

SANYO Semiconductors **DATA SHEET**

LB11972V — 3-Phase Sensorless Motor Driver for Fan Motor Driver for Refrigerator

Overview

The LB11972V is a 3-phase full-wave current linear sensorless motor driver. It is optimal for refrigerator fan motor drive.

Functions

- Three-phase sensor-less motor driver
- Current linear drive
- Built-in current limiting circuit
- Built-in output stage saturation preventive circuit
- With coil counter-electromotive FG output
- Built-in thermal shutdown circuit
- Built-in beat lock preventive circuit

Specitications

Absolute Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{CC} max		15.0	V
Output application voltage	V _O max		15.0	V
Input application voltage	V _I max		-0.3 to V _{CC} +0.3	V
Output current	I _O max		1.0	А
Internal allowable loss	Pd max1	Independent IC	0.5	W
	Pd max2	Mounted on a specified board.*	1.0	W
Operating temperature	Topr		-30 to +85	°C
Storage temperature	Tstg		-55 to +150	°C

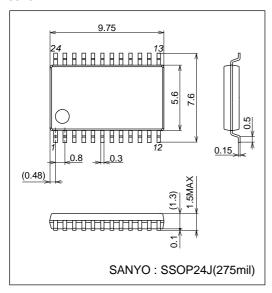
^{*} Specified board (114.3×76.1×1.6mm : Glass epoxy)

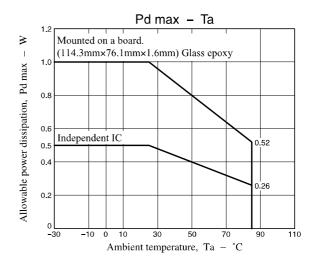
Operating Range at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	VCC		7 to 13.8	V

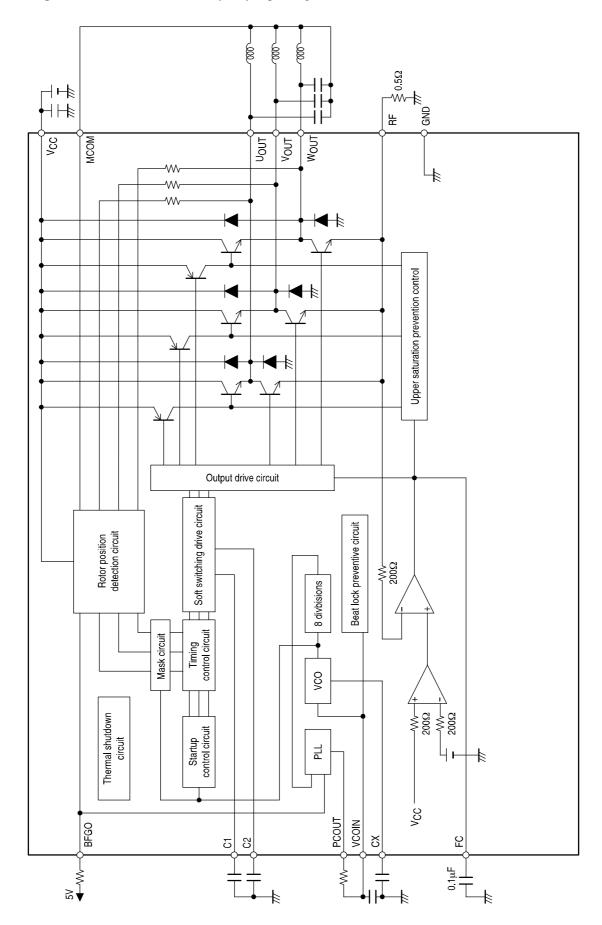
- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

