

ULTRA-PRECISION 1:8 FANOUT BUFFER WITH 400mV CML OUTPUTS AND INTERNAL I/O TERMINATION

Precision Edge™ SY58031U

FEATURES

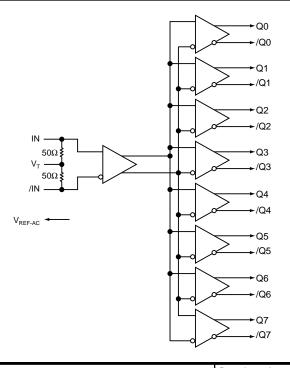
- Guaranteed AC performance over temperature and voltage:
 - Clock frequency range: DC to 5GHz
 - <65ps t_r / t_f times
 - <300ps t_{pd}
 - <20ps skew
- Low-jitter performance:
 - <10ps_{pp} total jitter (clock)
 - <1ps⁺⁺_{rms} random jitter
- **50** Ω source-terminated CML outputs
- **400mV CML** output swing into 50 Ω load
- Fully differential I/O
- Accepts an input signal as low as 100mV
- Unique input termination and V_T pin accepts DCcoupled and AC-coupled differential inputs: (LVPECL, LVDS, and CML)
- Power supply 2.5V ±5% or 3.3V ±10%
- Industrial temperature range: -40°C to +85°C
- Available in 32-pin (5mm × 5mm) MLFTM package

Precision Edge™

DESCRIPTION

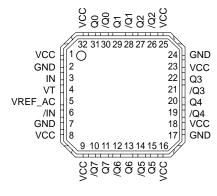
The SY58031U is a 2.5V/3.3V precision, high-speed, fully differential CML 1:8 fanout buffer. The SY58031U is optimized to provide eight identical output copies with less than 20ps of skew and less than $10ps_{p-p}$ total jitter. It can process clock signals as fast as 5GHz.

The differential input includes Micrel's unique, 3-pin input termination architecture that allows the SY58031U to directly interface to CML, LVPECL, and LVDS differential signals (AC- or DC-coupled) without any level-shifting or termination resistor networks in the signal path. The result is a clean, stub-free, low-jitter interface solution. The CML outputs feature 400mV typical swing into 50 Ω loads and provide an extremely fast rise/fall time guaranteed to be less than 65ps.


The SY58031U operates from a 2.5V ±5% supply or 3.3V ±10% supply and is guaranteed over the full industrial temperature range (-40°C to +85°C). For applications that require high-speed 1:8 LVPECL fanout buffers, consider the SY58032U and SY58033U. The SY58031U is part of Micrel's high-speed, Precision Edge[™] product line.

All support documentation can be found on Micrel's web site at www.micrel.com.

APPLICATIONS


- All SONET and all GigE clock distribution
- All Fibre Channel clock and data distribution
- Network routing engine timing distribution
- High-end, low-skew multiprocessor synchronous clock distribution

FUNCTIONAL BLOCK DIAGRAM

Precision Edge is a trademark of Micrel, Inc. *Micro*LeadFrame and MLF are trademarks of Amkor Technology, Inc.

PACKAGE/ORDERING INFORMATION

32-Pin MLF™

Ordering Information⁽¹⁾

Part Number	Package Type	Operating Range	Package Marking
SY58031UMI	MLF-32	Industrial	SY58031U
SY58031UMITR ⁽²⁾	MLF-32	Industrial	SY58031U

Notes:

