
T-39-11

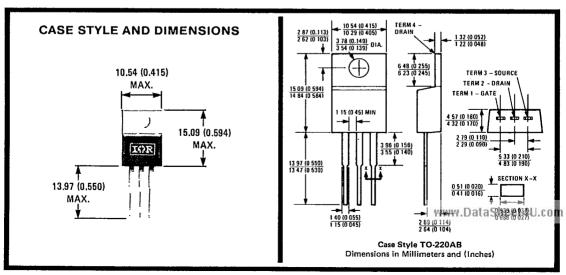
HEXFET® TRANSISTORS IRFZ20

N-Channel 50 Volt Power MOSFETs

50 Volt, 0.1 Ohm HEXFET TO-220AB Plastic Package

The HEXFET technology has expanded its product base to serve the low voltage, very low RDS(on) MOSFET transistor requirements. International Rectifier's highly efficient geometry and unique processing of the HEXFET have been combined to create the lowest on resistance per device performance. In addition to this feature all HEXFETs have documented reliability and parts per million quality!

The HEXFET transistors also offer all of the well established advantages of MOSFETs such as voltage control, very fast switching, ease of paralleling, and temperature stability of the electrical parameters.


They are well suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers, high energy pulse circuits, and in systems that are operated from low voltage batteries, such as automotive, portable equipment, etc.

Product Summary

Part Number	V _{DS}	R _{DS(on)}	ID
IRFZ20	50V	0.10Ω	15A
IRFZ22	50V	0.12Ω	14A

Features:

- Extremely Low RDS(on)
- Compact Plastic Package
- Fast Switching
- Low Drive Current
- Ease of Paralleling
- Excellent Temperature Stability
- Parts Per Million Quality

wwAbsolute Maximum Ratings

Parameter		IRFZ20	IRFZ22	Units
V _{DS}	Drain - Source Voltage ①	50	50	
VDGR	Drain - Gate Voltage (RGS = 20 KQ) ①	60	50	V
D @ TC = 25°C	Continuous Drain Current	15	14	Α
D @ T _C = 100°C		10	9.0	A
DM	Pulsed Drain Current 3	60	56	A
VGS	Gate - Source Voltage		V	
PD @ TC = 25°C	Max. Power Dissipation	40 (Se	W	
Linear Derating Factor		0.32 (S	W/K €	
I _{LM}	Inductive Current, Clamped	(See Fig. 15 a 60	А	
TJ T _{stg}	Operating Junction and Storage Temperature Range	-50	°C	
318	Lead Temperature	300 (0.063 in. (1.6r	nm) from case for 10s)	°C

Electrical Characteristics @ T_C = 25°C (Unless Otherwise Specified)

	Parameter	Type	Min.	Тур.	Max.	Units	Test Cor	nditions	
BVDSS	Drain - Source Breakdown Voltage	IRFZ20	50	-	_	V	V _{GS} = 0V		
- 033		IRFZ22	50	-	_	V	I _D = 250 μA		
V _{GS(th)}	Gate Threshold Voltage	ALL	2.0	_	4.0	V	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$		
GSS	Gate-Source Leakage Forward	ALL	-	-	500	пA	V _{GS} = 20V		
GSS	Gate-Source Leakage Reverse	ALL	-		-500	nA	V _{GS} =-20V		
DSS	Zero Gate Voltage Drain Current	ALL	_	_	250	μΑ	V _{DS} = Max. Rating, V _{GS} =	0V	
500	-	ALL			1000	μΑ	V _{DS} = Max. Rating × 0.8, V	$I_{GS} = 0V, T_{C} = 125^{\circ}C$	
D(on)	On-State Drain Current @	IRFZ20	15			Α	VDS > ID(on) × RDS(on)max. VGS = 10V		
D(OII)		IRFZ22	14	<u> </u>	- T	Α	VDS > ID(on) A RDS(on)max., VGS = 10V		
R _{DS(on)}	Static Drain-Source On-State Resistance @	IRFZ20	_	0.080	0.100	ß	V _{GS} = 10V, t _D = 9.0A		
DO(Ott)		IRFZ22		0.110	0.120	Ω			
g _{fs}	Forward Transconductance ②	ALL	5.0	6.0		S(0)	VDS > ID(on) × RDS(on) ma	_{BX.,} I _D = 9.0A	
C _{iss}	Input Capacitance	ALL	-	560	850	рF	V _{GS} = 0V, V _{DS} = 25V, f =	1.0 MHz	
Coss	Output Capacitance	ALL.	<u> </u>	250	350	рF	See Fig. 10		
C _{rss}	Reverse Transfer Capacitance	ALL	_	60	100	pF		<u></u>	
td(on)	Turn-On Delay Time	ALL	_	15	30	ns	$V_{DD} \cong 25V$, $I_D = 9.0A$, $Z_0 =$	= 50Ω	
t _r	Rise Time	ALL	_	45	90	пs	See Fig. 17		
td(off)	Turn-Off Delay Time	ALL	_	20	40	ns	(MOSFET switching times are essentially independent		
tf	Fall Time	ALL		15	30	ПS	operating temperature.)		
Òg	Total Gate Charge (Gate-Source Plus Gate-Drain)	ALL	-	1:2	17	пС	V _{GS} = 10V, I _D = 20A, V _{DS} See Fig. 18 for test circuit. (G	= 0.8 Max. Rating. ate charge is essentially	
Qgs	Gate-Source Charge	ALL	T -	9.0	_	nC	independent of operating tem	perature.)	
Q _{gd}	Gate-Drain ("Miller") Charge	ALL		3.0		nC			
LD	Internal Drain Inductance		-	3.5	-	nH	Measured from the contact screw on tab to center of die.	Modified MOSFET symbol showing the internal device	
		ALL	-	4.5	-	nH	Measured from the drain lead, 6mm (0.25 in.) from package to center of die.	inductances.	
LS	Internal Source Inductance	ALL	-	7.5	-	пH	Measured from the source lead, 6mm (0.25 in.) from package to source bonding pad.	\$ F	

