

## J110 N-CHANNEL JFET



# Linear Systems replaces discontinued Siliconix J110

This n-channel JFET is optimised for low noise high performance switching. The part is particularly suitable for use in low noise audio amplifiers. The TO-92 package is well suited for cost sensitive applications and mass production.

(See Packaging Information).

#### J110 Benefits:

- Low On Resistance
- Low insertion loss
- Low Noise

#### J110 Applications:

- Analog Switches
- Commutators
- Choppers

| FEATURES                                                 |                           |  |  |  |
|----------------------------------------------------------|---------------------------|--|--|--|
| DIRECT REPLACEMENT FOR SILICONIX J110                    |                           |  |  |  |
| LOW ON RESISTANCE                                        | $r_{DS(on)} \le 18\Omega$ |  |  |  |
| FAST SWITCHING                                           | t <sub>(on)</sub> ≤ 4ns   |  |  |  |
| ABSOLUTE MAXIMUM RATINGS @ 25°C (unless otherwise noted) |                           |  |  |  |
| Maximum Temperatures                                     |                           |  |  |  |
| Storage Temperature                                      | -55°C to +150°C           |  |  |  |
| Operating Junction Temperature                           | -55°C to +150°C           |  |  |  |
| Maximum Power Dissipation                                |                           |  |  |  |
| Continuous Power Dissipation                             | 350mW                     |  |  |  |
| MAXIMUM CURRENT                                          | ×                         |  |  |  |
| Gate Current (Note 1)                                    | 50mA                      |  |  |  |
| MAXIMUM VOLTAGES                                         | <u> </u>                  |  |  |  |
| Gate to Drain Voltage                                    | V <sub>GDS</sub> = -25V   |  |  |  |
| Gate to Source Voltage                                   | V <sub>GSS</sub> = -25V   |  |  |  |

J110 ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

| SYMBOL              | CHARACTERISTIC                              | MIN  | TYP.  | MAX | UNITS | CONDITIONS                                  |
|---------------------|---------------------------------------------|------|-------|-----|-------|---------------------------------------------|
| $BV_GSS$            | Gate to Source Breakdown Voltage            | -25  |       |     |       | $I_G = 1\mu A$ , $V_{DS} = 0V$              |
| $V_{GS(off)}$       | Gate to Source Cutoff Voltage               | -0.5 |       | -4  |       | $V_{DS} = 5V, I_{D} = 1\mu A$               |
| $V_{GS(F)}$         | Gate to Source Forward Voltage              | 1    | 0.7   |     | V     | $I_G = 1 \text{mA}$ , $V_{DS} = 0 \text{V}$ |
| I <sub>DSS</sub>    | Drain to Source Saturation Current (Note 2) | 10   |       |     | mA    | $V_{DS} = 15V, V_{GS} = 0V$                 |
| I <sub>GSS</sub>    | Gate Reverse Current                        | 1    | -0.01 | -3  |       | $V_{GS} = -15V$ , $V_{DS} = 0V$             |
| I <sub>G</sub>      | Gate Operating Current                      | -    | -0.01 |     | nA    | $V_{DG} = 10V, I_D = 10mA$                  |
| I <sub>D(off)</sub> | Drain Cutoff Current                        | -    | 0.02  | 3   |       | $V_{DS} = 5V, V_{GS} = -10V$                |
| r <sub>DS(on)</sub> | Drain to Source On Resistance               | -    |       | 18  | Ω     | $V_{GS} = 0V, \ V_{DS} \le 0.1V$            |

J110 DYNAMIC ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

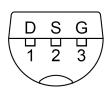
| SYMBOL              | CHARACTERISTIC                | MIN | TYP. | MAX | U <mark>NIT</mark> S | CONDITIONS                                                  |
|---------------------|-------------------------------|-----|------|-----|----------------------|-------------------------------------------------------------|
| g <sub>fs</sub>     | Forward Transconductance      |     | 17   |     | mS                   | $V_{DS} = 5V, I_D = 10mA, f = 1kHz$                         |
| gos                 | Output Conductance            |     | 0.6  |     |                      |                                                             |
| r <sub>DS(on)</sub> | Drain to Source On Resistance |     |      | 18  | Ω                    | $V_{GS} = 0V$ , $I_0 = 0A$ , $f = 1kHz$                     |
| C <sub>iss</sub>    | Input Capacitance             |     | 60   | 85  |                      | $V_{DS} = 0V, V_{GS} = 0V, f = 1MHz$                        |
| C <sub>rss</sub>    | Reverse Transfer Capacitance  |     | 11   | 15  | pF                   | $V_{DS} = 0V$ , $V_{GS} = -10V$ , $f = 1MHz$                |
| e <sub>n</sub>      | Eguivalent Noise Voltage      |     | 3.5  |     | nV/√Hz               | $V_{DS} = 5V$ , $I_{D} = 10 \text{mA}$ , $f = 1 \text{kHz}$ |

J110 SWITCHING CHARACTERISTICS @ 25°C (unless otherwise noted)

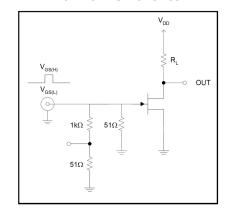
|                     |                    | I  | · ·   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------|--------------------|----|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SYMBOL              | CHARACTERISTIC     |    | UNITS | CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| t <sub>d(on)</sub>  | Turn On Time       | 3  |       | V <sub>DD</sub> = 1.5V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| t <sub>r</sub>      | Turn On Rise Time  | 1  | ns    | $V_{GS}(H) = 0V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| t <sub>d(off)</sub> | Turn Off Time      | 4  | 113   | See Switching Circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| t <sub>f</sub>      | Turn Off Fall Time | 18 |       | , and the second |

Note 1 - Absolute maximum ratings are limiting values above which J110 serviceability may be impaired. Note 2 - Pulse test: PW  $\leq$  300  $\mu$ s, Duty Cycle  $\leq$  3% and  $\leq$  3% are limiting values above which J110 serviceability may be impaired.

### J110 SWITCHING CIRCUIT PARAMETERS


| V <sub>GS(L)</sub> | -5V  |
|--------------------|------|
| $R_L$              | 150Ω |
| I <sub>D(on)</sub> | 10mA |

Available Packages:


J110 in TO-92 J110 in bare die.

Please contact Micross for full package and die dimensions

TO-92 (Bottom View)



#### **SWITCHING TEST CIRCUIT**



Micross Components Europe



Tel: +44 1603 788967

Email: <a href="mailto:chipcomponents@micross.com">chipcomponents@micross.com</a> Web: <a href="mailto:http://www.micross.com/distribution">http://www.micross.com/distribution</a>