AN8290NS

Spindle Motor PWN Driver

Overview

The AN8290NS is a brushless motor drive IC with the PWM (Pulse Width Modulation) method employed. It is suitable for driving the spindle motors of the compact disc players, and so on.

Features

- Operating supply voltage range: V_{CC}=4.5 to 20V
- Low power consumption due to 3-phase full-wave PWM drive
- Position detection enabled by the two Hall elements
- Stable control loop by the current feedback circuit
- Stable circuit operation against supply voltage change and temperature change due to the built-in stabilized power supply
- · Built-in termal protective circuit

Applications

Driving the brushless motors such as compact disc player spindle motors, and so on

■ Block Diagram

■ Absolute Maximum Ratings (Ta=25°C)

Parameter	Symbol	Rating	Unit
Supply voltage	V _{cc}	21	v
Supply current	I _{cc}	20	mA
Power dissipation	P _D	560	mW
Operating ambient temperature	Торт	-20 to +75	C
Storage temperature	T _{stg}	-55 to +125	r

■ Recommended Operating Range $(T_a=25\%)$

Parameter	Symbol	Range		
Operating supply voltage range	v_{cc}	4.5V to 20V		

\blacksquare Electrical Characteristics (Ta=25%)

Parameter	Symbol	bol Condition		typ	max	Unit
No-load total current	I _{total}	I_{total} $V_{\text{CC}} = 12V$		9	11	mA
Power down mode total current	I _{PD}	$V_{cc}=12V$			1	m A
Output amplitude (1)	V _{out1}	$V_{cc}=12V$	8.5		_	v
Output amplitude (2)	V _{out2}	$v_{cc}=12V$	-0.05	0.001	0.05	V
Limit voltage (1)	V_{LF}	$V_{cc}=12V$	0.5	0.55	0.7	v
Limit voltage (2)	V_{LR}	$V_{CC}=12V$	0.5	0.53	0.7	v
Idle voltage	$V_{\rm I}$	$V_{cc}=12V$	_	1	20	mV
Driver offset voltage (1)	V_{OF}	$V_{cc}=12V$		_	100	mV
Driver offset voltage (2)	Vor	$V_{cc}=12V$		_	100	mV
PWM output (1)	T _{P(1-2)}	$V_{CC} = 12V, V_{FA1} = 9.9V, V_{FA1} = 9.7V$	140	200	260	mV
PWM output (2)	T _{P(2-2)}	$V_{CC} = 12V, V_{FA1} = 9.1V, V_{FA1} = 9.3V$	140	200	260	mV
Saw-tooth wave amplitude value	V _{KA}	$V_{cc}=12V$	0.7	0.9	1.1	v
Saw-tooth wave offset voltage	V _{KO}	$V_{cc}=12V$	1.8	1.95	2.1	v
Hall bias voltage	V _{HB}	$V_{CC}=12V, I_{HA}=0mA$	1.7	2.2	2.5	v
Hall switch saturation voltage	V _{HS}	$V_{CC}=12V$, $I_{HS}=10mA$	www	.D ata Sl	eet4Ø.d	om V
Switching offset	V _{OF}	$V_{CC}=12V$		_	25	mV

Application Circuit

i) When ±power supply is used

IC:

Pin No.	Symbol	Description	I/O	DC Voltage V _{CC} /12V	Equivalent Circuit
1	GND	GND pin	I	0V	<u> </u>
2	DCR	Input pin for reference voltage and to compare the PC (Pin②) and CLK (Pin③) (typ. 2.5V)	I	2.5V	2 Internal Reference $\simeq 2.5 \text{V}$
3	FAI	Torque command filter/amp. input pin. Forward rotation specified when FAI < DCR	I	2.5V	3 1 1 1
4	FAO	Filter/amp. output pin	0	2.5V	# I I I I I I I I I I I I I I I I I I I
5	DI	Absolute value circuit input pin	I	2.5V	4 skn 5 m
6	LPF	Current feedback loop phase compensating capacitor connection pin	I	1.4V	www.DataSheet4U.com

■ Pin Descriptions (Cont.)

Pin No.	Symbol	Description	I/O	DC Voltage V _{CC} /12V	Equivalent Circuit
7	Aı	Drive output pin	О		12 (12)
8	A ₂	Drive output pin	o	_	
9	A ₃	Drive output pin	O		
11	CS	Drive current detecting resistor connection pin	I	11.8V	
12	PV _{cc}	Power pin for large current circuit	I	12V	10 # # #
10	PGND	GND pin for large current circuit	I	0V	# (7) (8) (9)
13	Н3-	Hall voltage input pin (reverse) when 3 Hall elements are used (reverse). Open when 2 Hall elements are used	I		
14	H3+	Hall voltage input pin (forward) when 3 Hall elements are used(reverse). Open when 2 Hall elements are used	I	_	1
15	H2-	Hall voltage input (reverse) pin	I		
16	H2+	Hall voltage input (forward) pin	I		(13) + (14) ICs (15) ## (18) IMo
17	H1-	Hall voltage input (reverse) pin	1		
18	H1+	Hall voltage input (forward) pin	I	_	
19	HSW	Hall element bias switch. OFF when PC > DCR	I	ov	1 (19)
20	НВ	Hall element bias voltage output	О	2V	Stabilized Power Supply T WWW.DataSheet 4U.com

■ Pin Descriptions (Cont.)

