/O Specifications

Symbol	Description	Min	Тур	Max	Units ^[1]	Notes
TRiseS	Rise Time, Cload = 50 pF	10	27	-	ns	10% - 90%
TFallS	Fall Time, Cload = 50 pF	10	22	ı	ns	10% - 90%

Figure 11. I/O Timing Diagram

Document Number: 001-50001 Rev. *D Page 19 of 25


AC I²C Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V at 25°C and are for design guidance only.

Table 14. AC Characteristics of the I²C SDA and SCL Pins

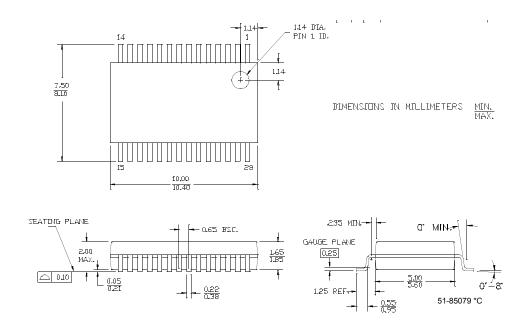
Cumbal	Description	Standard Mode		Fast Mode		Units	Notes
Symbol	Description	Min	Max	Min	Max	Units	Notes
F _{SCLI2C}	SCL Clock Frequency	0	100	0	400	kHz	
T _{HDSTAI2C}	Hold Time (repeated) START Condition. After this period, the first clock pulse is generated.		_	0.6	_	μS	
T _{LOWI2C}	LOW Period of the SCL Clock		_	1.3	-	μS	
T _{HIGHI2C}	HIGH Period of the SCL Clock	4.0	_	0.6	-	μS	
T _{SUSTAI2C}	Setup Time for a Repeated START Condition	4.7	_	0.6	_	μS	
T _{HDDATI2C}	Data Hold Time	0	_	0	_	μS	
T _{SUDATI2C}	Data Setup Time	250	_	100 ^[2]	-	ns	
T _{SUSTOI2C}	Setup Time for STOP Condition	4.0	_	0.6	-	μS	
T _{BUFI2C}	Bus Free Time Between a STOP and START Condition		_	1.3	_	μS	
T _{SPI2C}	Pulse Width of spikes are suppressed by the input filter.	-	_	0	50	ns	

Figure 12. Definition for Timing for Fast and Standard Mode on the I²C Bus Packaging Dimensions

Document Number: 001-50001 Rev. *D Page 20 of 25

Notes
1. 50 ns minimum input pulse width is based on the input synchronizers running at 24 MHz (42 ns nominal period)

2. 1. 140 has a year but the requirement to year \$ 2!


A Fast-Mode I2C-bus device can be used in a Standard-Mode I2C-bus system, but the requirement t_{SU:DAT} Š 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t_{rmax} + t_{SU;DAT} = 1000 + 250 = 1250 ns (according to the Standard-Mode I2C-bus specification) before the SCL line is released.

Packaging Information

This section illustrates the packaging specifications for the CY8CPLC10 PLC device, along with the thermal impedances for the package and the typical package capacitance on crystal pins.

Figure 13. 28-Pin (210-Mil) SSOP

Thermal Impedances

Table 15. Thermal Impedances per Package^[4]

Package	Typical θ _{JA} ^[3]
28 SSOP	94 °C/W

Capacitance on Crystal Pins

Table 16. Typical Package Capacitance on Crystal Pins

Package	Package Capacitance
28 SSOP	2.8 pF

Solder Reflow Peak Temperature

Following is the minimum solder reflow peak temperature to achieve good solderability.

Table 17. Solder Reflow Peak Temperature

Package	Minimum Peak Temperature ^[5]	Maximum Peak Temperature
28 SSOP	240°C	260°C

Notes

- 3. $T_J = T_A + POWER \times \theta_{JA}$
- To achieve the thermal impedance specified for the QFN package, the center thermal pad should be soldered to the PCB ground plane.

 Higher temperatures may be required based on the solder melting point. Typical temperatures for solder are 220 ± 5°C with Sn-Pb or 245 ± 5°C with Sn-Ag-Cu paste. Refer to the solder manufacturer specifications.

Evaluation Tools

CY3272-PLC HV Evaluation Kit

The CY3272-PLC is for evaluating, prototyping, and development with the CY8CPLC10. The I²C interface enables users to develop applications on an external micro in order to communicate over Powerline. The hardware comprises of the High Voltage coupling circuit for 110V AC to 230V AC Powerline which is compliant with the CENELEC/FCC standards. This board also has an on-board Switch Mode Power Supply. The kit comprises:

- High Voltage (110 to 230V AC) PLC Board
- CY8CPLC10-28PVXI (28SSOP)
- Software CD
- Supporting Literature

CY3273-PLC LV Evaluation Kit

The CY3273-PLC is for evaluating, prototyping and development with the CY8CPLC10. The I²C interface enables users to develop applications on an external micro in order to communicate over Powerline. The hardware comprises of the Low Voltage coupling circuit for 12 to 24V AC/DC Powerline. This board also has a Linear Power Supply. The kit comprises:

- Low Voltage (12-24V AC/DC) PLC Board
- CY8CPLC10-28PVXI (28SSOP)
- Software CD
- Supporting Literature

CY3210-MiniProg1

The CY3210-MiniProg1 kit enables the user to program PSoC devices via the MiniProg1 programming unit. The MiniProg is a small, compact prototyping programmer that connects to the PC through a provided USB 2.0 cable. The kit includes:

- MiniProg Programming Unit
- MiniEval Socket Programming and Evaluation Board
- 2 CY8C29466-24PXI 28-PDIP Chip Samples
- 28-Pin CY8C29466-24PXI PDIP PSoC Device Sample