www.DataSheet4U.com

Thermal Resistance

RthJC Junction-to-Case	ALL	-	-	3.12	K/W ④	
RthCS Case-to-Sink	ALL	<u> </u>	1.0	_	K/W @	Mounting surface flat, smooth, and greased.
B _{th IA} Junction-to-Ambient	ALL	-		80	K/W @	Typical socket mount

www.source Drain Diode Ratings and Characteristics

		<u> </u>					
ls	Continuous Source Current (Body Diode)	IRFZ20		T -	15	A	Modified MOSFET symbol showing the integral o.
		IRFZ22	_	_	14	A	reverse PN junction rectifier.
SM	Pulse Source Current	IRFZ20	_	-	60	A	1
	(Body Diode) ③	IRFZ22		-	56	A	1
V _{SD}	Diode Forward Voltage ②	IRFZ20			1.5	V	T _C = 25°C, I _S = 15A, V _{GS} = 0V
L		IRFZ22			1.4	V	T _C = 25°C, I _S = 14A, V _{GS} = 0V
trr	Reverse Recovery Time	ALL		100		ns	T _{.1} = 150°C, I _E = 15A, dlekit = 100A/us
ORR	Reverse Recovered Charge	ALL		0.4	_	μC	T ₁ = 150°C, lg = 15A, digkt = 100A/us
ton	Forward Turn-on Time	ALL	Intri	nsic turn	on time		ible. Turn-on speed is substantially controlled by Ls + Lp.

① $T_J = 25^{\circ}C$ to 150°C.

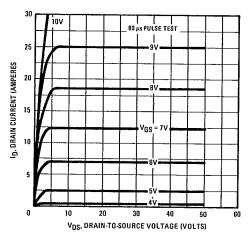


Fig. 1 — Typical Output Characteristics

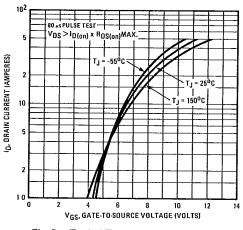


Fig. 2 - Typical Transfer Characteristics

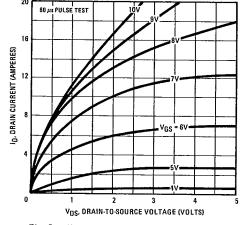


Fig. 3 — Typical Saturation Characteristics

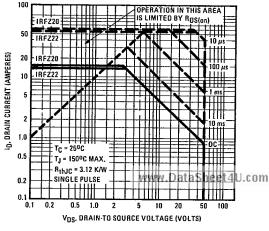


Fig. 4 — Maximum Safe Operating Area

^{② Pulse Test: Pulse width ≤ 300µs, Duty Cycle ≤ 2%.}

Repetitive Rating: Pulse width limited by max. junction temperature.
See Transient Thermal Impedance Curve (Fig. 5).