1. Contact factory for die availability. Dice are guaranteed at T_{A} = 25°C,DC electricals only.

2. Tape and Reel.

PIN DESCRIPTION

Pin Number	Pin Name	Pin Function
3, 6	IN, /IN	Differential Signal Input: Each pin of this pair internally terminates with 50Ω to the V _T pin. Note that this input will default to an indeterminate state if left open. See "Input Interface Applications" section.
4	VT	Input Termination Center-Tap: Each input terminates to this pin. The V_T pin provides a center-tap for each input (IN, /IN) to the termination network for maximum interface flexibility. See "Input Interface Applications" section.
2, 7, 17, 24	GND, Exposed Pad	Ground. Exposed pad must be connected to a ground plane that is the same potential as the ground pin.
1, 8, 9, 16 18, 23, 25, 32	VCC	Positive Power Supply: Bypass with $0.1\mu F 0.01\mu F$ low ESR capacitors as close to the pins as possible.
31, 30, 29, 28, 27, 26, 22, 21, 20, 19, 15, 14, 13, 12, 11, 10	Q0, /Q0, Q1, /Q1, Q2, /Q2, Q3, /Q3, Q4, /Q4, Q5, /Q5, Q6, /Q6, Q7, /Q7	CML Differential Output Pairs: Differential buffered output copy of the input signal. The CML output swing is typically 400mV into 50Ω . Unused output pairs may be left floating with no impact on jitter. See "CML Output Termination" section.
5	VREF-AC	Bias Reference Voltage: Equal to V _{CC} -1.2V (typical), and used for AC-coupled applications. See "Input Interface Applications" section. When using V _{REF-AC} , bypass with 0.01µF capacitor to V _{CC} . Maximum sink/source current is 0.5mA.

Absolute Maximum Ratings⁽¹⁾

Power Supply Voltage (V $_{\rm CC}$)
Input Voltage (V $_{\rm IN}$)
Current (V _T)
Source or sink current on V _T pin±100mA
Input Current (V _T)
Source or sink current on IN, /IN±50mA
Current (V _{REF})
Source or sink current on V _{REF-AC} ⁽³⁾
Lead Temperature Soldering, (10 sec.) 265°C
Storage Temperature Range (T $_{\mbox{S}}$)–65°C to +150°C

Operating Ratings⁽²⁾

Power Supply Voltage (V _{CC})	+2.375V to +3.60V
Ambient Temperature Range (T _A)	–40°C to +85°C
Package Thermal Resistance ⁽⁴⁾	
MLF™ (θ _{JA})	
Still-Air	35°C/W
MLF™ (ψ _{JB})	
Junction-to-Board	20°C/W

DC ELECTRICAL CHARACTERISTICS⁽⁵⁾

$T_{\Delta} = -40^{\circ}C$ to $+85^{\circ}C$

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{CC}	Power Supply Voltage	2.5V nominal 3.3V nominal	2.375 3.0	2.5 3.3	2.625 3.6	V V
I _{CC}	Power Supply Current	V_{CC} = max. no lead. Includes current through 50 Ω pull-ups.		265	330	mA
V _{IH}	Input HIGH Voltage	IN1, /IN1, Note 6	V _{CC} -1.6		V _{CC}	V
V _{IL}	Input LOW Voltage	IN1, /IN1	0		V _{IH} –0.1	V
V _{IN}	Input Voltage Swing	IN1, /IN1, see Figure 1a.	0.1		1.7	V
V _{DIFF_IN}	Differential Input Voltage Swing IN0, /IN0 , IN1, /IN1	IN1, /IN1, see Figure 1b.	0.2			V
R _{IN}	In-to-V _T Resistance		40	50	60	Ω
V _{T IN}	Max. In-to-V _T (IN, /IN)				1.28	V
V _{REF-AC}			V _{CC} -1.3	V _{CC} –1.2	V _{CC} -1.1	V

CML DC ELECTRICAL CHARACTERISTICS⁽⁵⁾

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{OH}	Output HIGH Voltage		V _{CC} -0.020		V _{CC}	V
V _{OUT}	Output Voltage Swing	see Figure 1a.	325	400		mV
V _{DIFF_OUT}	Differential Voltage Swing	see Figure 1b.	650	800		mV
R _{OUT}	Output Source Impedance		40	50	60	Ω

Notes:

1. Permanent device damage may occur if *"Absolute Maximum Ratings"* are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to *"Absolute Maximum Ratings"* conditions for extended periods may affect device reliability.

2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.

3. Due to the limited drive capability, use for input of the same package only.

4. Thermal performance assumes exposed pad is soldered (or equivalent) to the device's most negative potential (GND) on the PCB. ψ_{JB} uses 4-layer θ_{JA} in still-air number unless otherwise stated.

5. The circuit is designed to meet the DC specifications shown in the above tables after thermal equilibrium has been established.