- 28-Pin CY8C27443-24PXI PDIP PSoC Device Sample
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

CY3210-PSoCEval1

The CY3210-PSoCEval1 kit features an evaluation board and the MiniProg1 programming unit. The evaluation board includes an LCD module, potentiometer, LEDs, and plenty of bread boarding space to meet all your evaluation needs. The kit includes:

- Evaluation Board with LCD Module
- MiniProg Programming Unit
- 28-Pin CY8C29466-24PXI PDIP PSoC Device Sample (2)
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

CY3214-PSoCEvalUSB

The CY3214-PSoCEvalUSB evaluation kit features a development board for the CY8C24794-24LFXI PSoC device. Special features of the board include both USB and capacitive sensing development and debugging support. This evaluation board also includes an LCD module, potentiometer, LEDs, an enunciator, and plenty of bread boarding space to meet all your evaluation needs. The kit includes:

- PSoCEvalUSB Board
- LCD Module
- MIniProg Programming Unit
- Mini USB Cable
- PSoC Designer and Example Projects CD
- Getting Started Guide
- Wire Pack

Development Tools

The development kits do not have on-board Powerline capability, but can be used with a PLC kit for development purposes. All development tools and development kits are sold at the Cypress Online Store.

CY3215-DK Basic Development Kit

The CY3215-DK is for prototyping and development with PSoC Designer. This kit can be used in conjunction with the PLC kits to support in-circuit emulation. The software interface enables users to run, halt, and single step the processor and view the content of specific memory locations. PSoC Designer also supports the advanced emulation features. The kit includes:

- PSoC Designer Software CD
- ICE-Cube In-Circuit Emulator
- ICE Flex-Pod for CY8C29x66 Family
- Cat-5 Adapter
- Mini-Eval Programming Board
- 110 ~ 240V Power Supply, Euro-Plug Adapter
- iMAGEcraft C Compiler (Registration Required)
- ISSP Cable
- USB 2.0 Cable and Blue Cat-5 Cable
- 2 CY8C29466-24PXI 28-PDIP Chip Samples

Device Programmers

All device programmers are purchased from the Cypress Online Store.

CY3216 Modular Programmer

The CY3216 Modular Programmer kit features a modular programmer and the MiniProg1 programming unit. The modular programmer includes three programming module cards and supports multiple Cypress products. The kit includes:

- Modular Programmer Base
- 3 Programming Module Cards
- MiniProg Programming Unit
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

CY3207 ISSP In-System Serial Programmer (ISSP)

The CY3207ISSP is a production programmer. It includes protection circuitry and an industrial case that is more robust than the MiniProg in a production programming environment.

Note that CY3207ISSP needs special software and is not compatible with PSoC Programmer. The kit includes:

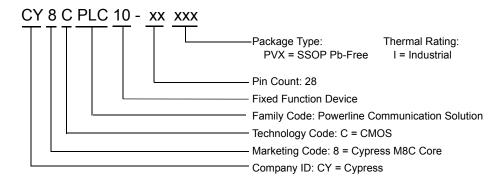
- CY3207 Programmer Unit
- PSoC ISSP Software CD
- 110 ~ 240V Power Supply, Euro-Plug Adapter
- USB 2.0 Cable

Third Party Tools

Several tools are specially designed by the following third party vendors to accompany PSoC devices during development and production. Specific details of each of these tools are found at http://www.cypress.com under Design > Evaluation Boards.

Build a PSoC Emulator into Your Board

For details on emulating the circuit before going to volume production using an on-chip debug (OCD) non-production PSoC device, see Application Note "Debugging - Build a PSoC Emulator into Your Board - AN2323" at http://www.cypress.com/design/AN2323.


Ordering Information

The following table lists the CY8CPLC10 PLC device's key package features and ordering codes.

Table 18. CY8CPLC10 PLC Device Key Features and Ordering Information

Package	Ordering Code	Flash (Bytes)	RAM (Bytes)	Switch Mode Pump	Temperature Range	XRES Pin
28-Pin (210 Mil) SSOP	CY8CPLC10-28PVXI	32K	2K	Yes	-40C to +85C	Yes
28-Pin (210 Mil) SSOP (Tape and Reel)	CY8CPLC10-28PVXIT	32K	2K	Yes	-40C to +85C	Yes

Ordering Code Definitions

Document History Page

	nent Title: C` nent Number		werline Comm	nunication Solution
Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change
**	2606671	GHH/PYRS	11/13/08	New Datasheet
*A	2662761	GHH/AESA	02/20/09	Added: - Repeater Functionality - AGC Functionality - Optional TX Filter Bypass - Configurable Baud Rates and FSK Frequencies - Configurable RX Gain
*B	2748542	GHH/PYRS	08/05/2009	Converted from Preliminary to Final Modified: - Memory Map Structure (Added TX_Gain Register) - Pinout (Added option for external clocking: EXTCLK) Removed: - Repeater Functionality - Optional TX Filter Bypass
*C	2752799	GHH	08/17/2009	Posting to external web.
*D	2754780	GHH/PYRS	08/21/2009	Added - Optional external clock oscillator - Suppy current for TX and RX modes Removed - Noise strength from Memory map in Table3

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at cypress.com/sales.

Products

PSoC psoc.cypress.com
Clocks & Buffers clocks.cypress.com
Wireless wireless.cypress.com
Memories memory.cypress.com
Image Sensors image.cypress.com

© Cypress Semiconductor Corporation, 2008-2009. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 001-50001 Rev. *D Revised August 21, 2009 Page # of 25

All products and company names mentioned in this document may be the trademarks of their respective holders