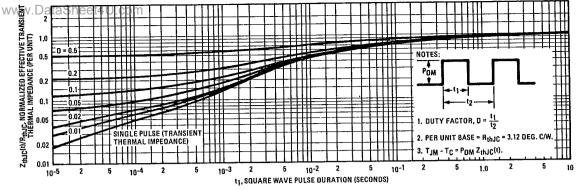


Fig. 5 - Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration

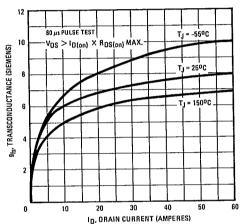


Fig. 6 - Typical Transconductance Vs. Drain Current

Fig. 8 - Breakdown Voltage Vs. Temperature

T_J, JUNCTION TEMPERATURE (°C)

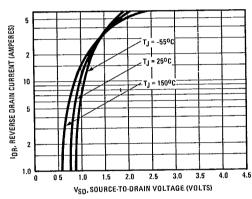


Fig. 7 — Typical Source-Drain Diode Forward Voltage

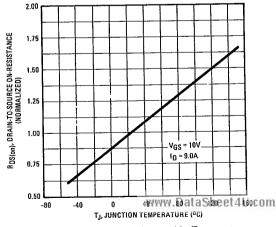


Fig. 9 - Normalized On-Resistance Vs. Temperature

1.15

1,10

1.05

1.00

0.95

0.90

0 85

BVDSS, DRAIN-TO-SQURCE BREAKDOWN VOLTAGE (NORMALIZED)

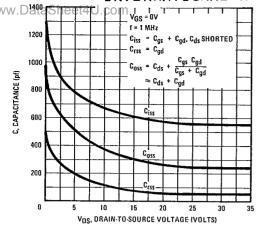


Fig. 10 - Typical Capacitance Vs. Drain-to-Source Voltage

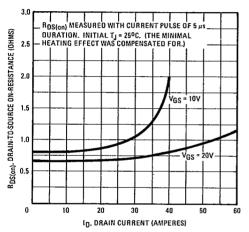


Fig. 12 - Typical On-Resistance Vs. Drain Current

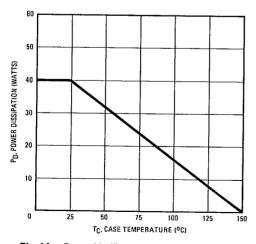


Fig. 14 — Power Vs. Temperature Derating Curve

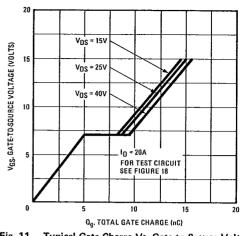


Fig. 11 - Typical Gate Charge Vs. Gate-to-Source Voltage

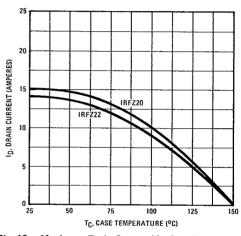


Fig. 13 - Maximum Drain Current Vs. Case Temperature

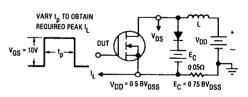


Fig. 15 — Clamped Inductive Test Circuit

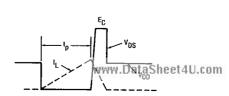


Fig. 16 — Clamped Inductive Waveforms

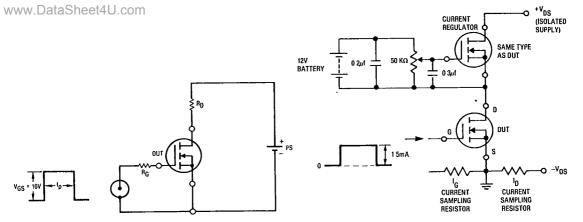
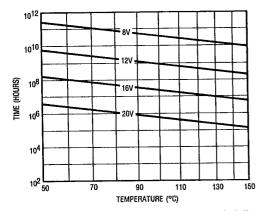
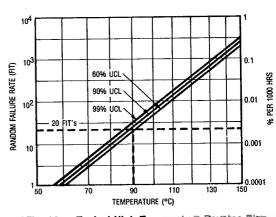




Fig. 17 — Switching Time Test Circuit

Fig. 18 — Gate Charge Test Circuit

*Fig. 19 — Typical Time to Accumulated 1% Failure

*Fig. 20 — Typical High Tempereture রিখেপ্রাছিল com (HTRB) Failure Rate

^{*}The data shown is correct as of April 15, 1987. This information is updated on a quarterly basis; for the latest reliability data, please contact your local IR field office.