6. V_{IH}(min) not lower than 1.2V.

AC ELECTRICAL CHARACTERISTICS⁽⁷⁾

 V_{CC} = 2.5V ±5% or 3.3V ±10%; R₁ = 100 Ω across each output pair or equivalent; T_A = -40°C to +85°C, unless otherwise stated.

Symbol	Parameter		Condition	Min	Тур	Max	Units
f _{MAX}	Maximum Op	erating Frequency	$V_{OUT} \ge 200 \text{mV}$ Close	ck 5			GHz
t _{pd}	Propagation I	Delay (IN-to-Q)		150	230	300	ps
t _{pd tempco}	Differential P Temperature	ropagation Delay Coefficient			35		fs/°C
t _{SKEW}	Output-to-Ou	tput (Within Device)	Note 8		7	20	ps
	Part-to-Part		Note 9			100	ps
t _{JITTER}	Clock	Cycle-to-Cycle	Note 10			1	ps _{rms}
		Total Jitter (Clock)	Note 11			10	ps _{p-p}
		Random Jitter (RJ)	Note 12			1	ps _{rms}
t _r , t _f	Output Rise/F	Fall Time	20% to 80%, at full output swing	30	50	65	ps

Notes:

7. High frequency AC electricals are guaranteed by design and characterization. All outputs loaded, V_{IN} ≥100mV.

8. Output-to-output skew is measured between outputs under identical transitions.

- 9. Part-to-part skew is defined for two parts with identical power supply voltages at the same temperature and with no skew of the edges at the respective inputs. Part-to-part skew includes variation in t_{pd}.
- 10. Cycle-to-cycle jitter definition: The variation of periods between adjacent cycles, $T_{n-}T_{n-1}$ where T is the time between rising edges of the output signal.
- Total jitter definition: With an ideal clock input of frequency ≤ f_{MAX}, no more than one output edge in 10¹² output edges will deviate by more than the specified peak-to-peak jitter value.
- 12. Random jitter is measured with a K28.7 comma detect character pattern, measured at 1.25Gbps and 2.5Gbps.

SINGLE-ENDED AND DIFFERENTIAL SWINGS

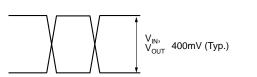
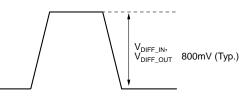
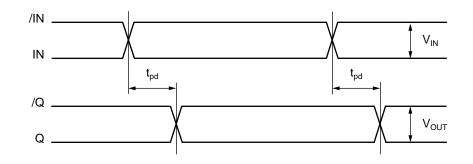
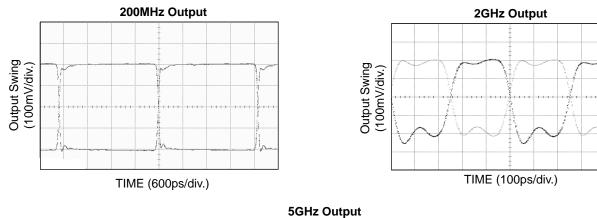
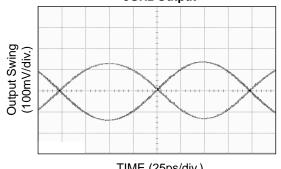
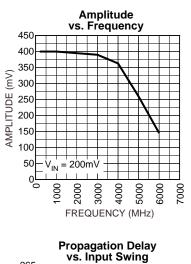


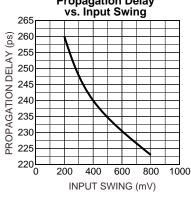
Figure 1a. Single-Ended Voltage Swing

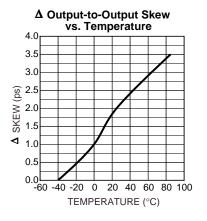



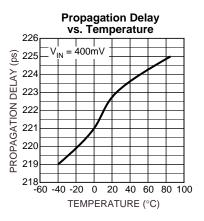

Figure 1b. Differential Voltage Swing


TIMING DIAGRAM


TYPICAL OPERATING CHARACTERISTICS


 V_{CC} = 2.5V, GND = 0, V_{IN} = 100mV, T_A = 25°C, unless otherwise stated.





TIME (25ps/div.)