LB11972V

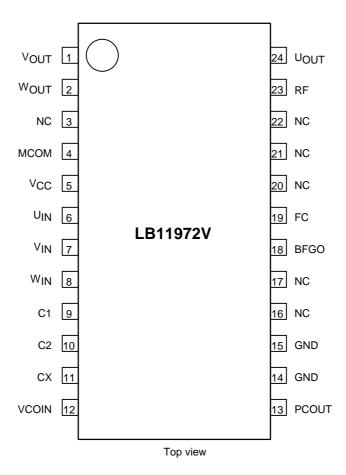

Electrical Characteristics at Ta = 25°C, $V_{CC} = 12V$


Danasatas	O make at	0 111	Ratings			11.7
Parameter	Symbol Conditions		min	typ	max	Unit
Circuit current	l _{CC}			20	30	mA
Output saturation voltage 1	V _O SAT1	I _O = 0.4A, Source+Sink		1.4	2.0	V
Output saturation voltage 2	V _O SAT2	$I_O = 0.8A$, Source+Sink, RF = 0Ω		1.8	2.6	V
MCOM pin common-phase input voltage range	VIC		0		V _{CC} -2	V
PCOUT output current 1	IPCOU	Source side		-90		μΑ
PCOUT output current 2	IPCOD	Sink side		90		μΑ
VCONIN input current	IVCOIN	VCOIN = 5V		0.1	0.2	μΑ
VCO minimum frequency	FVCOMIN	VCOIN = open		400		Hz
VCO maximum frequency	FVCOMAX	VCOIN = 5V		18.5		kHz
C1, C2 source current ratio	RSOURCE	1- (IC1SOURCE/IC2SOURCE)	-12		+12	%
C1, C2 sink current ratio	RSINK	1- (IC1SINK/IC2SINK)	-12		+12	%
C1 source, sink current ratio	RC1	IC1SOURCE/IC1SINK		50		%
C2 source, sink current ratio	RC2	IC2SOURCE/IC2SINK		50		%
Counter-electromotive FG output ON voltage	V _{OL}	IFGO = 1mA			0.4	V
Thermal shutdown operation temperature	TTSD	Design target value*	150	180	210	°C
Thermal shutdown hysteresis	ΔTTSD	Design target value*		15		°C
Current limiter operation voltage	VRFILIM	$R_L = 1k\Omega$, $RF = 100\Omega$	0.38	0.44	0.50	V

Note*: These items are design target values and are not tested.


Package Dimensions

unit : mm 3315



Block Diagram (The external constant may vary depending on the motor.)

Pin Assignment

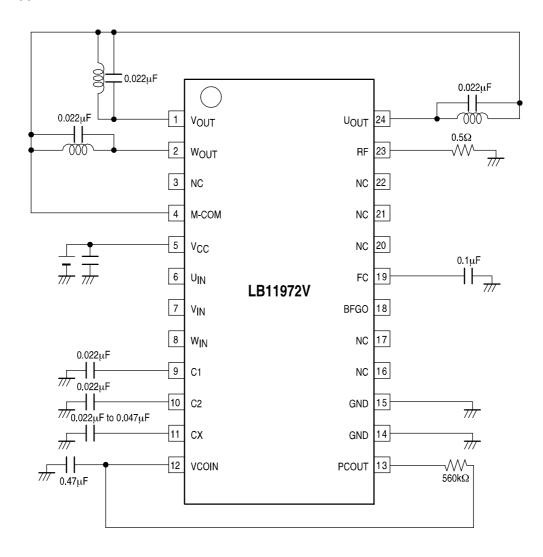
Pin Description

Pin No.	Pin Symbol	Pin Voltage	Equivalent Circuit Diagram	Pin Description
24	U _{OUT}		Vcc	Drum motor driver output pin
1	Vout		- 	
2	W _{OUT}		1 20μΑ	
23	RF		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Minimum potential of drum motor driver output transistor. Constant current control is made by detecting this voltage. The current limiter operates by detecting this potential, too.
5	Vcc	7 to 13.8V		Power pin

Continued on next page.

Continued from preceding page. Pin No. **Equivalent Circuit Diagram** Pin Description Symbol Voltage 4 мсом Motor coil middle input pin. V_{CC} Coil voltage waveform is detected 2 with reference to this voltage. 10k Ω 200Ω 4 6 U_{IN} Coil waveform detection comparator 200Ω _ 2kΩ 8 input pin 200Ω Connected to the output of each V_{IN} phase via built-in resistor of $10k\Omega$. 8 W_{IN} C1 Pin connected to the capacitor to VCC **VREG** generate triangular wave. This triangular wave is used for soft 15μΑ 5μΑ switching of the coil output waveform. $1 k \Omega$ C2 10 2S 1/2VREG-VF 7/ 7/17/1/ गोर गोर गोर СХ 11 Value of the capacitor connected to VREG this pin and GND in the VCO circuit, VCC determining the operation frequency 100μΑ range and minimum operation frequency. 300Ω 10 VCOIN 12 VCO circuit voltage input pin. **VREG** Enters the PCOUT pin voltage after VCC. CR filtering 10kΩ ≷ $50 \mathrm{k}\Omega$ 1.75V 12

Continued on next page.


LB11972V

Continued from preceding page. Pin No. Equivalent Circuit Diagram Pin Description Symbol Voltage 13 PCOUT VCO circuit PLL output pin -vcc VREG : 13 14 GND All GNDs other than the output 15 transistor 18 **BFGO** Motor couter-electromotive voltage VCC detection FG output (single phase only) VREG 100μΑ (FC 19 Frequency characteristics VREG compensation pin VCC Prevents oscillation of the closed loop of current control system by inserting the capacitor between this pin and GND.

19

 $\lesssim 5k\Omega$

Sample Application Circuit (Reference)

- Note 1) The constant values for capacitors, etc. are given here for reference after review by Sanyo. When reviewing this IC, adjust the value according to the motor used.
- Note 2) If the output is not oscillated with the motor used, the capacitor provided at both ends of output coil are not necessary.
- Note 3) Pins Nos. 6 to 8 (U_{IN}, V_{IN}, W_{IN}) are not to be used by the customer. Be sure to keep these pins independent and open because they are connected inside IC.
- Note 4) NC pins (Nos. 3, 16, 17, 20, 21, and 22) are not connected inside IC and thus can be used as relay pins.

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, of otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of October, 2005. Specifications and information herein are subject to change without notice.