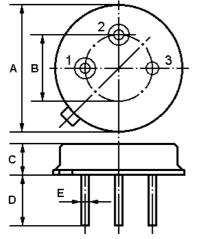
HF433

Approved by:

Checked by:

Issued by:

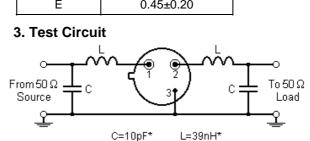
SPECIFICATION


PRODUCT:SAWFILTERMODEL:HF433TO-39

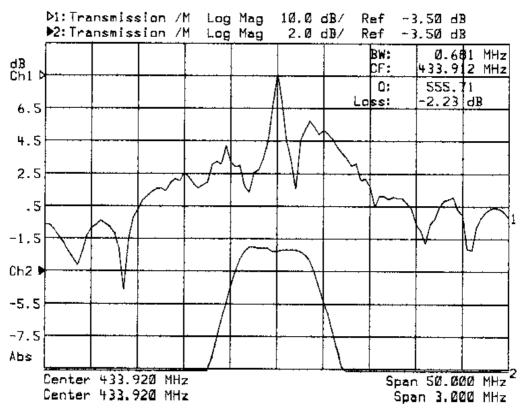
HOPE MICROELECTRONICS CO., LIMITED

HF433

The **HF433** is a low-loss, compact, and economical surface-acoustic-wave (**SAW**) filter in a low-profile metal **TO-39** case designed to provide front-end selectivity in **433.920** MHz receivers. Receiver designs using this filter include superhet with 10.7 MHz or 500 kHz IF, direct conversion and superregen.


1. Package Dimension (TO-39)

Pin Configuration 1 Input / Output 2 Output / Input 3 Case Ground Dimension Data (unit: mm) А 9.30±0.20 В 5.08±0.10 С 3.40±0.20 3±0.20 / 5±0.20 D Е 0.45±0.20


2. Marking

HF433

Color: Black or Blue

4. Typical Frequency Response

5. Performance

5-1.Maximum Rating

Rating		Value	Unit
CW RF Power Dissipation	Р	+10	dBm
DC Voltage Between Any Two Pins	V _{DC}	± 30	V
Storage Temperature Range	$T_{\rm stg}$	-40 to +85	
Operating Temperature Range	T _A	-10 to +60	

5-2. Electronic Characteristics

Characteristic		Minimum	Typical	Maximum	Units	
Center Frequency (center frequency between 3dB points)		f _C		433.920		MHz
Insertion Loss		IL		3.5	5.0	dB
3dB Bandwidth		BW ₃		600	900	kHz
Rejection	at f _C -21.4MHz (Image)		40	50		dB
	at <i>f</i> _C -10.7MHz (LO)		20	30		
	Ultimate			60		
Temperature	Turnover Temperature	To	25		55	
	Turnover Frequency	f _O		fc		MHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/ ²
Frequency Aging Absolute Value during the First Year		fA		10		ppm/yr

(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

C 2003. All Rights Reserved.

- 1. The frequency f_C is defined as the midpoint between the 3dB frequencies.
- 2. Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture that is connected to a 50 test system with VSWR 1.2:1. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, f_c. Note that insertion loss, bandwidth, and passband shape are dependent on the impedance matching component values and quality.
- 3. Unless noted otherwise, specifications apply over the entire specified operating temperature range.
- 4. Frequency aging is the change in f_c with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 5. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_c , may be calculated from: $f = f_0 [1 FTC (T_0 T_c)^2]$.
- 6. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 7. All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.
- 8. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 9. For questions on technology, prices and delivery, please contact our sales offices or e-mail <u>sales@hoperf.com</u>.