V_{cc}

SY58031U

IN

/IN

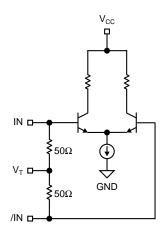
D

Figure 3c. LVPECL

Input Interface

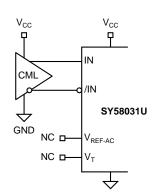
V_{REF-AC}

V_{cc}


LVPEC

GND

For 2.5V, $R_{pd} = 19\Omega$ For 3.3V, $R_{pd} = 50\Omega$


0.01µF

INPUT BUFFER

INPUT INTERFACE APPLICATIONS

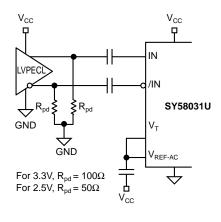


Figure 3d. AC-Coupled LVPECL Input Interface

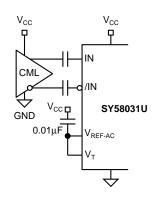


Figure 3b. AC-Coupled CML Input Interface

Figure 3e. LVDS Input Interface

CML OUTPUT TERMINATION

Figure 4 and Figure 5 illustrate how to terminate a CML output using both the AC- and DC-coupled configuration.

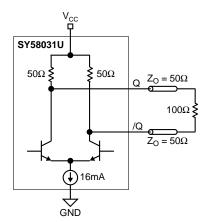
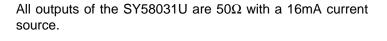



Figure 4. CML DC-Coupled Termination

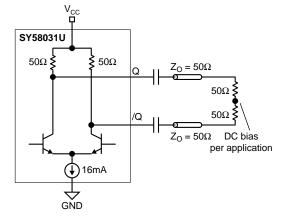
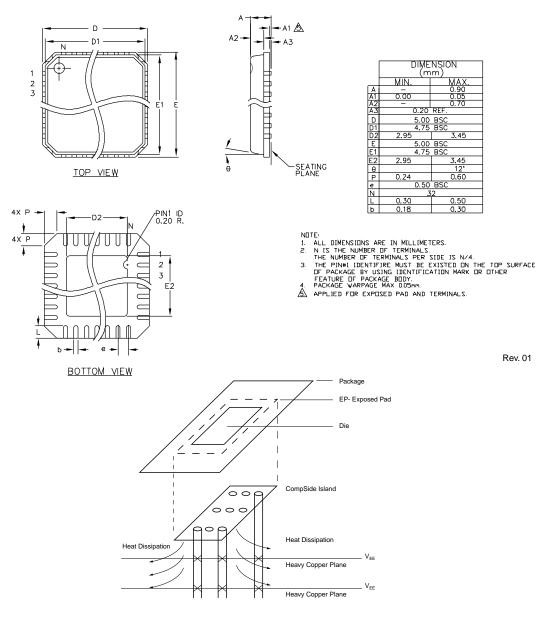



Figure 5. CML AC-Coupled Termination

RELATED MICREL PRODUCTS AND SUPPORT DOCUMENTATION

Part Number	Function	Data Sheet Link
SY58031U	Ultra-Precision 1:8 Fanout Buffer with 400mV CML Outputs and Internal I/O Termination	http://www.micrel.com/product-info/products/sy58031u.shtml
SY58032U	Ultra-Precision 1:8 Fanout Buffer with LVPECL Outputs and Internal Termination	http://www.micrel.com/product-info/products/sy58032u.shtml
SY58033U	Ultra-Precision 1:8 Fanout Buffer with 400mV LVPECL Outputs and Internal Termination	http://www.micrel.com/product-info/products/sy58033u.shtml
	32-MLF™ Manufacturing Guidelines Exposed Pad Application Note	www.amkor.com/products/notes_papers MLF_AppNote_0902.pdf
	HBW Solutions	http://www.micrel.com/product-info/as/solutions.shtml

32 LEAD MicroLeadFrame[™] (MLF-32)

PCB Thermal Consideration for 32-Pin MLF[™] Package (Always solder, or equivalent, the exposed pad to the PCB)

Package Notes:

- 1. Package meets Level 2 qualification.
- 2. All parts are dry-packaged before shipment.
- 3. Exposed pads must be soldered to a ground for proper thermal management.

MICREL, INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2004 Micrel, Incorporated.