Pin No.	Symbol	Description	I/O	DC Voltage V _{CC} /12V	Equivalent Circuit
21	v_{∞}	Supply voltage input pin	I	12V	
22	PC	Power control input pin. Power down mode when PC > DCR	I	0V	22
23	CLK	Trianglar wave generating clock input pin. DCR reference. Operates at a rise edge.	I	2.5V	
24	TC	Saw-tooth wave oscillating ca- pacitor connection pin	I	1.95V	www.DataSheet4U.com

Supplementary Explanation

(1) Motor setting conditions

(A) Relationship between drive output and Hall element • Fig.1 shows the relationship between the drive output voltage and Hall element output when forward rotation is specified.

Fig.1 Output and Hall Element Output

- The output voltage is given an opposite sign when reverse rotation is specified
- (B) Hall element position
 - •Fig.2 shows the three 4-pole magnetized coils.

Fig.2 Hall Element Position

- Since the AN8290NS synthesizes signals corresponding to the three elements inside the IC, it can detect a position through the two Hall elements.
- •When configured with the two Hall elements, make adjustment so that their output wavefrom will be shaped like a sine wave as much as possible.

The IC does not work with a trapezoidal wave. Input D range 2V to $V_{CC} = 2V_{BE} = V_{CE(sat)}$

- (C) Maximum drive current
 - The maximum drive current I_{max} is determined by the coil series resistor R_L and V_{CC} . Assuming that the voltage applied to the IC (saturation voltage of the built-in transistor, etc.) is about 2V, it is expressed as follows

$$I_{\text{max.}} = \frac{V_{\text{CC}} - 2V}{R_{\text{I}}}$$

The AN8290NS incorporates the current limiting circuit and can set a limit current. (Refer to the below)

(2) Limit Current

●The drive current is detected by the detection resistor Rs and is limited by a voltage drop of about 0.6V from PV_{CC} at the Pin①. Therefore, the limit current I_L is given by the following expression.

$$I_L = \frac{0.6(V)}{R_s}$$

•Set the limit current to 300mA or less.

(3) Saw-tooth wave generator

●Fig.4 shows the relationship between the input signal to the Pin② and the output waveform of the Pin②.

Fig.4 Saw-tooth Wave Generator

●At a fall of CLK, the voltage of the Pin is discharged by a 0.2mA sink current. When the Pin comes lower than 2V_D, the internal comparation is sheeted and the capacitor of the Pin is charged by a 0.1mA source current.

ICs fo

Supplementary Explanation (Cont.)

- ●The crest value of the saw-tooth wave is determined by an input signal frequency to the Pin②, IC sink/source current, and capacitor of the Pin②.
- •Assuming that the input signal frequency to the Pin② is 44.1kHz and the capacitor of the Pin② is 1,500pF, the crest value of the saw-tooth wave crest value is about 1V.

(4) Current feedback loop

- •Fig.5 shows a current feedback loop incorporated to obtain a stable CLV loop against disturbances such as supply voltage change and load change.
- ●The external capacitor C_{LPF} of the Pin⑥ is for phase compensation of this feedback loop.

Fig.5 Current Feedback Loop

(5) DCR reference voltage

DCR is used as a servo reference voltage, and a PC-CLK comparison voltage.

Fig.6 Ripple Filer

- ●This is IC incorporates an operational amplifier. When a torque command is PWM input, it is used as a ripple filter. (Refer to Fig.6) In case of linear input, it is available as s phase compensating amplifier, etc.
- (7) PV_{cc} noise elimination
 - •Since a large ripple current (44.1kHz) flows to PV_{CC}, it

is recommended to eliminate noise with an LC filter.

Fig.7 Noise Elimination

(8) Power down mode

- ●Inputting "H" to the Pin② for DCR turns off the entire constant current inside the IC and turns off the output pins simultaneously. The then supply current I₂₁ is 1mA or less. In normal operation, input "L" to the Pin②.
- (9) Hall switch
 - ●The Pin[®] is an open collector pin. It is turned off when the Pin[®] is at "H", and turned on when the Pin[®] is at "L".

Fig.8 Hall Switch

(10) Drive gain

●The Pin⑤ is a torque command input pin (input to the absolute value circuit). If a difference voltage V₅₋₂ from DCR is input from the Pin⑤, the Pins⑦, ⑧ and ⑨ function in the mode corresponding to the input of the Pins⑪ through ⑱, and if a detection resistor is connected to the Pin⑪ and PV_{CC}, an output current can be detected as a voltage. The drive gain G is defiend by the following expression.

$$G = \frac{V_{12-11}}{V_{5,2}}$$

In this IC, G=1.

(11) Hall bias

ullet This IC incorporates the bias power supply (up to 2V)

Fig.9 Hall Bias